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Abstract

Given a sequence S of n symbols over some alphabet Σ, we develop a new compression method
that is (i) extremely simple to implement; (ii) gives good compression ratio; (iii) provides
O(1) time random access to any symbol of the original sequence. Our simplest solution uses
at most 2h + o(h) bits of space, where h = n(H0(S) + 1), and H0(S) is the zeroth-order
empirical entropy of S. This can be improved to take only h + h′ + o(n) + O(log log(h)) bits
of space, where h′ = h(−n

h log2(
n
h )− h−n

h log2(
h−n

h )). H0(S) can be replaced by the k-order
empirical entropy Hk(S) for constant size alphabets, for k = o(logσ(n)). We discuss a number
of improvements and trade-offs (we obtain e.g. n(H0(S)+2

√
H0(S)+1)+o(n(

√
H0(S)+1))

bits) and give potential applications for the method.
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1 Introduction

In this paper we sketch a new compression method for sequences. The main traits of the method
are its extreme simplicity, good compression ratio and that it provides constant time random
access to any symbol of the original sequence. This work was inspired by [6, 14]. Our work is in
a very preliminary phase, we plan to extend and improve it in a number of ways, and to provide
experimental results.

2 Preliminaries

Let S[0 . . . n − 1] = s0, s1, s2, . . . , sn−1 be a sequence of symbols over an alphabet Σ of size
σ = |Σ|. For a binary sequence B[0 . . . n − 1] the function rankb(B, i) returns the number of
times the bit b occurs in B[0 . . . i]. Function selectb(B, i) is the inverse, i.e. it gives the index
of the ith bit that has value b. Note that for binary sequences rank0(B, i) = i+1−rank1(B, i).
Both rank and select can be computed in O(1) time with only o(n) bits of space in addition
to the original sequence taking n bits [8, 10]. It is also possible to achieve nH0(B) + o(n) total
space, where H0(B) is the zero-order entropy of B [12, 13], while retaining the O(1) query times.

The zeroth-order empirical entropy of the sequence S is defined to be

H0(S) = −
∑

s∈Σ

f(s)
n

log2

(
f(s)
n

)
, (1)
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Table 1: Coding scheme
symbol codeword

si0 0
si1 1
si2 00
si3 01
si4 10
si5 11
si6 000
si7 001
si8 010
si9 011
si10 100
si11 101
si12 110
si13 111
si14 0000
... ...

where f(s) denotes the number of times s appears in S.
The k-th order empirical entropy is

Hk(S) = −
n∑

i=k+1

pi log2(pi), (2)

where pi = Probability(si | si−k, . . . , si−1). In other words, the symbol probabilities depend
on the context they appear on, i.e. on which are the previous k symbols in S. Obviously,
Hk(S) ≤ H0(S).

3 Simple compression scheme

Our compression scheme first computes the frequencies of each alphabet symbol appearing in
S. Assume that the symbol si ∈ Σ occurs f(si) times. The symbols are then sorted by their
frequency, so that the most frequent symbol comes first. Let this list be si0 , si1 , . . . , siσ−1 , i.e.
i0 . . . iσ−1 is a permutation of {0, . . . , σ − 1}.

The coding scheme assigns binary codes with different lengths for the symbols as follows.
We assign 0 for si0 and 1 for si1 . Then we use all binary codes of length 2. In that way the
symbols si2 , si3 , si4 , si5 get the codes 00, 01, 10, 11, correspondingly. When all the codes with
length 2 are exhausted we again increase length by 1 and assign codes of length 3 for the next
symbols and so on until all symbols in the alphabet get their codes, see Table 1.

Theorem 1 For the proposed coding scheme the following holds:

1. The binary code for the symbol sij ∈ Σ is of length b log2(j + 2)c.

2. The code for the symbol sij ∈ Σ is binary representation of the number j + 2− 2b log2(j+2)c

of b log2(j + 2)c bits.

Proof. Let a` and b` be indices of the first and the last symbol in alphabet Σ, which have the
binary codes of length `. We have a1 = 0 and b1 = 1. The values a` and b` for ` > 1 can be
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defined by recurrent formulas

a` = b`−1 + 1, b` = a` + 2` − 1. (3)

In order to get the values a` and b` as functions of `, we first substitute the first formula in (3)
to the second one and have

b` = b`−1 + 2`. (4)

By applying the above formula many times we have a series

b` = b`−2 + 2`−1 + 2`,

b` = b`−3 + 2`−2 + 2`−1 + 2`,

. . .

b` = b1 + 22 + 23 + . . . + 2`.

Finally, b` as a function of ` becomes

b` = 1 +
∑̀

k=2

2k =
∑̀

k=0

2k − 2 = 2`+1 − 3. (5)

Using (3) we get
a` = 2` − 3 + 1 = 2` − 2. (6)

If j is given the length of the code for sij is defined equal to `, satisfying

a` ≤ j ≤ b`. (7)

According to above explicit formulas for a` and b` we have

2` − 2 ≤ j ≤ 2`+1 − 3 ⇐⇒ 2` ≤ j + 2 ≤ 2`+1 − 1, (8)

and finally
` ≤ log2(j + 2) ≤ log2(2

`+1 − 1), (9)

whose solution is easily seen to be ` = b log2(j + 2)c.
For the setting the second statement it is sufficient to observe that the code for the symbol

sj ∈ Σ is j − a`. By applying simple transformations we have

j − a` = j − (2` − 2) = j + 2− 2` = j + 2− 2b log2(j+2)c.

So, the second statement is also proved. ¤

The whole sequence is then compressed just by concatenating the codewords for each of
the symbols of the original sequence. We denote the compressed binary sequence as S′ =
S′[0 . . . h− 1], where h is the number of bits in the sequence. Fig. 1 illustrates.

3.1 Constant time random access to the compressed sequence

The seemingly fatal problem of the above approach is that the codes are not prefix codes, and we
have not used any delimiting method to mark the codeword boundaries, and hence the original
sequence would be impossible to obtain. However, we also create an auxiliary binary sequence
D[0 . . . h − 1], where h is the length of S′ in bits. D[i] = 1 iff S′[i] starts a new codeword, and
0 otherwise, see Fig. 1. We also need a symbol table T , such that for each different codeword
length we have table of the possible codewords of the corresponding length. In other words, we
have a table T [0 . . . b log2(σ + 1)c − 1], such that table T [i][0 . . . 2i+1 − 1] lists the codewords of
length i. Then, given a bit-string r, T [|r| − 1][r] gives the decoded symbol for codeword r. This
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f(a) = 3

f(n) = 2

f(b) = 1

S = banana

C[b] = 0 = 002

C[n] = 1 = 12

T [0][0] = a

T [0][1] = n

T [1][0] = b

C[a] = 0 = 02

S ′ = 00 0 1 0 1 0
D = 1011111

Figure 1: Example of compressing the string banana.

information is enough for decoding. However, D also gives us random access to any codeword
of S′. That is, the ith codeword of S′ starts at the bit position select1(D, i), and ends at the
position select1(D, i+1)−1. This in turn allows to access any symbol of the original sequence
S in constant time. The bit-string

r = S′[select1(D, i) . . . select1(D, i + 1)− 1] (10)

gives us the codeword for the ith symbol, and hence

S[i] = T [|r| − 1][r], (11)

where |r| is the length of the bitstring r. Note that in RAM model of computation |r| =
O(log(n)), and hence r can be extracted in O(1) time.

3.2 Space complexity

The number of bits required by S′ is

h =
σ−1∑

j=0

f(sij ) b log2(j + 2)c, (12)

and hence the average number of bits per symbol is h/n.

Theorem 2 The number of bits required by S′ is at most n(H0(S) + 1).

Proof. The zero-order empirical entropy of S is

−
σ−1∑

j=0

f(sij )
n

log2

(
f(sij )

n

)
, (13)

and thus

n(H0(S) + 1) = n
σ−1∑

j=0

f(sij )
n

log2

(
n

f(sij )

)
+ n =

σ−1∑

j=0

f(sij )
(

log2

n

f(sij )
+ 1

)
. (14)

We will show that the inequality

b log2(j + 2)c ≤ log2(j + 2) ≤
(

log2

(
n

f(sij )

)
+ 1

)
= log2

(
2n

f(sij )

)
(15)
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holds for every j, which is the same as

j + 2 ≤ 2n

f(sij )
⇐⇒ (j + 2)f(sij ) ≤ 2n. (16)

Note that for j = 0 the maximum value for f(sij ) is n−σ+1, and hence the inequality holds for
j = 0, σ ≥ 2. In general, we have that f(sij+1) ≤ f(sij ), so the maximum value for f(si1) is n/2,
since otherwise it would be larger than f(si0), a contradiction. In general f(sij ) ≤ n/(j + 1),
and the inequality becomes

(j + 2)f(sij ) ≤ 2n ⇐⇒ (j + 2)n/(j + 1) ≤ 2n ⇐⇒ (j + 2)/(j + 1) ≤ 2, (17)

which holds always. ¤

In general, our coding cannot achieve H0(S) bits per symbol, since we cannot represent
fractional bits (as in arithmetic coding). However, if the distribution of the source symbols is
not very skewed, it is possible that h/n < H0(S). This does not violate the information theoretic
lower bound, since in addition to S′ we need also the bit sequence D, taking another h bits.
Therefore the total space we need is 2h bits, which is at most 2n(H0(S)+1) bits. However, this
can be improved.

Note that we do not actually need D, but only a data structure that can answer select1(D, i)
queries in O(1) time. This is possible using just h′ = hH0(D)+o(n)+O(log log(h)) bits of space
[13]. Therefore the total space we need is only h + h′ bits. H0(D) is easy to compute as we
know that D has exactly n bits set to 1, and h− n bits to 0. Hence

H0(D) = − n

h
log2

(n

h

)
− h− n

h
log2

(
h− n

h

)
. (18)

Note that n
h ≈ 1

H0(S)+1 and h−n
h ≈ 1 − 1

H0(S)+1 . This means that H0(D) is maximized when
n
h = 1

2 , but on the other hand h′ depends also on h. Thus, h′/h shrinks as h grows, and hence
for increasing H0(S) (or for non-compressible sequences, in the worst case H0(S) = log2(σ)) the
contribution of hH0(D) to the total size becomes more and more negligible.

Finally, the space for the symbol table T is σd log2(σ)e bits, totally negligible in most appli-
cations. However, see Sec. 3.5 and Sec. 3.6 for examples of large alphabets.

3.3 Trade-offs between h and h′

So far we have used the minimum possible number of bits for the codewords. Consider now
that we round each of the codeword lengths up to the next integers divisible by some constant
u, i.e. the lengths are of the form i × u, for i = {1, 2, . . . , d log2(σ)e/u}. So far we have used
u = 1. Using u > 1 obviously only increases the length of S′, the compressed sequence. But
the benefit is that each of the codewords in S′ can start only at positions of the form j × u, for
j = {0, 1, 2, . . .}. This has two consequences:

1. the bit sequence D need to store only every uth bit;

2. every removed bit is a 0 bit.

The item (2) means that the probability of 1-bit occurring increases to n
h/u . The extreme case

of u = log2(σ) turns D into a vector of n 1-bits, effectively making it (and S′) useless. However,
if we do not compress D, then the parameter u allows easy optimization of the total space
required. Notice that when using u > 1, the codeword lenght becomes

b log2((2
u − 1)j + 2u)cu ≤ log2((2

u − 1)j + 2u) (19)

bits, where bxcu = bx/ucu. Then we have the following:
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Theorem 3 The number of bits required by S′ is at most n(H0(S) + u).

Proof. The theorem is easily proved by following the steps of the proof of Theorem 2. ¤

The space required by D is then at most

n(H0(S) + u)
u

. (20)

bits. Summing up, the total space is optimized for u =
√

H0(S), which leads to total space of

n
(
H0(S) + 2

√
H0(S) + 1

)
+ o

(
n

(√
H0(S) + 1

))
(21)

bits, where the last term is for the select1 data structure [10].
Note that u = 7 would correspond to byte based End Tagged Dense Code (ETDC) [1] if we

do not compress D. By compressing D our space is smaller and we also achieve random access
to any codeword, see Sec. 3.5.

3.4 Context based modelling

We note that we could easily use context based modelling to obtain h of the form nHk(S). The
only problem is that for large alphabets k must be quite small, since the symbol table size is
multiplied by σk. This can be controlled by using k that depends on S. For example, using
k = 1

2 logσ(n) the space complexity is multiplied by
√

n, negligible for constant size alphabets.

3.5 Word alphabets

Our method can be used to obtain very good compression ratios for natural language texts by
using the σ distinct words of the text as the alphabet. By Heaps’ Law [7], σ = nα, where n
is the total number of words in the text, and α is language dependent constant, for English
α = 0.4 . . . 0.6. These words form a dictionary T [0 . . . σ − 1] of σ strings, sorted by their
frequency. The compression algorithm then codes the jth most frequent word as an integer j
using b log2(j + 2)c bits. Again, the bit-vector D provides random access to any word of the
original text.

As already mentioned, using u = 7 corresponds ETDC method [1]. ETDC uses 7 bits in
each 8 bit byte to encode the codewords. The last bit is saved for a flag that indicates whether
the current byte is the last byte of the codeword. Our benefit is that as we store these flag bits
into a separate vector D, we can compress D as well, and simultaneously obtain random access
to the original text words.

We quickly estimated the size of the compressed text using our method. We used two
dictionaries, one for the text words and the other for ”separators”, where separator is defined to
be any substring between two words [9]. As there is strictly alternating order between the two,
decompressing is easy as far as we know whether the text starts with a word or a separator.
We used a 58,482,621 characters long text (a concatenation of various Project Gutenberg1 files).
The number of words and separators was n = 10, 529, 843 for both, while the number of distinct
words was σ = 169, 847, and the number of distinct separators was λ = 9, 790. We build
separate S′ and D vectors for words and separators. Our method gives compression ratio of
33.1%, including the two dictionaries (compressed using zlib library2) and an estimate of size of
the data structures for select1 queries for words (hW H0(DW ) + n bits, where the subscript W
refers to words). For separators we store only the (compressed) D vector (hSH0(DS) bits, where
the subscript S refers to separators), since we are not interesting in random access to them, but

1http://www.gutenberg.org/
2www.zlib.org
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store them only for decompression purposes. Using select1 data structures for separators as
well, increases the space to about 36.5% (additional n bits). If we are not interesting in random
access, but just want to compress the text (and hence select1 is not needed at all), we obtain
about 30.8%. Using gzip -9 (a variant of LZ compression [15]) gives 37.5%, slightly more
than ours. However, using bzip2 -9 (a variant of block-sorting compression [2]) gives about
28.5%. The zeroth-order empirical entropy of the text using the model of words and separators is
about 6.36 bits per word/separator, while our method gives about 6.85 bits per word/separator
(without select1 structures).

Note that the so called ”spaceless” model should give somewhat better compression results
[9] for our method too, especially for u > 1. Using ASCII alphabet instead of word alphabets
gives compression ratio of about 74.8%, including the select1 data structure.

3.6 Self-delimiting integers

Assume that S is a sequence of integers in range {0, . . . , σ − 1}. Note that our compression
scheme can be directly applied to represent S succinctly, even without assigning the codewords
based on the frequencies of the integers. In fact, we can just directly encode the number S[i] with
b log2(S[i]+ 2)c bits, and again using the auxiliary sequence D to mark the starting positions of
the codewords. This approach does not need any symbol tables, so the space requirement does
not depend on σ. Still, if σ and the entropy of the sequence is small, we can resort to codewords
based on the symbol frequencies.

This method can be used to replace e.g. Elias δ-coding [3], which achieves

b log2(x)c+ 2b log2(1 + b log2(x)c)c+ 1 (22)

bits to code an integer x. Elias codes are self-delimiting prefix codes, so the sequence can be
uniquely decompressed. However, Elias codes do not provide constant time random access to
the ith integer of the sequence.

Again, we can use u to tune the space complexity of our method.

4 Concluding remarks

We have presented a simple compression scheme that allows constant time access to any symbol
of the original sequence. The main benefit over previous methods is that the new representation
is extremely simple.

Note that basically our compression scheme can be directly used in place of the arithmetic
coder used in [6], and our D table (or actually the select1 data structures built from it) replace
their tables Rg and Rl. The difference that remains is that they retrieve any substring of length
b = b logσ(n)c in constant time, while we have shown only how to handle the case b = 1.
However, extending our method to b = b logσ(n)c is simple and straight-forward.

Our method could be used as a building-block in Burrows-Wheeler transform [2] -based
compressed self-index [4, 11] to the text using word alphabets. This needs also rank queries
for word alphabets. Using [5], rank takes H0(S) + O(n) space and O(log log(n)) time, as the
alphabet size is of the form σ = O(nα), for a constant 0 < α < 1.

We are currently working on extending our method in several ways.
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