
UNIVERSITY OF JOENSUU

DEPARTMENT OF COMPUTER SCIENCE AND STATISTICS

Report Series A

Bit-parallel string matching under Hamming

distance in O(ndm/we) worst case time

Szymon Grabowski and Kimmo Fredriksson

A-2007-2

ACM F.2.2, H.3.3

ISBN 978-952-458-960-4

ISSN 1796-7317

May 2, 2007

Bit-parallel string matching under Hamming distance in

O(ndm/we) worst case time

Szymon Grabowski
Computer Engineering Department

Technical University of ÃLódź
sgrabow@kis.p.lodz.pl

Kimmo Fredriksson∗

Department of Computer Science and Statistics
University of Joensuu

kfredrik@cs.joensuu.fi

Abstract

Given two strings, a pattern P of length m and a text T of length n over some alphabet Σ,
we consider the string matching problem under k mismatches. The well–known Shift-Add
algorithm (Baeza-Yates and Gonnet, 1992) solves the problem in O(ndm log(k)/we) worst
case time, where w is the number of bits in a computer word. We present two algorithms
that improve this to O(ndm log log(k)/we) and O(ndm/we), respectively. The algorithms
make use of nested varying length bit-strings, that represent the search state. We call
these Matryoshka counters. The techniques we developed are of more general use for string
matching problems.
Keywords: algorithms, approximate string matching, bit-parallelism, Hamming distance
ACM Classification: F.2.2 [Analysis of algorithms and problem complexity]: Non-
nunmerical algorithms and problems — Pattern matching, Computations on discrete struc-
tures; H.3.3 [Information storage and retrieval]: Information Search and Retrieval — Search
process.

1 Introduction

Approximate string matching is a classical problem [8], with myriad of applications e.g. in text
searching, computational biology, pattern recognition, etc. Given a text T = t0 . . . tn−1, a
pattern P = p0 . . . pm−1, over some alphabet Σ, and a threshold k, we want to find all the text
positions where the pattern matches the text with at most k mismatches. This is often called
approximate string matching under Hamming distance.

A trivial brute–force algorithm solves the problem in O(mn) worst case time. Several more
efficient algorithms have been proposed, improving the worst case time to O(kn + m log m) [6].
Convolutions and Fast Fourier Transform can be used to obtain O(n|Σ| log m) [5], and with a
more refined technique, just O(n

√
k log k) time [1].

Bit-parallelism [2, 3] has become one of the most popular techniques in the field of string
matching. Basically, it makes use of wide machine words (CPU registers) to parallelize the work
of other algorithms, e.g., filling the matrix in a dynamic programming algorithm or simulating
a non-deterministic automaton. In many cases, doubling the machine word width translates
to doubling algorithm performance (at least in theory). The most practical string matching
algorithm for Hamming distance is Shift-Add [3], based on bit-parallelism. This algorithm

∗Supported by the Academy of Finland.

1

achieves O(ndm log(k)/we) worst case time, where w is the number of bits in a computer word
(typically 32 or 64).

Besides the algorithms that have good worst case complexity, there are vast number of
filtering based algorithms [8] that achieve good average case time. These are usually developed
for a different model, namely searching under edit distance (allowing also insertions and deletions
of symbols), but they work for Hamming distance as well. In general these algorithms work well
for large alphabets and small k/m. The filtering algorithms are based on simple techniques to
quickly eliminate the text positions that cannot match with k differences, and the rest of the
text is verified using some slower algorithm. Hence algorithms that are efficient in the worst
case are still needed.

We propose two modified versions of the Shift-Add algorithm, improving its
O(ndm log(k)/we) worst case time to O(ndm log log(k)/we) and O(ndm/we). This matches
the time of the best known algorithm for searching under edit distance [7], obtaining optimal
parallelization.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be strings over alphabet
Σ = {0, 1, . . . , σ − 1}. The pattern has an exact occurrence in some text position j, if pi =
tj−m+1+i for i = 0 . . .m − 1. If pi 6= tj−m+1+i for at most k positions, then the pattern has
an approximate occurrence with at most k mismatches. The number of mismatches is called
Hamming distance (or, alternatively, the k-mismatches problem). We want to report all text
positions j where the Hamming distance is at most k.

As our algorithms belong to the family of bit-parallel techniques, some additional symbols
need to be presented. Let w denote the number of bits in computer word (typically 32 or 64).
We number the bits from the least significant bit (0) to the most significant bit (w− 1). C–like
notation is used for the bit-wise operations of words; & is bit-wise and, | is or, ∧ is xor, ∼
negates all bits, << is shift to left, and >> shift to right, both with zero padding.

For brevity, we sometimes use the notation V[i]` to denote the ith ` bit field of the bit-vector
V , that is, the bits i` . . . (i+1)`−1 interpreted as ` bit binary number. It is easy to extract V[i]`

in O(1) time using bit-shifts and masks, independent of the length of V , assuming that ` ≤ w.

2.1 Shift-Add algorithm

Shift-Add [2, 3] is a bit-parallel algorithm for approximate searching under Hamming distance.
Shift-Add reserves a counter of ` = dlog2(k+1)e+1 bits for each pattern character in a bit-vector
D of length m` bits. This bit-vector denotes the search state: the ith counter tells the number
of mismatches for the pattern prefix p0 . . . pi for some text position j. If the (m− 1)th counter
is at most k at any time, i.e. D[m−1]` ≤ k, then we know that the pattern occurs with at most
k mismatches in the current text position j.

The preprocessing algorithm builds an array B of bit-vectors. More precisely, we set B[c][i]` =
0 iff pi = c, and 1 otherwise. Then we can accumulate the mismatches as

D ← (D << `) + B[tj].

I.e. the shift operation moves all counters at position i to position i + 1, and effectively clears
the counter at position 0. Recall that the counter i corresponds to the number of mismatches
for a pattern prefix p0 . . . pi. The + B[tj] operation then adds 0 or 1 to each counter, depending
on whether the corresponding pattern characters match tj .

If D[m−1]` < k + 1, the pattern matches with at most k mismatches. Note that since the
pattern length is m, the number of mismatches can also be m, but we have allocated only
` = O(log2 k) bits for the counters. This means that the counters can overflow. The solution is

2

to store the highest bits of the fields in a separate computer word o, and keep the corresponding
bits cleared in D:

D ← (D << `) + B[tj]
o← (o << `) | (D & om)
D ← D & ∼om

The bit mask om has bit one in the highest bit position of each `-bit field, and zeros elsewhere.
Note that if o has bit one in some field, the corresponding counter has reached at least value
k + 1, and hence clearing this bit from D does not cause any problems. There is an occurrence
of the pattern whenever

(D + o) & mm < (k + 1) << ((m− 1)`),

i.e. when the highest field is less than k + 1. The bit mask mm selects the (m − 1)th field.
Shift-Add clearly works in O(n) time, if m(dlog2(k+1)e+1) ≤ w. Otherwise, dm`/we computer
words have to be allocated for the counters, and the time becomes O(ndm log(k)/we) in the
worst case. Note that on average the time is better, since only the words that are “active”,
i.e. the words that have at least one counter with a value at most k have to be updated. This
is possible since the counters can only increase.

Note that the seemingly harder problem, string matching under edit distance, can be solved
more efficiently with bit-parallelism, in O(ndm/we) worst case time [7]. Unfortunately, this
algorithm cannot be modified for Hamming distance.

3 Counter-splitting

In this section we show how the number of bits for Shift-Add can be reduced. The idea is simple.
We use two levels of counters. The top level is as in plain Shift-Add, i.e. we use ` = O(log(k))
bits. For the second level we use only `′ = log(log(k + 1) + 1) bits. The basic idea is then
to use a bit-vector D′ of m`′ bits, and accumulate the mismatches as before. However, these
counters may overflow every 2`′ steps. We therefore add D′ to D at every 2`′−1 steps, and clear
the counters in D′. The result is that updating D′ takes only O(dm log log(k)/we) worst case
time per text character, and updating D takes only O(dm log(k)/we/2`′) = O(m/w) amortized
worst case time. The total time is then dominated by computing the D′ vectors, leading to
O(ndm log log(k)/we) total time. It is easy to notice that no `′ = o(log log(k)) can improve the
overall complexity.

Note that as we add now values of at most 2`′ − 1 to the counters in the D vector, instead
of just 0 or 1 (as for D′), we must allocate ` = dlog2(k + 2`′)e+ 1 bits for them. However, this
is asymptotically the same as before, i.e. ` ≤ dlog2(2k)e+ 1 = dlog2(k)e+ 2 = O(log(k)) bits.

Now adding the two sets of counters can be done without causing an overflow, but the
problem is how to add them in parallel. The difficulty is that the counters have different
number of bits, and hence are unaligned. The vector D′ must therefore be expanded so that we
insert `− `′ zero bits between all counters prior to the addition, i.e. we must obtain a bit-vector
x, so that

x[i]` = D′
[i]`′ .

Then we can effectively add the counters in D and D′ as D + x. The simplest solution for
computing x is to use look-up tables to do that conversion in constant time, but it seems that
this requires O(2w) space and even more preprocessing time. In the RAM model of computation
it is assumed that w = O(log2(n)), and hence we may use e.g. log2(n)/2 bit words for indexing
the table, and construct the final answer from 2 pieces. The space is then just 2log2(n)/2 =

√
n

words, which is negligible compared to the length of the text. In practice we may use e.g. w/2 or
w/4 bit indexes, depending on w. Hence this solution is O(1) both theoretically and practically.

3

Alg. 1 Shift-Add-Log-Log-k(T, n, P, m, k).
1 `′ ← dlog2(log2(k + 1) + 1)e
2 `← dlog2(k + 1 << `′)e+ 1
3 iv ← 0
4 for i← 0 to m− 1 do iv ← iv | (1 << (i`′))
5 for i← 0 to σ − 1 do B[i]← iv
6 for i← 0 to m− 1 do B[pi]← iv ∧ (1 << (i`′))
7 om← 0
8 for i← 0 to m− 1 do om← om | 1 << ((i + 1)`− 1)
9 D′ ← 0;D ← om; j ← 0
10 while j < n do
11 for i← 1 to 2`′ − 1 do
12 D′ ← (D′ << `′) + B[tj]
13 if D′

[m−1] + D[m−1−j mod `′] ≤ k then report match
14 j ← j + 1
15 x← Expand(D′)
16 D ← D << (2`′ − 1)`
17 D ← ((D & ∼om) + x) | (D & om)
18 D′ ← 0

Note that we cannot shift the vector D at each step as this would cost O(dm`/we) time.
Instead, we shift it only each 2`′ − 1 steps in one shot prior to adding the two counter sets:

D ← D << (2`′ − 1)`.

As in plain Shift-Add, we must take care not to overflow the counters. The overflow bit is
therefore cleared before the addition, and restored afterwards if it was set:

D ← ((D & ∼om) + x) | (D & om).

The final obstacle is the detection of the occurrences, but this is easy to do. At each step
j, we just add D′

[m−1]`′ and D[m−1−j mod `′]`. This constitutes the true sum of mismatches for
the whole pattern at text position j. If this sum is at most k, we report an occurrence. Note
that this takes only constant time since we only add up two counters, one from each of the two
vectors (the whole counter sets are added only each 2`′ − 1 steps). Note that as the vector D is
not shifted at each step, we simulate the shift by selecting the (m− 1− j mod `′)th field when
detecting the possible occurrences.

Summing up, we have O(ndm log log(k)/we) worst case time algorithm for string matching
under Hamming distance. Alg. 1 shows the pseudo code.

3.1 Matryoshka counters

The above scheme can be improved by using more counter levels. We call these Matryoshka
counters, to reflect their nested nature. Assume that we use `1 = 2 bits in the first level, so this
requires O(dm/we) time per text character. The second level uses `2 = `1 + 1 = 3 bits, and so
on, in general the level i has `i−1 + 1 = i + 1 bits. The ith level is touched every 2`i−1 − 1 steps,
and costs O(d`im/we/(2`i−1 − 1)) amortized time. The total time is then of the form

O




log2(m)∑

i

d`im/we
2`i−1 − 1


 = O

(
(m/w)

∞∑

i

i + 1
2i − 1

)
= O(m/w).

Hence, the total amortized worst case time is O(ndm/we).

4

3.2 Other algorithms

There exist many algorithms based on techniques similar to Shift-Add. For example, the
O(ndm log(γ)/we) worst case time algorithm for (δ, γ)-matching [4] can be improved to
O(ndm log(δ)/we) worst case time. In (δ, γ)-matching the differences added are not 0 or 1,
but rather |pi − tj |, whenever this difference is at most δ. Otherwise we add γ + 1. Note that
δ ≤ γ. The pattern matches if the accumulated differences do not exceed γ. The number of
bits reserved for each counter is therefore O(log(γ)). This can be improved by reserving only
O(i log(δ)) bits for a level i in the hierarchy of counters. The only obstacle is how to represent
the mismatches. In the original algorithm the value γ + 1 is used, but this is not possible as we
do not have enough bits. This can be solved by using a separate “flag” bit-vector to denote the
mismatches. The time then becomes

O




log2(γ)∑

i

d`im/we
2`i−1/δ


 = O

(
m log(δ)

w

∞∑

i

δ(i + 1)
δi

)
= O

(
m log(δ)

w

)

per text character, and O(ndm log(δ)/we) in total.
Another problem example is δ-matching under the Hamming distance. A trivial solution is to

modify the Shift-Add algorithm so that the array B is preprocessed with respect to δ-matching
of characters. In this way, O(ndm log(k)/we) worst case time is achieved. Just as trivially, we
can apply our technique to improve the time complexity to O(ndm/we). Note that in the RAM
model of computation this is O(nm/ log(n)). We are not aware of any earlier o(mn) algorithms
solving this problem.

We believe that many other algorithms can be improved similarly.

4 Conclusions

We have presented improved version of the well–known Shift-Add algorithm, removing its depen-
dence on the parameter k, obtaining optimal parallelization. Our techniques have applications
in other algorithms as well.

We have also implemented the simpler of our algorithms, having O(ndlog log(k)/we) worst
case time, and experimentally compared against plain Shift-Add algorithm using 2.4Ghz P4
computer, having w = 32. The code was written in C and compiled with icc 9.1. If m` ≤ w,
the Shift-Add is about twice as fast as our algorithm, but if m`′ ≤ w and w < m` ≤ 2w, then
our algorithm is about 40% faster.

References

[1] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with k mis-
matches. In Proceedings of the 11th ACM-SIAM Annual Symposium on Discrete Algorithms,
pages 794–803, San Francisco, CA, 2000.

[2] R. A. Baeza-Yates. Efficient text searching. Ph. D. Thesis, Department of Computer Science,
University of Waterloo, Ontario, 1989.

[3] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun. ACM,
35(10):74–82, 1992.

[4] M. Crochemore, C. Iliopoulos, G. Navarro, Y. Pinzon, and A. Salinger. Bit-parallel (δ, γ)-
matching suffix automata. Journal of Discrete Algorithms (JDA), 3(2–4):198–214, 2005.

[5] M. J. Fischer and M. Paterson. String matching and other products. In R. M. Karp, editor,
Proceedings SIAM-AMS Complexity of Computation, pages 113–125, Providence, RI, 1974.

5

[6] Z. Galil and R. Giancarlo. Improved string matching with k mismatches. SIGACT News,
17(4):52–54, 1986.

[7] G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. J. Assoc. Comput. Mach., 46(3):395–415, 1999.

[8] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys,
33(1):31–88, 2001.

6

