

An Overview of Jini Technology and Its Affect on Distributed Computing

Johannes Lehto

11th of December 2000

University of Joensuu

Computer Science

Master's Thesis

 i

Preface

This thesis was initiated at Network Terminals Department of Nokia Networks

and finished at Nokia Entrepreneurial Web Department of Nokia Ventures

Organization. I am pleased to have been able to work with this subject I am

personally interested in.

I thank my original mentor Jari Torkkel for encouraging me to start studying this

subject, and Raimo Bäckström for motivating me to finish my thesis. I also thank

Jussi Parkkinen from the Department of Computer Science, University of

Joensuu, for accepting this subject and providing comments on scientific writing

and structure of the thesis. Special thanks to Marja-Liisa Lehto, who helped me

a lot with my English.

Johannes Lehto

Helsinki, 11th of December 2000

 ii

Abstract

This thesis focuses on introducing the Jini technology on the general level and

presenting an understanding of its programming models. It will also provide

some ideas of how this new technology could be used in the future and for what

purposes. Moreover, some problems related to the designing of distributed

systems are discussed, as well as the solutions to them offered by the Jini

technology.

Although Jini is build atop the Java programming language, anybody wanting to

use Jini to build distributed systems has to change his or her way of thinking

quite radically. Traditional distributed system development tries to hide the

network layer from both the application and the developer. Jini model does not

do that, because it requires that the developer really thinks about issues like

partial network failures, and it provides a framework to build and design reliable

and robust network services.

Right now the industry is moving from the disc centric approach to the network

centric computing. The network will be the central connecting tissue and the

notion of applications and peripherals will be replaced by network-available

services and their consumers.

One of the greatest changes in the development of distributed systems is that

traditionally data has come to the code, which uses it. With Jini, it is possible to

move objects over the network. It means that both the code and the data are

transferred. This model allows flexible building of new kinds of services in the

network.

In addition, one of the purposes of this thesis is to present what the minimum

requirements for Jini-enabled devices are and what Java features must be

supported to make a minimum Jini system work within low-capacity embedded

devices. Moreover, some drawbacks of this technology are discussed. Some

assumptions about the future of ubiquitous computing are also made.

 iii

Table of Contents

PREFACE

ABSTRACT

TABLE OF CONTENTS

ABBREVIATIONS

1. INTRODUCTION..1

2. AN OVERVIEW OF DISTRIBUTED SYSTEMS...4

2.1 Anatomy and Features of Distributed Systems...................................4

2.2 Major Problems and the Model of Unified Objects6

2.3 Demands of Distributed Systems..10

2.4 Java's Affect on Difficulties...15

3. WHAT IS JINI? ...21

3.1 The Basic Idea...21

3.2 Goals..22

3.3 Java Platform ..23

3.4 Lookup..24

3.5 Proxy..25

3.6 Discovering Services ..26

3.7 System Requirements...26

4. BASIC CONCEPTS OF JINI..28

4.1 Discovering and Joining Jini Communities..28

4.1.1 Discovering Lookup Services...29

4.1.2 Announcing the Existence of the Lookup Services.........................33

4.1.3 Unicast Discovery Protocol...35

4.1.4 Join Protocol ...37

4.2 Lookup Service...40

4.2.1 The Use of Lookup Service ..40

4.2.2 Design Issues ...43

4.3 Leasing..47

4.3.1 Benefits of Leasing...48

 iv

4.3.2 Design Issues ...49

4.3.3 Managing a Lease..52

4.4 Remote Events..53

4.4.1 The Nature of Remote Events..53

4.4.2 Design Issues ...56

4.5 Transactions..64

4.5.1 The Nature of Transactions ..65

4.5.2 Design Issues ...67

5. DISCUSSION..71

5.1 Drawbacks ...71

5.2 Future ..74

6. REFERENCES ...77

 v

Abbreviations

2PC Two-Phase Commit

ACID Atomicity, Consistency, Isolation, Durability

ACL Access Control List / Agent Communication Language

ACM Association for Computing Machinery, Inc.

AE Application Environment

AP Access Point

API Application Program Interface

AWT Abstract Windowing Toolkit

BT Bluetooth

C/S Client/Server

CLDC Connected, Limited Device Configuration

COM Component Object Model

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DCOM Distributed Component Object Model

DNS Domain Name System

eJava EmbeddedJava

EJB Enterprise JavaBeans

GC Garbage Collection

GUI Graphical User Interface

GUID Globally Unique Identifier

HTTP HyperText Transfer Protocol

IBM International Business Machines Corporation

ID Identification

IDL Interface Definition Language

IEEE The Institute of Electrical and Electronics Engineers, Inc.

IETF The Internet Engineering Task Force

IIOP Internet Inter-Orb Protocol

ILU Inter-Language Unification

IMAP Internet Mail Access Protocol

IP Internet Protocol

ISL Interface Specification Language

ISO International Organization for Standardization

 v i

J2EE Java 2 Platform, Enterprise Edition

J2ME Java 2 Platform, Micro Edition

J2SE Java 2 Platform, Standard Edition

JAR Java Archive

JCP Java Community Process

JDC Java Developer Community

JFC Java Foundation Classes

JIT just-in-time

JMS Java Messaging Service

JRE Java Running Environment

JSR Java Specification Request

JVM Java Virtual Machine

KVM Kilobyte Virtual Machine

LAN Local Area Network

MIDP Mobile Information Device Profile

MOM Message-Oriented Middleware

MPI Message Passing Interface

MTU Maximum Transmission Unit

OMG Object Management Group

OO object-oriented

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

PDA Personal Digital Assistant

PDU Protocol Data Unit

pJava PersonalJava

QoS Quality of Service

RAM Random Access Memory

RMI Remote Method Invocation

RMID Remote Method Invocation Daemon

ROM Read-Only Memory

RPC Remote Procedure Call

RRMI Reflective Remote Method Invocation

SCSL Sun Community Source License

 vii

SDS Service Discovery Service

SIG Special Interest Group

SLP Service Location Protocol

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TTL time-to-live

UDP User Datagram Protocol

UI User Interface

UPnP Universal Plug and Play

URL Uniform Resource Locator

UUID Universally Unique Identifier

VM Virtual Machine

VPN Virtual Private Network

W3C World Wide Web Consortium

WAN Wide Area Network

WLAN Wireless Local Area Network

XML eXtensible Markup Language

 1

1. INTRODUCTION

As companies and business in general become more and more global, the need

for service distribution over the networks grows. There already exist a large

number of various platforms and networks, including wireless environments that

must be handled when transferring information between devices and

applications. Also totally new areas of development are being introduced today.

One of these very interesting areas is home communications, which means

communication between domestic appliances and entertainment devices like

television. These scenarios set new demands for distributed software

development. Home communications is also one step more towards the

ubiquitous computing paradigm , which means computing technology that

recedes into the background of people’s daily lives.

In addition, a greater degree of convergence can be seen between software

components and hardware devices. They work together even more closely to

provide not only applications but also services, which can be used by clients

over different kinds of networks. The goals here are simplicity and connectivity,

which means that very heterogeneous devices can be connected to work

together without complex device driver installations and configurations.

The revolution of the Internet, and the networks in general, has been very fast

and software industry has had difficulties to keep up. Jini technology [Sun99c] is

one of the most important attempts to fulfill the high requirements of

heterogeneous and fast changing network design and implementation issues.

Based on the Java programming language [Gos96], Jini technology tries to deal

especially with very complex network issues, like partial network failures and

latency. Jini offers relatively lightweight solutions for these issues, which cannot

be covered by the traditional distributed systems, at least with solutions that are

lightweight enough.

The industry is moving from the disk centric desktop computing and distributed

applications to a network centric service model. Jini fits into the picture very

well, because in a Jini system, every involved entity is defined as a service,

 2

which can be accessed through its interface. A service can mean various things

e.g. a disk storage, a printer, or a search service.

Jini is a powerful framework for creating and deploying distributed services. Jini

is based on the model of a lookup service, which represents a Jini system. All

services, including the lookup service, are found by using service discovery

protocols. In addition to these basic concepts, Jini includes three programming

models, which are leasing, remote events and transactions.

Jini was originally developed to be used with pure hardware based embedded

devices. The purpose was especially to connect heterogeneous devices with

various capabilities together. However, it was soon discovered that Jini is also

capable of pure software solutions. This proves the flexible nature of a well-

designed architecture with object-based programming capabilities. Entities are

communicating not straight through their implementations but through their

interfaces.

A revolutionary feature of Jini is the ability to move objects freely over a network

and this way provide spontaneous joining and leaving from the network.

Another important issue is that the Java programming platform provides

platform independence and code portability also to Jini systems. And because

the Java programming language gains more popularity all the time, this helps

also Jini to be spread with it.

The purpose of this thesis is to provide an introduction to Jini and the difficulties

it overcomes. After a short briefing about Jini in Chapter 3, all the main

programming models are discussed in more detail in Chapter 4, which also

provides some code examples. In this chapter, Jini’s influence on the difficulties

of the distributed systems is also discussed when appropriate. Before taking a

deeper look at the Jini architecture, some background knowledge and concepts

of the distributed systems in general are presented in Chapter 2. This chapter

hopefully helps to understand, how difficult the distributed software designing is,

and what special requirements it sets to developers. Nevertheless, some

solutions and models presented in Chapter 4 should provide some assistance

and ideas for the reader to weather out the basic problems. And finally,

 3

drawbacks of this technology are discussed and some assumptions about the

future of distributed computing are made.

 4

2. AN OVERVIEW OF DISTRIBUTED SYSTEMS

There is an increasing need for distributed software and the number of such

systems has exploded in the last few years. Globalization and the growth of

companies compel them to distribute and expand their operations and systems

[Ste98]. This happens both globally in the Internet and more locally in Local

Area Networks (LANs) and in virtual private networks (VPNs) [Gle00]. User

mobility and ubiquitous computing [Wei96] bring out even more challenges to

build genuinely distributed computing systems in the future [Cou94, Esl99]. The

development of thin mobile clients, which are constricted, networked devices,

and multiple distribution level client/server (C/S) architectures [Lew98] also

demand new technology from communication middleware and component-

centric system design [Ste98].

Building a distributed system is much more complicated than building a local

system. In a distributed system, there are many aspects that have to be

considered, unlike in building a local system, because distributed systems can

fail in a number of ways the local ones cannot [Wel99]. Important concepts to

deal with are latency, memory access, partial failure and concurrency [Wal94].

This chapter sheds these problems, introduces the traditional distributed

systems unified object model and discusses the affect of Java programming

language and object-orientation on these problems.

2.1 Anatomy and Features of Distributed Systems

Distributed systems are built, because information is easier to maintain locally

and the relocation of large information sets can turn out to be too difficult to

accomplish [Far98]. In some scale distributed software components can be

used to enhance fault tolerance in the network, since in a well-designed system

other components can provide the same services as the components that have

crashed.

Distributed applications are built on top of the network protocols, e.g.

Transmission Control Protocol/Internet Protocol (TCP/IP) [Pos81] and higher

level services like secure connections and directory services. The applications

can also use services offered by operating system (OS). At the application level,

 5

object-based distributed software can be broken down into the following parts

[Far98]:

• Processes have the access to the services of OS. Server machines are able

to run multiple processes simultaneously.

• Threads run independently within a process. Some OSs allow one process

to control multiple threads. Threads must be synchronized to perform

cooperative tasks.

• Objects are runtime instances of classes, which are the basic components of

the object-based application design.

• Services (agents) are software components, which represent and are

responsible for one task within the application. Services are composed of

one or more objects and threads. One example is a Jini lookup service.

In the environment where multiple components are interacting, they might be

implemented by using different languages and platforms. One way to

accomplish platform independence is to use specific object interface

descriptions, which can be converted to skeletons on the server side, and stubs

on the client side (Figure 2-1). In Common Object Request Broker Architecture

(CORBA) [OMG99b] systems the interfaces are described with Interface

Definition Language (IDL). Other possibilities in different environments are

Interface Specification Language (ISL) from Xerox [Jan99], and Component

Object Model (COM) language from Microsoft Corporation [Mic00b].

 6

Figure 2-1. Remote object interaction through skeletons and stubs [Far98].

Object manager is the central entity of a distributed software environment. It

provides references and mapping between clients and servers through

skeletons and stubs. Object manager corresponds to Object Request Broker

(ORB) in CORBA systems, and the registry service in Remote Method

Invocation (RMI) [Sun99a] based Java systems. Other important tasks for

object manager are dynamic object activation and deactivation, as well as

storage provision for persistent objects.

Naming service supports the tasks of the object manager. Naming service is

usually a registry-based service, which maintains up to date statistics about the

current objects of the system. Clients use the naming service for resolving the

names and types of objects, which they need to retrieve from the server.

Requests are routed by the naming service.

2.2 Major Problems and the Model of Unified Objects

All the classical network systems have one thing in common: they try to make

the network disappear from the programmers' point of view [Edw99, Wal94].

Still the relatively new remote object systems like CORBA and Microsoft

Corporation's Distributed Component Object Model (DCOM) [Mic97] try to make

the network transparent and simulate remote method calls as local by using

Object Manager and Naming Service

Client

Server

Object Stubs

Object Skeletons

Object
requests

Object
handling

Object
resolving

Obejct
interaction

Obejct
interaction

 7

remote procedure calls (RPCs) and the concepts of Message-Oriented

Middleware (MOM) [Lew98]. This has lead to problems concerning e.g. the

correctness of programs, because the system can sometimes stay in an

inconsistent state because of inevitable partial failures in network [Edw99,

Wal94].

This vision of a transparent network along with the model of unified objects

relies generally on the following principles [Wal94]: 1) The interface of an object

is independent of the context in which that object is used, 2) failure and

performance issues are tied to the implementation of the components, and

should be left out of an initial design, and 3) there is a single natural object

oriented (OO) design for components regardless of the context they will be used

in. Along with these false principles, "The Seven Fallacies of Distributed

Systems" is written by Peter Deutsch [Edw99]. These are:

• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology does not change.

• There is one administrator.

• Transport cost is zero.

These are exactly the issues Jini architecture tries to deal with by

acknowledging them unlike the traditional distributed systems. It is obvious that

in a distributed system occurs latency by courtesy of time reserved for data

transfer. Invoking methods on a remote machine causes performance

problems, even if the development of data transfer techniques has improved

rapidly. The real qualitative problem occurs, because it is almost impossible to

know, if the transfer of some remote component is just slow, or when the

transfer has failed [Edw99].

In general, the performance of hardware has been slightly ahead of software

demands in the past years, but this situation may change in the future, because

of increasing requirements on bandwidth and new network services like video

 8

on demand. Traditional distributed system design relies on the presupposition

that the bandwidth of networks will increase in the future. That would make

latency irrelevant or at least its impact would be reduced. But this is one of the

matters that just cannot be predicted in advance. Although it would be possible

to mask efficiency difference between remote and local method invocation, it

requires new technology and changes to the programming models used

[Wal94].

Even more important than reducing the impact of latency is to bargain for it.

Because network latency also begets qualitative differences, not just

quantitative ones, remote and local method calls cannot be treated as similar

[Wal94]. This is why interface design of distributed systems is the most

important thing and it must be tied closely with the architectural design of the

system already in the initial phase of system design. This careful interface

design makes real component code reuse easier, because the heavy burden of

remoteness in implementations is transferred to interfaces. New object

distribution frameworks like Jini rely on interfaces and lightweight class

implementation, but many of the traditional systems suffer from these

modifications that are needed to turn components from local to remote [CaD98].

Moreover, the underlying system must have a total control over the memory

access to paper over full network transparency. This use of shared distributed

memory leads to the situation where address space related pointers or object

references cannot exist [Arn99b]. Because the use of this model requires a

change in one’s programming style, complete transparency between local and

remote method calls is again given up, and it is not likely that one central entity

can offer context for all kinds of applications [Wal94].

Even if the model of unified objects can be conceptually understood when

dealing with latency, the situation gets more difficult, when considering partial

network failures [Arn99b]. In local computing total failures are obviously easy to

detect, because they affect all entities involved, and it might be possible to use

the help of OS services. In network, even the use of reliable protocols offers no

solution for detecting partial failures. This problem cannot be solved by using

some library code or features of OS in a general manner to paper over the

 9

difference between local and distributed computing, hence programmers must

come up with a new application specific solution every time.

In bargaining for partial failures in a network, one of the most important things

is, again, interface design, as the improvements made in the actual component

code are not capable of dealing with the failures that inevitably occur. Because

the state of the system cannot be known after the failure, communication

interfaces must deal with indeterminacy. Two different things must be

considered in designing distributed interfaces [Wal94]. One is to build

interfaces, which are capable of perceiving the cause of failure, and the other is

to provide interfaces, which enable reasonable state reconstruction after the

failures.

When considering the model of unified objects between local and distributed

objects, it is evident that the purpose of this model is to make distributed

computing easier by treating it as it were local, e.g. in [Hic99] and [Hol98]. In the

case of partial failures, there is only one approach to fulfill this model, and that

is to make all method invocations remote, because localizing every call is not an

option since distributed failure modes would otherwise be left unhandled

[Arn99b]. Naturally this all-remote approach makes the whole OO programming

more heavyweight, and forces local computing to be as complex as distributed,

which of course is not the purpose.

Because in a distributed system there usually is no centralized entity, like there

is an OS on the local machine, the concurrency and consistency failures can be

devastating. The lack of a directive and supervisory entity entails that the failure

of one component involved in the distributed computation can not be

announced to the other components, which continue to function [Edw99]. The

central problem is the consistency of the whole system after the failure,

because there is no way of guaranteeing identification of the particular crashed

entities [Wal94].

In distributed systems, there is a possibility that the entities must handle

concurrent method invocations [Arn99b]. As to the unified objects model, the

situation is similar when comparing concurrency issues and partial failures. All

 10

entities should be semantically able to handle worst-case situations even

locally, because ignorance of concurrent invocations would be catastrophic for

the system. This indicates that the use of unified objects model is not possible

in distributed object systems, but some other approach must be taken.

2.3 Demands of Distributed Systems

In general, end users are offered a much wider variety of services by distributed

computing than by using single workstations. In addition to possible

performance and reliability improvements provided by separated software

components, the same hardware components and network resources can be

shared across the network. This kind of functionality requires a lot from OS and

other utility software.

One of the main challenges for system software, which is destinated to

distributed environment, is reconfigurability. Scaling and upgrading some

network elements and services within the system should not disrupt other

elements and services [Bec99]. There are two kinds of timescales in distributed

systems that should be addressed [Cou94]:

• Short-term changes like failed processes, network element replacement,

load balancing, and data and process replication. These changes should

always be able to be completed in runtime conditions.

• Medium to long-term evolution, like new role assignments to existing

network elements and new element additions.

New demands for reconfigurability rise from the mobility of networked devices.

These devices must be adaptable to local systems even in runtime conditions.

Hence, the dynamic resource manager of the system must be able to handle

even indirect resource requests, and provide configurations on the fly [KoP99].

The characteristic, which describes the extension level of the system, is called

openness. A system can be open or closed with respect to both hardware and

software extensions. The level of openness is defined by the degree to which

new, shared resources can be added to the system without disrupting the

 11

existing services [Cou94]. To attain openness within a distributed system, all the

key interfaces must be published for the developers [Lew98]. This entails

careful documentation processes and specifications. These processes often

bypass the official standardization procedure, as it is usually too slow. This can

undoubtedly lead to problems in compatibility issues.

Quality of Service (QoS) requirements are usually demanded by the end users

of the services in the distributed system. In general, these measurable

properties normally include at least performance and response times, reliability

and availability of services, and security issues related to data transfer [Cou94].

These requirements are common for all distributed systems. In networks QoS

properties are usually defined more accurately, and in a more network protocol

and element related manner [Slo94]. General requirements presented here just

seek to emphasize important matters related to the distributed systems.

Sharing services and resources over the network is the most important feature

of distributed systems. Servers function as service managers and providers,

and clients as resource consumers [Lew98]. This kind of C/S model (Figure 2-2)

is the most widely used and best-known model for distributed systems [Cou94].

It basically uses a simple request-response protocol, where a client requests a

resource, and a server responds to the request with the result [Com00b].

Figure 2-2. Simple client/server model.

The model of resource sharing can also be based purely on objects, in which

each object represents a shared resource. This object-based model is more

flexible and conceptually simpler than the C/S model, because all the objects

and their references in the system are viewed in a uniform way [Fre99]. Also an

OO technique called polymorphism enables closely related objects to react

differently to the same events in the system through subclassing [Lew98]. In this

Client Server

request

response

 12

object-based model, object managers correspond closely to servers.

Implementations of systems like this are more complex than in a C/S model,

although the model itself is simpler. The greatest challenge is presented by the

free migration of objects, because object managers must be able to access the

state of the objects, also remotely.

When considering a multi-user environment, where multiple network elements

and services are interacting, a great deal of communication actions takes place

in parallel. Then, a resource sharing distributed system must deal with the

resulting concurrency issues [Cou94]. There are generally two scenarios. The

first is when multiple users are accessing the same application and invoking

same methods simultaneously. This happens, because the distribution of

services allows users and their applications to exploit multiple processors. The

second is when multiple server processes, running at the same time are serving

clients. Both of these scenarios require that concurrent access to shared

resources must be synchronized.

One of the dominant themes in distributed system development is scalability. It

refers to the ability of the system to meet future requirements. These

requirements are usually related to growth of the system, which again means

more users, more client computers, more service requests, and so on. Growing

hardware update requirements are relatively straightforward to meet, but the

real challenges are in software scalability [Cou94]. A handful of users have

turned into hundreds of millions [Com00a], and distributed software should also

be able to handle this new situation. Even if a lot of practical improvements

emerge from the hardware development, software must be adaptable enough to

be broadened into a larger collection of services from modular pieces of

applications. Naturally, hardware development also sets new demands for

software, for example because of multiprocessor systems and totally new

pieces of incompatible hardware, like new central processing units (CPUs)

[Bry99].

Fault tolerance does not mean that faults would not occur, but the system can

cope with the situation where a fault has occurred, and the system should

recover from it without losing any data [Cou94]. Two approaches exist as a

 13

basis when developing fault tolerant computer systems. These are hardware

redundancy and software recovery. Hardware redundancy refers to

components, which are generally reliable and can back other failing

components up, even in runtime. Hardware based fault tolerance is, at any rate,

a very costly solution, because the system needs more hardware as a reserve.

In distributed systems, the costs can be reduced by redirecting requests of

clients to different servers, if a particular server fails. This solution is widely

used in database-based environments, where data is replicated to multiple

servers. This has similarities with Internet Protocol (IP) networks, where for

example data packets are redirected through different routers if some of them

are down.

Software based recovery is related to data storing. Systems should be designed

and implemented in a way that make it possible to roll back any failed and

incomplete actions without leaving any updated permanent data in inconsistent

state. To achieve this ability within a system, a transaction based software

model is often used. Naturally it makes software development much more

complicated, but this approach gives many advantages when dealing with

remote network failures [Edw99].

As transparency of a network is a fallacy from the developers’ point of view,

some levels of transparency are usually implemented for the end users of the

distributed system to hide network complexity, and, consequently, to this way

improve the usability of the system and user interfaces (UIs). Especially from

the user point of view, several levels of transparency can be denoted [Cou94,

Orf96]:

• Access transparency treats locally and remotely accessed objects

identically.

• Location transparency enables accessing information in a similar way

separately from the location of the information.

• Concurrency transparency means that multiple processes can access

shared resources without interference.

• Replication transparency hides the difference between replicated data in

the network.

 14

• Failure transparency enables users to complete their tasks without the

knowledge of some component failures.

• Migration transparency allows information to be moved to a new location

without affecting to the operations of the clients.

• Performance transparency makes possible runtime reconfigurations

according to the workload variation to improve the performance.

• Scaling transparency prevents rewriting of client software and system

structure changes, when scaling the system up.

The first two transparencies are usually referred to together with the term

network transparency, which is considered to be the most important case when

utilizing distributed resources. It must be noticed that these transparencies are

not considered from a developer’s, but as an end user’s point of view.

Security hazards in distributed computing are a very difficult and challenging

topic. Security within clients, and on the other hand within servers alone, is not

enough, because of the highly accessible nature of a network itself. Also

compromising between high security and performance issues is a hard one.

The role of network security is growing all the time, because more and more

services are transferred into digital form, and to be used in a network like the

Internet. Threats are multiform, and they include cases like information leakage,

tampering, resource stealing, and just vandalism with viruses and worms

[Cou94].

Several technical solutions are available for improving security [Orf96]. One of

them is user authentication, which usually means that the system uses user

names and passwords to identify users. Based on Access Control Lists (ACLs),

the server grants rights to use resources to already authenticated users. This is

called authorization. Administrative network monitoring is relatively easy, and it

is usually used for user activity tracing, which means building up audit trails

related to suspicious clients.

Also encryption and cryptographic checksums are used to increase security in

networks. Both of the techniques are based on keys, which are used for coding

and decoding messages, and exposing data changes during the communication

 15

between distributed participants. Nevertheless, encryption in particular

increases overhead in messages and can cause performance problems.

Cryptography is also used to implement digital signature mechanisms. At any

rate, authentication, authorization, and some level of encryption together usually

form a minimal security solution for distributed system [Cou94, Far98].

2.4 Java's Affect on Difficulties

Java's designers were mainly concerned with reliability, simplicity and

architecture neutrality when developing this OO language from its predecessor,

Oak. When it was obvious that Java language would be used mainly to network

programming, the demands on properties grew and the language was designed

to support networking, security and multithreading. This makes Java a good

solution for distributed programming [Far98, Sri97].

The minimum building block in OO programming is a class. This feature offers

applications to be well defined and structural in the sense of designing and

programming [Far98]. Because it is relatively easy to map natural entities and

phenomena as objects [KoK96, Lew98], which are instances of the classes, the

distribution of these objects is also simple and straightforward. With the help of

Java's network support, the whole system can be build with the distribution

issues incorporated from the ground up [Mah00].

When developing a distributed system, it is important to have the ability to

separate the object's abstract interface from its implementation. By this ability of

OO languages like Java, the implementation can be changed or even moved

into the different location without changing the whole system, or rewriting client

software. The critical elements of the Java Application Programming Interface

(API) are based on this ability [Far98] and it makes it possible to develop

platform independent implementations, for example components of Abstract

Windowing Toolkit (AWT) on each platform, like Windows and Macintosh

environments, by using abstract interfaces.

Java's RMI uses abstract interfaces to define local stubs and remote objects

(Figure 2-3) in order to invoke methods on remote Java Virtual Machines

 16

(JVMs) [Lin99] (Figure 2-4). This concept is also common in other distributed

object systems such as CORBA, which uses IDL to define interfaces [Far98].

Even if RMI is a Java specific feature, and thus not compatible with other

languages, Java supports IDL mapping, which enables interoperability [Lon99,

OMG99a]. It must be noticed that even seamlessly compatible connected

interfaces still do not guarantee correctness of the system, but a consistency

checking using synchronization techniques must be made [Gen99].

Figure 2-3. RMI system architecture [Pag97, Sri97].

Figure 2-4. Local and remote method calls [Mah00].

There has been a lot of discussion about different kinds of distributed computing

middleware solutions. The strengths of RMI are clearly its Java based security

[Bus98], efficiency as a result of simplicity, and the ability to transfer serialized

and marshalled data objects. Some solutions to make the performance of RMI

even better exist, for example Reflective RMI (RRMI) [Thi98], and the use of

better optimized object serialization mechanism [CaB99, Nes99]. If an existing

distributed system with multiple programming languages is being developed

further, the decision between CORBA and RMI points towards CORBA and its

language independence [Kap99, WuD98], but in the case of a new system, the

choice is easily pure Java approach with RMI.

Object

Application

Object

Object

Object

Machine A Machine B

Local
calls

Remote
calls

Stubs Skeletons
Remote Reference Layer

Transport Layer

Client Server

 17

Java code can be compiled into bytecode, which is platform independent and

can be run on similar JVM on every supporting platform [Far98]. This makes it

possible to develop Java based distributed systems on wide variety of different

machine and operating system architectures. The drawback of Java has been,

in spite of platform independence, performance. This matter has been

improved, because many of the new JVMs are using just-in-time (JIT) compilers

to optimize the translation of bytecode [Pis99].

In addition, Java is tailored to different sizes by default. These Application

Environments (AEs), often referred as Java platforms, are separately focused to

servers and desktop Personal Computers (PCs), Personal Digital Assistants

(PDAs), mobile equipments, and finally to electronic cards, and to even smaller

devices [Sun98]. In specific, these AEs are PersonalJava (pJava) [Sun99h],

EmbeddedJava (eJava) [Sun99g] and JavaCard [Sun00d] in addition to Java

AE running on a PC. From the developers’ point of view, the Java programming

environment is divided into three different categories according to the specific

market areas [Lun00]. These environments, starting from the Java language

version 2, are Standard Edition (J2SE), Enterprise Edition (J2EE), and Micro

Edition (J2ME). For each edition of Java, there are many free programming

tools, which makes Java even more popular, also among distributed system

developers.

In Java, there can be application-defined and system-defined exceptions and

errors, which can be thrown and caught by wrapping any potential exception

causing code inside exception handling blocks. All Java methods can throw an

exception. The caller of the method is responsible for dealing with the

exceptions or it passes it up the calling chain. Because an exception is

represented as an object, the programmer can implement his own exceptions,

and so indicate abnormal exceptions, for example in distributed system [Far98].

Java API includes low-level sockets (Figure 2-5), and data communication

protocols, which can be layered on top of sockets [Mah00]. Protocols can be

connection-oriented like Transmission Control Protocol (TCP) [Pos81], or

connectionless like User Datagram Protocol (UDP) [Pos80]. Data streams can

 18

be filtered and preprocessed with several stream classes in a java.io packet.

On top of this basic level communications, high-level network support can be

built, such as distributed objects schemes, remote database connections and

directory services [Far98]. Another important feature is Garbage Collection

(GC), which enables automatic resource renewal, even remotely with the

support of RMI [Abd98].

Figure 2-5. Client socket communication [Mah00].

Java has two dimensions of security for distributed systems: a secure local

runtime environment and an ability to perform secure remote transactions. All

local code is controlled by the JVM, which places restrictions on operations and

capabilities of the code, downloaded from the network or not. For example, the

downloaded code has no access to the file system, it can only make a network

connection to the server it was originally downloaded from, it has no access to

any local code or libraries outside the Java environment, and it has limited

access to thread manipulation [Far98], so the code is said to be executed inside

a sandbox [ClE99]. In the bytecode interpretation process, a JVM takes

advantage of three different components, which offer built-in security for Java.

These are, first, class loader for preventing built-in or extension class overriding,

secondly, class file verifier for access and type restrictions observing, and,

6. Close 6. Close 7. Close 7. Close

5. Read
5. Write

6. Write
6. Read

6. Read
6. Write

5. Write
5. Read

3. Client socket

1. Server socket

2. Listen

4. Listen

ClientServerClientServer

1. Server socket

2. Listen

4. Accept

3. Client socket

5. New thread

Singlethreaded server Multithreaded server

 19

finally, security manager, which keeps track of runtime access control and

enforces restrictions, which are defined in security policy (Figure 2-6) [Pis99].

Figure 2-6. Access control mechanism in Java.

In remote cases, even if RMI itself does not support all crucial security features,

Java supports an authentication system and encryption of data on remote and

secure network connections with the help of classes in a java.security

package.

Java provides multithreading support as a fundamental feature. This feature

enables the use of multiple points of code execution in application. Every

created class can extend the java.lang.Thread class and do its work within

a separate thread. These threads can be grouped, prioritized, yielded to other

threads, suspended or made to work together [Far98]. This kind of ability offers

ways to build, for instance, distributed systems with synchronized parallel

computing capabilities.

Every thread has its own stack, which stores local variables and method

arguments (Figure 2-7). Individual stacks allow threads to modify their own local

variables and call methods in the order they want [Mah00]. Still every thread

Domain A

Sandbox

Domain C

Domain B

JVM
Resources

Security policy

Local or
remote code

 20

uses the same source code, the same static variables in global data, and the

same heap, which holds new, allocated objects.

Figure 2-7. Threads in programs [Mah00].

Source code

Global data

Heap

Stack

Source code

Global data

Heap

Thread #1 stack

Thread #2 stack

Sequential program Program with two threads

 21

3. WHAT IS JINI?

3.1 The Basic Idea

Jini technology (Figure 3-1) provides an infrastructure for defining, advertising

and finding services in a network [Arn99a, Sun99c]. In practice, Jini is a set of

protocols (Figure 3-2) and programming models for service provision using

downloaded code and RMI [Cri99, Sun99a]. All the services are implemented

using the Java programming language [Arn98]. The service is composed of

defined interface and implementation. All the programming is done by using the

OO way of programming. By using this paradigm and Java language, all the

services are universal. This means that the execution of code is done exactly

the same way on every platform hosting a JVM. This also means that the code

of the service can be downloaded to the client when necessary. This feature

provides a way for the clients to use services previously unknown to them. One

of the main goals of this facility is that it allows spontaneous networking without

any human intervention [Arn99a].

Figure 3-1. Jini connection technology.

Device Device

Java
Technology

Java
Technology

Discovery
Lookup

Services Services

Jini
Technology

Network
Services

Leasing
Transactions
Remote Events

 22

Figure 3-2. Various protocols within Jini technology architecture [ClD99a,

Sun99i].

The Jini lookup service represents the whole Jini community. It provides a place

to advertise the services. The lookup service holds serialized proxy objects of

the services. The type of the proxy object defines the type of service. Clients

and services find the lookup service by using the discovery protocol and the

services join to the community by using the join protocol [Arn99a, Sun99c].

3.2 Goals

The main goal of Jini architecture is to provide a type-safe and reliable way of

providing services in the network. It is a framework for designing and

implementing OO distributed systems [Wal99]. The aim is to allow services to

be easily available and removable on a network to anyone who can reach them

[Day00a].

Service deployment means plugging the service to the network, and it becomes

visible and available, as easily as possible, to those who want to use it. The

service can be pure software, hardware, or a combination of them. The idea of

a flexible network is expanded, because all the services available are reachable

to other services and clients, and removing the service is not any harder. The

network can reorganize itself to be able to continue working after changes

[Arn99a].

Network Transport

Operating System

Java

Jini

Application

Device

Foreign Device

Network Transport

Operating System

Java

Jini

Service

Camera Printer
Service Protocol

Java RMI

Network Protocol

Print Picture

Device Protocol

Bridge Protocol

 23

Jini technology changes the idea of network applications to the idea of a

service-based network. Everything is a service. The goal is that this architecture

allows any device with a processor, some memory and a network connection to

offer and use services available. Jini contributes in implementing the services

and making them available on the network. It is also possible to automate some

implementation issues with Jini [Sun99b, Wal99].

Because of the Jini’s new programming models, the developer is forced to

acknowledge the difficulties of the distributed computing. Thus, this framework

offers better capabilities to deal with the issues, which are cannot be handled by

the traditional distributed systems.

3.3 Java Platform

Java provides a universal type system for Jini architecture, which means that all

the object types are understood exactly in the same way on every platform

hosting a JVM offering properties, on which Jini architecture relies. These are

RMI, homogeneity, single type system, polymorphism, object serialization and

marshalling, code downloading, Java Archive (JAR) files, safety and security

policy [Arn99a].

Remote communication between objects that exist on different address spaces

is possible using RMI. Homogeneity means that all the code downloaded by

clients is executed the same way on every virtual machine (VM). This is

resulted by the universal type system, which allows downloaded code to work

both for local and remote computing. Code downloading is based on two

features: Firstly, Java objects can be serialized into a transportable byte stream

form [CaB99, Har97] and, secondly, during the serialization process objects can

be marked with codebase. Codebase refers to the network address, which

points to the actual location, from where remote code can be downloaded to the

client when needed. Marked and serialized object is called a marshalled object.

Packed class files and data with optional meta-information file, which allows

certain packages to be sealed for restricting the use of included class files, are

called JAR files [Cri99]. Client machine virus protection is provided by the JVM

according to the security policy definitions [Arn99a].

 24

3.4 Lookup

Lookup service is Jini's analogue to the traditional naming and directory service,

although it has much more capability. The lookup service is the place where

clients look for services they need. It is also the place where services advertise

their existence. Advertising means that services store their serialized proxy

objects in a lookup service after they have found the lookup service by using the

discovery protocols [Arn99a].

When the service has registered itself with the lookup service, it is returned a

lease. This is an amount of time, which tells to the service how long the

registration is available. The service must renew the lease, if it wants to

continue advertising itself. Leasing is the mechanism that maintains the

freshness of the list of available services. The services which do not renew their

leases are dropped out of the community [Arn99a]. Furthermore, leasing is the

basis for measuring and possibly charging for the use of a service [Cri99].

To get a particular type of service, the client contacts the lookup service. They

find the lookup service in the same way as the services find it – by discovery.

When the client receives a proxy object of the lookup service, the client

requests it to find one or several services needed, which match the template

provided by the client. The lookup service finds the particular service by

comparing the type rules of the template against all the service types currently

registered. When the match is found, the lookup service returns the serialized

proxy object of the service to the client. After that the client can deserialize the

object and invoke its methods. In practice, invoking the method means that the

proxy object sends a request by using RMI to the actual service. This

mechanism provides that the client does not have to know the implementation

of the services, just the interfaces [Arn99a]. In most cases the lookup service is

no longer needed and the client communicates directly with the service [Cri99].

A Jini service can be stamped with attributes. These attributes are set by the

system administrator or the service itself. If the attributes are set, the client can

specify its service requests more accurately. The lookup service then finds the

service needed by the type and, additionally, by matching attributes. The

 25

attributes are used in a way that the client does not define them at all, or if

defined, they have to match exactly [Arn99a]. This matching model is the same

that is used in JavaSpaces [Fre99].

Lookup services can be part of one or more groups, which represent physical

location or logical set of the services. Also, services can be registered with a

particular group. These features help to arrange the network services into

logical set of services [Arn99a] and they also help maintaining the information

about the services, because the clients do not need to update the Uniform

Resource Locators (URLs) of the services, when they change [Arn99b]. The

group is actually a string, and an empty string means a public group, in which all

the lookup services should belong.

3.5 Proxy

A proxy object represents a service item, which is actually an instance of a

class that implements a certain Java type object [Arn99b]. When designing and

programming in the OO way, the implementation is encapsulated behind the

interface of the class [KoK96]. It frees the designer to focus on programming a

good API rather than the network protocols. API level designing is even more

flexible, when it is combined with code downloading [Arn99a], which means the

transfer of proxy objects.

In traditional distributed systems like CORBA, the interface definitions,

expressed usually with IDL, describe the methods that a remote server

understands. This places strong requirements at the receiving end of the

messages sent across the network. The proxy that implements the service in a

Jini system can be as complicated as required. The ability to add a layer of the

client-side code leaves the network protocol and wire protocol implementations

to the individual programmers of each service, and enables Jini system

designers to concentrate on good APIs. This means that only the APIs must be

standardized, and programmers can increase functionality by adding their own

methods to the proxies as long as the service supports the standardized

methods [Arn99a].

 26

3.6 Discovering Services

A discovery protocol is used to find lookup services in a network. In the Jini

architecture, IP based network is supported. When a service is plugged in the

network, it starts to send multicast messages, which lookup services listen to. If

the particular lookup service manages a group the service wants to join, the

lookup service sends its own URL-style address to the service, which then

contacts the lookup service in that address using a unicast join protocol

[Arn99a].

Registration is done using the unicast join protocol, which uses a URL-style

location definition to get the host and port of the lookup service. After the

connection has been established, the service downloads the proxy code of the

lookup service and deserializes it [Arn99a]. The joining process is completed

after the service has sent its own proxy object to the lookup service by calling

the registration method of the lookup service proxy. This service item then

functions as an advertisement of the service [Cri99].

Moreover, the lookup services send multicast messages into the network to

advertise their existence. This implies that although a new service cannot send

multicast messages, it can still register with the lookup service by responding to

the multicast messages sent by the lookup service [Arn99a].

3.7 System Requirements

Although Jini is a very lightweight framework, if it is compared to the traditional

programming solutions, it is still so new that it is not optimized for very limited

devices yet, even if it has been the target in the first place. Hardware

requirements for the devices running Jini capable services are still relatively

high, because of the Java Running Environment (JRE) requirements. Despite

the fact, the improvements in pJava and eJava AEs are going to the right

direction. They both already have some level of support for RMI, in pJava as an

optional feature, and in eJava as a configurable feature [Sun99g, Sun99h].

According to these specifications, the minimum hardware requirements of a Jini

enable device related to the JRE can be defined as the following:

 27

• Less than 512 kilobytes of Read-Only Memory (ROM).

• Less than 512 kilobytes of Random Access Memory (RAM). Basic Jini

classes need approximately one hundred kilobytes, but RMI requires

more than 250 kilobytes of memory to work [Sys00].

• 32-bit processor with at least 25 MHz CPU speed.

A basic Jini server, which hosts and runs a lookup service, must have at least

two additional software components running [Per99] with working UDP and TCP

enabled IP stack [Edw99]. First, a server software, which is capable of serving

the clients with downloadable Java code. It is usually a HyperText Transfer

Protocol (HTTP) server. Second component is an RMI Daemon (RMID), which

makes remote method calls in practice possible to invoke [Aye99]. Naturally, the

server must also host the JRE with a full JVM to support RMI. Optionally the

server can run a transaction manager software, if transaction based activity is

needed in the network. On the server side, these software components together

form a basic Jini lookup service running environment.

 28

4. BASIC CONCEPTS OF JINI

In this chapter, the basic concepts of Jini architecture are described. In practice,

the basic concepts are implemented as software libraries and code

conventions. Jini comprises five basic concepts that form the relatively simple

core of this Java extension. Discovery and join protocols are used by entities to

find services and bond with a Jini community. Discovery also allows

spontaneous networking in practice. Lookup process controls the way the actual

code is transferred between the clients and services and it works in a directory

service role and beyond. This is the only basic process of Jini, which requires

some user administration [Edw99]. Leasing allows Jini communities to be self-

healing and restricts long-living services from growing too much. Remote events

make it possible to announce other services the change of state of a particular

service in the community. This feature has some similarity to the model of

Enterprise JavaBeans (EJB) [Sun99e]. Transactions enable guarding against

partial failures in the network and help in concurrency issues of Jini. They also

help to maintain known states of services when multiple services are involved in

the same computation. This contributes to the robustness of the network

[Edw99].

4.1 Discovering and Joining Jini Communities

Discovering the services of the network is essential to maximize the potential of

the networks, especially in wireless environments. At the same time numerous

companies are developing mobile devices with network capabilities with high

speed. Since the various handheld devices and portable computers are all

highly mobile, their network administration and static network configuration

become extremely complex, because of the large amount of networks, protocols

and services.

There have been attempts to solve the problem of service discovery with

different kinds of algorithms and network protocols. Sun Microsystems’ Jini

discovery protocol is not the only framework provided, but there are many other

IP-based solution possibilities like the Universal Plug and Play (UPnP)

discovery [Mic00a] from Microsoft Corporation, the Service Location Protocol

(SLP) [Gut99a], the Salutation from Salutation Consortium [Sal00] etc.

 29

When a new entity - an application or a service - wants to use the services of

other Jini services, it must first discover available lookup services, which

practically represent Jini communities in the network. To perform this search,

the entity uses a discovery protocol to find the lookup services needed and then

uses a join protocol to make its own services available to others in the

community. In this way the entity becomes a part of the Jini community, can

advertise its own services and use services provided by other members

[Edw99].

An entity gets references to one or more lookup services by examining the

return values of the discovery protocol. There are three kinds of protocols,

which are associated with accomplishing the discovery process. These are the

multicast request protocol, the multicast announcement protocol and the unicast

discovery protocol [Edw99]. The use of a variety of protocols makes the Jini

discovery process more flexible and adaptable to different kinds of network

topologies [Day00a]. The first two protocols are serendipitous and make use of

a User Datagram Protocol/Internet Protocol (UDP/IP) multicast, while the latter

uses a TCP/IP unicast protocol facility [Edw99].

4.1.1 Discovering Lookup Services

A multicast request protocol is used when an entity needs to discover lookup

services in a LAN after reconnection or for the first time. The components

involved on the requesting side are a multicast request client and a multicast

response server [Sun99c]. The multicast request client performs the multicast

request itself (Figure 4-1). It requests references to the lookup services it is

interested in. The multicast response server listens to the announcements of

the lookup services. These two components always occur as a pair and never

alone, but there can be many pairs in a single JVM [Edw99]. When the entity

has performed discovery for some time, it stops and starts to listen to

announcements from the lookup services [Arn99b].

On the lookup service side, there are a multicast request server and a multicast

response client running. These two components join to form a multicast request

 30

service. There is typically one service of this kind in a single JVM (Figure 4-1). A

multicast request server listens to incoming multicast requests made by entities.

A multicast response client responds to the requesting clients and sends them a

proxy, which allows them to communicate with the lookup service [Arn99b]. The

proxy object is actually an RMI stub, which functions as a reference to the

discovered lookup service [Aye99]. However, it must be noticed that the

multicast request service itself is not based on Java RMI, but it uses a UDP

facility of the network transport layer of the Open Systems Interconnection (OSI)

model [Cou94] from International Organization for Standardization (ISO).

Figure 4-1. Multicast Request Protocol participants [Arn99b, Sun99c].

An entity performing the discovery first establishes a multicast request client.

This component will send a multicast discovery request packet (Figure 4-2) to

the multicast request service, which lives on the well-known network endpoint in

LAN, usually in port 4160 [Aye99]. The entity also establishes a TCP server

socket for listening to incoming connections. This TCP server is actually a

multicast response server.

Multicast Response
Server

Multicast Request
Client

Multicast Response
Server

Multicast Request
Client

Lookup
Service

Multicast Response
Client

Multicast Request
Server

JVM of discovering
entity

JVM of lookup
service

 31

Figure 4-2. UDP header format [Pos80].

All the information (Table 4-1) that the entity sends within the datagram must fit

into 512 bytes of data [Arn99b]. It is a size of the body of a single UDP

datagram, which IP guarantees to arrive intact, if unguaranteed delivery is

successful [Edw99], when the header size is also counted. This is because IP

implementations are not required to handle bigger maximum transmission units

(MTUs) [Mur98]. However, the information sent must not be truncated freely to

meet this limit, but multiple multicast messages must be sent [Sun99c]. The

data is represented as a marshalled object, which first has to be serialized,

when it is written in an output stream as a byte array (Example 4-1).

Count Serialized type Description

1 Int Protocol version (current value is 1)

1 Int Port to connect

1 Int Number of founded lookup services

variable ServiceID Founded lookup services as an array

1 Int Number of groups the entity wants to discover

variable String Founded groups as an array

Table 4-1. Multicast request packet body [Sun99c].

int protoVersion;

...

java.io.ByteArrayOutputStream byteStr = new

 java.io.ByteArrayOutputStream();

java.io.DataOutputStream objStr = new

 java.io.DataOutputStream(byteStr);

// Writing all the data to the objStr.

objStr.writeInt(protoVersion);

...

S o u r c e P o r t D e s t i n a t i o n P o r t

L e n g t h C h e c k s u m

0 1 5 1 6 3 1

.
d a t a o c t e t s

 32

Byte[] packetBody = byteStr.toByteArray(); // final product

Example 4-1. Generating a discovery request as a byte array to the output

stream [Sun99c, Sun99f].

The entity must maintain a set of objects that contains identifications (IDs) of

lookup services already found. Objects are instances of the

net.jini.core.lookup.ServiceID class and they are added to the set,

when the entity receives a response from the lookup service. The discovery

requests are sent with periodic intervals. They contain connecting information

for the entity's multicast response server and the latest set of founded lookup

service IDs. The time interval between sent requests and the number of them is

not defined, but the recommendations are five seconds and seven times

[Sun99c]. The discovery process is finished, when the entity has received

references to the lookup services it needed. If this does not happen, it must

start using a multicast announcement protocol [Arn99b].

During the discovery process (Figure 4-3), a multicast request server binds a

datagram socket to the well-known port, where the multicast request service

resides. This service receives the incoming requests. It must respond to the

requests, when the set of founded lookup service IDs is empty. It also has to

react when its own ID is not in the set of IDs and some group requested

matches some group this service belongs to as a member. Otherwise, it must

not respond [Arn99b]. When the request must be responded to, the service

connects to the requesting entity's multicast response server and provides it

with a lookup service registrar (a proxy object) using the unicast discovery

protocol.

 33

Figure 4-3. Multicast request protocol [Arn99b].

One thing to consider, when using multicast messages, is the situation called a

packet storm [Edw99]. Because well-behaving Jini entities must be able to

perform multicast discovery messaging when they have been started, there is a

possibility that after a major network restart, the network is flooded with

messages. One solution is to use Jini-provided discovery utility mechanisms

[Sun99b] and especially a LookupDiscovery class, which provides initiation

of multicast requesting with random time delays between 0 to 15 seconds

[Sun99c] to scale concurrent request sending.

4.1.2 Announcing the Existence of the Lookup Services

A multicast announcement protocol (Figure 4-4) is used when a lookup service

announces its presence to the members of the Jini community in LAN [Edw99].

Announcements are sent at regular intervals, which are not mandated, but the

recommended interval is 120 seconds [Arn99b]. The announcement is sent by a

multicast announcement client, which is a long-lived process residing on the

same system as the announcing lookup service, and its time-to-live (TTL) is the

same. The receiver of the announcement is a multicast announcement server,

which lies on every entity, which listens for announcements [Arn99b].

Discovering Entity Lookup Server

1. The discovering entity sets
up a TCP server; this is an
instance of the multicast
response service.

2. Lookup servers run instances of
the multicast request server, which
listen for multicast requests from
discovering entities.

3. The discovering entity
performs a multicast that
requests references to the
lookup services.

4. The lookup server connects to the
discovering entity's multicast response
server, and uses a unicast discovery to
provide a reference to itself.

 34

Figure 4-4. Multicast announcement protocol [Aye99].

The restrictions and limitations concerning the size of the UDP packet body

(Table 4-2) are the same as in the multicast request protocol. The default well-

known port for multicast announcements is also 4160.

Count Serialized type Description

1 Int Protocol version (current value is 1)

1 String Host name for unicast discovery

1 Int Port number for unicast discovery

1 ServiceID ID of the lookup service

1 Int Number of groups in which the lookup service

belongs

variable String Names of the groups in which the lookup

service belongs

Table 4-2. Multicast announcement packet body [Arn99b].

The lookup service constructs a datagram socket object, which it sends to the

well-known multicast endpoint where the multicast announcement service

resides. The lookup service also establishes the server side of the unicast

discovery service [Arn99b].

Listening Entity Lookup Server

2. An entity listens to
multicast announcements at
port 4160.

1. A lookup service sends a
multicast announcement, which
contains a unicast TCP port for a
connection.

3. The entity connects to the
given port using a unicast
discovery protocol via TCP.

4. A unicast discovery service listens
to incoming TCP connections.
After the connection has been
established, the service provides a
reference to the lookup server.

 35

The entity establishes a set of service IDs, which it has heard of. This set is

constructed from the set formed using the discovery request protocol during the

discovery phase. It begins to listen to announcements by binding a datagram

socket to the well-known multicast endpoint where multicast announcement

service operates. The received announcement is ignored, if the ID of the

advertised service is already on the entity's set of heard services or the entity is

not a part of the group the announcement is meant for. Otherwise, the entity

performs a unicast discovery to get a reference to the lookup service and ads its

ID to the set of known services. The host and port needed to perform a unicast

discovery, are retrieved from the announcement sent by the lookup service

[Arn99b].

When implementing a lookup service and its multicast announcement protocol,

the question of network traffic emerges. It is not efficient to have three separate

calls to perform the existence announcement and send the proxy object. Still,

this approach reduces the network traffic, compared to sending proxy objects

straight into the network, which could be considered as an optional approach.

There are two reasons for that. First, the size of the multicast datagram is

limited to 512 bytes, which means that relatively large proxy object should be

split to multiple packets. Second, most of the sent announcements are useless

[Edw99], except when the lookup service is started for the first time or restarted

after shutdown. Another issue is the TTL value of multicast messages, which

can also flood the network in normal cases. The value is not mandated in a Jini

specification, but the recommended value is 15 [Edw99].

4.1.3 Unicast Discovery Protocol

Although entities need to discover local lookup services, the end user may want

to use other services outside the LAN. A unicast discovery protocol is used

when an entity knows a particular lookup service and wants to connect directly

to this. The entity knows the name of the lookup service, which is similar to the

URL syntax with jini. For example jini://cs.joensuu.fi means lookup

service running on host cs.joensuu.fi with the default port 4160. The

unicast discovery protocol is also used when lookup services are connected to

form a set of communities called a federation over a Wide Area Network (WAN)

 36

[Edw99], and when lookup services initiate responses to multicast discovery

requests [Arn99b].

Instead of a multicast UDP, the used protocol is a simple request-response

protocol based on the unicast TCP [Sun99c]. When it is used as a part of

multicast protocols (Figure 4-5), it works in the same way as in a stand-alone

case (Figure 4-6). The difference between these two cases is that the

information to perform a unicast discovery has been received from the data

delivered by the former communication, but the stand-alone unicast discovery

needs pre-configuration of the location (host name and port number) of the

lookup service.

Figure 4-5. Unicast discovery initiated by the lookup service [Arn99b].

Figure 4-6. Unicast discovery initiated by the discovering entity [Sun99c].

Discovering Entity Lookup Server

2. The discovering entity
sends a unicast request.

3. The lookup service responds by
sending a unicast response with a
reference to itself.

1. The lookup service
establishes a TCP connection
based on information provided
by the multicast request.

Discovering Entity Lookup Server

1. The discovering entity
establishes a TCP connection
to the lookup service and
sends a unicast request.

2. The lookup service responds by
sending a unicast response with a
reference to itself.

 37

The class that provides an interface for performing the unicast discovery is the

net.jini.core.discovery.LookupLocator. It is a Serializable

class, in which method getRegistrar() returns the proxy object of the

lookup service discovered as an instance of the class

net.jini.core.lookup.ServiceRegistrar [Sun99c].

Another consideration in all the discovery protocols is that there are no Jini-

provided authentication security features included in the Jini release 1.0 [Cri99,

Edw99]. Sun Microsystems has promised to provide this within the future

releases. In practice this means that there should be a possibility to sign and

certify class files in the Jini class loader and also to have a new version of RMI,

which allows marshalled objects to be signed and certified as well [Cri99].

Moreover, security policies should be applied to downloadable objects rather

than to classes themselves.

4.1.4 Join Protocol

A join protocol includes the sequence of steps, which should be performed by

services when they are starting up and registering themselves with a lookup

service to become a part of a Jini community [Arn99b]. These steps include

maintaining the persistent state of the service itself, a lookup service discovery

and registration, leasing, updating the service, and group joining and leaving

[Sun99c].

Persistent data is a complex thing to handle in distributed transient object

environments, especially when data and devices are highly mobile. One

particular problem is related to databases and file systems, because they still do

not support object type data widely [Jah98]. Even if object databases are

developed, they are too massive to fit into the memory or a disk of mobile

devices. In Jini this can be solved with a separate storage service, which saves

persistent data on behalf of some service, but this still does not solve the

original data type problem completely.

 38

A Jini service should store some information (Table 4-3) about itself to be able

to recover from restarts and crashes. This information is mandatory according

to the Jini specification [Sun99c].

Item Description

Service ID A service ID assigned by the lookup

service, when the service is started

for the first time.

Attribute set Attributes that describe the lookup

service entry of the service.

Group set Groups that the service wants to

participate. Usually an empty string,

which means a public group.

Lookup service set Specific lookup services to register

with.

Table 4-3. Persistent state of a service [Arn99b, Sun99c].

The service ID of the Jini service is 128 bits long number [Edw99]. It is very

important that the service gets the unique ID in the very first contact with the

lookup service, and saves this number in its persistent state. This is one way of

providing Jini-style networking, because configurations of the services can be

discovered and used after reconnections according to the IDs. Another issue is

avoiding the serial number type of approach and the related centralized control

of global registry of IDs. The service ID is calculated by the constructor of the

JoinManager class of the lookup service using the random system clock

based algorithm proposed by [Lea98]. These IDs are guaranteed to be globally

unique until the year 3400 [Edw99].

To join the Jini community as a full member, the service must be able to

perform the lookup service discovery using all or at least some of the discovery

protocols. The minimum requirement is to be able to listen and react to

incoming multicast announcements sent by lookup services. There is no

specification in which order the discovery steps should be taken, but if the

service is associated with specific lookup services, it should try to register with

them first using a unicast discovery [Sun99c]. In addition to these requirements,

 39

the service has to register with the same service attribute set and a single

service ID with each lookup service [Arn99b].

Because all the connections between services and lookup services in Jini

community are leased, the service must renew its leases to stay available to the

community. If some communication problems occur, the action the service

takes depends on the relationship with the lookup service [Sun99c]. If the

particular lookup service has been discovered by using the multicast discovery,

it is safe to discard the connection. The situation is different if the lookup service

reference is in the list of persistent lookup services. Then the service is

supposed to reregister with the lookup service. If the service is, for some

reason, told to unregister with a particular lookup service, it should remove that

lookup service entry from its persistent state set and cancel all leases

associated with the lookup service [Sun99c]. The situation is reverse, when the

service is told to register with a specific lookup service. Also the change of

service attributes leads to changing these attributes with all registered lookup

services.

Joining a specific group is a relatively easy task. The group name must be

included in the set of persistent group list of the service, and the service should

be able to perform multicast discovery to these groups. Leaving a group needs

additional steps [Arn99b]:

• The service should remove the group from its persistent state.

• The service should remove all the lookup services, which match only to

that group, and are discovered using multicast discovery.

• The service should continue performing multicast discovery with the

reduced set of groups, or stop if the set has been reduced to empty.

The real implementation of the join protocol does not really exist. The protocol

actually defines the steps and procedures to become a member of a Jini

community and maintain the membership. The implementation is application

specific like in almost every Jini protocols and procedures, but the specifications

set the limits and minimum requirements as mentioned above.

 40

4.2 Lookup Service

In distributed systems there usually is a central component that provides access

to the distributed resources, because every client component in a distributed

system may not have the tools to find services by themselves.

The lookup service (Figure 4-7) is the fundamental part of the Jini architecture

core. It is the registry where all the available services advertise their existence,

and where the clients go to find the services they need [Arn99b]. Jini’s lookup

service has some analogy to the concept of long-running name server, but the

semantics is much richer, because even individual types of objects can be

searched on the basis of the strong typing of the Java language [Edw99].

Figure 4-7. Lookup service architecture.

4.2.1 The Use of Lookup Service

Each service is presented as a service item, which is used to communicate with

the service by downloading it, and a list of attributes, which describe the service

characteristics, or possibly alternate interfaces. When services discover the

lookup service, they upload their proxy objects, which are instances of the class

ServiceRegistrar. These instances are used conceptually as a front-end

interface [Edw99]. The register() method is used to join as a member of a

community [Sun99d], and this registration is leased. Thus, the freshness of the

Lookup service

Lease
management

Service management
Service item
management

Service template
management

Service ID
management

Attribute
management Additional

configurations /
administration

Discovery / join
management

Communication
management

Attribute

Attribute

Attribute

Proxy
item

Service
item

 41

services available is guaranteed. As an argument of the method the service

passes its own service item and attributes.

Another approach to examine the lookup service is from the client side, which

naturally can also act as a service at the same time. Clients use the lookup()

method offered by the ServiceRegistrar class [Sun99d], which, again, is

not a real remote interface but a proxy, to find network services. To define the

kind of service being searched, the client passes arguments for the method.

Possible arguments are object types meaning the types of service items

(Example 4-2), certain attributes, and defined lookup entries [Arn99b, Edw99,

Sun99d], where an entry is an instance of the class, which correctly provides a

net.jini.core.entry.Entry interface for accessing the collections of

objects [Sun99c].

Object service; // returned service match

Object[] sTSet = [1]; // searched service types

ServiceTemplate tmpl; // searched service

...

serviceTypeSet = sTSet.newInstance[Printer, 1];

// constructing the template (ignore ID and attributes)

tmpl = new ServiceTemplate(null, serviceTypeSet, null);

// getting the matching service

// the name of the registered lookup service is ‘foo’

try {

 service = foo.lookup(tmpl);

}

catch (RemoteException exp) {

 // the lookup service can not be reached

}

Example 4-2. Getting the matching service from the lookup service.

If the lookup() method returns a null value, there are no matching services

[Sun99d]. In the case of multiple matches, a random instance is returned. It is

possible to use two-parameter form of this method for defining the number of

returned instances, but the exception handling can become very complex,

 42

because the final success of the method must be discovered by examining the

return values. A better solution is to use the getEntryClasses() method to

receive a collection of services of same type, e.g. all available printers in a LAN.

Downloadable proxies are one of the key features of Jini architecture. When a

client has downloaded a service item, it can use the service through the

interface provided without having any formal information about the service, the

communication protocol used, or driver configurations that are associated with

it. The analogy to Java applets is obvious in some ways; applets can be

downloaded and they donot require any administration. Still, they usually use

Graphical User Interfaces (GUIs) and are meant for human-computer

interaction. Downloadable proxies act more like agents; they are found,

downloaded and used programmatically [Edw99]. It must be noticed that at this

point there is a real-world problem associated with this kind of communication.

To accomplish such a flexibility and spontaneity, the service interfaces must be

standardized globally. This is a huge task to complete, because of the large

amount of devices, attributes and vendors.

The attributes of the service item are represented as a set of attribute sets. An

individual attribute set is actually an instance of a class, whose public fields

represent each attribute. A service item can contain multiple instances of these

classes and provide, for example, various implementations coded with different

languages [Arn99b].

By using the event mechanism of Jini, the lookup services can be expanded to

be more efficient producers of community services. Possible use scenarios

could include announcing registered clients in certain matters like service

unregistration, new service registration and service drop out [Sun99c]. This

could be the way to keep up the consistency of the community. This is also

helpful for the administration, because it can be informed about state changes

and service problems, for example through an additional administration applet

of the lookup service.

 43

4.2.2 Design Issues

When a new service registers for the first time with the lookup service, it must

be assigned a unique service ID. This is a feature that must be included in all

lookup services [Arn99b]. If the service has no ID number when registering

(Example 4-3), the assumption is that it is a new service. The lookup service still

checks if the service equals with some service already registered, because the

lack of an ID number may arise from restarting of the service already registered

before. If the match is found, the new service replaces the old one, even if the

attribute values do not exactly match The old service is removed, and all its

leases are cancelled. The service ID of the old service is assigned to the new

one, because it is safe to assume that service items represent the same

service. Otherwise the ID number is normally generated and assigned.

if (item.serviceID == null) {

 // the service has no ID number assigned

 int done = 0;

 int i = 0;

 int j = serviceItemList.length;

 if (j > 0) {

 while (i <= j && !done) {

 if (item.service.equals(serviceItemList[i]) {

 // replace serviceItemList[i] with item.service

 // assign the ID to the new service

 done = 1;

 }

 else i++;

 }

 if (!done) {

 // assign a new service ID for the service

 }

 }

 else {

 // assign a new service ID for the service

 }

}

 44

Example 4-3. Checking the need for a new service ID of the registering service.

In discussing lookup service, some issues related to proxy objects should also

be considered. There are actually four common cases, in which the use of proxy

objects is different. These are [Edw99]:

• The service, which implements the whole service by itself. In this

connection, the term proxy is somewhat misleading, because no other

resources are needed. These kinds of services are usually pure software

solutions.

• Downloaded object is an RMI stub, which allows the communication with

the real service implementation. The service itself is usually some

centralized service, like an Internet Mail Access Protocol (IMAP) based

mail service, which allows Jini based applications access, for example, to

the new mails in some folder without really distributing the mail service

implementation.

• Attaching Jini based clients to legacy applications, which need some

specific protocol for communication. The proxy includes an interface,

which allows pure Java binding with the back-end protocol

implementation.

• Some hardware component provides a service, which needs its own

special protocol. Communication is accomplished through a proxy object,

which acts as a device driver with Java interface adaptable for the

application.

The service items within the lookup service can be arranged in a hierarchical

order according to the types and attributes, although the collection is flat by

default. The lookup service provides some methods to explore and browse the

collection of services. This is useful for both the administrators and the clients

[Arn99b].

When implementing the services, there are some standard attributes, which

must be included inside the attribute set of the service. This requirement still

needs to be worked on. The standard service attributes so far agreed upon are

presented in Table 4-4. It must be made impossible for clients to change the

 45

attributes through the service item globally [Edw99]. Sophisticated services and

lookup services should provide own APIs for this purpose, because otherwise

the services cannot fulfill the requirement of state change notification set by the

join protocol.

Attribute Purpose

Address Geographical location of the service (country, city, street etc.)

Comment Free-form String for comments

Location Location of the service inside the organization (building, floor,

room etc.)

Name Human-readable name for service

ServiceInfo Generic information (manufacturer, model, serial number etc.)

ServiceType Service description (localized name, short description, icon etc.)

Status Current operating status of the service (normal, error etc.)

Table 4-4. Jini standard service attributes [Edw99].

Another implementation issue is that the proxy object of the service is not

leased by the client. Leasing is a framework to protect the system as a whole,

not to protect any particular application, and the common leasing approach may

not provide good solutions for individual clients anyway [Edw99]. Pragmatically

it is difficult to say, which one, the client or the service, is the grantor of the

lease, and which one is the consumer from the leasing point of view (Table 4-5),

even if it is conceptually easy. Hence, the client can use the proxy as long as

necessary, and after it has performed its task, it can be discarded. However,

this impacts the implementation of the client, because it must notice whether the

service back-end process is alive or not. This is performed by using careful

exception catching and return value analysis after remote calls have been

made. An additional mechanism to investigate the status of the service could be

the implementation, which listens to incoming event notifications, e.g. service

drop-out, from the lookup service the proxy was downloaded from, concerning

the appropriate service.

 46

Lease grantor Lease consumer Situation / problem

Service Client Client should renew the lease, but this

technique still does not provide

additional information about the crash of

the service.

Client Service The user of the service must implement

the mechanisms for lease management,

even if it provides the running

environment and resources for the

service.

Table 4-5. Comparison between two different leasing possibility / problem

[Edw99].

To increase the reliability of the Jini community, there are two options as to

lookup services. The one is to have multiple lookup services to serve one

community, and the other is federating the lookup services together [Edw99].

The first is actually a complex task, because of synchronization between the

actual lookup service and its back-up service, and could also be a little

oversized, at least for small communities. The other approach is a very

interesting mechanism, because it provides a way to mirror company structure,

administration boundaries, and hierarchically connect Jini communities (Figure

4-8), which are well capable of functioning autonomously in spite of partial

network crashes. This federation mechanism is a great advantage in

administration of the services compared to administration of one huge

community, in which network latency and critical points of failure exist, and

every service, not only the lookup services, has to have a company wide URL.

 47

Figure 4-8. Connecting different Jini communities with lookup services.

4.3 Leasing

One of the desired properties of Jini architecture based distributed system is

reliability. The problem is that in distributed systems failures are inevitable. They

occur more easily and with greater complexity than in local systems. Leasing is

a part of the Jini programming model, which helps programmers to bargain for

these failures, which are going to occur no matter how reliable the real software

itself is [Edw99].

The basic idea of leasing is conceptually very simple [Arn99b]: An object wants

to use a particular resource, which another object offers. The former requests

the resource and the latter grants a lease for the requested resource for some

negotiated period of time. The lease must be renewed or it expires. If the holder

does not renew the lease, it means that either it has crashed, there is a

communication error or it does not want to use the leased resource anymore.

Characteristics of a lease [Arn99b, Sun99c]:

• A lease is a time period during which the grantor of the lease insures that

the holder can access the leased resource. The time period can be decided

completely by the grantor or it is negotiated with the client. It must be noticed

that the guarantee to use any particular resource is gained through the

implementation of the grantor.

Lookup

Lookup

Lookup

Client

Client

Client

Client

 48

• The holder of a lease can cancel it at any time during the period of lease.

Used resources are freed.

• The holder can renew the lease by requesting it again during the lease

period. The time period is negotiated in the same way as before. The grantor

can reject the renewal.

• A lease can expire. The difference between expiration and cancellation is

that expiration does not require any communication between the involved

objects.

4.3.1 Benefits of Leasing

When a partial failure (Figure 4-9) occurs in the network, it is impossible to say,

if one (or both) of the cooperating components of the distributed system has

either crashed or the communication between them is down. With this time-

based leasing concept, network failures can be detected and the used

resources can be freed. The maximum time the failure can remain undetected is

the duration of the lease [Edw99]. Without leasing, the resource provider can

not free the resource in the case of a failure, because it does not know if the

client is going to be back online or not. In the Jini system, a lease that is not

renewed expires and the holder is considered not to be back online.

Figure 4-9. Two examples of partial network failure.

Programming with leasing is a relatively complex task, because both the grantor

and the holder must be programmed to allow the concept of leasing in practice.

Nevertheless, it provides real benefits to distributed system programming. In

addition to the ability to detect failures in the network, the leasing model also

provides a basic structure failed components to be cleared up automatically

Client Server

Client Server

Network failures

 49

[Edw99]. Because many of the large distributed systems are designed to be

long-lived, it is impossible to administer them by hand. For example, the Internet

or a global enterprise network can be considered as systems, which cannot be

completely shut down for administrative operations or clean-ups, either from

one physical location or from many locations exactly simultaneously.

The ability to clean up crashed components is autonomous, as the grantor of

the lease knows when the lease expires. Since there is no central leasing

control component, a distributed system with a working Jini leasing system can

be self-healing [Edw99]. Naturally, the holder is not able to free resources after

a crash, but the grantor can, because it has total control over the lease

relationship. Consequently, it is guaranteed that dated data cannot be used by

other members of the network, and the resources are freed automatically.

Another administrational benefit from leasing is that developing the components

in distributed systems can be made online. When a component must be

upgraded, all its leases are first forced to expire. Then the implementation can

be changed without the danger of duplicate versions in network [Edw99],

because the former version of the component has been completely dropped out

from the community.

4.3.2 Design Issues

In distributed systems, there can be various devices connected with each other,

located possibly in different time zones. This is why the resource leasing

duration should be defined in relative time, not in absolute time, although the

absolute time is more natural to some applications. The devices can have

different representations of time and, further, a designer cannot know, how well

the other devices are maintained. Even if the internal clocks of the machines

are wrong because of keeping inaccurate time, the error is still crucially smaller

when using relative time instead of absolute time [Edw99]. In fact, the actual

expiration time of the lease is counted in absolute time because it is convenient

for the programmers. A method called getExpiration()returns the absolute

lease expiration time in milliseconds, counted from the start of "Java time", 1st

of January 1970 [Sun99d]. This is why the necessary computations are easy to

 50

accomplish by checking the current clock against the expiration time of the

lease (Example 4-4).

// This method returns the time left before the lease

expires.

public long getRemainingDuration(Lease lease) throws

UnknownLeaseException {

 return lease.getExpiration() - currentTimeMillis();

}

Example 4-4. Checking the lease expiration time against the current clock.

Another thing that must be taken into account when deciding the duration of

leases is the latency that occurs in networks. This inevitable feature of networks

sets a minimum bound for leasing time. This means in practice that the lease

renewal request made by a client cannot be guaranteed to arrive at any fixed

time. Thus, the duration of the lease must be long enough to encompass its

renewal with defined probability, even if latency occurs.

The most obvious thing to consider when designing a leasing-based system is

the lease negotiation process. In Jini, the negotiation process is kept simple as

it minimizes remote procedure calls. Actually, there are only two procedure calls

that must be executed [Edw99]. First the client requests a lease from the

resource provider and proposes the duration. Then the grantor replies with the

actual duration of the lease. Possible return values are 1) the requested time, 2)

zero, which means that the permission to use the requested resource is not

permitted, or 3) any value between these two. This approach is not as flexible

and accurate as multiround leasing model [Edw99], but its benefits are obvious,

because of its lightweight nature.

There is a further design issue to mention. Especially in embedded systems, the

computing power and communication skills of small devices are limited. When

these devices being involved in the Jini system, leasing can be done by a third-

party object, which has the capacity to accomplish needed procedures [Edw99].

Now the actual client can use all its power to utilize resources more efficiently.

Unfortunately, this can cause problems, because the actual consumer of the

 51

resource is not responsible of the lease renewing any more. One type of

situation is created by a crash of the service consumer. If the leasing service

has been asked to lease some service for a particular time period, it will do it

even if the consumer cannot make use of the resource any longer. Another

scenario is that the leasing service becomes unavailable, and the consumer of

the service does not know that the leases have expired. Both of these cases

weaken the robustness of the community. Consequently, the option of a third-

party lease manager has to be considered very carefully. Usually this approach

fits to very reliable pure hardware devices, which are not capable of running

leasing related software.

Although the concept of leasing may sound simple, it makes the whole

programming model of Jini system more heavyweight. The leaseholder must

show continuous interest in leased resources to keep them available by

renewing the leases as shown in Example 4-5.

long duration = asked_lease_time; // in milliseconds

try {

 lease.renew(duration);

} catch (LeaseDeniedException lde) {

 // the grantor is unable or unwilling to renew the lease

 // the lease remains untouched

} catch (UnknownLeaseException ule) {

 // the grantor does not recognize the lease

} catch (RemoteException re) {

 // possibly thrown if the grantor is a remote object

}

Example 4-5. Renewing the lease using core method renew() and catching all

thrown exceptions.

Instead of using the core methods of leasing, programmers can take advantage

of higher level APIs. One of the most important classes is

LeaseRenewalManager, which takes care of the lease renewal on behalf of

the consumer [Edw99]. With this class it is possible to cancel, add and renew

 52

leases with a single method call. This makes lease management much easier

than the use of raw core methods.

Nevertheless, the resource provider must constantly keep an eye on resources

to be able to free them when leases expire. It must also, naturally, have an

implementation for lease duration allocation and negotiation as well as lease

renewal mechanisms.

4.3.3 Managing a Lease

The net.jini.core.lease.Lease interface defines an object, which is

returned to the holder by the grantor when the lease is given. The actual

implementation of the object is hidden from the holder [Sun99c]. The object

returned to the holder includes this interface and it is used for managing the

lease [Edw99]. The reason why this is not a class but an interface is that the

grantor can decide how it will communicate with the holder. Individual grantors

can use various independent mechanisms for communicating, for example RMI,

CORBA or raw TCP/IP-sockets.

Because the holder has to renew the lease, it needs tools for that. The interface

of the proxy item of the lease provides a standard way of communicating with

the grantor (Figure 4-10). Some of the method calls are local, e.g.

getExpiration(), and some remote, e.g. cancellation and renewal of the

lease.

Figure 4-10. Lease interface is used for communication between the grantor

and the holder [Edw99].

Lease grantor Lease holder

Resources
Lease

Leasing status
info

Private protocol

 53

The management of several leases is very common among resource

consumers. This happens especially with lookup service registrations and event

notifications. As leasing is a heavyweight programming model, programmers

need tools for efficient lease management design. One way to reduce

communication needs, computation time and the amount of management code

is to use the LeaseMap interface for batching leases together [Edw99]. With

this interface, the individual leases are grouped together and all the actions are

directed at all leases in this data structure called LeaseMap, which is inherited

from the java.util.Map class. However, only leases granted by the same

grantor can be batched together (Example 4-6) because grantors use private

protocols for communication with lease holders as seen in Figure 4 -10.

long duration1 = duration_for_lease1;

long duration2 = duration_for_lease2;

lmap = lease1.createLeaseMap(duration1);

if (lease2.canBatch(lease1)) {

 lmap.put(lease2, (Long) duration2);

} else {

 // leases can not be batched together

}

Example 4-6. Testing a lease for batching.

4.4 Remote Events

Remote events are also a fundamental feature of the Jini architecture. Jini uses

events in much the same way as legacy Java Foundation Classes (JFC) and

AWT based Java applications, but the main characteristics of events is in

remoteness between different VMs and machines. In this chapter these

differences are reviewed and a basic description of remote events and their

usage is given.

4.4.1 The Nature of Remote Events

An event is an abstract change in the internal state of an object. According to

the principles of OO programming, this kind of change is encapsulated in an

object and is not allowed to be visible outside the object [KoK96]. At any rate, in

 54

Jini system, other objects can register interest in such events, and the object

can notify interested objects when a particular event occurs. This notification,

which is in practice an instance of the RemoteEvent class, holds enough

information about the event to enable further actions of the notified component

(Figure 4-11).

Figure 4-11. Jini's basic event model [Arn99b, Sun99c].

The basis of the Jini event system is that all events are instances of the same

standard RemoteEvent class or its subclass. Secondly, the Jini APIs for event

delivery are very narrow, which makes programming relatively easy.

The notification system used in Jini is called asynchronous notification. This

means that event notifications are sent directly to the listening software

component and the handling of notifications is done outside the control flow of

the component by listeners [Edw99]. The benefit of this kind of notification

handling is that continuous polling for events is not necessary and the

component is automatically informed when an interesting event occurs without

any extra programming code needed [Fur99]. Another advantage is that when

the events are handled by some other component, the design of the interested

component is more clearer [Edw99].

In Jini the events are classified into kinds [Arn99b, Sun99c]. This means that

there are one or more kinds of events, which can be fired by a component. The

classification of events is implementation dependent. The registration of interest

indicates the kind of event that the interested component is interested in. Event

types are uniquely identified with the combination of an event identifier and an

Event
generator

Remote
event
listener

1. The remote event listener
registers interest in a particular
kind of event with event generator.

2. The event generator fires a remote
event to indicate that an event of that
kind has occurred.

Remote
event

 55

object reference. The basic content of the event class (Example 4-7) is the

following [Sun99c]:

• A reference to the object in which the event occurred.

• An identifier for the kind of event in which an interest has been registered.

• A sequence number identifying the instance of the event type.

• An object that was passed in, as part of the registration of interest in the

event by the registrant.

public class RemoteEvent extends java.util.EventObject {

 public RemoteEvent(/* constructor */

 Object source, /* a reference to the object */

 long eventID, /* an identifier of the kind of event */

 long seqNum, /* a sequence number of the event type */

 java.rmi.MarshalledObject handback) /* an object, which

 is handed back when the notification occurs */

}

Example 4-7. The constructor of event class.

Using the remote event model is one way to enable implementation of Jini's

spontaneous networking. The lookup service is one natural object for using

events to notify registered clients that new services are available in the

community. An example of such usage could be a digital camera, which wants

to print a picture, and if the printer is not online, the camera can register interest

for printing and the lookup service can notify the digital camera when the printer

is available.

Although polling for events is not necessary, the interest in particular kinds of

events must be leased [Sun99c]. The object that wants to receive event

notifications must show continuous interest for them, because the whole system

needs to maintain its reliability and self-healing abilities. If the object for some

reason goes temporarily offline, it can still get the notifications it needs, if they

are handled by third-party objects, which are discussed in the next section.

 56

4.4.2 Design Issues

In legacy Java applications, events are usually GUI based and local. These

kinds of events are very reliable, easy to program and their delivery is fast and

efficient. Efficient delivery means that the time needed to actually handle the

event, is relatively much longer than the time needed to send the event. This is

true, because sending involves nothing but the invocation of the local event

handling method. In distributed systems the situation is reversed [Edw99]. This

is why the notification traffic in the network should be well designed and

minimized.

There are some other things that must be taken into account when designing a

distributed Jini system. In a local system, the programming of ordering event

notifications is natural. But in a distributed system there is no such guarantee

that notifications arrive in the intended order, because of partial failures and

network latency. Network failures are another reason for why there is no

general guarantee for notifications to arrive at all. If the local application, inside

one VM, sends an event notification, the delivery is sure unless there is a

catastrophic failure in the entire application.

There is no global namespace for event identifiers [Edw99]. Hence, all event

generators should have their unique way to generate them. When considering,

for example, a lookup service, this is a great help when customizing event

handling related to client registrations. Sequence numbers are another issue to

be considered. To ensure that event notifications are idempotent, which means

that components receiving notifications are able to deal with them only once

regardless of how many times they get the same notifications [Edw99], the

sequence numbers of events, generated by the event generator, must meet the

following requirement [Arn99b, Sun99c]:

 nmiff,ybeforeoccursx inim <

where

 mnumbersequenceandinumberidentifierwithxeventxim =

 57

 nnumbersequenceandinumberidentifierwithyeventyin =

Further, if the notification calls need to be guaranteed to be fully ordered

[Arn99b, Sun99c], meaning that no sequence numbers are skipped, there must

be exactly in force that there is

nmwhenyandxeventsbetweeneventsmn inim <−− 1

In Jini, it is not specified how services can advertise their event sequencing

guarantees [Edw99]. It can be dealt with by adding an extra attribute to the

proxy object of the service, when it is registering with the lookup service.

Idempotency and increasing sequence numbers within the same kind of event

type are still always required.

When designing an event listener class, the following points must be taken into

account [Edw99]:

• The listener must be inherited from UnicastRemoteObject class,

because otherwise its methods cannot be called from other JVMs via RMI.

This ability is mandatory to deliver events within TCP streams [Lan99,

Sun99f].

• The listener must implement the RemoteEventListener interface to

support the notify() method. It must be noticed that this notify()

method is not the same thing as the java.lang.Object.notify()

method, which wakes up a waiting thread [Sun99f].

• The constructor of the listener class and all its remotely callable methods

must be able to throw RemoteException to work correctly with RMI

[Sun99a].

It is very important that all these requirements are met, because the Jini event

architecture is the only model, along with transaction participating [Sun99c], in

Jini that really requires the use of RMI. Other communications like leasing and

registering for lookup service do use RMI, but they can be implemented by

using other communication substrates if necessary. However, all exceptions

 58

must be mapped into RemoteException instances. The use of other

communication systems is possible, because these components communicate

via proxy objects, unlike components in the Jini event model.

When designing the notify() method of the listener, it should be emphasized

that RMI itself uses synchronous calls [Edw99], although the whole notification

system is asynchronous. This is why the implementation should be able to

execute very fast at runtime, because the code that made the remote invocation

is blocked during the execution of the remote call. This naturally prevents the

service from sending new notifications to other listeners. One solution could be

queuing received events for a later processing and returning back to the event

generator code as quickly as possible.

There is no standard way or interface in Jini to implement how to register for

interesting events, since there is no single way to identify all possible events

and their representation inside a particular component [Arn99b]. However,

some guidelines can be used when designing such a mechanism. Firstly, when

the registration is confirmed by the event generator object, the lease for

interested events can be returned at the same time to reduce network traffic.

Secondly, the MarshalledObject, which is handed back to the event

registrant, should initially be passed to the event generator when registering for

some event, because it can contain additional information about the event

[Arn99b] and can be used to build client-specific events [Edw99].

In a Jini system, services may be inactive for long periods of time. This has to

be kept in mind, when sending event notifications to such objects. The sending

policy must be defined depending on the nature of the service and entire

system. Possible policies may include:

• Keep on sending event notification, until it is delivered or until tried a

predefined number of times, after which the notification is discarded or

stored.

• Discard the event notification that cannot be delivered.

• Store the undelivered event notification and send it again later.

 59

A listener can be added to the Java software component in a number of ways.

To make the design of the interested component more maintainable and

readable, it is possible to use inner listener classes [Hun99] or adapter classes

instead of straightforward listener interface implementation [Cam98]. The

benefit of these approaches is a little smaller in Jini, because all the events are

instances of the same class and the listener interface implementation only has

to implement one method. In the Jini event system the registrant (interested

component) and the event listener can be separated (Figure 4-12).

Figure 4-12. Separating the listener and the registrant object [Arn99b].

This is why Jini's event architecture is very simple. Jini supports the ability to

add generic third-party event listeners (sometimes called agents or event

delegates) and chain them together (Figure 4-13). In this connection, the term

generic means that third-party listeners can function with events they have not

earlier been in touch with. Because all event notifications are instances of the

same RemoteEvent class, the required QoS properties [Cou94, Far98] can be

added to the event system with third-party listeners, which can be used, for

example, for enabling delivery guarantees, notification storing, filtering and

rerouting purposes [Sun99c]. Third-party listeners do not have to know what

kind of events they are really handling and where they come from, contrary to

legacy Java systems, where every kind of event has its own type of listener

(Figure 4-14). Even if there is some loss of expressiveness [Edw99], the narrow

interfaces are needed because of these third-party listeners. On the other hand,

Event
generator

Remote
event
listener

1. Registrant registers the remote
event listener with the event generator.

2. Event generator returns an
event registration for the
remote event listener to the
registrant.

Registrant

3. Registrant returns the event
registration to the remote event listener.

4. Event generator
fires a remote event to
the listener to indicate
the kind of event
occurred.

 60

because Java is type based programming language, it supports also other RMI

based solutions for distributed events, like the Event Notifier model [Gup98,

Lan99], which is a proxy based design pattern.

Figure 4-13. Composing event delegates.

Figure 4-14. Jini forces all remote events to be instances of the RemoteEvent

class.

When designing a third-party listener, the first thing is, that it must implement

the RemoteEventListener interface to support the notify() method

[Edw99]. Because these listeners act like services, they must be able to

process event notifications from multiple sources and deliver them to multiple

receivers. To meet this requirement, the third-party listener must know

beforehand, what kinds of events and what source a particular receiver wants

event notifications from. This information is delivered within a registration

process by the receiver and the mapping can be accomplished (Figure 4-15).

WindowListener

someListener

MouseListener

...
ActionListener

RemoteEventListenerJini:

JFC: windowEvent

mouseEvent

actionEvent

someEvent

...

RemoteEvent

Event
generator

Event
listener

Reliable
event
delivery

Store-and-
forward
delivery

...

 61

Figure 4-15. Event routing from multiple generators [Edw99].

The route through which an event notification is transmitted from the generator

to the final receiver is called a pipeline. Creating the pipeline is easier from the

generator's point of view, because it usually registers only with one event

delegate [Edw99]. When the receiver registers with the generator, the listener is

passed to it. This is the mechanism which is also used when the generator

registers with the particular event delegate by calling the register() method

(Example 4-8) and so the pipeline is created.

class SomeDelegate implements RemoteEventListener {

 //...

 void register(Object source, /* event generator */

 long eventID, /* event type identification */

 RemoteEventListener downstream); /* event receiver */

 //...

}

Example 4-8. register() method parameters of an event delegate.

The situation is different, when the event receiver has to create the event

pipeline for some reason. This is more complex, because the receiver needs to

register with the most upstream event generator and work downstream

[Edw99]. The difficulty is in providing each event delegate with appropriate

event routing information for each stage. Another problem is that the generator

may send event notifications before the pipeline has been completely

constructed. In these situations, the policy for sending events with unknown

destination must be defined within the event delegate.

Mapping table

Third-party listener

Event
generator A

Event
generator B

Event
generator n

Event
listener B

Event
listener A

Event
listener m

... ...

 62

As mentioned before, all receivers wanting to get event notifications, must lease

this ability. Leasing can be done at least in two different ways (Figure 4-16). In

the parallel model the receiver leases all delegates and the generator when it is

registering with them. With this kind of strategy the leases are managed well

with the LeaseRenewalService class [Sun99b] or some other suitable tool.

The serial model is closer to the Jini-style generator-listener approach, where

the listener is responsible for renewing leases for registered services offered by

the generator [Edw99]. One of the advantages is that the receiver can be

inactive for long periods of time and still get event notifications relatively easy.

The drawback of this model is that when the receiver crashes, the time needed

to cancel the leases and detect the failure in the pipeline will be longer than in

the parallel model.

Figure 4-16. Lease maintaining possibilities (serial and parallel) with event

delegates from the event receiver's point of view.

The use of third-party listeners has many practical advantages. An event

generator, which uses some third-party listener, can be designed in a clearer

way. Because all the code needed to deliver events, for example, in a strict and

particular order, can be placed within the listener instead of the generator. This

is also helpful, when reusing program code in the OO way, because third-party

listeners can be considered as services and can be used as plug-ins. Through

listeners the clients can have extra services, which cannot be offered by the

Event generator

Delegate A

Delegate B

Event receiver

Event generator

Delegate A Delegate B

Event receiver

 63

generators. One implementation of this kind of QoS feature is event notification

multiplexing (Figure 4-17).

Figure 4-17. Event notification multiplexing [Arn99b].

Filtering is also useful, when the whole event system is being simplified in the

other direction. A filter can collect particular events sent by objects, store them

and notify the interested component, when all predefined events have occurred

(Figure 4-18). Especially when a component is registering with the lookup

service [Edw99] to request some general service, like persistent storage, and it

is not possible to set exact attributes for service template matching, filtering can

be used to sift services, which do not fulfill the conditions set by the component.

Figure 4-18. Event notification demultiplexing [Sun99c].

One promising feature in the future would also be the integration between

remote events of Jini and EJB technology. This has been considered already in

[Sun99c]. Even if EJB technology is mostly focused on the server side and the

Remote
event
generator

1. Notification filter registers
interest in a kind of event.

Notification
filter
(registrant)

4. Notification filter
fires an event
(forwards the
notification) to each
interested object.

Object Z

Object Y

Object X

2. Remote event generator
returns event registration.

3. Remote event generator fires
a remote event to indicate that
the kind of event occured.

Registrant

1. Object X fires an event.

Notification
filter

4. Notification filter
notifies the registrant
that all of the kinds of
events have occured.

Object Z

Object Y

Object X

2. Object Y fires an
event.

3. Object Z fires an event.

 64

Jini model more on the client side. They make a powerful combination [Kle00],

because both of them support the concept of distributed component interaction

[Swa99] in a platform and application independent way [Won98]. On the other

hand, some of the differences are compared in Table 4-6.

Compared subject Jini Enterprise JavaBeans

Architectural model Peer-to-peer 3-tier

Typical platforms Java client / device Java application server / Java

legacy server

Typical topology Distributed client Distributed enterprise

Protocols RMI / Discovery / Join Internet Inter-Orb Protocol

(IIOP) / Java Messaging

Service (JMS) / CORBA

Table 4-6. Comparison between Jini and EJB [Kle00].

Implementation for mapping Jini events to EJB events requires at least a

conversion from EJB event object to RemoteEvent object supported by Jini,

and vice versa [Sun99c]. Because Jini uses the notification paradigm, the

events passed to the EJB event listeners should also be converted as

appropriate method calls.

4.5 Transactions

Jini transactions are used when multiple components need to perform a task

together in a cooperative way. This transaction model is the least used model in

Jini [Edw99], because its use is optional even in JavaSpaces. Distributed

transactions are still one of the ways to deal with partial failures. This model

also aims to maintain the known state of the communication among the

participants during collaborative actions. All actions inside one transaction must

either succeed or fail [Arn99b, Sun99c].

In this section, the participants of a transaction are looked at and some

differences between the traditional transaction protocol and the Jini transaction

protocol are discussed.

 65

4.5.1 The Nature of Transactions

In traditional transaction based systems, like database systems, the two-phase

commit protocol (2PC protocol) is widely used [Orf96]. The Jini transaction

model is based on the same protocol. In fact, this protocol and certain interfaces

are the only things that have been standardized in Jini. Everything else is

system specified and must be implemented according to the functionality

requirements of the services.

Transactions must fulfill the atomicity, consistency, isolation and durability

(ACID) properties (Table 4-7) [Cou94, Edw99]. However, these requirements

are quite strict to be fulfilled every time when using the 2PC protocol. This is

why the implementation of these properties is left to the individual components

in Jini [Sun99c].

Atomicity All or nothing principle [Cou94]. All the actions within the

transaction must complete. If this does not happen, no

action is committed [Sun99c].

Consistency After the transaction, the system must be in a consistent

state. This state is abstract and only known by humans (for

example; an employee always has a manager). The

transaction itself does not guarantee this, but it is a tool to

achieve it [Sun99c].

Isolation Ongoing transactions are not allowed to have an impact on

each other, which means that participants are not allowed to

examine or use intermediate results [Arn99b, Sun99c].

Durability The results of transaction should be at least as persistent as

the object that commits the transaction [Arn99b, Edw99].

Table 4-7. ACID properties.

Distributed transactions differ from single system transactions in the same way

as every other distributed computing paradigms. The greatest problem is that in

distributed systems some component has a possibility to interact with multiple

other components, which can deal with the same transaction in different states

[Sun99c].

 66

In Jini, a transaction has three conceptual copartners (Figure 4-19). Like in all

2PC protocol based systems, there is a manager, which controls transactions

and steps through the stages of the protocol. The manager is actually a Jini

service, which can handle multiple transactions simultaneously and can be

shared among members of the Jini community [Edw99]. The manager keeps a

list of all participants. The management service must be leased by the clients

[Sun99c]. The manager uses the TransactionFactory class to create new

transactions, which are returned from the factory to the client with the

transaction object including the interface, ID number and the lease [Sun99c].

Figure 4-19. Transaction participants [Arn99b].

Clients are components, which want to perform some grouped actions that

seem to happen at the same time, and in the limited address space. The client

is the component that starts a new transaction by calling the transaction

manager service, which it has discovered from the lookup service. After the

client has downloaded the object, which implements the Transaction

interface, it can ask the manager to join wanted participants to the transaction

through the interface just provided by passing object references to the

necessary services using the join() method. The participant is then returned

an object, which has the TransactionParticipant interface, which is used

for the communication with the manager. The interface is provided to the

participant by the manager, when the client asks the participant to perform

desired actions for the first time [Arn99b].

Participant A

Participant B

Manager TransactionFactory

Client

operationB(Transaction,…)

join

join

long id

create

create

(semantic class)

(semantic class)
Transaction

 67

4.5.2 Design Issues

One of the features of the 2PC protocol is to separate the transaction semantics

from the completing protocol used for implementation. In practice, the

semantics is represented as return values and parameters of the interacting

methods.

As seen before, the purpose of the transaction is to maintain the known state of

the communication and try to deal with partial network failures. The states and

progression of transaction are presented in Figure 4-20 and Figure 4-21 from all

three points of view.

Figure 4-20. Completing the transaction; client (manager) [Sun99c].

Figure 4-21. Completing the transaction; participant [Sun99c].

For the client the transaction is active after the create() method returns. The

client can either commit or abort the transaction by notifying the manager about

the decision by using the corresponding methods of the proxy object of the

Active Voting Committed

Aborted cleanup

create
returns commit otherwise

abort participant
aborted (or
timeout)

Active Voting

Committed

Aborted cleanup

join
returns prepare

abort

Prepared

Not changed

commit

abort

abort

 68

manager [Arn99b]. After the commit decision, the manager performs voting,

which forces participants to continue to the next phase of the transaction, if all

the participants can perform prepare. Otherwise the transaction is aborted.

From the manager point of view, the situation is the same as just after the

creation of transaction. When the client invokes the commit() method, the

manager asks all participants to prepare to vote by invoking prepare().

Possible return values for voting are notchanged, aborted or committed. If any

of the participants vote aborted, the manager must abort the transaction. In this

point it must be noticed that if the return value of prepare() is

RemoteException, the manager must keep on retrying according to the

application specific policy, because the state of the transaction within the

participant is not known. In the situations, where the return value is either

UnknownTransactionException or NoSuchObjectException, which

both means that the participant has lost the state of the transaction [Sun99c],

and the abortion should be immediate. The manager performs the abortion by

announcing the participants. This is a better way to abort instead of letting the

leases of participants to expire, because the resources are freed faster.

The transaction manager will move the transaction to a committed state in two

ways: 1) When none of the participants vote for abortion, and at least one is in

the prepared state (Example 4-9), or 2) all participants vote notchanged, which

means that no action after the last voting has been taken, and the whole

transaction can be committed. The committed state of the transaction means

that all actions have been taken and all decisions have been rolled forward

[Sun99c].

public int prepareAndCommit(TransactionManager mgr, long

 id) throws UnknownTransactionException, RemoteException

{

 int result = prepare(mgr, id);

 if (result == PREPARED) {

 commit(mgr, id); // roll forward all changes

 result = COMMITTED;

 }

 69

 return result;

}

Example 4-9. Basic semantics of the participant’s prepareAndCommit()

method [Arn99b].

Certain states within the transaction are called commit points. These are states

that must be saved in some fashion into a persistent storage, when they occur.

This is done because of the crash recovery ability, which means that the

particular state can be recovered after a system crash or a network failure, if the

transaction is not committed yet. The manager should save the state when it

enters to a committed state with at least one prepared participant [Sun99c]. The

participant stores the state of itself when it votes prepared, so it can perform roll

forward in the time of future invocation of the commit() method, even if the

system crashes in between. After the successful invocation of the commit()

method, this storage can be removed [Arn99b]. These commitments require the

implementation of the manager and participants to be done using some durable

forms of RMI references [Sun99c], like class Activatable, which offers

remote object support for over time persistence and system activation [Cam98].

When designing transactional functions in Jini, there is a possibility to nest

transactions [Arn99b]. Nested transactions are subtransactions that can exist

inside top-level transaction to help accomplishing more complex tasks. The

semantics resembles normal transactions, but the nested transaction takes part

in the parent transaction. The manager of both kinds of transactions can be the

same entity.

Another feature of transactions are deadlocks. A deadlock means a situation,

where none of the cooperating entities can proceed, unless some of the

interacting entities free the needed resource first, and they cannot do that,

because they again need some other resource, which is also not free. The Jini

transaction model cannot guarantee to prevent or even detect deadlocks

[Sun99c]. If a deadlock occurs, it is permitted that the participant and the

manager can break them by aborting the transaction. This situation leads to the

state, where all the interacting entities perform roll back. This means that all

performed actions are cancelled, and the entities and the whole system within

 70

the transaction participants should be able to return to the state, which existed

before the aborted transaction.

 71

5. DISCUSSION

To sum up, Jini provides an extensive framework for developing flexible and

robust distributed systems. It seems to fulfill the expectations related to network

administration work reduction in a time, when the complexity of the distributed

systems keeps growing. It also deals with network failures better than the

traditional object-based distribution solutions, because of its powerful and

careful interface design.

A number of different distributed system frameworks exist as introduced in

[Mea00], [Rek99] and [Sha99] in addition to the ones that where shortly

mentioned in this thesis. The interoperability between these techniques is a key

question, when considering the global development work in the future. It seems

that Jini is quite adaptable to these other solutions because of its flexible nature,

but there is a lot of competition going on between vendors like, for instance,

Sun Microsystems and Microsoft Corporation. The worst scenario is that the

techniques of these competing vendors try to drop each other out from the

market instead of trying to complement each other. In this kind of competition,

the best technology cannot always survive. More discussion about this rigid

competition can be found in [ClD99b]. Some research is already ongoing

related to the complementing issues, and the results seem to be very promising

[Gut99b], especially with Jini and SLP [Mat99].

In addition to the solutions for the challenges of distributed computing, Jini

offers capabilities, which are required to fulfil the needs of modern end users of

the network services. Flexibility and spontaneity are the most important issues,

which are possible to deploy, if a Jini based system is designed in a

sophisticated way. As the degree of distribution of the services grows all the

time, security issues are also very important. In this area, the developers of Jini

still have a lot of work to do, because Jini does not provide any security

mechanisms in addition to the basic Java environment properties.

5.1 Drawbacks

At any rate, some drawbacks for Jini exist. One of the most restricting ones is

that Jini is not compatible with the Kilobyte Virtual Machine (KVM) [Sun99j],

 72

which is a very limited VM. It is targeted to embedded devices with

approximately 128 kilobytes of available memory. There exists a lack of

interoperability, because Jini requires some J2SE based features like RMI to

work, and these kinds of features are too heavyweight for the current KVM

implementations. The role of the KVM is to be a part of the new running

environment of the larger developing solution J2ME for limited-resource mobile

devices. This development environment is constructed of configurations and

profiles [Day00b] (Figure 5-1). Configurations include a VM, optimized APIs and

core classes for a certain type of a device, such as a PDA or a mobile phone,

which is not capable of running a full-blown JVM. Current basic configuration for

the KVM is called Connected, Limited Device Configuration (CLDC) [Sun00a],

which has been already approved by the Java Developer Community (JDC) as

a Java Specification Request (JSR).

Figure 5-1. Configurations and profiles atop J2ME.

Profiles extend configurations by adding APIs that provide more capabilities for

a specific market segment and a device type. The most interesting profile at the

moment is the Mobile Information Device Profile (MIDP) [Sun00b], which is

targeted to mobile, wireless, bandwidth-limited, battery operated devices, as for

instance, mobile phones. Jini support for these kinds of platforms, like J2ME, is

still not available. This has reduced the success and adoption of the Jini

technology, because wireless devices are the ones, which are now being

integrated as a part of existing, IP based distributed systems.

As a solution for capacity problems, there exists a new surrogate technology

[Sun00c]. The principle of this technology is that some other Jini network-

connected device, which has better capabilities to execute code, acts on behalf

Java 2 Micro Edition

Profiles

Configurations

Applications

KVM

 73

of the limited devices, which are connected to these surrogate hosts through

interoperable adapters using a surrogate protocol. The model has much

equivalence with the third-party remote event model and the leasing model

used in Jini. In addition, the surrogate technology seems to be the only solution

at this moment for Bluetooth (BT) [Blu99] and Wireless LAN (WLAN) [IEE99]

enabled devices, which will soon exist on the mass market. It seems natural

that BT and WLAN access points (APs) will work as surrogate hosts, since they

can be static and have more processor power to run the full JRE in support of

the wireless devices itself. The combination of these wireless technologies and

Jini is definitely a worth of investigating in the future.

The hardware and software requirements discussed in the thesis can already

be met to some extend within the limited devices, but the market seems not to

be ready for Jini products yet, at least not the mass market of cost-critical

consumer products. Nevertheless, some attempts to break into the market have

already been made, for instance [Nie00], and the development of the new

concepts is ongoing in the laboratories of various companies. One general

example for embedded devices is reviewed in [McD00].

In addition to the relatively high computing capacity requirements, another

drawback seems to be the security issues of Jini systems. The highly mobile

nature of objects requires new security paradigms to be used to protect the data

and the privacy of end users. As described by [Cri99], traditional security

models are class-based, but they should be object-based, because the objects

are the ones that are transferred over the network. Even if the JVM with security

policies offers the built-in security fo r Java objects, it does not seem to be

enough for the Jini environment, because Jini expands Java’s distribution and

code downloading capabilities, but offers no extra security. Moreover, in Jini

there is no default authentication mechanism in the lookup service specification,

and furthermore, the discovery process is not protected, even if the use of

services is controlled. Some solutions to security hazards in Jini systems are

presented in [And00], and [Cze99] presents a Jini capable architecture, which is

based on a secure Service Discovery Service (SDS) with the use of eXtensible

Markup Language (XML) [W3C97].

 74

5.2 Future

In general, Jini specifications are relatively loose, which is an advantage,

because it gives developers room for being creative and innovative. The

specifications define mostly behavior related issues, which has to be taken care

of when implementing the services. All well-behaving Jini services should be

capable of fulfilling the requirements defined by the specifications. These

requirements have been discussed along with the discovery and join protocol

issues.

It can also be a disadvantage to have so many system specific issues in an

implementation process. Without well-guided general development paths, Jini

based services can vary a lot in the future. Of course this is also desirable from

the content point of view, but the difficulties are on the service interface side. In

theory, an infinite number of possibly different services must be able to be

implemented, but still all of them should be reachable by all potential clients

through their known interfaces. Standardization process for these interfaces is

an enormous task, which requires very careful designing.

Jini’s integration with the intelligent agent software technology is an interesting

development path. As the Java programming language has become common,

the portability problem of agent components has been solved for some extent.

Also a VM based code execution provides better security solutions against

hostile agents. Firstly, some guidelines are needed to model a Jini service as a

software agent to enable even more intelligent and adaptable solutions.

Secondly, Jini does not really define a standard way for clients and services to

communicate. However, to be interoperable with general software agents, the

interaction of components must be clearer as it is now. One solution is to

integrate Jini services to be able to communicate with agents through Agent

Communication Language (ACL). Some ways to make this happen are

presented in [Ash00] and [Che99]. Because many agents are autonomous,

which means that they do not need any human intervention to work, the Jini

technology provides a good development framework for the mobile agent

technologies because of spontaneity and a lightweight service discovery. The

 75

advantages mentioned here are obvious, when compared to the former work on

this area, for instance, presented in [Cha98].

We have a lot of electronic devices around to help us out scheduling meetings,

locating restaurants and sending messages etc. These devices are usually

focused on carrying out a particular task e.g. playing music or warming up the

food. The realization of the concept of ubiquitous computing is only partly

accomplished, because the technology is not invisible to the end users yet. The

trend of the future seems to be that the end users are not required to command

the devices to do some task, but the devices perform the task independently

according to the current needs of the users. This is a goal, because the large

number of alternative services is impossible to handle manually, even at this

moment. Some very interesting visions of this kind of technology behavior are

presented in [Esl99].

Agent technologies have a significant role in the development of the ubiquitous

computing. If considering Jini as a framework for agents, it is noticed that, in all

probability, this way Jini has a role in ubiquitous computing too. As predicted in

[Esl99] and [Kon00], data and services will be more important than location,

which means that the end users must be able to connect to the network for the

service in spite of the location of it and users. This, again, fits nicely to the Jini’s

idea of a service-centric network. This location independent approach has in

recent years evolved fast, since the popularity and service development of

mobile phones have increased. On the other hand, local improvements are still

far away from the target of ubiquitous computing vision, because only the first

steps has already been taken with BT and WLAN.

It is clear at the moment that Jini is only suitable for a LAN environment, which

has to be adaptable enough to handle clients, which temporarily connect to the

LAN for some service and then leave the network. Furthermore, a Jini system is

not scalable in the full meaning of the term, because it can only grow from a

LAN to a WAN by using the ability to federate the lookup services. This will

definitely chance in the future after the new versions of Jini are introduced as

discussed along this thesis. At any rate, one problem related to WANs is that

 76

the service discovery by using the multicast messaging model is obviously not

an option.

Despite of the drawbacks, Jini is evolving all the time. Very important thing for

Jini technology has been Sun Microsystems’ new model for developing

technical concepts further [Wal00]. Jini is so called open source technology,

which means that anybody can participate to the development process by e.g.

reviewing the specifications, proving comments and suggestions. Sun

Microsystems has succeeded well with this model, and it seem that they have

been able to create a very active community of developers with more than

40000 members [Mor00]. All service developers use the Sun Community

Source License (SCSL) model, which is a way to provide fast access to the

technology and retain developers’ intellectual properties related to Jini code, but

it still provides some income to the original developers of Jini, when community

members make any commercial products.

Even if Jini still does not fulfill all the wild ideas of the ability to connect every

kind of devices, like toasters, refrigerators and wristwatches, to each other and

to the Internet, it certainly offers more down-to-earth advantages to the

distributed computing as seen. The key features of Jini, e.g. simplicity and

spontaneity, will be even more important in the future as the number of various

systems, networks, clients, products and services are being developed.

 77

6. REFERENCES

[Abd98] Abdullahi, S. E. and Ringwood, G. A.: Garbage Collecting the

Internet: A Survey of Distributed Garbage Collection. ACM Computing Surveys,

30(3): 331-373, 1998.

[And00] Andersson, F. and Karlsson, M.: Secure Jini Services in Ad Hoc

Networks. Master of Science Thesis, Royal Institute of Technology, Stockholm,

Sweden, 2000.

[Arn98] Arnold, K. and Gosling, J.: The Java Programming Language,

Second Edition. Addison Wesley Longman, Inc., Reading, Massachusetts,

1998.

[Arn99a] Arnold, K.: The Jini Architecture: Dynamic Services in a Flexible

Network. Proceedings of the 36th ACM/IEEE Design Automation Conference,

IEEE Computer Society, 1999, 157-162.

[Arn99b] Arnold, K. & al.: The Jini Specification. Addison Wesley Longman,

Inc., Reading, Massachusetts, 1999.

[Ash00] Ashri, R. and Luck, M.: Paradigma: Agent Implementation through

Jini. Proceedings of the 11th International Workshop on Database and Expert

Systems Applications, 2000, IEEE Computer Society, 2000, 453-457.

[Aye99] Ayers, D. & al.: Professional Java Server Programming. Wrox

Press Ltd., Birmingham, United Kingdom, 1999.

[Bec99] Beck, J., Gefflaut, A. and Islam, N.: MOCA: A Service Framework

for Mobile Computing Devices. ACM International Workshop on Data

Engineering for Wireless and Mobile Access, ACM, 1999, 62-68.

[Blu99] Bluetooth SIG: Specification of the Bluetooth System Version 1.0 A.

Bluetooth SIG, 1999.

[Bry99] Brydon, S. P. & al.: Javelin++: Scalability Issues in Global

Computing. ACM 1999 Conference on Java Grande, ACM, 1999, 171-180.

[Bus98] Buss, A. and Jackson, L.: Distributed Simulation Modeling: A

Comparison of HLA, CORBA, and RMI. 1998 Winter Simulation Conference

(ed. Medeiros, D. J. & al.), ACM, 1998, 819-825.

[Cam98] Campione, M. and Walrath, K.: The Java Tutorial Second Edition.

Addison-Wesley Publishing Company, Inc., Padstow, Great Britain, 1998.

Available at: http://java.sun.com/docs/books/tutorial/ (28th of February 2000).

 78

[CaD98] Caromel, D. and Vayssiere, J.: A Java Framework for Seamless

Sequential, Multi-threaded, and Distributed Programming. ACM 1998 Workshop

on Java for High-Performance Network Computing, ACM, 1998.

[CaB99] Carpenter, B. & al.: Object Serialization for Marshalling Data in a

Java Interface to MPI. ACM 1999 Conference on Java Grande, ACM, 1999, 33-

38.

[Cha98] Chauhan, D. and Baker, A. D.: JAFMAS: A Multiagent Application

Development System . Second International Conference on Autonomous

Agents, ACM, 1998, 100-107.

[Che99] Chen, H. L.: Developing Agent Oriented Jini Services. The Second

Jini Community Meeting, The Jini Community, 1999. Available at:

http://www.jini.org/comm2/jcm2_agents+jini_chenpaper.pdf (27th of November

2000).

[ClD99a] Clark, D.: Network nirvana and the intelligent device. IEEE

Concurrency, 7(2): 16-19, 1999.

[ClD99b] Clark, D.: Service with a (smart) smile: network Jini-style. IEEE

Intelligent Systems, 14(3): 81-83, 1999.

[ClE99] Clark, E. (ed.): Mobile Code Safety. Network Magazine, 14(12): 37-

53, 1999.

[Com00a] Comer, D. E.: Internetworking with TCP/IP. Prentice-Hall, Inc.,

Upper Saddle River, New Jersey, 2000.

[Com00b] Comer, D. E. and Stevens, D. L.: Internetworking with TCP/IP

Volume III: Client-Server Programming and Applications. Prentice-Hall, Inc.,

Upper Saddle River, New Jersey, 2000.

[Cou94] Coulouris, G., Dollimore, J. and Kindberg, T.: Distributed Systems.

Addison-Wesley Publishing Company, Inc., Padstow, Great Britain, 1994.

[Cri99] Crichton, C., Davies, J. and Woodcock, J.: When to trust modile

objects: access control in the Jini Software System. Proceedings of the

Technology of Object-Oriented Languages and Systems, 1999 (TOOLS 30) (ed.

Firesmith, D. & al.), IEEE Computer Society, 1999, 116-125.

[Cze99] Czerwinski, S. E. & al.: An Architecture for a Secure Service

Discovery Service. The Fifth Annual ACM/IEEE International Conference on

Mobile Computing and Networking, 1999, ACM, 1999, 24-35.

 79

[Day00a] Day, B.: Jini Connection Technology Architecture Overview.

Internet WWW-presentation, URL: http://www.billday.com/Work/Jini/jini.pdf (9th

of December 2000).

[Day00b] Day, B.: Java Technology for Mobile Devices. Developing for

Mobile Platforms Session, Wrox Wireless Professional Developer Conference,

Amsterdam, The Netherlands, 11th of July 2000.

[Edw99] Edwards, W. K.: Core Jini. Prentice-Hall, Inc., Upper Saddle River,

New Jersey, 1999.

[Esl99] Esler, M. & al.: Next Century Challenges: Data-Centric Networking

for Invisible Computing. The Fifth Annual ACM/IEEE International Conference

on Mobile Computing and Networking, 1999, ACM, 1999, 256-262.

[Far98] Farley, J.: Java Distributed Computing. O'Reilly & Associates, Inc.,

Sebastopol, California, 1998.

[Fre99] Freeman, E., Hupfer, S. and Arnold, K.: JavaSpaces Principles,

Patterns, and Practise. Addison Wesley Longman, Inc ., Reading,

Massachusetts, 1999.

[Fur99] Furr, S.: Real-Time Extensions to the Java Platform. Embedded

Systems Programming, 12(13): 71-78, 1999.

[Gen99] Genßler, T. and Löwe, W.: Correct Composition of Distributed

Systems. Proceedings of the Technology of Object-Oriented Languages and

Systems, 1999 (TOOLS 31) (ed. Chen, J., Lu, J. and Meyer, B.), IEEE

Computer Society, 1999, 296-305.

[Gle00] Gleeson, B. & al.: A Framework for IP Based Virtual Private

Networks. RFC2764, The Internet Society, 2000.

[Gos96] Gosling, J., Joy, B. and Steele, G.: The Java Language

Specification. Addison Wesley Longman, Inc., Reading, Massachusetts, 1996.

[Gup98] Gupta, S., Hartkopf, J. and Ramaswamy, S.: Event Notifier, a

Pattern for Event Notification. Java Report, 3(7): 19-36, 1998.

[Gut99a] Guttman, E. & al.: Service Location Protocol, Version 2. RFC 2608,

The Internet Society, 1999.

[Gut99b] Guttman, E. and Kempf, J.: Automatic Discovery of Thin Servers:

SLP, Jini and the SLP-Jini Bridge. Proceedings of the 25th Annual Conference

of the IEEE Industrial Electronics Society (IECON ’99), IEEE Computer Society,

1999, 722-727 (vol. 2).

 80

[Har97] Harold, E. R.: Java Network Programming. O'Reilly & Associates,

Inc., Sebastopol, California, 1997.

[Hic99] Hicks, M. & al.: Transparent Communication for Distributed Objects

in Java. ACM 1999 Conference on Java Grande, 1999, ACM, 1999, 160-170.

[Hol98] Holder, O. and Ben-Shaul, I.: Dynamic Layout of Distributed

Applications. Third International Workshop on Software Architecture, ACM,

1998, 77-80.

[Hun99] Hunt, J.: Inner Space. Application Development Advisor, 2(4): 46-

51, 1999.

[IEE99] IEEE: Standard for Information Technology 802.11. IEEE Standard

for Information Technology 802.11-1999, IEEE, 1999.

[Jah98] Jahan, N.: Master Thesis: Making Objects Persistent in a CORBA

Environment. University of Helsinki, Helsinki, 1998.

[Jan99] Janssen, B. & al.: ILU 2.0beta1 Reference Manual. Internet WWW-

page, URL: ftp://ftp.parc.xerox.com/pub/ilu/2.0b1/manual-html/manual_toc.html

(25th of August 2000).

[Kap99] Kaplan, L.: Distributed computing in Java: RMI, CORBA, or both?

Java Report, 4(7): 78-80, 1999.

[Kle00] Kleinman, R.: Jini and Enterprise JavaBean Technologies--The

Distributed Client Meets the Distributed Service. Internet WWW-page, URL:

http://developer.java.sun.com/developer/technicalArticles/jini/ (23rd of February

2000).

[Kon00] Kon, F. & al.: 2K: A Distributed Operating System for Dynamic

Heterogeneus Environments. Proceedings of the Ninth International

Symposium on High-Performance Distributed Computing, 2000, IEEE

Computer Society, 2000, 201-208.

[KoK96] Koskimies, K.: Julkaisusarja C: Pieni oliokirja. University of

Tampere, Tampere, 1996.

[KoP99] Kostkova, P. and McCann, J. A.: MAGNET: An Architecture for

Dynamic Resource Allocation. ACM International Workshop on Data

Engineering for Wireless and Mobile Access, ACM, 1999, 77-83.

[Lan99] Landis, S.: Distributed Event Notification Using RMI. Java Report,

4(7): 17-28, 1999.

 81

[Lea98] Leach, P. J. and Salz, R.: UUIDs and GUIDs. IETF Internet-Draft.

Available at: http://www.ics.uci.edu/~ejw/authoring/uuid-guid/draft-leach-uuids-

guids-01.txt (7th of August 2000).

[Lew98] Lewandowski, S. M.: Frameworks for Component-Based

Client/Server Computing. ACM Computing Surveys, 30(1): 3-27, 1998.

[Lin99] Lindholm, T. and Yellin, F.: The Java Virtual Machine Specification,

Second Edition. Addison Wesley Longman, Inc., Reading, Massachusetts,

1999. Available at: http://java.sun.com/docs/books/vmspec/2nd-

edition/html/VMSpecTOC.doc.html (17th of November 1999).

[Lon99] Longshaw, A.: Getting Clever with Components. Application

Development Advisor, 2(4): 12-16, 1999.

[Lun00] Lundin, J.: Java Technology Evaluation. Nokia Ventures

Organization, 2000.

[Mah00] Mahmoud, Q. H.: Distributed Programming with Java. Manning

Publications Co., Greenwich, Connecticut, 2000.

[Mat99] Matilainen, P.: Service discovery with Jini and SLP. Nokia

Research Center, 1999.

[McD00] McDowell, C. E. and Shankari, K.: Connecting non-Java devices to

a Jini network. Proceedings of the 33rd International Conference on Technology

of Object-Oriented Languages (TOOLS33), IEEE Computer Society, 2000, 45-

56.

[Mea00] Meadows, J.: An Introduction to the JetSend Protocol. Embedded

Systems Programming, 13(1): 59-68, 2000.

[Mic97] Microsoft Corporation: Distributed Component Object Model

Protocol – DCOM/1.0 (Internet Draft). Internet WWW-page, URL:

http://msdn.microsoft.com/library/default.asp?URL=/library/specs/distributedco

mponentobjectmodelprotocoldcom10.htm (25th of August 2000).

[Mic00a] Microsoft Corporation: Universal Plug and Play Device Architecture

Version 1.0. Internet WWW-page, URL:

http://www.upnp.org/UPnPDevice_Architecture_1.0.htm (26th of July 2000).

[Mic00b] Microsoft Corporation: Component Object Model (COM)

Specification 0.9. Internet WWW-page, URL:

http://msdn.microsoft.com/library/default.asp?URL=/library/specs/S1CF80.HTM

(25th of August 2000).

[Mor00] Morgan, S.: Jini to the rescue. IEEE Spectrum, 37(4): 44-49, 2000.

 82

[Mur98] Murhammer, W. K. & al.: TCP/IP Tutorial and Technical Overview.

International Business Machines Corporation, Research Triangle Park, North

Carolina, 1998.

[Nes99] Nester, C., Philippsen, M. and Haumacher, B.: A More Efficient RMI

for Java. ACM 1999 Conference on Java Grande, ACM, 1999.

[OMG99a] OMG: Java Language to IDL Mapping. OMG formal/99-07-59,

1999. Available at: ftp://ftp.omg.org/pub/docs/formal/99-07-59.pdf (19th of

November 2000).

[OMG99b] OMG: The Common Object Request Broker: Architecture and

Specification V2.3.1. OMG formal/99-10-07, Framingham, Massachusetts,

1999. Available at: http://www.omg.org/corba/corbaiiop.html (17th of November

1999).

[Orf96] Orfali, R., Harkey, D. and Edwards, J.: The Essential Client/Server

Survival Guide. John Wiley & Sons, Inc., New York, New York, 1996.

[Pag97] Page, E. H., Moose, Jr., R. L. and Griffin, S. P.: Web-Based

Simulation in Simjava Using Remote Method Invocation. 1997 Winter

Simulation Conference (ed. Andradóttir, S. & al.), ACM, 1997, 468-474.

[Per99] Perrone, P. J. and Chaganti, V.: Jini in the Box. Embedded

Systems Programming, 12(12): 55-64, 1999.

[Pis99] Pistoia, M. & al.: Java 2 Network Security Second Edition. Prentice-

Hall, Inc., Upper Saddle River, New Jersey, 1999.

[Pos80] Postel, J.: User Datagram Protocol. RFC 768, The University of

Southern California / Information Sciences Institute, 1980.

[Pos81] Postel, J.: Transmission Control Protocol. RFC 793, The University

of Southern California / Information Sciences Institute, 1981.

[Rek99] Rekesh, J.: UPnP, Jini and Salutation – A look at some popular

coordination frameworks for future networked devices. A technology white

paper, California Software Laboratories, 1999.

[Sal00] The Salutation Consortium: Salutation Architecture Specification

2.0c. Available at: http://www.salutation.org/ (29th of July 2000).

[Sha99] Sharma, R.: Distributed Application Development with Inferno. 36th

ACM/IEEE Conference on Design Automation Conference, IEEE, 1999, 146-

150.

[Slo94] Sloman, M. (ed.): Network and Distributed Systems Management.

Addison-Wesley Publishing Company, Inc., Wokingham, Great Britain, 1994.

 83

[Sri97] Sridharan, P.: Advanced Java Networking. Prentice-Hall, Inc.,

Upper Saddle River, New Jersey, 1997.

[Ste98] Steiert, H.-P.: Towards a Component-based n-Tier C/S-

Architecture. Third International Workshop on Software Architecture, ACM,

1998, 137-140.

[Sun98] Sun Microsystems, Inc.: PersonalJava Technology White Paper.

Available at: http://java.sun.com/products/personaljava/pj_white.pdf (31st of

July 2000).

[Sun99a] Sun Microsystems, Inc.: Java Remote Method Invocation

Specification. Internet WWW-page, URL:

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html (8th

of March 2000).

[Sun99b] Jini Technology Helper Utilities And Services Specification 1.1

Alpha. Sun Microsystems, Inc., Palo Alto, California, 1999. Available at:

http://www.sun.com/jini/specs/jini1_1spec.html (21st of December 1999).

[Sun99c] Sun Microsystems, Inc.: Jini Technology Specifications. Sun

Microsystems, Inc., Palo Alto, California, 1999. Available at:

http://www.sun.com/jini/specs (21st of December 1999).

[Sun99d] Sun Microsystems, Inc.: Jini Technology 1.0.1 API Documentation.

Internet WWW-page, URL:

http://developer.java.sun.com/developer/products/jini/jinidoc.html (21st of

December 1999).

[Sun99e] Sun Microsystems, Inc.: Enterprise JavaBeans Specification 1.1.

Sun Microsystems, Inc., Palo Alto, California, 1999. Available at:

http://java.sun.com/products/ejb/docs.html (10th of August 2000).

[Sun99f] Sun Microsystems, Inc.: Java 2 Platform, Standard Edition, v1.2.2

API Specification. Internet WWW-page, URL:

http://java.sun.com/products/jdk/1.2/docs/api/index.html (1st of August 2000).

[Sun99g] Sun Microsystems, Inc.: EmbeddedJava Application Environment

Specification 1.1. Sun Microsystems, Inc., Palo Alto, California, 1999. Available

at: http://java.sun.com/products/embeddedjava/spec/index.html (30th of May

2000).

[Sun99h] Sun Microsystems, Inc.: PersonalJava Application Environment

Specification 1.1.2. Sun Microsystems, Inc., Palo Alto, California, 1999.

 84

Available at: http://java.sun.com/products/personaljava/spec-1-1-2/index.html

(30th of May 2000).

[Sun99i] Sun Microsystems, Inc.: Jini Technology and Emerging Network

Technologies. A white paper, Sun Microsystems, Inc., 1999. Available at:

http://www.sun.com/jini/whitepapers/technologies.pdf (7th of August 2000).

[Sun99j] Sun Microsystems, Inc.: The K Virtual Machine (KVM). A white

paper. Sun Microsystems, Inc., Palo Alto, California, 1999.

[Sun00a] Sun Microsystems, Inc.: Connected, Limited Device Configuration

Specification Version 1.0, Java 2 Platform Micro Edition. Sun Microsystems,

Inc., Palo Alto, California, 2000.

[Sun00b] Sun Microsystems, Inc.: Mobile Information Device Profile (JSR-37)

JCP Specification, Java 2 Platform, Micro Edition, 1.0. Sun Microsystems, Inc.,

Palo Alto, California, 2000.

[Sun00c] Sun Microsystems, Inc.: Jini Technology Surrogate Architecture

Specification. Sun Microsystems, Inc., Palo Alto, California, 2000.

[Sun00d] Sun Microsystems, Inc.: Java Card 2.1.1 Application Programming

Interface. Sun Microsystems, Inc., Palo Alto, California, 2000.

[Swa99] Swainston-Rainford, M.: Serving up Beans to the Enterprice.

Application Development Advisor, 2(4): 59-61, 1999.

[Sys00] Systä, K.: JINI for mobile terminals with Bluetooth (BT) connectivity.

A technical white paper, Nokia Research Center, 2000.

[Thi98] Thiruvathukal, G. K., Thomas, L. S. and Korczynski, A. T.:

Reflective Remote Method Invocation. ACM 1998 Workshop on Java for High-

Performance Network Computing, ACM, 1998.

[W3C97] W3C: Extensible Markup Language (XML). W3C Proposed

Recommendation PR-xml-971208, W3C, 1997. Available at

http://www.w3c.org/TR/PR-xml-971208 (10th of December 2000).

[Wal94] Waldo, J. & al.: A Note on Distributed Computing. Technical Report

SMLI TR-94-29, Sun Microsystems Laboratories, Inc., Mountain View,

California, 1994.

[Wal99] Waldo, J.: The Jini architecture for ne twork-centric computing.

Communications of the ACM, 42(7): 76-82, 1999.

[Wal00] Waldo, J.: Alive and Well: Jini Technology Today. Computer, 33(6):

51-56, 2000.

 85

[Wei96] Weiser, M.: Ubiquitous Computing. Internet WWW-page, URL:

http://www.ubiq.com/hypertext/weiser/UbiHome.html (9th of June 2000).

[Wel99] Wells, D. & al.: Software Survivability. Proceedings of the DARPA

Information Survivability Conference and Exposition, 2000 (DISCEX ’00), IEEE

Computer Society, 1999, 241-255 (vol. 2).

[Won98] Wong, H.: What's all the hype about Enterprise Java Beans? Java

Report, 3(7): 62-64, 1998.

[WuD98] Wu, D., Agrawal, D. and Abbadi, A. E.: StratOSphere: Mobile

Processing of Distributed Objects in Java. Fourth Annual ACM/IEEE

International Conference on Mobile Computing and Networking, ACM, 1998,

121-132.

