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Abstract 
 

Nowadays it is obvious that human eye has a very difficult structure and our vision 

system is so complicated. In this work, we look into the details of transformation of color 

signal in human retina. Firstly, we review the human visual system. We start from some 

biological ideas and definitions and then, we look into the details of structure of human 

retina. Secondly, we consider in details a Multi – Stage Color model, represented the 

process of transformation of color signal in retina. Then we construct an artificial neural 

network (ANN), based on this model. This ANN calculates the results of transformation of 

color signal after each retina’s level. Also, ANN constructed so, that can be changed. It is 

possible to add or remove some new elements in any layer, add or remove a layer, and 

make new connections between any elements of neural network. Finally, we make a few 

experiments using this network. 
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Chapter 1 
 
Introduction 
 

Life, from beginning to end, is uninterrupted process of receiving, processing and 

appraisal information. Information arrives from environment. On basis of this 

information we decide to do something or to disregard it. 

 
Center of information’s treatment is brain. But brain itself can’t hear, see and feel 

any sensations. Organs of sense are sources of information for brain. One of sense’s 

organs is eye. 

 
The eye is striking organ with very difficult structure and therefore it has 

composite function. It can detect differences between luminosity, differ small details, 

perceive color, form, size, character of surface, movement, glimmer and pass 

information about it to the brain such that human feel and after that assimilate outside 

world from nearest environment to farther stars. 

 
Because our vision system is so complicated, eye is a subject of great number of 

structural, anatomical, functional and physiological inquiries. Many scientists make 

important contributions to this field of science. Among them, there are Russell L. and 

Karen K. De Valois. They propose a Multi-Stage Color Model, which represents the 

process of transformation and recognition of color signal. 

 
Some words about why we dwelled on this model. The first models of color 

vision were essentially simple one-stage models. There are at least three good reasons 

why this was so. First, there are valid scientific justifications for developing as simple 

theories as possible. Secondly, various complexities of vision with which we are now 

acquainted were not then well understood. Thirdly, most problems were considered 

individually, in isolation from other visual processes. If any specific problem is 

examined in isolation, it is often possible to find a one-stage solution to it, and this is 

what happened in the case of early theoretical formulations of various aspects of vision. 

However, visual system does not have the luxury of solving just one specific problem at 

a time. Rather, it must work towards the solution of many specific problems 

simultaneously, especially in the early stages of processing. Moreover, the solution of 

one problem must not entail steps, which prevent the later solution of other problems. 
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Furthermore, the visual system has many sharp constraints in terms of the types of 

algorithm that can be implemented, the distances over which interactions can take place, 

and so forth. Finally, there is the special constraint in the early stages of the visual 

system that all information must be passed through the bottleneck of the optic nerve (De 

Valois & De Valois, 1998). 

 
Both of classic theories of color vision in the 19 century, those of Helmholtz 

(1867) and of Hering (1878), were, as first formulated; essentially one-stage models 

which accounted for only small and largely nonoverlapping fractions of the facts. That 

these two theories for so long coexisted in opposition to each other was primarily due to 

the fact that their adherents argued from different sets of findings, from color-mixing 

experiments on the one hand and perceptual observations on the other. Although there 

were several proposals of two-stage models that joined these supposedly-opposing ideas 

(e.g. Donders, 1881; von Kries, 1905), they were not taken very seriously, primarily 

because the field was long dominated by those whose primary interest lay in questions 

that are primarily determined at the receptor level. 

 
Jameson and Hurvich (1955, 1956) quantitatively formulated a two-stage model. 

Soon after then physiological evidence from primates (De Valois, Smith, Kitai & 

Karoly,1958; De Valois, 1965; De Valois, Abramov & Jacobs, 1966; Wiesel & Hubel, 

1966) and fish (Svaetichin & MacNichol, 1958) provided firm evidence for the actual 

existence of spectrally-opponent cells in the visual path way. Since that time, some 

version of a two-stage model encompassing three cone types combined in a later 

opponent organization has become the accepted dogma in color vision, the Standard 

Model (e.g. Guth, Donley & Marrocco, 1969; Ingling & Tsou, 1977; Boynton, 1979; 

Guth, Massof & Benzchawel, 1980). 

 
The authors of Multi-Stage Color Model (Russell L. De Valois & Karen K. De 

Valois) in accord with Hering’s suggestions, when the Zeitgeist at the time was strongly 

apposed to the notion, the earliest recordings revealed a discrepancy between the Hering 

– Hurvich – Jameson opponent perceptual channels and the response characteristics of 

opponent cells in the macaque lateral geniculate nucleus (LGN). Thus authors noted, 

“the good agreement between recording and psychophysical data breaks down at the 

short wavelengths” and suggested that “it may indicate that the blue system is amplified 

in effect at some cortical level” (De Valois et al., 1966). Later investigators also found 
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the same discrepancy, with different stimulation techniques (Derrington, Krauskopf & 

Lennie, 1984; Kaplan, Lee & Shapley, 1990), and made the same point. Recently De 

Valois & De Valois suggests a third stage to reconcile this discrepancy. 

 
There are other factors besides the discrepancy between the characteristics of 

monkey LGN opponent cells and perceptual color space led us to consider a multi-stage 

color model. One is that, because of the spatial arrangement of their inputs from 

different cone types, most LGN cells respond to both color and luminance variations, 

and confound them. As shown by Wiesel and Hubel (1966), most opponent cells in the 

parvocellular LGN layers appear to have input in the RF center from one cone type, and 

in the surround from a different cone type. Such cells have sometimes been incorrectly 

characterized (e.g. Lennie & D’Zmura, 1988) as having a receptive field (RF) that is 

both spatially and chromatically opponent. However such a cell should be considered to 

have not one but two different RF organization, one for luminance and the over one for 

color (De Valois & De Valois, 1975). A cell with an excitatory L-cone center and an 

inhibitory M-cone surround, for instance, will have a center-surround antagonism for 

luminance variations, since intensity changes will drive both L and M cones in the same 

directions and they feed into the LGN cell in opposite directions. An equiluminant color 

change, however, will drive the L and M cones in opposite directions and thus produce 

a center-surround synergy. One would thus predict not only that such an LGN cell 

would fire to both luminance and color changes (thus confounding these perceptually 

very different variables) but that it would have different spatial and temporal tuning 

characteristics for the two. These predictions have been verified (De Valois, Snodderly, 

Yund & Hepler, 1977). Thus a second goal for Multi-Stage Color Model is to provide, 

at a third processing stage, for the unconfounding of color and luminance. 

 
A third goal for Multi-Stage Color Model is to incorporate recent information on 

retinal anatomy and to explore the extent to which essentially random connectivity (as 

suggested by the anatomy) might result in a sensible color organization. 

 
Finally, much recent anatomical evidence confirms the extreme paucity of S 

cones. The Standard Model has one color system (the RG system) based on the outputs 

of the L and M cones, some 90-95% of the cone population, whereas the whole YB 

system is centered on just the remaining 5-10% of the cones, the S cones. Such an 

imbalance seems inherently implausible, and one of the considerations that led De 
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Valois and De Valois to model was that of attempting to arrive at a more balance 

arrangement between the inputs to the red-green and the yellow-blue color systems. One 

can reasonably argue that the preponderance of L and M cones reflects the fact that 

these cone types alone are used for luminance detection. However, with current color 

models, this still leaves one with either an imbalance between the two chromatic 

systems of the spectrally – opponent information from L and M cones contributes to 

color vision. 

 
At first part of work, we will give target setting: biologic ideas and definitions, 

introduction of Multi-Stage Color Model and definitions of neuron network. Second 

part will be devoted the Multi Stage Color Model. Finally, we will present an artificial 

neural network, which supposed to learn some new about of the retina works. So, the 

aims of this work are as follows: 

•  Learn how Multi Stage Color Model woks. 

•  Construct a simple network that will be represents the works of De Valois and De 

Valois model.  Using this net, we could know how color signal is transformed after 

every layer of Multi Stage Color Model (we could know the correct output after each 

layer). 

•  Use Multi Stage Color Model as a framework in order to build an artificial neural 

network that describes how color signal is transformed after getting it to the retina. 

The stages in this network have to be represented in a way that enables testing of the 

output at each intermediate level according to the Multi Stage Color Model 

predictors. Also this neuron network have to be build so, that it can be changed (the 

unknown defines anatomical representation can be studied and added to the network 

during in the course of learning process). 
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Chapter 2 
 
Human visual system 
 

Human’s visual perception begins from visual image (visual image is image, which 

human can perceive). 

 
It is possible to compare optics of eye with optics of camera, although this 

comparison vastly simplifies situation. Each element of eye plays important role in the act 

of vision. Figure 1 shows the basic elements of the eye. 
 

 
Figure 1 The anatomy of the human eye (Peter K. Kaiser & Robert M. Boynton, 

1996) 
 

The basic optical element of eye is cornea. Cornea bends the light rays, which 

proceed farther, across the pupil – the aperture at the center of the iris (iris is the colored 

part of the eye which surrounds the pupil). The pupil and iris work like diaphragm of 

camera. Then the light rays bend by the lens, and proceed further, on the retina. The lens 

can change its optical power (focal length), just as camera sharpens the image. Figure 2 

and figure 3 shows what the lens does. 
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Figure2 Refraction of lens (case when object is far away) 

(Peter K. Kaiser & Robert M. Boynton, 1996) 
 

If the object is far away, the lens is kind of skinny, and if the object is nearby, so the lens 

becomes fatter by adjusting its focal length. 

 

 
Figure 3 Refraction of lens (case when object is nearby) 

(Peter K. Kaiser & Robert M. Boynton, 1996) 
 

The retina is light sensitive tissue which lie inside of the eyeball and which works 

like a photosensitive film in the camera. Retina covers about 65 percent of eye’s interior 

surface. The central part of the retina (about 10 percents) is called macula – small sensitive 

area of the retina, which provides central vision. This area contains the most part of the 

cone type of photosensitive cells. Cones provide the eye’s color sensitivity. All cones can 

be divided into “red” cones (64%), “green” cones (32%), and blue cones (4%) (K. Kaiser 

& M. Boynton, 1996) Distal part of the retina mainly is responsible of the spatial vision 

and vision at the low light levels and contains photosensitive cells, which are called “rods”. 

The rods are more numerous of the photoreceptors, some 120 million, and are more 

sensitive than the cones. However, they are not sensitive to color. They are responsible for 

our dark-adapted vision. Receptors (photosensitive cells rods and cones), bipolar and 

ganglion cells are the most important neural cells (neurons) in the retina, which pass visual 

information. Each of ganglion cells can collect information from many receptors, possibly 

from few hundreds receptors. Figure 4 represents the basic layers of the retina. 
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A neural impulse goes across the optical nerve to the brain where the visual picture is 

formed. Optical nerve connects the retina to the lateral geniculate layer (LGN), which is in 

the middle of the brain. The LGN consists of six layers; three of the layers receive input 

from same side of the eye and other three from the opposite side of the eye. The bottoms 

two of layers are the magnocellular layers, these layers work for non-color vision 

processing. The other four layers are the parvocellular layers which are very important for 

color vision. 

 

 
Figure 4 Schematic diagram of structure of retina (Peter K. Kaiser & Robert M. 

Boynton, 1996) 
 

Just in retina and higher parts of brain with help of chemical and electrical processes 

information about color, size, movement and other spatial and temporal descriptions of 

representation to synthesize with the same, that is kept at memory. This information 

provides visual perception. 
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Chapter 3 
 
Proposed color processing model 

 
The Multi-Stage Color Model (Russell L. De Valois & Karen K. De Valois, 1993) 

lies at heart of this work. This model reproduces the process of absorption and 

transformation color signal from the moment of getting signal to retina to the moment of 

passing signal in optical nerve, which transmit signal into the brain. Wavelength and 

luminosity are the basic properties of the signal. 

 
The main property of this model is that it consists of three layers; therefore, we can 

trace what happen with signal after passing each layer. And as far as our aim is to try to 

construct an artificial neural network (ANN), it so important to know how the signal is 

transformed after passing each layer (we have to know it for the training of ANN). So, we 

can build ANN for each layer and then combine them. 

 
The Multi-Stage Color Model consists of three layers: 

1. The layer where incoming signal is filtered.  

2. The layer where opponent signals are formed.  

3. The layer where signals are summed. 

Consider now in detail the organization of each layer. 
 
3.1 First stage of the model 

  
At this layer special photosensitive cells (cones) make a filtering process of incoming 

signal. There are three types of photosensitive cells. S – cones absorb signal with 

wavelength from 370nm to 530nm. M – cones absorb signal with wavelength from 400nm 

to 650nm. L – cones absorb signal with wavelength from 400nm to 700 nm. The maximum 

absorbances are in 420nm, 540nm, 560nm respectively. Figure 5 shows the absorption 

curvse (Smith-Pokorny, 1975). 

 
S – cones can now be distinguished anatomically, and constitute only some 2-10% of 

the cone population, depending on eccentricity, in human retina (Ahnelt, Kolb & Pflug, 

1987; Curcio, Allen, Sloan, Lerea, Hurley, Klock & Milan, 1991). One can not provide 

similar exact information on L and M cones, but one may assume that there are two times 
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more L – cones from M – cones. Therefore the proportions between the cell populations 

are L:M:S = 10:5:1. 

 

Three cone types (S cone curve is shown by red color, M 
by yellow, L by blue)
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Figure 5 Absorption curves for the three pigments (Smith-Pokorny (1975) function) 

 

Also note that S – cones are regularly arranged, but L – cones and M – cones are 

randomly arranged, so, as a result there are clumps of L-cones and less constantly clumps 

of M-cones. 

 
There are a lot of cones in the retina (around 7 million), but for understanding 

mechanism of interaction between cells in the retina it is enough to consider their 

minimum set. 

 
The process of filtration happens in the following way, each of the cones absorb all 

signal, but pass only part, which agrees with admission diapason. Following formula 

describes the process of filtration for each type of cells as a function of (i): 

 

yi = yi * ki       (i = 370, 380, … 670 ),                     (1) 
 

Where ki is maximal luminosity, which can absorb, for a given i (we take values from table 

1 in Appendix), and yi is the luminosity of incoming signal, for a given i. 

 

3.2 Second stage of the model  
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There are two synaptic levels in the retina: the receptor – horizontal cell – bipolar 

synapse and bipolar – amacrine cell – ganglion cell synapse (Russell L. De Valois & Karen 

K. De Valois, 1993). 

 
The first assumption of this stage is the presence of two different types of bipolar 

cells (according to anatomical evidence) which picking up from the cones: midget bipolar 

(and then midget ganglion cells) which (in the central part of the retina: 5 – 10°  (Curcio & 

Allen, 1990)) connect just a single cone and diffuse bipolar which connect with a group of 

neighboring L-cones and M-cones (Boycott & Dowling, 1969). 

 
The anatomical evidence indicates that in the periphery L and M-midget bipolar 

contacts with more than one cone and they do not differentiate the M-cones from L cones 

(Mariani, 1984b). The S-midget bipolar in the periphery also contacts with more than one 

cone, but they connect only with S-cones, not with L or M-cones (Mariani 1984a). 

 
Both midget bipolar and diffuse bipolar have two type cells of contacts with receptor: 

one invaginating and one flat midget bipolar. When light changes one (invaginating type of 

contact) depolarizing to increments and other (flat midget bipolar) to decrements. The 

midget bipolar contacts with midget ganglion cells connect to the parvocellular geniculate 

layer. The diffuse bipolar contacts with parasol ganglion cells connect to the magnocellular 

LGN layer (Russell L. De Valois & Karen K. De Valois, 1993). 

 
Each of the cones is also connected with four horizontal cells, which picks up from a 

number of surrounding cones (Boycott & Sperling, 1987). The anatomical evidence 

indicates that the horizontal cells connect to all cones in the region (Dacheux & Ravila, 

1990). Assuming this, horizontal cells would produce the LMS signal and for each 

wavelength (i) we will have own LMSi signal. Horizontal cells are summing the signals 

from all cones in the region: 

 

LMSi = Li + Mi + Si    (i = 370, 380, … 670),       (2) 

 

Where LMSi is the signal, which horizontal cells produced, Li is signal, which L – cones 

filtered, Mi is the signal, which M – cones filtered, Si is the signal, which S – cones 

filtered. 
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Because the number of the surrounding cones are 16, so the LMS signal will be 

calculate follows: 

 

LMSi = 10 * Li + 5 * Mi + Si    (i = 370, 380, … 670)      (2’) 

 

We have 16 cones for the center signal too. Thus the formulas for calculation of the 

opponent signals are: 

                                               

                                                                      iii LMSLL −•=+ 160  

 for direct input                                             iii LMSMM −•=+ 160                (3)                              

                                                                      iii LMSSS −•=+ 160  

 

                                                                      iii LMSLL +•−=− 160  

 for indirect input                                         iii LMSMM +•−=− 160                (4)                             

                                                                     iii LMSSS +•−=− 160  

 

The cell, which has L – cone center input receive the antagonistic input only from M 

– cones and vice versa. 

 

3.3 Third stage of the model 
 

On the third layer signal from the midget bipolar cells across the amacrine cells pass 

to the ganglion cells, and ganglion cells make sum of all incoming signals and then 

transmit this sum, by optic nerve, to the brain. Let’s make the following table of symbols:  

 
+
0L   is L0, −

0L  is (–L0); 

          +
0M is M0, −

0M  is (–M0); 

          +
0S is S0, −

0S  is (–S0). 

 

Figures 6 and 7 show how the model separates color and luminance (De Valois & De 

Valois, 1975). These regions of a set of cones are called receptive fields (RF). As figure 5 

shows cell L0 (L - M) has an excitatory center and inhibitory surround RF in response to 
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luminance increment. In other way, L0 has a uniformly excitatory RF when color change to 

long wavelength. The cell M0 has inhibitory center and excitatory surround RF for 

luminance increment, but M0 has uniform excitatory RF for color change towards long 

wavelengths (like the cell L0). 

 

 
Figure 6 Distinguishing cone input maps from receptive fields (after De Valois & De 
Valois, 1975). An LGN opponent cell with one cone type feeding into the center and 

another into the surround has not one, but two different RFs. An L0 cell has an 
excitatory center and inhibitory surround (top) for luminance increments, but a 

uniform excitatory RF for color shift towards long wavelengths 
 

Figure 7 shows what happens when we combine the outputs of different cell types 

(for example L0 – M0). 

 

 
Figure 7 Combining stage 2 units in different ways at stage 3 would separate color 

and intensity information (De Valois & De Valois, 1993) 
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Since, the intensities of L0 and M0 are opposite their responses to intensity changes cancel 

each over. Their responses to color changes sum since their color RFs are the same. The 

results for other combinations are: L0 + M0 sums luminance and cancel color; Mo – Lo 

sums color and cancel luminance; M0 + L0 sums luminance and cancel color (Lennie & 

D’Zmura, 1988). 

 
Now consider the chromatic axis rotation. Figure 8 shows a simple diagram of a 

color axis rotation. 
 

 
Figure 8 The S-opponent units are added to or subtracted from the L0 and M0 

difference signals to produce the proposed perceptual color system at stage 3 (De 
Valois & De Valois, 1993) 

 

The outputs of the S0 opponent cells (doubled in weights) are added (or subtracted 

from) to M0 – L0 and L0 – M0 cells and we get four perceptual color systems which give 

red – green and yellow – blue axes of the perceptual color space. Adding S0 (solid line) to 

M0 – L0 results blue and subtracting S0 from it (dashed line) results green. If S0 is added to 

L0 – M0 results red and subtracting results yellow. In this stage the proportions of L0:M0:S0 

are 10:5:2 (Russell L. De Valois & Karen K. De Valois, 1993). 

 
Figure 9 shows the complete diagram for the third stage. This diagram includes color 

and intensity information when the second stage units sums in different combinations. In 

the horizontal rows we add together cells with same luminance RFs but different color RFs 

(sum luminance and cancel color). In the vertical columns we sum cells with different 

luminance RFs but with same color RFs (cancel luminance and sum color). This diagram is 

final result for the third stage and for Multi-Stage Color Model. 
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Figure 9 A complete diagram of the proposed stage 3, combining the features outlined 

in Figs 7 and 8 (De Valois & De Valois, 1993) 
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Chapter 4 
 
Artificial neural network 
 

4.1 General principles of artificial neural networks (Robert Callan, 1999) 
 

The aim of our work is construction of a neural network, which realizes Multi – 

Stage Color Model. This chapter explains the basic ideas of neural network’s theory. 

 
Artificial neural network it is a set of elements, which connects in some way. These 

elements, which also are called neurons or nodes, are simple processors. They combine the 

incoming signal and calculate an output signal. Element can pass significance of output 

signal of other elements by connections. Depending on the value of weighting coefficient 

the signal, which element passes on the weight, intensifies or weakens. Figure 10 shows an 

element of ANN. 
 

 

Figure 10 Element of ANN (Robert Callan, 1999) 
 

Artificial neural networks are systems of parallel computing. They consist of large 

number of simple processors, which interact between each other. Usually these processors 

are very simple. Each processor of ANN works with signal, which it sends periodically to 

the other processors. But when we join processors in to the same network this locally 

simple network is capable to realizes quite difficult tasks. 

 
The most types of neuron networks have a set of total characteristics, which we can 

present with help of the following abstractions: 

 
  Quantity of simple processors 

  Structure of connections 

  The rule of expansion of signals in the network 

  The rule of combining of incoming signals 
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  The rule of computation of activation signal 

  The learning rule, which corrects the weights of connections 

 
Let us consider these characteristics in more detail: 

 
•  Quantity of simple processors 

Each processor is connected with a set of input and output connections. By input 

connections signals from other elements of the ANN come to this element and by output 

connections signals from this element pass to the other elements. Some of ANN’s elements 

are designed for getting signals from environment (that is why they are called entering 

elements) while some of them, which are used to output the results of computing to the 

environment (that is why these elements are called exit elements). 

 

 
Figure 11 Multi – layer perceptron (Robert Callan, 1999) 

 
•  Structure of connections 

Structure of connections reflects how elements of ANN are joined together. Each 

connection is defined by three parameters: by element, from which this connection issues; 

by element towards to which this connection direct; and by number (usually it is real 

number), which indicate weighting coefficient (i.e. weight of the connection). Negative 

value of weight corresponds to suppression the activity of corresponding element. Positive 

value corresponds to intensification its activity. Absolute value of weighting coefficient 

characterizes strength of connection. 

 
Usually, structure of connections is presented in a form of weighting matrix W. At 

this matrix each element wij presents the value of the weighting coefficient coming from 
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element i to element j. For description the structure of connections one can use not only 

one, but several weighting matrices (if the elements of network are grouped together). 

 

•  The rule of expansion of signal in the network 

Each concrete model of neural network supposes availability of certain rule. By this 

rule renovation of network elements station takes place (i.e. it is the rule of rearrangement 

incoming signals and computations outgoing signal). Also this rule defines how signal will 

be sent. 

 

•  The rule of combining of incoming signals. 

Rather often incoming signals of the element are combined by summing the values of 

weighting coefficients: 

 

ij

n
m

j
i

ij wxu ∗= ∑
=
=

1
1

 (5) 

 

Where uj is result of rearrangement j element’s entry, xi is output of element i, n is number 

of equipped connections, wij is connection's weight between element i and element j. 

 
Also other forms of rearrangement incoming signals are used. One of often-

encountered method is to review square of difference between the value of connection’s 

strength and value of transmitted signal for each incoming connections of a particular 

element, which after that are summarized. 

 

•  The rule of activation signal 

For all elements we need a rule of exit value’s computation, which is supposed to 

pass to other elements or to environment. This rule is called activation function and 

corresponding exit value is called activity of corresponding elements. Activity can be 

represented by arbitrary appearance of certain real value or by real value from limited 

interval of values (for example from interval [0, 1]). Also, it can be represented by certain 

value from specified intermittent set of values (for example [0, 1] or [-1, 1]). At the entry 

of activation function is a value of combined input of element. Below there are examples 

of different activation functions are given. 
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Identical function: 

Identical function means that value of activity (signal, which is sent to other 

elements) turns out equal rearrangement entry exactly. 

 

 
Figure 12 Plot of Identical function 

 

Threshold function: 

Threshold function confines activity by 1 or 0. It is depends upon value of 

rearrangement entry in comparison with certain threshold valueθ. 
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Figure 13 Plot of Threshold function 

 

Piecewise-linear function: 
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Figure 14 Plot of Piecewise-linear function 

 
Sigmoid function: 

This is most useful form of function. Outgoing values of this function continuously 

fill diapason from 0 to 1. For example following logical function: 

 

ue
uf −+

=
1

1)(  

 

 
Figure 15 Plot of Sigmoid funciton 

 

•  The learning rule, which corrects the weights of connections 

The main feature of neuron networks is that they suppose presence rules with help of 

which network can be programmed automatically. The aim of learning is to change values 

of weights to get in result necessary characteristics of network’s behavior. 

 
Typical form of learning is error-correction learning. In that case, for each set of 

data which is given in the process of learning to network’s entry, there is a well – known 

corresponding outgoing set. Usually, at the beginning of learning weighting coefficients 

are determined by casual way equally to small values. That is way at first appearance of 

learning sample’s network it is very improbable that network can execute right output. 

 
Differences between what we desired to have (correct output) and what we have (real 

output) is error, which can be used to correct the weights. Widrow-Hoff rule (delta-rule) is 

an example of rule of error’s correction: 
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xw ∗∗=∆ δη  

Where x is signal, which comes to outgoing element, η is learning rate (real number >0), δ 

is error calculated by the following ways: 

 

δ = t – y   

 

Where y is real output, and t is desired output. New weighting coefficients are calculated 

by following form: 

 

www ∆+=  

 

In the course of learning process weighting coefficients are given to input set by set 

and as a result of their working weighting coefficient are corrected until for all incoming 

sets errors will be a bit smaller then some sufficiently small value. In the end of learning 

process the network is tested on sets, which wasn’t used in the learning. 

 

 4.2 Construction of an artificial neural network according to the Multi – Stage 
Color Model 
 

In this chapter we consider how to build a neural network for each layer of Multi – 

Stage Color model. These will be nets, which show transformation of incoming signal 

from moment of getting it to the retina to the moment of passing signal to the optical nerve, 

but these nets will be not determine the luminosity of color signal. 

 
Now we build neuron network for the first layer of Multi-Stage Color Model. Figure 

16 shows how ANN for first layer looks in diagram. 
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Figure 16 ANN for the first layer of Multi Stage Color Model 
 

The light is absorbed by the cones and each cone starts to make a filtering process for 

the incoming signal. The output for this layer is: 

 

ijiij wxu •=  (i=1,2, … 31)   (5) 

 (j=1,2, …16) 

 

Where uij is element of column Uj (Uj is a column of values of signal filtered by cone j), xi 

is value of strength of the incoming signal (i shows for which wavelength   we calculate 

uij), wij is weight from node i to node j. 

 
Matrix W1 is a matrix of weights for first layer. This matrix is given by: 

 

[ ]AAAAAAAABBBAABBCW =1  

Where 

 

 

 

 

and the numerical values even taken in table 1 (Appendix). 

After the filtering process signals go to the second layer. On the second layer signals 

from each cone transfer to the horizontal cells and also to the midget bipolar cells. Figure 

17 shows the schematic form of neuron network for the second layer. 

 

[

]T

A

068.0105.0
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[
]T

B

0004.006.009.014.02.029.04.053.067.082.093.099.099.095.0

88.078.067.056.049.042.038.035.034.034.035.035.0000=

[
]T

C

0000000000000003.005.0

08.012.018.025.036.05.068.086.096.0196.088.076.067.059.0=
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Figure 17 ANN for the second layer of the Multi Stage Color Model 

 

Horizontal cells sum all the incoming signals. So, matrix W2 is a matrix of weights 

between cones and horizontal cells. All values of elements of this matrix will be equal to 1. 

 

 

Also in this layer signals from cones transfer to the midget bipolar cells (each midget 

bipolar cell contacts only with one cone cell). Midget bipolar cells produce the “opponent” 

signals. In other words they excite or inhibit signals Excite and inhibit takes plase as 

follows: if signals, originating from M – cones keep the maximum value of strength midget 

bipolar cells excite these signals and inhibit signals, originating from L – cones, and vice 

versa. Signals, originating from S – cones be have as follows: if the value of strength of 

signal is more than 0 then midget bipolar cells excite these signals, otherwise midget 

bipolar cells inhibit signals. Equations (3) and (4) describe inhibition and exciting 

processes. 

 
Weights between cones and midget bipolar cells are equal to 16 if midget bipolar 

cells excite signals or –16 if midget bipolar cells inhibit signals. Thus: 

 

W21 is a matrix of weights between cones and midget bipolar cells. 

 

T

W
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⎥
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[ ]1621 ±= diagW
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Weights between horizontal cells and midget bipolar cells will be equal –1 if midget 

bipolar cells excite signals, originating from cones or 1 if midget bipolar cells inhibit 

signals, originating from cones. W22 is a matrix of weights between horizontal cells and 

midget bipolar cells. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

±±
±±

±±
±±

=

11000000000000
00001100000000
00000000110000
00000000000011

22W  

 

On the third layer signals from midget bipolar cells across amacrine cells propagate 

to the ganglion cells. Figure 18 shows the schematic form of neural network for third layer. 

 

 
Figure 18 ANN for the third layer of Multi Stage Color Model 

 

Unfortunately it is still a question what really amacrine cells do. But we just assume 

that amacrine cells sum all incoming signals (signals, which came from midget bipolar 

cells) and pass result of the sum to the ganglion cell. Also, we assume that our neuron 

network will contain two amacrine cells. Amacrine cell A1 gets signal from midget bipolar 

cell, which connects with S-cone, and from midget bipolar cells, which connect with M-

cones.  Amacrine cell A2 also gets signals from midget bipolar cell, which connects with S 

– cones, and get signal from midget bipolar cells, which connect with L – cones. Matrix 

W31 it is a matrix of weights between midget bipolar cells and amacrine cells: 
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Ganglion cell makes sum of all incoming signals and pass this sum to the optic 

nerve. We assume that weights between amacrine cells and ganglion cell are all equal to 1. 

Thus: 

 

[ ]11132 =W  

Figure 19 shows the result of joining of artificial neural networks, which we 

constructed for each layer. 

 

 
Figure 19 ANN for the Multi – Stage Color Model 
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Chapter 5 
 

Experimental part 
 

This part considers the results of experiment, given by our neural network. Figure 20 

shows signal, which we have used as incoming signal. Table 2 (Appendix) contains more 

accurate values of the incoming signal. 
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Figure 20 Curve of incoming signal 

 
As explained above, on the first layer cones make a filtering process for the input 

signal. S – cone makes filtering process according to: 

 

ijiij wxu •=   (i = 1,2, … 31) 

    (j = 1) 

 

Where uij is an element of Uj, Uj is a column vector containing the signals filtered by S – 

cones, xi is a strength (luminosity) of the input signal, and wij is the weight between the 

nodes i and S – cone cell. Note that only one S – cone is included to the model. 

 
Figure 21 shows signal, which is filtered by S-cone cell. Table 3 (Appendix) contains 

more accurate values of this signal. 
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Figure 21 The response function of the first stage unit (S – cone) 
 

M – cones make a filtering process also by the same scheme: 

 

ijiij wxu •=   (i = 1,2, … 31) 

                  (j = 1,2, … 5) 

 

Where uij is an element of Uj, Uj is column vector containing the signals filtered by M – 

cone, xi is the strength (luminosity) of the input signal, and wij is the weight between 

the node i and M – cone cell. Note that only five M – cone cells are included to the model.  
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Figure 22 The response function of the first stage units (M – cones) 

 
Figure 22 shows signal, which is filtered by M-cone cells. Table 4 (Appendix) 

contains more exact values of this signal. 
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For L-cone cells situation also is the same. We use again form (5): 

 
ijiij wxu •=   (i = 1,2, … 31) 

                   (j = 1,2, … 16) 

 

Where uij is an element of Uj, Uj is column vector containing the signals filtered by L – 

cone, xi is the strength (luminosity) of the input signal, and wij is the weight between 

the node i and L – cone cell. Note that only ten L – cone cells are included to the model. 

  
Figure 23 shows signal, which is filtered by L – cone cells. Table 5 (Appendix) 

contains more accurate values of this signal. 
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Figure 23 The response function of the first stage units (L-cones) 

 
On the second stage signals from cones propagate to the horizontal cells and to the 

midget bipolar cells. Horizontal cells sum all incoming signals and produce LMS signal 

(form (2’)). Figure 24 shows this LMS signal. Table 6 (Appendix) shows the values of 

LMS signal. 
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Figure 24 The response function of the second stage units (horizontal cells) 
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Also on the second layer midget bipolar cells produce “opponent” signal, i.e., midget 

bipolar cells excite or inhibit signals, which originated from cones. Firstly, bipolar cells 

define which from signals (now we consider only the signals, which came from M – cone 

cells and from L – cone cells) contain the highest value of absorption. From table 7 

(Appendix) we can see that signals, which came from L – cone cells contain the biggest 

value, therefore midget bipolar cells will excite signals, which came from L-cone cells and: 

 

iiij LMSLL −•=+ 160  

 

Where +
ijL0 is a signal after exciting, i shows for which wavelength midget bipolar cell 

number j makes exciting, iL is the signal from L-cone cell, and iLMS  is signal, which is 

produced by horizontal. Figure 25 shows the result of exciting.  Table 8 (Appendix) 

contains values of this signal. 

 

 
Figure 25 The response function of the proposed cone-opponent type L0 

 

Correspondingly, midget bipolar cells, which get signal from M-cone cells, will 

inhibit these signals as: 

 
iiij LMSMM +•−=− 160  

 

Where −
ijM 0  is the inhibited signal, Mi is the signal, filtered by M – cone cells, and LMSi  is 

the signal, produced by horizontal cells. Figure 26 shows the inhibited signal. Table 9 

(Appendix) contains values of inhibiting signal. 
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Figure 26 The response function of the proposed cone-opponent type M0 

 

We assume that midget bipolar cells excite any non – zero signal from S – cones and 

inhibit zero – signals. In our experiment percent of absorption is 0.345; therefore midget 

bipolar cells excite the signal:  

 

iiij LMSSS −•=+ 160  

 

Where +
ijS0  is the excited signal, Mi is signal, which is filtered by M – cone cells, and LMSi 

is signal, produced by horizontal cells. Figure 27 shows the signal. Table 10 (Appendix) 

contains values of this signal. 

 

 
Figure 27 The response function of the cone-opponent type S0 

 

On the third layer signals from midget bipolar cells propagate to the amacrine cells. 

In our neuron network there are two amacrine cells. They just sum signals, which 

originated from the midget bipolar cells, and pass the results to the ganglion cell. Consider 

an amacrine cell A1. It sums signals from 6 midget bipolar cells (5 signals from midget 
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bipolar cells which connect M – cones and 1 signal from the midget bipolar cell which 

connects a single S – cone). Thus: 

 

∑
=

=

−+ +=
5

1
01

n

i
iojA MSSum  

 

Where −
iM 0  is signal which midget bipolar cell i receives from M-cone cell inhibits it, +

jS0  

is signal which midget bipolar cell j receives from S-cone cell and excited it. Figure 28 

shows the result of this summation and table 11 (Appendix) contains the values of 

summation. 
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Figure 28 The response function of the third stage unit 

 

The same situation happens with amacrine cell A2. It sums signals from 11 midget 

bipolar cells. The result of this summation is: 

 

∑
=

=

++ +=
10

1
002

n

i
ijA LSSum  

 

Where +
iL0  is signal which midget bipolar cell i receives from M – cone cell  and inhibits it, 

+
jS0  is signal which midget bipolar cell j receives from S – cone cell  and excited it.  
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Output of amacrine cell A2
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Figure 29 The response function of the third stage unit 

 

 Figure 29 shows result of this summation and table 12 (Appendix) contains values of 

the summation. Figure 30 shows the transformed color signal which ganglion cell pas to 

the optic nerve and table 13 (Appendix) contains values of this signal. 
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Figure 30 The response function of the third stage unit 

 

We considered in detail what kind of transformation takes place with signal on each 

layer. Let’s consider how the network detects the color of an incoming signal. As shown in 

figure 9 all incoming signals divide into four color classes: blue, green, yellow, red. 

 
5.1 Transformation of blue color signal  
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All signals, which belong to this color class have maximum value of luminosity in M 

– cones area and also they have some non – zero values in S – cones area (figure 31). 

 

 
Figure 31 Curve of incoming signal 

 
Basing on this rule we build the teaching process for our network. The results of 

teaching process are as follows:  

Matrices W1 and W2 will remain unchanged. W21 (matrix of weights between cones 

and midget bipolar cells) is a diagonal matrix with the following elements on diagonal: 
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On the second layer the matrix W22 (the matrix of weights between horizontal cells 

and midget bipolar cells) is: 
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On the third layer we have two matrices of weights: W31 and W32 (matrices of 

weights between amacrine cells and ganglion cell).  Matrix W31 represents the weights 

between midget bipolar cells and amacrine cells, as follows:  

 

Matrix W32 includes the weights between amacrine cells and ganglion cell and it will 

always remain constant. The result of transformation of blue color is shown in figure 32. 
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Figure 32 The response function of the third stage unit 

 
One can see from this picture that the signal from S-cone (S0) is added to M0 – L0 

cell to give blue. 

 

5.2 Transformation of green color signal 
 
Signals from this color class have maximum value of luminosity in the M – cones 

area (figure 33). 
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Green Color
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Figure 33 Curve of incoming signal 

 
Teaching process is as follows:  

Matrices W1, W2 and W3 forming the first, second and third layer respectively 

always remain constant. Matrices W21 and W22 behave as in the case for blue color. Matrix 

W31 is as follows: 

 

 

The result of transformation of green color signal by ganglion cell is shown on figure 

34. We can see that blue part of incoming signal is subtracted from M0 – L0 cell to 

represent green. 
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Figure 34 The response function of the third stage unit 
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5.3 Transformation of yellow color signal 
 
Yellow color signals have maximum value of luminosity in the L – cones area 

(figure 35). 
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Figure 35 Curve of incoming signal  

 
Teaching process is as follows:  

Matrices W1, W2 and W3 forming the first, second and third layer respectively 

always remain constant. Matrix W21 is diagonal matrix: 
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Matrix W22 is as follows: 
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Matrix W31 behave as in the case for green color. 

  
The result of transformation of yellow color signal by ganglion cell is shown on 

figure 36. The blue part of the incoming signal is subtracted from L0 – M0 cell to give 

yellow. 
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Figure 36 The response function of the third stage unit 

 
5.4 Transformation of red color signal 

 
Red color signals have maximum value of luminosity in L-cones area and also these 

signals have some values in S-cones area (figure 37). 
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Figure 37 Curve of incoming signal (red color) 

 
Teaching process is as follows: 

Matrices W1, W2 and W3 forming the first, second and third layer respectively 

always remain constant. Matrices W21 and W22 behave as in the case for yellow color.  

Matrix W31 behave as in the case for blue color. The result of transformation of re color 

signal by ganglion cell is shown on figure 38. The blue part of incoming signal is added to 

L0 - M0 to represent red color. 
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Figure 38 The response function of the third stage unit



 41

Chapter 6 
 
Discussion and conclusion 
 

In this work we have and analyzed the process of human color vision. In the first part 

we started from biological background, then we considered the human’s visual system, 

which consists from several layers. Further, we considered and studied the Multi-Stage 

Color Model of Russel L. De Valois and Karen K. De Valois, which represents a novel 

model for color vision. Then we reviewed some general principles of artificial neural 

networks and constructed an artificial neural network (ANN). In the experimental part we 

conducted several experiments using our ANN. 

 
The main reason why we chose this model is that it has several layers and due to this 

fact we were able to know the results of color signal transformation not only in the end of 

way, but also each layer. 

 
We conclude that at ANN shows the transformation of color signal in the retina. In 

other words it is a simple model of human retina. The stages in ANN were constructed in 

such a way that it enables testing of the output at each intermediate level according to the 

Multi-Stage Color Model predictors. Also the ANN were built so that it might be changed 

(the unknown defines anatomical representation can be studied and added to  the network 

during in the course of learning process). 

 
In the experimental part we conducted a few experiments with different colors. We 

imported different color signals to ANN and studied what kind of transformation takes 

place after each layer. The results of these experiments were following. The results after 

every stage were like Multi-Stage Color Model predicted. Our ANN is able to divide all 

incoming color signals into for color classes: Red, Yellow, Green, and Blue.  

 
However, this ANN isn’t able to define the luminosity of the incoming signal. Also 

in the first layer we have used only one type of the photosensitive cells – cone cells, but in 

real life also the rod cells take part to the visual process. 
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Appendix 
 

Table1 Relative Spectral Absorbtances of Human Cones Measured by Bowmaker and 
Dartnall (1980) 

Luminosity Wavelength λ(nm) 
S-cones M-cones L-cones 

370 0.59 0 0 
380 0.67 0 0 
390 0.76 0 0 
400 0.88 0.35 0.36 
410 0.96 0.35 0.36 
420 1 0.34 0.33 
430 0.96 0.34 0.3 
440 0.86 0.35 0.29 
450 0.68 0.38 0.28 
460 0.5 0.42 0.3 
470 0.36 0.49 0.34 
480 0.25 0. 56 0.39 
490 0.18 0.67 0.47 
500 0.12 0.78 0.55 
510 0.08 0.88 0.63 
520 0.05 0.95 0.73 
530 0.03 0.99 0.83 
540 0 0.99 0.91 
550 0 0.93 0.96 
560 0 0.82 0.99 
570 0 0.67 0.98 
580 0 0.53 0.93 
590 0 0.4 0.85 
600 0 0.29 0.74 
610 0 0.2 0.61 
620 0 0.14 0.47 
630 0 0.09 0.34 
640 0 0.06 0.24 
650 0 0.04 0.16 
660 0 0 0.105 
670 0 0 0.068 
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Table 2 The values of input 
signal 

Table 3 The values of the 
response function of the first 

stage unti (signal from S-
cone) 

Wavelength Value Wavelength Value 
370 0 370 0 
380 0 380 0 
390 0 390 0 
400 0,36 400 0,32 
410 0,36 410 0,34 
420 0,33 420 0,33 
430 0,3 430 0,29 
440 0,29 440 0,25 
450 0,28 450 0,19 
460 0,3 460 0,15 
470 0,34 470 0,12 
480 0,39 480 0,09 
490 0,47 490 0,08 
500 0,55 500 0,06 
510 0,63 510 0,05 
520 0,73 520 0,03 
530 0,83 530 0,02 
540 0,91 540 0 
550 0,96 550 0 
560 0,99 560 0 
570 0,98 570 0 
580 0,93 580 0 
590 0,85 590 0 
600 0,74 600 0 
610 0,61 610 0 
620 0,47 620 0 
630 0,34 630 0 
640 0,24 640 0 
650 0,16 650 0 
660 0,1 

 

660 0 
670 0,06  670 0 
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Table 4 The values of the 
response function of the first 

stage unit (signal from M-
cones) 

Table 5 The values of the 
response function of the first 

stage unit (signal from L-
cones) 

Wavelength Value Wavelength Value 
370 0 370 0 
380 0 380 0 
390 0 390 0 
400 0,13 400 0,13 
410 0,13 410 0,13 
420 0,11 420 0,1 
430 0,1 430 0,09 
440 0,1 440 0,08 
450 0,1 450 0,07 
460 0,13 460 0,09 
470 0,17 470 0,11 
480 0,22 480 0,15 
490 0,31 490 0,22 
500 0,43 500 0,3 
510 0,55 510 0,39 
520 0,69 520 0,53 
530 0,82 530 0,69 
540 0,9 540 0,83 
550 0,89 550 0,92 
560 0,81 560 0,98 
570 0,66 570 0,96 
580 0,49 580 0,86 
590 0,34 590 0,72 
600 0,21 600 0,55 
610 0,12 610 0,37 
620 0,06 620 0,22 
630 0,03 630 0,11 
640 0,01 640 0,06 
650 0,006 650 0,03 
660 0 

 

660 0,01 
670 0  670 0,004 
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Table 6 The values of the 
response function of the 
second ctage unit (signal 

from horizontal cells) 

Table 8 The values of the 
response function of the 
second stage unit (signal 
from midget bipolar cells 

which connect with L-cones) 
Wavelength Value Wavelength Value 

370 0 370 0 
380 0 380 0 
390 0 390 0 
400 0,58 400 0,02 
410 0,6 410 0,02 
420 0,54 420 -0,02 
430 0,48 430 -0,07 
440 0,43 440 -0,1 
450 0,36 450 -0,17 
460 0,37 460 -0,21 
470 0,4 470 -0,3 
480 0,46 480 -0,39 
490 0,61 490 -0,56 
500 0,79 500 -0,76 
510 0,99 510 -0,94 
520 1,25 520 -0,96 
530 1,53 530 -0,79 
540 1,73 540 -0,43 
550 1,81 550 0,17 
560 1,79 560 1 
570 1,62 570 1,82 
580 1,35 580 2,23 
590 1,06 590 2,29 
600 0,76 600 1,99 
610 0,49 610 1,5 
620 0,28 620 0,93 
630 0,14 630 0,51 
640 0,07 640 0,26 
650 0,03 650 0,11 
660 0,01 

 

660 0,06 
670 0,004  670 0,02 
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Table 7 Values of response functions of secont stage units 
Wavelength λ(nm) Percent of absorption of 

incoming signal for S-
cone cell 

Percent of absorption of 
incoming signal for M-

cone cells 

Percent of absorption of 
incoming signal for L-

cone cells 
370 0 0 0
380 0 0 0
390 0 0 0
400 0,32 0,13 0,13
410 0,34 0,13 0,13
420 0,33 0,11 0,1
430 0,29 0,1 0,09
440 0,25 0,1 0,08
450 0,19 0,1 0,07
460 0,15 0,13 0,09
470 0,12 0,17 0,11
480 0,09 0,22 0,15
490 0,08 0,31 0,22
500 0,06 0,43 0,3
510 0,05 0,55 0,39
520 0,03 0,69 0,53
530 0,02 0,82 0,69
540 0 0,9 0,83
550 0 0,89 0,92
560 0 0,81 0,98
570 0 0,66 0,96
580 0 0,49 0,86
590 0 0,34 0,72
600 0 0,21 0,55
610 0 0,12 0,37
620 0 0,06 0,22
630 0 0,03 0,11
640 0 0,01 0,06
650 0 0,006 0,03
660 0 0 0,01
670 0 0 0,004
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Table 9 The values of the 
response function of the 
second stage unit (signal 

from midget bipolars which 
connect with M-cones) 

Table 10 The values of the 
response function of the 
second stage unit (signal 

from midget bipolars which 
connect with S-cone) 

Wavelength Value Wavelength Value 
370 0 370 0 
380 0 380 0 
390 0 390 0 
400 0,23 400 2,83 
410 0,25 410 3,25 
420 0,28 420 3,3 
430 0,06 430 2,9 
440 -0,02 440 2,39 
450 -0,19 450 1,54 
460 -0,33 460 0,72 
470 -0,55 470 -0,15 
480 -0,78 480 -1,15 
490 -1,17 490 -2,51 
500 -1,63 500 -4,18 
510 -2,08 510 -5,98 
520 -2,26 520 -8,25 
530 -2,12 530 -10,62 
540 -1,63 540 -12,78 
550 -0,6 550 -13,68 
560 0,87 560 -13,86 
570 2,38 570 -12,88 
580 3,22 580 -11,11 
590 3,48 590 -8,92 
600 3,11 600 -6,55 
610 2,38 610 -4,33 
620 1,48 620 -2,53 
630 0,82 630 -1,3 
640 0,42 640 -0,64 
650 0,18 650 -0,29 
660 0,1 

 

660 -0,1 
670 0,04  670 -0,04 

 



 51

 

 

 

 

 

 

Table 11 The values of the 
response function of the 

third stage unit (signal from 
amacrine cell A1) 

Table 12 The values of the 
response function of the 

third stage unit (signal from 
amacrine cell A2) 

Wavelength Value Wavelength Value 
370 0 370 0 
380 0 380 0 
390 0 390 0 
400 3,06 400 2,85 
410 3,5 410 3,27 
420 3,58 420 3,28 
430 2,96 430 2,83 
440 2,37 440 2,29 
450 1,35 450 1,37 
460 0,39 460 0,51 
470 -0,7 470 -0,45 
480 -1,93 480 -1,54 
490 -3,68 490 -3,07 
500 -5,81 500 -4,94 
510 -8,06 510 -6,92 
520 -10,51 520 -9,21 
530 -12,74 530 -11,41 
540 -14,41 540 -13,21 
550 -14,28 550 -13,51 
560 -12,99 560 -12,86 
570 -10,5 570 -11,06 
580 -7,89 580 -8,88 
590 -5,44 590 -6,63 
600 -3,44 600 -4,56 
610 -1,95 610 -2,83 
620 -1,05 620 -1,6 
630 -0,48 630 -0,79 
640 -0,22 640 -0,38 
650 -0,11 650 -0,18 
660 0 

 

660 -0,04 
670 0  670 -0,02 
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Table 13 Values of the response function of the third stage unit 
Wavelength Value 

370 0 
380 0 
390 0 
400 7 
410 8 
420 7,33 
430 5,43 
440 3,61 
450 0,42 
460 -2,4 
470 -6,14 
480 -10,19 
490 -16,52 
500 -24,09 
510 -31,81 
520 -37,45 
530 -39,84 
540 -38,08 
550 -28,65 
560 -13,27 
570 4,26 
580 16,22 
590 22,52 
600 22,45 
610 18,24 
620 11,66 
630 6,58 
640 3,38 
650 1,5 
660 0,95 
670 0,36 

 

  


