A Visual Interface for Concretizing Sorting
Algorithms

llkka Jormanainen

22.09.2004

University of Joensuu
Department of Computer Science
Master’'s Thesis

Abstract

Algorithm visualization is an efficient way to teach programg. Several different visu-
alization techniques have been developed in the past decatie Concretization Envi-
ronment Framework, CEF, combines algorithm visualizatidath woncrete objects (e.g.
Lego Mindstorms robots). CELM, Concretization Environmeortlifego Mindstorms is
an application of this framework. By using the framework, tiser can turn the mental
model the user has into a concrete one. User feedback oratimevirork and its applica-

tion has confirmed the functionality of the concept and thefuleess of the approach.

ACM-classification (ACM Computing Classification System, 1998 version): K.3.2
[Computer and Education]: Computer and Information Science Educatid@omputer
Science Educatign.6.8 [Simulation and Modeling]: Types of Simulation Distributed,

Parallel

Keywords:algorithm, concretization, robotics, role-based, vigsion

Preface

| have almost finished the first step to the interesting wofldomputer science. Now, it

is time to thank you all for supporting me to achieve the gaatlabout five years ago.

First of all, I would like to thank my supervisor professokkrSutinen who has always
given a new, refreshing idea when | have not been able to falorydmyself. My advisor,
Dr Meurig Beynon, gave me lots of valuable comments for fimghihe thesis. The
whole research group of Educational Technology at the Deeanrt of Computer Science,
University of Joensuu, has offered an unique and creatimesjthere where to study and
work. Especially | would like to thank Niko Myller, Osku Kansmaki and Javier Lopez
Gonzales who have helped me to search the core of my thegsn&mbers of the Kids’
Club track of the Educational Techonology Summer School igusti2004 (Chris, Marjo,
Martyn, Meurig, Mike and Pasi) helped me a lot by giving théuable feedback about
the concept. Justus Randolph gave me an enormous help wiginghrenar of the thesis.

Also, many other friends have supported and helped me. Bhank

The support from my family has played an irreplaceable raleng) the whole study
process. | really would like to thank them for it. Howevee tireatest thanks goes to my
dearest, Sari, who has always believed in me when | have higgh times with my work.

With a great patience, she has taught me what is importahtgnife.

Contents

1 Introduction 1
2 Background: Using lllustrations in Computer Science Educaibn 4
2.1 Algorithm and Program Animation in Computer Science ltioo . .. 4
2.2 \Visualizationtechniques 7
2.2.1 Event-Drivenapproach 7
2.2.2 Data-Drivenapproach 8
2.2.3 Interesting eventexample: Polka 8
2.2.4 Interesting data structure example: Leonardo 11
2.2.5 Self-animated algorithm example: Jeliot 13
2.3 Concretization in Computer Science Education 14
2.3.1 Algorithm concretization with robotics 16
2.3.2 Concretizing Bubble Sort algorithm with Lego Mindsterm. . . 16
2.4 SUMMANY o e e e 18
3 Design of the Framework 19
3.1 Principlesofdesign 91
3.2 Sketch of the framework and the application 20
3.3 Working with the framework 12
3.4 Architecture of the framework 22
3.4.1 Environmentlayer 23
3.42 Transferlayer 23
3.4.3 Objectlayer. 24
35 Code. 24
3.6 Restrictions oftheapproach 25
3.6.1 Physicalenvironment., 27
3.6.2 Userknowledge, 28
4 Implementation 29

4.1 Anoverviewof CELM 29

4.2 Role-based concretization 30

4.3 ConstraintsonCELM 33
4.4 Environmentlayer. 33
45 Transferlayer e 36
4.6 Objectlayer 38
5 Evaluation and future directions 45
6 Conclusion 47
References 50
Appendix 1: The complete LeJOS code 54
Appendix 2: Answers from the Evaluation 56

1 Introduction

One of the main difficulties that students of computer sadnace is understanding algo-
rithms. Traditionally, algorithms have been taught by a¢dxplanation with the use of

blackboard or slides. With these it is only possible to viesalgorithms in a static way.

In past decades, researchers have developed differesté&isgstems for algorithm visu-
alization. Most of these systems allows the user to intex&btthe visualization and the
algorithms are often visualized through animation (Stadle®0; Ben-Ari et al., 2002).
Visualization has been used also in other fields of computiense. For example, a
simulator tool has been developed for teaching computdritaature (Yehezkel, 2002).

However, in this thesis | will focus only on algorithm visization.

Robot technology has become cheaper and has been adoptéy witksach program-
ming and computer science especially to novices. Robotisdbkan used to motivate
students to learn programming. A student can create canetv knowledge and learn
in a constructionist way by interacting with real world otige(Ben-Ari, 1998). This can
also lead more to hands-on learning with algorithms.algorithm concretizationthe
algorithm’s execution is emulated by robotics or other ngatld objects. In this way,

robots engage the student with the algorithm thereby fiogtéearning.

However, it might be difficult to implement even a simple algon (e.g. Bubble Sort)
for robots. This is because of the low-level implementatidrich should be done in order

to get robots to produce a visualization (Gonzalez, 2004).

In this thesis | will introduce a novel framework for conézatg algorithms. Further-
more, | will implement an application which is based on trariework. With this appli-
cation, the user is able to make concretizations for soglggrithms in a visual way and
more easily than it has been done in (Gonzéalez, 2004). Inthys it is not necessary to
rewrite the whole code of the algorithm for every single chjél'he framework and the
application are not developed for algorithm visualizatpyimarily but for constructing
concretizations in a visual way. However, the frameworkpguits a simulator tool, which

can be used for visualizing algorithms. Furthermore, thengwork allows the user to

construct the concretizations withrale-based concretizatioapproach. This approach

usesinteresting eventsf the algorithm (Demetrescu et al., 2002; Stasko 1990).

Questions.

The research questions in this thesis are as follows.

1. What should be the general characteristics of a framewmdupport algorithm

concretization by visualization?

2. What kind of architecture should the framework have in ptdée used in diverse
concretizing platforms such as Lego Mindstorms or EK Japan Gd.'s Soccer
RobaRr) 915?

3. What kind of additional features does such a frameworKifaiz ?

Methods.

As the questions illustrate, the current study analyzeslrmmncepts. To assess the poten-
tial usefulness of the approach, | use concept implememtas the research methodology.
To get answers to the questions above, | design the frameamatkmplement an applica-
tion of it. Finally, | gather feedback from users of the apgation. Based on this feedback
and the experiences | have gathered during the planninghenoinplementation, 1 will

draw conclusions to the research questions.

Itis important to notice that this work uses an existing waskts basis. The protocol used
for communication between the Lego Mindstorms robots has lkefined in (Gonzalez,
2004) and it constructs the object layer of the applicatiescdibed in Chapter 4. It
also gives inspiration for discussion concerning the t@sed concretization approach.
Although | have not implemented the communication protpcwiill describe it to make

it clear how the object layer of the application works.

The structure of this thesis will be as follows. In Chapten&ill examine the background
of the framework. | will also provide an overview of the fielddal will analyze existing

systems. Moreover, some problems on the field of concredizatill be examined.

In Chapter 3, | describe the design of the framework on theratistevel. Chapter 4
describes the exact implementation of this applicationillldiscuss the user feedback on

the framework and the application in Chapter 5. | will predéetresults in Chapter 6.

2 Background: Using lllustrations in Computer Science

Education

The ways that algorithm visualization can be used have athnapidly during the past
few decades. However, it is not so clear whether visuabmatmproves the learning
process or not. Petre and Green concluded that the infaymatintained in secondary
notation is the main advantage of the visualization. Thistien can be, for example,
the placement of visualized elements, the colors or theniadien (Petre 1995; Petre
and Green 1993). In the light of these studies, | will disduss visualizations improve
learning of computer science concepts. | will also presentestechniques and tools
for visualization which have been used in computer sciemteaion. At the end of
this chapter, | will present the theoretical backgroundhe tframework which | have
developed for this thesis. | will present the framework tdughly in Chapters 3 and 4.
The framework is based on the interesting event approacbhwhilescribe in Sections
2.2.2and 2.2.3.

2.1 Algorithm and Program Animation in Computer Science Educa-

tion

Learning algorithms has been seen as one of the main diféisuhat students of com-
puter science face during their studies. Therefore algoréanimation has been used for
decades to aid in the learning process. The first purely ¢idned algorithm animation
was the videotape "Sorting Out Sorting” in 1981 (Baecker, 198his video explains
nine sorting algorithms and also makes a comparison bettveealgorithms’ running

time.

In general, the field of software visualization has beenddigli into two domains. In
the program visualization domain (PV), views of progranuaiures are generated auto-
matically (Korhonen, 2003). Views of this visualizatiorpg/can be dynamic or static

(Brown, 1988). These views trace the execution of the algaristep-by-step; they are

low-level views that are not expressive enough to adequateivey how the algorithm
works (Korhonen, 2003). The second domain, algorithm Viza@on (AV), visualizes
all the states of the data structures during the executiandadlgorithm. These visual-
izations are required to fully understand the behavior efalgorithm (Korhonen, 2003).
Figure 1 presents how the different domains of softwarealizations are related to each
other (Price et al., 1993). The size of each circle is noti@nt, only the intersections

between them.

Software visualization

Program
Visualization

Static Code
\ Visualization

Static Data
Visualization

Dynamic Code
Visualization

Dynamic Data
Visualization

Algorithm
Visualization

Static Algorithm
Visualization

AW

%

N\ /N

Dynamic Algorithm
Visualization

S

AN

Figure 1: Venn diagram for different domains in softwarauaiszation (Price et al., 1993).

In the field of AV, it is crucial to preserve only those chagmidtics of data structures that
are essential. Thus, some trivial data types or variableshndo not offer any additional
information about the algorithm’s behavior, can be omitt€orhonen, 2003). Price et al.
(1993) write that algorithm animation is considered to ke dignamic visualizations of
algorithms that are implemented later, and program anamas considered to be the
dynamic visualization of the actual implementation of peogs. Many systems contain
features from both of these fields. However, our frameworkapplication focuses only

on algorithm animation.

The methods of algorithm visualization can be divided iriteé categories. Different

tools use typically one of these three methods for visudina In the following list, |

will go through these different methods and discuss theiaathges and disadvantages.

1. Hand-coded visualization. At the lowest level, the algorithm i®-writtento pro-
duce the visualization during the execution of the alganithThis approach has
been used, for example, by Gonzalez (2004). Usually, thasgsite hard task be-
cause it might even take hours to produce a good animatioa $onple algorithm
(e.g. Bubble Sort).

2. Visualization library. At the second level visualization is done &gding function
callsto some external visualization library. This is done in ordeget interesting
events visualized. This level of visualization is used imgné&ools. For example
Tango (Stasko, 1990), XTango (Stasko, 1992) and Balsa (Bra@88) use this

method of visualization. | will use this method in my framewo

3. Automatic visualization. At the third level visualization tools usself-animated
algorithms. In this approach there is no need to add funcdis to the code. In-
stead, the code is interpreted by the visualization systehttee system producesthe
visualization based on the real code of the algorithm. Thike easiest way for end
user to produce a visualization. For example, the Jeliollya{aen-Ari et al., 2002)

uses this method.

Creating a good animation is usually a difficult and time-cong task. For this rea-
son, many tools for aiding this work have been developed. é¥ew some doubts about
these tools has been presented. For example, Fleischernmedak(2002) argued that the
approach of trying to generate program animations autaadstiis futile. Instead they
belive that a good animation must be designed and implemditdhand. Also, many
empirical studies do not support the claim that visual@aiunequivocally improve the
learning of computer science concepts. For example, inttldy oy Stasko et al. (1993)
the group that used animation to learn a complicated attyrardid not perform better
than the control group. They found that students had ditiesilmapping the graphic

elements of the animation to the algorithm since studerdsibaused animation before.

According to Petre (1995) novice and expert programmelis@and concentrate on dif-
ferent graphical details. Petre defircondary notatioas an informal part of graphics
(e.g. placement or color). Novices misinterpret secondatgtion and cannot use graph-
ics in on efficient way. Petre and Green concluded also thates must be taught to read

graphics (e.g. through visualization).

Ben-Ari et al. (2002) noticed that using Jeliot 2000 animagio the classroom was most
beneficial for mediocre students. They noticed that thenggostudents in the animation
group had the same kind of difficulties as the stronger stisdarthe control group. Stu-
dents in the animation group believed that they could usenthierial and learn without
Jeliot. In light of these studies, one can conclude thatiioiscertain if algorithm visu-
alization is a good way to learn in all cases. However, theeesaveral indicators that

visualization can positively affect to the learning praces

2.2 Visualization techniques

The first step during the development process of algorithsunalization system is to de-
fine what kind of technique one would like to use. There are twvean approach in the
field of visualization: theevent driverand thestate driverapproach. The self-animated

approach has also been used in some visualization tools.

2.2.1 Event-Driven approach

The event-driven approach is probably the most commonlyg agproach to visualize
algorithms. In this technique, an author of the visualaatiefines thénteresting events
of an algorithm. This event might be, for example, a swap aj@n in the code of a
sorting algorithm. It is crucial to remember when defininggt events that they have
to be meaningful for visualization purposes. Then, theser@sting events have to be

associated with a suitable algorithm scene (Demetresduy 2082).

Listing 1 presents a bubblesort algorithm in Java. In Lggtthsome interesting events

© 00 N o o b~ w DN P

e
R O

have been added to the code in order to get a visualizatidmdi3 of Listing 2 the visu-

alization is initialized with an array to be sorted and tteeif this array. The interesting
event generating the visualization has been added to lijast@fter a swap operation
at the algorithm level. Note that this is only an example ardbes not represent any
real system. In Section 2.2.3, | will present an existingialzation system called Polka

where visualization is based on interesting events.

int tmp;

int[] intArray = {12, 4, 5, 8, 7, 9, 45, 11};

for (int i=0;i<(intArray.length—1);i++) {

for (int j=(i+1); j< intArray.length; j++) {
if intArray[i]< intArray[j] {

tmp = intArray[i];
intArray[i] = intArray[j];
intArray[j]=tmp;

Listing 1: Bubble Sort algorithm.

2.2.2 Data-Driven approach

In the data-driven approach an animation is based on a g@phterpretation of the
interesting data structuresThe animation should reflect, at any time, the state of the
program and its computation. This approach has been alsbwise commonly used
debuggers. Debuggers update the display after each chatige mrogram, for example
in sorting algorithms, when a variable gets a new value omwie cells of an array are

swapped.

© 00 N o o b~ wWw N P

i e
w N L O

int[] intArray = {12, 4, 5, 8, 7, 9, 45, 11};

int tmp;

cl.Init(intArray, intArray.length);

for (int i=0;i<(intArray.length—1);i++) {

for (int j=(i+1); j< intArray.length; j++) {
if intarray[i]l< intArray[j] {

tmp = intArray/[i];
intArray[i] = intArray][j];
intArray[j]=tmp;

cl.Swap(i,j); // An interesting event

Listing 2: Bubble Sort algorithm with an interesting event.

2.2.3 Interesting event example: Polka

Polka is a system for visualizing programs written in C++ ([2émscu et al., 2002).
Polka was originally written for X Window System, but a versifor Microsoft Windows
(PolkaW) has been released too. To create a visualizatibrPRuika, the user has to carry

out the following steps:

1. The user has to annotate the program sourceAghrithm Operationswhich are

Polka’s version of interesting events.
2. The user has to creatgimation Sceneshich perform an animation chunk.

3. The user has to specify a mapping between algorithm dpesagnd animation

scenes.

Listing 3 presents the Bubble Sort algorithm implemented i+ @@emetrescu et al.,
2002). To visualize this algorithm with Polka, the user haspecify which pieces of

information related to the algorithm’s execution shouldvimialized and how it should

0o N oo o B~ W N P

be done (e.g. what kind of graphical elements there shoyldA@ossible approach is
to use horizontal rectangles to represent the elements sorbed and animate the swap
operation which is at line 6 in Listing 3. Figure 2 presentoek&WV visualization of this

algorithm.

int v[]={3,5,2,9,6,5,1,8,0,7}, n=10, i, j;
void main(void) {
for (j=n; j>0; j—)
for (i=1; i<j; i++)
it (vli=1]>v[j]) {
int temp=v[i]; v[i]=v[i —1]; v[i—-1]=temp;

Listing 3: Bubble Sort algorithm in C++ (Demetrescu et al., 200

To achieve the visualization presented in Figure 2, thegtesihas added some interesting
event calls to the code. These calls initialize and invokeathimation scene. At line 3 in
Listing 4, the event call "Input” signifies that all the arraalues to be sorted are set and
that the animation should draw the initial configuration loé &rray (Demetrescu et al.,
2002). Basically, this event creates and lays out the seteohthizontal rectangles and
scales them according to the corresponding array valuessé&tond event, "Exchange”,
signifies that a swap operation between two elements of tiag &&s occurred. Array

elements which were exchanged are passed as parameters.

In the PolkaW visualization, the "Exchange" event invokesttkhchange method in the
Rect s class. This class produces the animation. The code dbtiedhange method is

presented in Listing 5.

2.2.4 Interesting data structure example: Leonardo

Leonardo is an integrated developing environment (IDE)developing, executing and

visualizing C programs (Demetrescu, 2001). Leonardo pes/two major improvements

10

© 00 N o o b~ wWw N P

=
o

int v[]={3,5,2,9,6,5,1,8,0,7}, n=10, i, j;
void main(void) {
bsort.SendAlgoEvt(l nput” ,n,v);
for (j=n; j>0; j—)
for (i=1; i<j; i++)
it (vli=1]>v[j]) {
int temp=v[i]; v[i]=v[i —1]; v[i—-1]=temp;
bsort.SendAlgoEvt(Exchange" ,i,i —1);

}

Listing 4: Bubble Sort algorithm in C++ with interesting eveatlls (Demetrescu et al.,
2002).

which traditional IDEs do not have (Demetrescu et al., 2002)

1. Support for visualizing computation of the program giiaglty by attaching graph-

ical representations to key variables.

2. A run-time environment that supports fully reversibleextion of C programs.

With this visualization technique, basic animation can bamed typically by adding a
few lines of additional code to the original source. Howel@onardo does not realize
the real state mapping technique since it allows users tosshand control which vi-
sualization declarations are active at any time (Demetresal., 2002). The Leonardo
system is distributed with a collection of animations ofalthms and data structures (see

Demetrescu (2001) for more information).

Visualization declarations in Leonardo are writterAbPHA, which is a simple declara-
tive language. Declarations are enclosed within separator and**/ . To produce a
visualization of Bubble Sort, the user has to append the cogiepted in Listing 6 to the

code of the algorithm.

11

© 00 N o o b~ wWw N P

L I e
A W N B O

o o B~ W N P

int Rects::Exchangeint i, int j) {
blocks[i}->Where (Part_ NW);
blocks[j}>Where(Part_NW);
Action a('MOVE" ,locl ,loc2 ,1);

Loc xlocl

Loc xloc2

Action xb = a.Reverse ();

int len = blocks[i}>Program(time ,&a);
time = Animate (time,len);

len = blocks[j}>Program(time ,b);
time = Animate (time,hlen);

Rectanglext = blocks[i];

blocks[i] blocks[j];

blocks|[j] t;

return len;

}

Listing 5: The code of the method which animates the swapatioer of Bubble Sort
(Demetrescu et al., 2002).

[
View (Out 1);
Rectangle (Out ID,Out X,0Out Y,Out L,Out H,1)
For N:InRange(N,0,n1)
Assign X=20+2&N Y=20 L=15 H=15«v[N] ID=N;
* %/

Listing 6: The ALPHA code which produces the visualizatian Bubble Sort (Deme-
trescu et al., 2002).

2.2.5 Self-animated algorithm example: Jeliot

The history of the Jeliot family goes back to the 1990's. Redess at the University
of Helsinki created an animation library that could be usedriimate programs written
in C. Also, a library of self-animating data types was cregq®atinen et al., 1997). In

this approach, there is no need to add extra notation to thgrgm code Eliot was the

12

-

Bubblesort (Blocks view) E]@

L | R ‘ D | U ‘ In | Out‘ Debug | Refresh‘ Close ‘

Figure 2: PolkaW visualization of Bubble Sort.

first product of the Jeliot family (Sutinen et al., 1997). éfthat, Jeliot I, Jeliot 2000 and
Jeliot 3 have been released (Myller, 2004).

Developers of Jeliot 3 continue their work by adding newdesd to Jeliot. For example,
by combining program visualization and collaborative authg tools, it was possible to
bring new aspects to the field of visualization. JeCo (JEliotl&®rative), introduced
a novel concept that supports both program visualizatiahpaer-to-peer collaboration
(Moreno et al., 2004). This concept is calleallaborative program visualizatigrand it
supports the theory @ocio-cultural constructivisiwhere a learner should have possibil-
ities to communicate with other members in a learning conmtBuffy and Cunning-
ham, 1996).

BlueJ is an integrated Java development environment spalyifaesigned for introduc-

13

tory teaching. The environment presents object-orientedttsires graphically and it is
targeted for teaching programming with the "objects-firgirapch” (Kélling et al., 2003).
Authors of Jeliot have developed an extension for BlueJ whlldws the user to animate

the BlueJ project (Jeliot 3, 2004).

@ letiot3.2 (=
Srogram Bdi Control Animation Help
1 import djeliat.ioc.*: ; Method Area Expression Evaluation Ares
2 | average main
3 public class Average |
4 public static void main() { : ldouble suml 0.0
5 double sum = 0; -
6 int count = 0; x
7 A . int count
1 douhle avol
; - intn[7° |
10 n = Input.readInti);
il while [count < n) | i
1z sun = zum + Input.readbouh
13 court; i
14 1
15 avg = sum S n;
16 Output. printlnavg)
17 1
I60)
19
=0
21
22 Constant Area Instance andArray Area
23 b
24 | lcoNsTANTS
I»

Pause

| JELIOT Mo T

Figure 3: Visualization of a program by Jeliot 3

2.3 Concretization in Computer Science Education

In the few past decades, researchers and industries hastpled a number of different
robot kits designed to help learning in scientific fields sashmathematics, physics and
computer science. These kits typically contain all thegpattich are needed to construct
a robot: motors, sensors, wheels, gearwheels and beltse bthe kits (for example
LEGO Dacta and LEGO CyberMaster) include cable or radio egaig that make it
possible to connect the device to the computer. This allvsiser to control the robot.

Another approach uses autonomous robots. There is a smgiuter inside autonomous

14

robots, so they can communicate and move independentlydingdhe program the user
has constructed. These kits have been built according toa¢gidanal principles which
have been derived from Jean Piaget's theories of cognigveldpment (Miglino and
Lund, 1999). Seymour Papert has revised these theoriemréiog to this approach the
active learner is the center of the learning process. Leammarge their knowledge by

manipulating and constructing objects (Miglino and Lun@99).

These rather cheap robotic kits can be used, for exampledching Java programming
to novices (Barnes, 2002). Artificial organisms have alsonhesed for teaching the de-
sign and construction of industrial prototypes to engise@dno have a bachelor’s degree.
Often they have excellent knowledge of fundamental théaketoncepts, but they lack

experience in construction (Miglino and Lund, 1999).

However, there might be some problems when teaching, fompbg object-oriented
problem solving with robots. For example, in the objecented programming approach,
if we want to model a car, it might be necessary to model wheglss, petrol tanks, win-
dows and so on. However, when using the LeJOS environmemtwgo Mindstorms and
RCX, motor and sensor objects are obtained via a pre-createdr&ference. This is not
an appropriate way to teach object-oriented programmingn@sa 2002). Also, physical
restrictions of the RCX unit might prevent one from using ict@iag programming. Lack
of memory and difficulties in debugging programs with a RCX umiist be taken into

account when planning courses and instructional materials

Fagin and Merkle (2003) argued that the use of robots in tegatomputer science is
ineffective. They ran a year-long quantitative experimanthich they noticed that test
scores were lower in the robotics laboratory sections thaihe non-robotics sections.
However, they believed that the most significant factor antiag for this result was the
lack of a simulator for the programming environment that wasise. Students were
unable to practice the write-run-debug loop that seems tarbemportant part of the

learning process.

In the study of Fagin and Merkle, the authors also discussetbie of teacher experience

as a factor in the negative result. All of the teachers in tkgegment had only one

15

semester experience teaching the robotic sections. Adtinthe authors had planned the
robot exercises very carefully. Fagin and Merkle (2003) it believe that they were
completely successful in controlling for the lack of teackeperience with the robotics

as a factor in student learning.

2.3.1 Algorithm concretization with robotics

Robotics have been used widely to teach computer scienceptmdrogramming, net-
working, artificial intelligence and many other topics aaeight with robots. However,
algorithmshave typically been taught in traditional ways. Gonzéaleal e2004) present
a novel way to teach sorting algorithms with robots. The axghian an empirical study
where they taught a bubblesort algorithm to 13-to-15-y#drstudents. The data was
collected with a questionnaire and by taping the lesson. IReshwowed that at least some

of students understood the sorting algorithm taught witioties.

One can say that the added value of concretization, compartbe visualization, is the
hands-on character of robotics which may positively aféecertain type of student. This

issue is further addressed in this thesis.

2.3.2 Concretizing Bubble Sort algorithm with Lego Mindstorms

In his research, Javier Gonzales developed some condi@tigaf sorting algorithms
with Lego Mindstorms (Gonzélez, 2004). The main idea in hiskwvas to use a master
robot which controls other robots (slaves). In this scheswery robot has an individual
id and a weight. This information is used to sort the robot$\aisorting algorithm. At
the moment, Bubble Sort and Selection Sort have been implkeshemhe main idea for
handling the communication is to use a pre-defined prototathwthe robots use when
communcating with each other. Furthermore, some kind oflssomization is needed to
ensure, that the excecution of the concretization proceeu®thly. Algorithms for the
robots were developed in NQC (Not Quite C), which is a C-likegpaonming language
for Lego Mindstorms robots (Baum et al., 2000), and in Javd w#JOS. There is a

16

certain algorithm for the master and the slave robot. AVetause the same code with
only two slight differences: all slaves have an individubbnd weight. This infomation
Is changed via the communication protocol. For more infdimmeabout implementation,

see Gonzélez (2004).

As it can be seen in Gonzalez (2004), algorithms with robesamplicated. This makes
it difficult to use concretization in an efficient way, for emple, when teaching program-
ming or algorithms to novices. It needs much code to impldreeen a simple sorting al-
gorithm, like Bubble Sort (see Gonzélez (2004)). Howevehgasbeen stated in Gonzalez
et al. (2004), this method of teaching is promising and wairtther study. With the envi-
ronment | am developing for this thesis it is possible to tats$ concretization in a more

sophisticated way.

The protocol defined in Gonzélez (2004) is based on the betwas/of robots. In sorting
algorithms, two particular behaviours, which repeat omgweund of the algorithms, can
be found. We call thenheft andri ght since they are associated with the physical
position of the robot. In Gonzéalez (2004), the behaviourrie pre-defined movement
of the robot. Behaviours are implemented as NQC tasks. The abthe slave robot
contains three tasks: the main task, which starts the erecaind tasks for left and right

behaviour.

One round of concretization of the sorting algorithm camgahe following steps:

1. The master sends a message to the first slave.
2. The slave confirms this message by answering the masteitsvawn id.

3. The master sends the slave a message which contains atfonnabout the slave’s

role (whether it is left or right).
4. The slave moves in the direction specified by the master.
5. The slave sends a signal, which shows that they have dervedik, to the master.

6. The master sends a confirmation signal to the slave.

17

After one round of the loop the master sends the ids and betravio new slaves. Figure
4 illustrates thigrotocol The technical details of the protocol and communicationtua

found in Section 4.6.

Master Slave n

Master sends id » n

\> Slave n answers with
its id
Master waits for N’

a response

Master sends left left / right

or right behaviour _}

Slaves makes the movement

M . d Slave n sends done
aster waits one message
done message

Master sends confirmation
a confirmation

Figure 4: The protocol between master and slaves (GonZ0€4,).

2.4 Summary

In this chapter, | have described an existing communicgtiatocol which allows the
robots to sort themselves according different sorting ritigms. However, the protocol
is hard to implement. Also, it is a time consuming task to dgyeconcretizations for
new algorithms. For this reason, there is need for a framlewahnich defines the parts
which are needed for the application which allows the useotstruct concretizations

for robots in a visual way.

In this chapter, | have also examined existing program agdrihm visualization ap-

proaches and tools. By using interesting events of the dlgoriit is possible to define

18

a framework which allows the user to develop concretizatieasily. | will present this

framework in the next chapter.

19

3 Design of the Framework

In this chapter, | will explain the main design issues for aaggal Concretization Envi-
ronment Framework (CEF). | will discuss the principles of design in the Section 3.1,
sketch the CEF in Sections 3.2 and 3.3 and discuss the seugittine whole framework
in Sections 3.4 and 3.5. In Section 3.6, | will present thattrons of the architecture
and the approach. The CEF itself, and the principles behsnddsign are discussed in
this chapter and illustrated by using some examples fronCteeM environment. The

technical issues concerning implementation are discussgétapter 4.

3.1 Principles of design

The main goal of this project was to develop an applicationctvimay help the user
(teacher, instructor) construct concretizations foriegralgorithms. The application is
directed, especially, at teachers and those who would dikget a better understanding
of a particular algorithm which they already know at leastsome level. However, the
application is not primarily targeted at novices who aimearh themselves, because the
user has to know how the algorithm works in order produce talslé concretization of it

(see Section 3.6).

The environment uses an event-driven approach where stitggeevents of an algorithm

are visualized (for more information about this approaele, Ghapter 2.2.1).

The main difference between the work described in this shasd existing systems that
use the same technique (for example Tango (Stasko, 199@ptimteresting events and

their visualizations (and concretizations) are consadictsing a graphical interface.

In the Jeliot family, one can also use a graphical user iaterf However, Jeliot | is the
member of Jeliot family that is most targeted to algorithisualization. The Jeliot prod-
ucts after Jeliot | are primarily involved in the field of pragnming visualization. The
main difference between this framework and Jeliot | is tledibd | uses aself-animating

approach The visualization of Jeliot is also based more on data &tres of an algorithm

20

than interesting events.

3.2 Sketch of the framework and the application

In the application | have implemented for this thesis, | wisle thetheater metaphom
the same way that the Jeliot family uses it (Myller, 2004)rt®af this metaphor in this

application are:

Action: An interesting event in the algorithm in which the@s participates.

Actor: A concrete object (e.g. a robot).

Director: A user who leads the actors.

Stage: A place where actors conduct actions.

Storyboard: A place for gathering actions.

Figure 5 presents an outline of the application. All actians played on a stage. The
director can move actors over the stage by dragging with thesex Actors will try to
realize the path the director has prescribed but will nesdgend up performing an ap-
proximation because of the inevitable noise in a physicabsunding environment. There
can be numerous actors on the stage at the same time and th@secan communicate
and interact with each other. These movements and discissseiermine the code which
can be sent to concrete objects (e.g. robots). The user odoge as many events as it is
necessary to concretize a particular part of the algorifhinese events are collected on a

storyboard This can be seen as a filmstrip which contains short aninféesl

The user can load a code containing the algorithm inctiéewindow. In that window,
user can mark an interesting event with a mouse. The contaergarticular event s listed

in aneventlist

21

Storyboard

J <

il

gw Concretization Design Environment g@
File
New..|| Delete
_ Actors
Algorithm ¢ \
I I
Lego Lego
]]
Stage

Direction:
Act

Amount:

Figure 5: Outlines of the system.

3.3 Working with the framework

A generic workflow of the application is presented in Figure FEgure 6 shows how

a user’'s mental model becomes concrete by using robots ascaet® model. In the

beginning, users have only a mental model of how the algarghouldwork in their

minds.

The user defines the interesting events of the applicati@hvasualizations for these

events. Visualizations are defined by dragging robots orsthge of the application.

After that, the user allows the application to upload theectwl the robots. Then, the

robots will execute the visualization. In this way, the nambodels which users have in

their minds become concretized in the material world.

22

Physical reality Digital reality

Events

4

The user defines interesting The user constructs

Mental model events for the algorithm visualizations for events

|_ —————————— Visualizations
Robot

I
The user %ncrc‘m Robots execute The user uploads

moddl the visualization events to robots

A

Concretjization code

Figure 6: A workflow of the system.

3.4 Architecture of the framework

The architecture of the framework is designed in a way thedntbe used in different do-
mains. For example, controlling a Lego Mindstorms robotweitdedicated environment
is one application of this framework. This thesis contairdisgzussion about this field.
Another example could be controlling an enterprise robatasrhetwork. These possible

applications are presented in Chapter 6.

The architecture of the framework contains three sepaagtrs. For each layer, there is
some output which serves as input in the next layer. Commtioicaetween layers is
bi-directional. This means that physical objects can compaie and send information
about their states to the application. In this way, it is gaego track the movement of the
robot. Figure 7 presents this structure and communicagbwéen layers. The figure also
shows the idea how this kind of framework should be suitablg@ifferent domain areas.

The communication protocol and other technical issues@septed in the Chapter 4.

Theenvironment laye(EL) takes care of the communication between the user aradsob
Results of these actions are sent twaasfer layer(TL) which takes care of transferring
and converting the code produced by the environment layaotgect layer(OL). This

layer represents the physical objects which concretizalgparithm. This object might

be, for example, a Lego Mindstorms robot (Ferrari, 2001).

23

. EL Application
Environment
layer (EL) N4 A
TL File system
Commiands

Yy A

Lego Mindstorms

Y Fdedback

OL
Transfer robot
layer (TL)
Native|code EL| Control application
Fdedback * A
Object TL Internet
layer (OL) V A
OL Enterprise
robot

Figure 7: Architecture of the system

3.4.1 Environment layer

This layer is visible to the user as an application. The uaardefine interesting events
and visualizations by using the interface of the applicat®asically, there can be several
objects on the stage at the same time. However, it might Bewifto handle, for example,

discussion between objects if there are more than four of fhresent at the same time.

3.4.2 Transfer layer

This layer transfers the concretization constructed byuser to the object layer. Basi-
cally, this layer interprets the code for the robot that isig® (see Chapter 3.5). In this
way, it is rather simple to replace only this layer accordmthe robot which is in use. For
example, with Lego Mindstorms robots, this layer turns théecto LeJOS-code (Laver-
dae, 2001) and then it sends the LeJOS-code to the robot wdrared transmitter. This

layer also transfers the feedback given by object layerd@plication.

24

3.4.3 Object layer

The purpose of this layer is to concretize the algorithm anghme way that users desire
their mental models concretized with physical objects. sehebjects (robots etc.) can
be seen aphysical learning objectéEronen et al., 2004). There have been some studies
done which show that physical objects can facilitate sttsldnilding of mental models
during the learning process (e.g. see Poon (2000)). In @, cabots represent the data
of the algorithm (e.qg. cells of an array or an individual ehfe). One robot can represent
one variable at a time. The user can change this mappingglthie execution of the
program. Robots can exchange data in order to concretizexéonple, a swap operation,

which is commonly used in different sorting algorithms.

The object layer gets instructions for the concretizatronfthe transfer layer. The format
of instructions depends on what kind of concretization ieoh use. In the case of our

application, the interpreter turns the robot code to Led0&: (see the Chapter 4).

3.5 Code

The environment layer produces code which it sends to thecolayer via the transfer
layer. The code contains instructions on how the robot shmave and behave. The code
uses object-oriented notation as in Java, where an indiVidbot is identified by a name.
A dot follows the name and, after the dot, a method call iskedowith some parameters.

For example, a simple instruction for movement may look this:
robot A. nrove(20, FORWARD)
In this example, the command contains the following parts:

This instruction makes a robot namedbot A, move 20 units forward. The user has to
define the unit amount in the application. Thaibrationis necessary to ensure accurate
movement of robots (Gonzalez, 2004). The whole set of conds@rather small and

simple. The complete list of commands is presented in Table 2

25

Table 1: The structure of the command.

le)

Part Purpose

robotA Name of the robot (representing a variab
move A method, which makes the robot to mov
20 Quantity to move

FORWARD | A direction to move

Table 2: Set of commands.

Command

Purpose

Example

stop

Stops movement

robotA.stop

move(quantity, direction)

Move a robot a certair
amount in a certaimlirec-

tion

1 robotA.move(20, FORWARD

rotation(direction, degrees

5)Turns a robot tadirection

amount ofdegrees

robotA.turn(RIGHT, 90)

send(value)

Sends some value

robotA.send(25)

send(value, robot)

Sends somealueto a spe-

cific robot

robotA.send(25, robotB)

receive(robot)

Receive any message fro

a specificobot

nrobotA.receive(robotB)

receive(msg, robot)

Receive a specific messa

(msg from a specifigobot

geobotA.receive(25, robotB)

3.6 Restrictions of the approach

The main problem with this approach is how to concretize laong condition structures.

For example, a condition statement basically needs twerdifit concretizations - one for

the case that the statement getsttheie value and another one for tliel se value.

26

However, this is quite easy to handle by constructing tweitds concretizations for this

particular statement.

The situation is more complicated when there i®@p structure Loops are very im-
portant control structures in programs. However, in thisacetization approach loops
cause a very difficult problem. The number of different plesexecution paths of the

algorithm is so large that it is impossible to produce a cetization for each of them.

Listing 7 presents a Bubble Sort algorithm. During the exeoudf the algorithm, lines

6-8 are invoked approximately(n?) times, wherez is the number of robots. Basically,
every iteration of the lines 6-8 has to be represented byta distinct concrete action. Ta-
ble 3 shows the approximate numbers of steps (concretizatients) for different sorting

algorithms whem represents the number of robots.

Table 3: Steps in different sorting algorithms.

Algorithm Average time consumption| n | Steps
Bubble Sort O(n?) 3| 9
Selection Sort O(n?) 4| 16
Shell Sort O(nt) 5 7

Possible approaches to solve this problem are:

1. A concretization is constructed separately for each tewveside the loop. This
is problematic, because there might be too many steps taipeotsee Table 3).
The developer of the visualization has to explicitly modhe precise positions and
arrangement of the robot for each step of the algorithm. &#lleis is possible, the

expressive power of concretization using robots cannokpbied.

2. The user definemles for robots. For example, in the sorting algorithm, robots
which represent cells of an array always have a role cédliedr a role calledight
(Gonzalez, 2004). It is possible to define a generic behatwioth of these roles.

After that, the movement of the robot depends on its role andltere it is located.

27

© 00 N oo o b~ W N P

-
_ O

The direction and the quantity of movement are calculatesktbaon the robot’s
index in the array. In Listing 7, variablesandj define indexes and furthermore,
identify the robots which are used in one particular stefefaxecution. Later on,

this approach is callesble-based concretizatiofsee Chapter 4.2).

int tmp;

int[] intArray = {12, 4, 5, 8, 7, 9, 45, 11};

for (int i=0;i<(intArray.length—1);i++) {

for (int j=(i+1); j< intArray.length; j++) {
if intArray[i]< intArray[j] {

tmp = intArray/[i];
intArray[i] = intArray][j];
intArray[j]=tmp;

Listing 7: Bubble Sort algorithm.

There are also two other categories of restriction to whichapproach is subject. Noise
in the physical environment or lack of user ability to undansl the algorithm to be con-

cretized or a lack of programming knowledge may lead to diffies.

3.6.1 Physical environment

The fact that robots operate in a concrete world causesgrabtue the limitations of
working in a physical environment. For example, the moveroéthe robot may vary on
different kinds of surfaces. Also the voltage level of bagte may cause different speeds
between similar robots. Light conditions may change rdljichuring the execution of
the concretization and this may cause some strange reslilghti sensors have been
used. More information about these problems and method=diece them can be found
in Gonzalez (2004).

28

3.6.2 User knowledge

The user has to construct all the movements and commumicatients for the robots
with the application. Thus, the user has to know, at leasbamedevel, how the algorithm
works. This means that the system is more useful for thoseandteaching programming
than to those who are studying it. In the investigation cateldiby Gonzalez (2004), us-
ing of robots in teaching seemed to lead more deeper unddmstp However, to be sure

about this issue, investigations which are more structundgth good research methods,

are needed.

From a technical point of view, although it seems quite easytfe expert programmer to

replace, for example, the object layer (physical objeci) another one, this might be

difficult for the nonprofessional programmer.

29

4 Implementation

In this chapter, | will discuss one option for the applicataf the framework. The ap-
plication is calledCELM (ConcretizationEnvironment withLego Mindstorms). The

framework and the approach itself are so complicated thatg impossible to totally
implement it for this thesis (see Chapter 3.6). In the appboal use the role-based
concretization approach. In this approach, the user defoles for the robot. When
concretizing sorting algorithms, only two roles (left anght) are needed. The aim of
the application is to enable the user to construct movenienteese roles. Later on, the
aim is to make the application less specific by allowing ther i3 invoke roles in a more
general way. Some inspiration for this might be drawn froework of Sajaniemi and
Kuittinen on the role of variables in general proceduralgoams (Sajaniemi and Kuitti-
nen, 2003). However, we will need more studies for this. | présent the limitations of
the application in Chapter 4.3. In this chapter, | will disstise technical implementation

of the application.

In Section 4.4, | will go through the issues concerning theliaption layer. In Section
4.5, 1 will discuss the implementation of the transfer laged in the Section 4.6, the

object layer. The last layer is discussed in more detail byzatez (2004).

4.1 An overview of CELM

| have developed an application for the framework describgtie Chapter 3. The ap-
plication is called CELM, which stands f@oncretization Environment with Lego Mind-
storms As will be shown, | have implemented this application forgheMindstorms

robots. Figure 8 shows how CELM (the application) and CEF (taeméwork) are related

to each other.

Figure 9 illustrates the application and how it turns the'asaental model to a concrete
one. The code in the Figure 9 is a Bubble Sort algorithm. The lige constructed a

behaviour for this algorithm. The behaviour contains savemall pieces of commands,

30

__Framework __

' |
| Environment |
layer (EL
| yer (EL) | Applicaton
| Commiands | | L CELn |
Fdqedback |
I —Y I v A
Transfer omain area .
| layer (TL) | Lego Mindstroms > I File system |
| robot | * A |
Native|code A l | OL Lego Mindstorms
l Fdedback | L L _ro‘tﬁ — _l
| Object |
| layer (OL) |
- - - — —

Figure 8: The relation between the framework and the appdica

that will be sent to the robot by the application. The robbentconcretize the algorithm

according to the movements the user has defined.

4.2 Role-based concretization

Role-based concretization is a novel way to define conctairmwith robots. The con-
cept is based on idea that the data of a program or an algohtsra certaimole. It

has been found that the following list of roles of variablesers 99% of all variables
in novice-level programs (Sajaniemi, 2002): constantspstr, follower, most-recent
holder, most-wanted holder, gatherer, one-way flag, tearg@nd organizer. With these
roles, it is possible to define a representation for eaclabbgiin the program. Plan-Ani
(Sajaniemi and Kuittinen, 2003) is a tool for representiolgs with graphic visualization.

In addition to images, Plan-Ani uses animation for viswualan as well.

However, in this application we see the concept of role infeeidint way. Gonzalez

(2004) has defined two roles for concretizing sorting athons: left and right. This is

31

& Concretization Design Environment g@

File
|New... |Delele
void BubbleSortiint a[]] thro *261y23
for (int i = a.length; --i>=0;)

boolean swapped = false:
for [int § = 0; 3<i; 3++) |
if (stopRequested) {
return;

oban
|

i
if {a[3] » ali+1]) {
int T = a[3];
a[1] = a[i+l]:
a[i+l] = T:
swapped = true;
i
pausefi,jl:
i
if (lawapped)
rETUrn;

|
oban
|

| Rec.. \ . Event: |rotati
Swapping il Lm.mm(FOMM, 77 el i Direction: |RIGH

Amount: 30

\%cal rezN Digital reality
N\

N nts
The uSdgefine a interesting —_— The user construct

events forwhgalgorithm visualizations for events

o _\ Visualizations
Robot

The user Concrgte Robots execute N The user upload
1:|| the visualization

events to robots

Figure 9: Mental model turns to the concrete one with theiegpbn.

based on the idea that, in the sorting algorithms, the datartgpare can be illustarated as
it has been presented in the Figure 10. In the figure, eachesogaesents an item to sort.
Typically, this item is a data in the cell of an array or in atdata structure in a program.
In the concrete world, for example, a robot represents tais.i ltems to sort are in one
row and items to compare have been taken out from the row. dleesrdefined based on
physical position of the robot or other object. In Figure LlOem 2 has the roldeft and

I t em 5 has the roleight.

The difference between Gonzalez's roles and the roles ian&api (2002) is that the
role in Gonzalez (2004) is defined by the object’s physicalitmn related to other ob-
jects, whereas the role in Sajaniemi (2002) gets its dedmiiom the semantics of the

program. Therefore role-based concretization coultbbation-basedr position-based

32

Left Right

v v

Item 2 Item 5

Item 1 Item 3 Item 4

Figure 10: Roles left and right are defined by their physicaitpm.

concretization as well. However, this terminology needsevstudies, so from now on in

this thesis | use the termle-based concretizatidior the approach I present in this thesis.

In role-based concretization, the user defines some moueamether action for the robot
or other concretization tool. During the execution of thgoaithm, this role is invoked

when needed. For example, Gonzélez (2004) has implemesitetas NQC sub-routines.
The master robot leads the execution of concretization tetedls the slave robots which

role to adopt (see Chapter 4.6 for more information).

In this approach, the user creates concretizations foethass with the application. For
common sorting algorithms (Bubble Sort, Selection Sort)uber has to define four dif-
ferent movements (Table 4). The environment produces thplete LeJOS-code which
is needed for moving robots based on these movements. limtpiementation, one role
Is implemented as one method. MovemeRisandR2 will be inserted to the method
ri ght _behavi our, which implements thei ght role. In the same way, movements
L1 andL2 will be inserted to the metholdef t _behavi our, which implements the

| eft role.

33

Table 4: Movements the user has to define for sorting algosth

Movement | Role | Swapping
R1 Right No
R2 Right Yes
L1 Left No
L2 Left Yes

4.3 Constraints on CELM

This thesis contains a description of the framework for grliegtion discussed in Chap-
ter 3. The implementation of the application is describethia chapter. However, it is
important to note that the application does not implemdrnhbelfeatures | have described
in Chapter 3. Because of the problem with loops, | decided ti@application should
be targeted only for concretization of sorting algorithresg Chapter 3.6 for more infor-
mation about the difficulties with loops). Also, recursivetsg algorithms (for example

Quick Sort) are not included in this study because

1. They are not so important for novices, and

2. Itis difficult to implement a recursive visualization @ncretization.

These limitations change the generic workflow. The appboaitself makes it possible
to work with sorting algorithms only, but not in as genericpes it has been described in

Chapter 3.3.

4.4 Environment layer

The environment layer contains an application which is ckgeid to the control of one or
more robots. With the application, the user can construsements and other behaviours

for robots, and send them to the robot. The application has maplemented purely

34

with Java, so it can be used in diverse platforms, such as isdLinux or Macintosh.

The only requirement is the need for a LeJOS environmentiwisiused in the transfer
layer to compile the code produced by the environment laye¢hé native code of the
object layer. It is also possible to produce any layer of taenework with some other
programming language. The most important issue is to erlbatéhe layers give output
in the right format. Also, each layer has to have the capghih use the output of the
previous level as its input. Figure 11 presents the part@fbrkflow which belongs to

the environment layer.

Digital reality

The user constructs
visualizations for events

i\/isualizations

Figure 11: The part of the workflow which belongs to the envinent layer.

The user interface of the application (Figure 12) allowssise interact with the robots
presented on the screen in the normal way that user use cerggsitich as a drag-n-drop

and a context menu from the rightmost mouse button).

The program has been implemented with Java using an ohjectted approach. This
means, for example, that it is easy to replace a robot witth@n@mne. The shape of the
robot can be replaced just by replacing the existing pictutle new one. However, it is
not very difficult to extend the behaviour of the robot beeaassingle class represents
the robot. Table 5 presents the most important classes Vvigicmg to the environment
layer, and the purposes for them. There are also a few massedavhich are not men-
tioned here because they are only for constructing the gralpiser interface (GUI) of

the application.

35

£ Concretization Design Environment

BEX

File

Z @@

woid BubbleSortiint a[]) throued X261 y23

for {int i = a.length;

if (stopRequested) {
return;

'
if (a[3] » a[i+1]) {
int T = a[3]:
a[1] = a[j+1]:
a[j+1] = T:

swapped = true;
'
pause(i,i):
'
if | !swapped)

bhoolean swapped = false: -
for {(int j = 0; j<i; j++) | 3

——i==0;

oba
||

|
oban
]

} return; L
l D] |
|M Event: |rotation
Swapping ||Left.mave(FORWARD, 77) Direction: W
Left.rotation{RIGHT, 90)
Left.move(FORWARD, 211)
Amount: |30
Figure 12: The user interface of the application.
Table 5: Java classes that construct the application.
Class Purpose
Behaviour | Represents a single behaviour of the robot. Contains ajvec-
tor where instances of tidvenent class are stored
Movement| Contains one single movement (moving, turning, sending
etc.)
RoboData | Contains the information about the single robot
Robot Represents the robot. Each robot has its own instance of
this class
RoboPanel| Receives user interactions with the robot and delivers them
forward if necessary
Robots Contains all robot objects

36

4.5 Transfer layer

The transfer layer contains those part of the framework whie needed to transfer the
code produced by the environment layer to the object laybis Ryer can contain pro-
grams, data transfer devices (network, hard drive) aneraifft protocols for them. The
transfer layer of the CELM application contains parts of thegpam and an infrared
transmitter which is connected to the computer. Figure lli8tilates the transfer layer as

a part of the general workflow of CEF.

In the application, | have used Lego Mindstorms robot kitlse kit contains a RCX unit

(see Chapter 4.6 for more information), which uses infrace@dmmunication. By using

this infrared techinique, the user uploads the programbdadbots which the user has
produced on the computer. The infrared transmitter carvedsk as a receiver and, in this
way, the robots can communicate and give feedback aboutdtaées to the application.
There are some advantages and disadvantages to this dppse advantage is that
robots can work independently and move freely because #neneo wires which connect
them to the computer. On the other hand, a disadvantagetiththanfrared link is rather

slow and there might be problems during the communicatitimeifrobot and the infrared
transmitter are far away from each other. Also, the concirremmuncation produced
by several robots can be a problem for the application. Toexet is a key issue also to

develop a strong enough protocol for this layer.

There is particular default firmwaké the RCX unit. This firmware also can be replaced
in order to get more control or other features to the devicae d@efault firmware of
the RCX unit can be replaced for example with LeJOS, which is Bl J¥ava Virtual
Machine) for the RCX unit (LeJOS, 2004). The LeJOS firmwarersfthe programmer
a more rich API than the default firmware. The LeJOS interfaggdements a subset of
features of the standard JVM (Java 2 Standard Edition, Sumdgystems (2004b)), as
does J2ME (Java 2 Micro Edition, Sun Microsystems (2004a)).

The workflow of the transfer layer is as follows:

IFirmware is like an operating system and it can be replacéuather firmware.

37

The user uploads

i

< events to robots
Concretization code

Figure 13: The part of the workflow which belongs to the tran&dyer.

1. The user constructs the movement of robot within the CELplieation.

2. The user compiles the code to the LeJOS code. In pradtisestdone by passing

the code to th€odeGener at or class which interprets the code.

3. The application compiles the LeJOS-code to the Java bgeewhich the LeJOS

environment sends to the robot via an infrared device.

Code interpretation is needed to run the CELM code in Lego Mordss robots. This
interpretation is done by theodeGener at or class of the application. An interface of

the class is follows:

publ i c CodeGenerator ()
public String Generate (Vector m

The constructor does not take any argument. Instead, ites@am empty instance of the
class.Gener at e method takes a vector as an argument. This vector contatasices of
theMovenent class, which contains information about the action madesiggle robot
(type, direction and amount). ThHeodeGener at or class interprets these movements
to the LeJOS code, and the method returns this code as a skhigstring will be saved

to file and then sent to the robot by the LeJOS environment.

For example, the user constructs the code presented imd.i8twith the CELM appli-

38

cation. TheCodeGener at or class interprets it to LeJOS code. In this example, the

robot’s name is A, and its internal id is 1. The robot’s weigi20.

A.move(FORWARD, 132)
A. rotation (RIGHT, 90)
A.move(FORWARD, 141)

Listing 8: The original CELM code.

These commands are converted into LeJOS code (the compld¢eis presented in the

Appendix 1). The most interesting lines of the code are mteskin Listing 9.

nav. travel (132);

nav. rotate{90);

nav. travel (141);

Listing 9: The CELM code has been turned to the LeJOS code.

In this implementation, &i m ngNavi gat or class is usednav is an instance of this
class). The class is a part of the LeJOS class library, andnitains methods for per-
forming basic navigational movements (LeJOS API, 2004)s Thde is compiled to Java

bytecode and that code is then sent to the object layer.

4.6 Object layer

The object layer is the part of the framework which makes iBaalization concrete. It
is possible to use different robots or other concrete objecthis layer. In our research
group, we have used Lego Mindstroms robots for many yeaes Jeemanainen et al.
(2002)). Therefore, it was easy to decide which techniqueséoat the object layer of our

application. Figure 14 presents these robots as a part @fdhdlow of the framework.

The name of the application, CELM, came from Lego Mindstoretsally. The history
of Lego Mindstorms goes back to 1986 when a research grougrgspd by Seymort

Papert and Mitchel Resnick, started to devakspgrammable Bricka small unit capable

39

Robot
k Robots execute

model the visualization

Figure 14: The part of the workflow which belongs to the objager.

of connecting to the external world through a variety of sessnd actuators. The brick
was designed for the creation of robots and other applieaiio which a computer might

interact with everyday objects (Laverdae, 2001).

With Lego Mindstorms Kits, it is possible to construct anapdndent and autonomous
robot. The Mindstorms kit includes a RCX unit (Robotic Commang|&ser), which is
the core of the kit. The RCX unit is flexible, because it can bgmmmed by using many
programming languages (NQC, Java, Visual Basic etc.). The Migdstorms package
also contains a programming environment, R@X Codewhich is a RCX specific pro-

gramming language. Figure 15 shows the RCX unit.

The RCX unit contains the following parts (Laverdae, 2001):

Processor:8bit Hitachi H8/ 3292 microprocessor, running a 16 MHz CPUesbe

e ROM: (Read Only Memory) 16 Kb

SRAM: 512 bytes on chip, 32 Kb external

Outputs: 3 motor ports, 9V 500 mA

Inputs: 3 sensor ports

Display: LCD display

40

e Timers: Four system timers (8bit)
e Batteries: 6x 1.5V

e Communications: IR port (transmitter + receiver)

These parts compose an individual computer which has a sistplicture. Figure 16

presents the block diagram of the RCX unit (Laverdae, 2001).

With this hardware, it is possible to produce autonomou®tgbwhich can also com-
municate, during execution, with a computer or with eacteptha an infrared device.
However, the communication is rather slow and there is a Iheed strong protocol in
order to ensure that the communication is reliable (Gozz&@04). In the CELM appli-
cation, slave robots realize the concretization indepettygel his means that they do not

receive any messages from the computer. Instead, slavemnwoicate with each other

Figure 15: The RCX unit from Lego Mindstorms Robotic Inventigrstém kit.

41

Programs

Firmware

ROM Code

Processor

Figure 16: The logic structure of RCX unit (Laverdae, 2001)

and with the master robot. Figure 17 shows robots during ¢ineretization of a sorting
algorithm. In the figure, two robots are just exchanging ragss in order to find out

which one is bigger and whether they should change placestor n

Figure 17: Robots communicating with each other during tleeetion of a sorting algo-

rithm.

Lego Mindstorms robots communicate with each other via draied transmitter/re-

ceiver. Therefore, there might be some problems duringaheunication. For example,

42

a message can get lost if robots can not "see" each other {thesithtransmitter/receiver
is located in the front of the RCX unit. It is the black part of thhat in Figure 15). Fur-
thermore, only one robot is allowed to send a message at mee@Gonzalez, 2004). To
avoid these problems, a well defined protdanlst be used for communication between
robots. The protocol in this application ensures that relget the messages and that the
message sending will happen in the right order. The completemunication protocol

for the Bubble Sort algorithm implemented in Gonzalez (2084lefined in Figure 18.

LEFT MASTER RIGHT

DONg DONE

ACK ACK

Figure 18: The complete protocol for the Bubble Sort algani{iGonzalez, 2004).

The original work by Gonzéalez (2004) is based on messagengalsstween master and
slave robots. The system has been implemented with NQC. Thencaication protocol
is simple: the master contacts a slave and send the slave’'deti or right) to it. After
the slaves have done their work, they send a confirmation. &etihese steps, there are
of course some defined messages which help the robots to d¢hsuirall the messages

have passed. The protocol can be defined as follows:

1. The master sends a message containing the slabdis the first slave.

2Protocol is a pre-defined set of rules, which all parts of cemization must accept and use.

43

2. The slave confirms this message by answering the masteitsvawnl| D.

3. The master sends the slave a message which contains atfonnabout the slave’s

role (whether it i EFT or RI GHT).

4. The slave makes the movement that has been defined in theitwa@hcorrespond-

ing to the message.

5. The slave sends BONE message, which shows that it has done the work, to the

master.

6. The master sends &K (confirmation) signal to the slave.

In the protocol, it has been decided that the master will senidl and a behaviour to the
right slave first. After that, the master sends the samenmdtion to the left slave. There
is no defined order in which to retrieve thEONE message, because the execution speed

of the algorithm may vary depending on the robot.

When the slaves have started their execution, they makegsieed movement to certain
locations defined by the user. After moving, these robots &i@ompare their data with
each other. In Figure 17, the robot in the center and the robdhe right are sending
messages to each other. The part of the protocol, in the kasthe robots are not going
to swap their places (the left robot’s weight is smaller thight's weight), is presented in

Figure 19.

LEFT RIGHT

LEF T WE] GHT
(/LSE/

Figure 19: The part of the protocol which is used to compaeevikight of the robots

(Gonzélez, 2004).

44

Furthermore, if the left robot’s weight is bigger than rigiweight, robots exchange their
ids (see Figure 20). After that, the robots change placessimguhe pre-defined move-

ment.

LEFT RIGHT

LEF T_WE] GHT

RIGHT_ID

W}

Figure 20: The part of the protocol which is used to compaeevikight of the robots

(Gonzaélez, 2004). With this protocol, robots are going tarae their places.

45

5 Evaluation and future directions

To assess the potential usefulness of the approach and &ngabjective view of its
merits, limitations and prospects, | made a questionnainghich | asked for opinions
and suggestions about the application and the framewor&.gfdup { = 6) completed

the questionnaire during the Educational Techonology Sen8uohool in August 2004 at
the Mekrijarvi Research Station, Finland. The members ofgttoeip were participants

in the Kids’ Club track of the summer school; they all were CS educators and they had
experience in the field of educational techonology. Quastiere in paper form and they

were answered as part of track activities. The followingstioas were used:

1. Mention three issues where the application could helpvamen learning an algo-

rithm by concretizing it with the robotics.

2. By the termrole we refer to... How do you understand the concept of role in the
context of this application? Could you come up with some otéen for this con-

cept?

3. Suggest one idea in which direction this project couldtiooe (techniques, ap-

proaches etc.).

4. Mention one other application area which may use thism@tization approach and

the framework.

According to the answers, the application and robotics @nded to illustrate abstract
concepts, such as sorting and searching algorithms efipacien teaching children or
novices. Furthermore, participants believed that theiexmlature of the robotics gives
understanding of what is happening in a clear way. HoweeEmraing to the answers
it is not so clear that the concrete objects in the real worddtes it easier to really learn
an abstract concept like algorithm. At least, the way in Wwhuse robotics needs to be

planned in more detail.

46

According to the answers, the concept of role can be usedtigtapproach. However,
the term should be defined more clearly. For example, terghs and left are suitable for
sorting algorithms, but it is not possible to use them in ganeAlso, it is not so clear
whether the robotics can be utilised as comprehensivelysagshzations for example in

Jeliot.

Also, some directions for future developement were preskimt answers. The usage of
the application as a first programming tool for children cdog an interesting approach.
The approach might be useful also when programming indlstbots. The combina-
tion of this approach and Empirical Modelling (Roe, 2003) &initely an interesting
approach. To expand the power of the expression of the rgbatgyht be a good idea to

see the robots as agents with a rich set of actions and allmie@ctions.

Some very concrete suggestions were also presented in sheeemn For example, an
important feature to add to the application is a time scalkis Teature allows user to
examine the position of the robot at a certain moment of tifwethermore, according to
the answers, there is a need for implementation of bi-doeat communication between
layers. This communication allows the robots to send dathaapplication (e.g. posi-
tions at the certain moment of time). The framework definesféature, but the CELM

application does not implement it.

a7

6 Conclusion

The concept of concretizing algorithms with the robotickased on research done at the
Department of Computer Science, University of Joensuu (&lea2004; Gonzéalez et al.
2004). However, it has been found that it is hard to produea @/simple concretization
because of the low level implementation that robots neeéré&fbre there is a need for a
framework and for an application which a user (for exampleseher or other instructor)

can use to produce concretizations. The research questiadisin this thesis, were:

1. What should be the general characteristics of a framewmdupport algorithm

concretization by visualization?

2. What kind of architecture should the framework have in otdée used in diverse
concretizing platforms such as Lego Mindstorms or EK Japan Gd.'s Soccer
RobaR) 9157

3. What kind of additional features does such a frameworKiffais?
To answer the first and the second question, | used concefgrmeptation as the research
methodology. | developed a framework which makes it posdibluse diverse platforms

in an easy way. The framework is basedlayerswhich can be replaced with another

one. Layers are:
1. The environment layer:. Takes care of the communication between the user and
robots.

2. The transfer layer: Takes care of transferring and converting the code produced

by the environment layer to the object layer.

3. The object layer: Represents physical objects which concretize the algorithm

These objects might be, for example, Lego Mindstorms robots

For example, Lego robots in the object layer can be replagddseme other robot kit.

The only requirement is that these robots understand the wich the transfer layer

48

gives to them. When replacing the object layer, it might beeesary also replace the
transfer layer, or part of it. However, one can replace thelevtransfer layer or part of it

without changing the object layer or the environment layela

To achieve full support for these features, definitions felfaces between layers must
be developed further. Especially, interfaces from the aigyer to the environment layer
(via the transfer layer) have to be developed carefully @ fiture. For this thesis, |
decided on an interface from the environment layer to thestex layer. This interface
contains codes which the application at the environmetrlags to produce. The transfer
layer has to have the capability to transfer this code to #tiwa code for robots (or other

objects) at the object layer.

In this thesis, | have developed a novel conceqlg-based concretizatigrwhich could

be a topic for further studys. The schema for roles of vaeslgresented in Sajaniemi
(2002) could be an interesting research topic. These rolelsl @lso be implemented for
robotics: it would also be interesting to study whethersdglesed with robotics) positively

affect the learning process, as it has been found in SajaaiednKuittinen (2003).

To answer the third question and to get a view of the concepolef | conducted a
guestionnaire. Six researchers in computer science edo@tswered the questionnaire.
Answers indicated that the conceapte can be used with this approach. However, some
doubts about the approach were presented. Answers indiake some ideas for future

development concerning the framework and the application.

In this thesis, | have presented one possible applicatioh KQEor the CEF framework.
Another possibility for the application could be use as datmrative tool, which allows
several student to work with the same concretizations dwelirternet. For example, a
user could produce a concretization for a robot, and themislee could share or upload
it to network. Other users could download the concretizatind use it with their own
robots. From a techical point of view, the implementationtiaé kind of application
could use a client-server model or peer-to-peer networfoangommunication between
users. Furthermore, the application in the environmergrigpuld allow users to work

with the same concretization in collaboration with eachleoth

49

One really interesting approach could be to combine cozet&in with robotics and
Empirical Modelling (EM). The EM approach has been devetbpethe University of
Warwick since 1983 by Dr. Meurig Beynon. The Empirical Modsjlis an approach
for constructing computer based models that can assis¢iartterstanding of a phenom-
enon. The approach has an emphasis on experiment, obsaraatl interaction during
the developement process (Roe, 2003). For example, a sonthatt could observe the

behaviours of robots, based on EM, could be a very intergstipic for further study.

50

References

Baecker, R., 1981. Sorting out Sorting. Videotape, 30 minyiessented at ACM SIG-
GRAPH '81 and excerpted in ACM SIGGRAPH Video Review #7.

Barnes, D. J., 2002. Teaching introductory Java through LEMBRDSTORMS mod-
els. In: Proceedings of the 33rd SIGCSE technical symposinr@@mputer science

education. ACM Press, pp. 147-151.

Baum, D., Baum, D., Gasperi, M., Hempel, R., Villa, L., 2000.rErte Mindstorms: an
Advanced Guide to LEGO MINDSTORMS. APress.

Ben-Ari, M., 1998. Constructivism in computer science ediooatSIGCSE Bulletin
30 (1), 257-261.

Ben-Ari, M., Myller, N., Sutinen, E., Tarhio, J., 2002. Pegsfives on program anima-
tion with Jeliot. In: Software Visualization: Internati@nSeminar. Lecture Notes in

Computer Science 2269. Dagstuhl Castle, Germany, pp. 31-45.

Brown, M. H., 1988. Perspectives on algorithm animationAroceedings of the SIGCHI

conference on Human factors in computing systems. ACM Ppgs83—-38.

Demetrescu, C., 2001. Leonardo IDE: C Compiler and Softwarsualiza-
tion System. WWW-page,http://wwv. di s. uniromal.it/~demetres/
Leonar do/ (Accessed 2004-06-17).

Demetrescu, C., Finocchi, I., Stasko, J. T., 2002. Spegffitgorithm Visualizations:
Interesting Events or State Mapping? In: Diehl, S. (Ed.fia&re Visualization State-
of-the-Art-Survey. Vol. LNCS 2269 of Lecture Notes in Compuggeience. Springer-
Verlag, pp. 16-30.

Duffy, T. M., Cunningham, D. J., 1996. Constructivism: Implions for the design and
delivery of instruction. In: Jonassen, D. H. (Ed.), Handbob Research for Educa-

tional Communications and Technology. pp. 170-198.

51

Eronen, P. J., Silander, P., Sutinen, E., Virnes, M., 20@&ksiK/a oppiminen ja fyysiset
oppimisaihiot teknologiaympariston rikastuttajina (imiish). Symposium presenta-
tion at ITK '04 conference, abstrachtt p: / / ww. haneenkesayl i opi st o.

fi/itkO4/ eronen_etal . htm (Accessed 2004-08-31).

Fagin, B., Merkle, L., 2003. Measuring the effectivenessotiiots in teaching computer
science. In: Proceedings of the 34th SIGCSE technical symmmosn Computer sci-
ence education. ACM Press, pp. 307-311.

Ferrari, M., 2001. Building Robots with Lego Mindstorms. Sgegs Publishing, Rock-
land, MA, USA.

Fleischer, R., Kucera, L., 2002. Algorithm Animation For Gkimg. In: Software Visu-
alization: International Seminar. Lecture Notes in Comp&eience 2269. Dagstuhl

Castle, Germany, pp. 113-128.

Gonzalez, J. L., 2004. Software Visualization with Lego N&torms. Master’s thesis,

University of Joensuu, Department of Computer Science.

Gonzalez, J. L., Myller, N., Sutinen, E., 2004. Sorting autisag through concretization
with robotics. In: Proceedings of the working conferenceAmivanced visual inter-
faces. ACM Press, pp. 377-380.

Jeliot 3, 2004. Jeliot 3 - BlueJ extension. WWW-pabget p: // cs. j oensuu. fi/
j el'i ot/ downl oads/ bl uej . php (Accessed 2004-08-13).

Jormanainen, I., Kannusméki, O., Sutinen, E., 2002. IPPBw tb Visualize Program-
ming with Robots. In: Ben-Ari, M. (Ed.), Second Program Viszaion Workshop.
HornstrupCentert, Denmark, pp. 69-73.

Kdlling, M., Quig, B., Patterson, A., Rosenberg, J., 2003. Bhe2J system and its peda-
gogy. Journal of Computer Science Education, Special issliearning and Teaching

Object Technology 13 (4), 243-247.

Korhonen, A., 2003. Algorithm Visualization and Simulatid®h.D. thesis, Helsinki Uni-

versity of Technology.

52

Laverdae, D. (Ed.), 2001. Programming Lego Mindstorms @étia. Syngress Publish-
ing, Rockland, MA, USA.

LeJOS, 2004. 1eJOS, Java for RCX. WWW-paget p: / / www. | ej os. org (Ac-
cessed 2004-06-15).

LeJOS API, 2004. LeJOS API documentation. WWW-palget p: / / www. | ej os.
or g/ api docs/ (Accessed 2004-06-16).

Miglino, O., Lund, H. H., 1999. Robotics as an Educational [Tdournal of Interactive
Learning Research 10 (1), 25-47.

Moreno, A., Myller, N., Sutinen, E., 2004. Collaborative gram Visualization with
Woven Stories and Jeliot 3. In: Proceedings of the IADIS imdéonal Conference on

Web Based Communities. pp. 482—-485.

Myller, N., 2004. The Fundamental Design Issues of Jelidli&ster’s thesis, University

of Joensuu, Department of Computer Science.

Petre, M., 1995. Why Looking Isn’'t Always Seeing: ReadershkplsSand Graphical
Programming. Communications of the ACM 38 (6), 33—44.

Poon, J., 2000. Java meets teletubbies: an interactiorebatprogram codes and physical
props. In: Proceedings of the Australasian conference onpdting education. ACM
Press, pp. 195-202.

Price, B. A., Baecker, R. M., Small, I. S., 1993. A Principled daamy of Software
Visualization. Journal of Visual Languages & Computing 4 @)1-266.

Roe, C., 2003. Computers for Learning: An Empirical Modellimggpective. Ph.D. the-

sis, Department of Computer Science, University of Warwick.

Sajaniemi, J., 2002. An Empirical Analysis of Roles of Vakehin Novice-Level Proce-
dural Programs. In: Proceedings of IEEE 2002 Symposia onatu@entric Comput-
ing Lanuguages and Environments (HCC’02). IEEE Computer 8oqp. 37-39.

53

Sajaniemi, J., Kuittinen, M., 2003. Program animation basethe roles of variables. In:
Proceedings of the 2003 ACM symposium on Software visuaizaACM Press, pp.
7-16.

Stasko, J., September 1990. Tango: A framework and systemddgorithm animation.
IEEE Computer 23 (9), 27-39.

Stasko, J., 1992. Animating algorithms with XTANGO. ACM SIGA News 23 (2), 67—
71.

Stasko, J., Badre, A., Lewis, C., 1993. Do algorithm animatiassist learning?: an em-
pirical study and analysis. In: Proceedings of the SIGCHfe@mnce on Human factors

in computing systems. ACM Press, pp. 61-66.

Sun Microsystems, 2004a. Java 2 Platform, Micro EditiotMHEY WWW-page ht t p:
/ljava. sun.com j 2rme/ i ndex. j sp Accessed 2004-06-15.

Sun Microsystems, 2004b. Java 2 Platform, Standard Ed@$SE). WWW-page,
http://java. sun.conij 2se/ i ndex. j sp Accessed 2004-06-15.

Sutinen, E., Tarhio, J., Lahtinen, S.-P., Tuovinen, A.fRautama, E., Meisalo, V.,
1997. Eliot — an Algorithm Animation Environment. Report A97-4, Department
of Computer Science, University of Helsinki, Helsinki, Fand,ht t p: / / www. cs.
hel si nki.fi/ TR/ A- 1997/ 4/ A- 1997- 4. ps. gz.

Yehezkel, C., 2002. Visualization of computer architeahtim: Second Program Visual-

ization Workshop. HornstrupCentert, Denmark, pp. 113-117.

54

© 00 N o o A w N P

W W NN NDNMDNNDNDNDNDNRNDNDNIERR R R P B R B R
P O © © N o U B W N P O © 00 N o 00 b W N B O

Appendix 1: The complete LeJOS code

import josx. platform . rexs;
import josx. util x;

import josx. robotics x;

public class Robotl {
public static byte id; // robot’s identifier
public static byte weight; // robot’'s weight
public static float speed; // robot’s linear speed
public static float rotation_speed ;// robot’s rotation speed

private static TimingNavigator nav;

Robotl byte id, byte weight, float speed, float rotation _speed) {
this .id = id;
this .weight = weight;
this .speed = speed,;
this . rotation_speed = rotation_speed ;
nav =new TimingNavigator (Motor.C,
Motor.A, speed, rotation_speed);
nav.setMomentumDelaystfort) 95);
}
public static void main (String [] args)
throws InterruptedException {
Robotl robot =newRobotl (byte) 1, (byte)20, 7.8f, 6.55f);
Motor.A.setPower (3);
Motor.C.setPower (3);
nav. travel (132);
nav. rotate-{90);
nav. travel (141);
nav. stop ();
Sound.systemSountte, 5);
TextLCD.print ({ END");

55

32
33

56

Appendix 2: Answers from the Evaluation

Questions:

1. Mention three issues where the application could helpvamen learning an algo-

rithm by concretizing it with the robotics.

2. By the termrole we refer to... How do you understand the concept of role in the
context of this application? Could you come up with some otéen for this con-

cept?

3. Suggest one idea in which direction this project couldtioole (techniques, ap-

proaches etc.).

4. Mention one other application area which may use thism@ization approach and

the framework.

Answers:

Answer 1

1. Helping to expose the operational interpretation of algs concept of a virtual
machine; giving access to the internal state of the exeguigorithms, to assist
debugging; promoting the awareness of the significance sémiation in under-

standing algorithms

2. Role is a good term, provided that it is understand as ctdigxendent. The the-
atre analogy helps, but the notion of role you invoke is mudrarspecific than
"playing a particular character". Perhaps phrases like "roksorting / in the ex-

change/comparison” might help.

3. Definitely an interesting link with Empirical Modeling.e@eral ideas here; not all

in scope of short-term research. Possibilities:

(a) extend the EM bubblesort

57

(b) take model further with EM heapsort

(c) try to make a more general study relating capabilitieagents to algs they

can concretize

4. Other sorting algorithms (as above) variations - Shovdgagcurrent/autonomous

sorting; playing games, eg. variations of nhoughts-&-cross

Answer 2

1. Difficult issues, when someone needs some concretizihg i useful maybe to
young childrens (understanding of a difficult structuret tisanot a part of their
everyday knowledge); Planning of a program = designing gnam; algorithm by
using the application = no need to write a code; testing obritlgms that are not
able to do with a real life robots; Learning of concepts ofggeanming, but this is

needed to plan more detailed... how to do it?

2. Role of robot is related to the robot’s behavior and robatle in an algorithm...
I’'m thinking... :) actually the role can be both static andhdgnic, but it depens on
whether you think a role as an actor or operator (onkohan tikeg termi?) = like
an independent robot doing a thing as an actor or a task tlodiod is doing. In this

case "arole" is the task. Siis kohdistuu joko robottiin tainimtoon.

3. Could a robot write a code or a pseudocode by moving a robatibgyer/program-
mer? Or is it already doing so? Like programming by buildimgt, you'll get a code
(I-Blocks does not give a code but a result). Can robot do thesstoncretizing

"animation” = trasferring the behaviour of the "virtual robtt a real robot?

4. Could the application be used for learning of concepts of@Emming? Well, this

is maybe not a answer to the question... :)

Answer 3

58

1. First of it helps one to understand that basic algorithresexecuting one com-
mand after another; It shows the connection between theagbstommand and
the concrete action it triggers; Perhaps playing wih robotsoncrete world could
be directed back to the application, which would show thasers animated with
information about the actors (ID, the weight of the variable.) <= kind of like

vice-versa -approach.

2. You have used the right and the left, which are suitabledoicretizing algorithms
like sorting. But it is an another question, wheter we can habetsics in a role
of "general concretization tool" similar to Jeliot? Perhapbots carrying displays
(PDA's or small LCD’s?) with changing images, i.e. pictureroles, could serve

there being actors on the stage in the reality.

3. | find it interesting to use this application as a first tami €hildren to a kind of
animations in the real world. They could orchestrate movemef several small
robots to create for example robot ballet. | would also ssggecluding a time
scale to a program, where you could see the position of rdlmgréain moment of

time.

4. | would think this would be VERY fruitful, if combined to a edel of real envi-
ronment presented in scale. Then you could for example anogndustrial robot
(robots by moving them and seeing how do they behave in thdemo an envi-
ronment with a number of other similar robots. NOTE: Answ@psand (4) are
a kind of combined idea from animating of a model to concreteldvmovement
without a programming phase in between. Programming by aimign. It would be
more than shear visualization. It should also be two-de@détom animation to a

real world movement and from real world movement to animatedel.

Answer 4

1. The explicit nature of the robotics gives clear undewitagnof what is happening;

Does the explicit nature make it easier to ’learn’ the alidponi?

59

2. It seems that when the robots move to do their actions theyike actors in a
play who come forward to tolk the stage for this 'act’. Therfpemance’ is the

algorithm and each step is an 'act’.

3. Canyou show the educationally benefit of the explicit retdithe robotics? Valde-
mar Setzer has some possibly relevant work on manual sdstirghildren using

playcards.

4. Could you use robotics to illustrate mathematical corg®ept

Answer 5

1. Visualization of abstract concepts (sorting/searchiagle to explain in own lan-
guage the algorithm (by explaining robotic actions); byistpconvete perhaps will

help later recall when trying to use algorithm in future.
2. Behaviour? Procedure?

3. Given a concrete model of an algorithm can students thewvede procedural algo-
rithm, ie. after watching robots do a sort can they spot meatures + code. Later

on, do students remember the concrete model to recall tiethign??

4. searching? Object interaction (communication); nelkngy theory?

Answer 6

1. Visualizing the algorithm;
2. The type of move/action allowed to a given robot at a giveintin time.

3. Maybe expand moving robots (with limited actions and degrof freedom) to

agents with a rich set of actions and allowed interactions.

4. Describing / visualizing the behaviour / performance system. For example, the

process in an OS, or threads in a distributed system.

60

