
A Visual Interface for Concretizing Sorting
Algorithms

Ilkka Jormanainen

22.09.2004

University of Joensuu

Department of Computer Science

Master’s Thesis

Abstract

Algorithm visualization is an efficient way to teach programming. Several different visu-

alization techniques have been developed in the past decades. The Concretization Envi-

ronment Framework, CEF, combines algorithm visualization with concrete objects (e.g.

Lego Mindstorms robots). CELM, Concretization Environment for Lego Mindstorms is

an application of this framework. By using the framework, theuser can turn the mental

model the user has into a concrete one. User feedback on the framework and its applica-

tion has confirmed the functionality of the concept and the usefulness of the approach.

ACM-classification (ACM Computing Classification System, 1998 version): K.3.2

[Computer and Education]: Computer and Information Science Education -Computer

Science Education; I.6.8 [Simulation and Modeling]: Types of Simulation -Distributed,

Parallel

Keywords:algorithm, concretization, robotics, role-based, visualization

i

Preface

I have almost finished the first step to the interesting world of computer science. Now, it

is time to thank you all for supporting me to achieve the goal Iset about five years ago.

First of all, I would like to thank my supervisor professor Erkki Sutinen who has always

given a new, refreshing idea when I have not been able to foundit by myself. My advisor,

Dr Meurig Beynon, gave me lots of valuable comments for finishing the thesis. The

whole research group of Educational Technology at the Department of Computer Science,

University of Joensuu, has offered an unique and creative atmosphere where to study and

work. Especially I would like to thank Niko Myller, Osku Kannusmäki and Javier Lopez

Gonzáles who have helped me to search the core of my thesis. The members of the Kids’

Club track of the Educational Techonology Summer School in August 2004 (Chris, Marjo,

Martyn, Meurig, Mike and Pasi) helped me a lot by giving the valuable feedback about

the concept. Justus Randolph gave me an enormous help with thegrammar of the thesis.

Also, many other friends have supported and helped me. Thanks!

The support from my family has played an irreplaceable role during the whole study

process. I really would like to thank them for it. However, the greatest thanks goes to my

dearest, Sari, who has always believed in me when I have had rough times with my work.

With a great patience, she has taught me what is important in this life.

ii

Contents

1 Introduction 1

2 Background: Using Illustrations in Computer Science Education 4

2.1 Algorithm and Program Animation in Computer Science Education . . . 4

2.2 Visualization techniques .. 7

2.2.1 Event-Driven approach . 7

2.2.2 Data-Driven approach . 8

2.2.3 Interesting event example: Polka 8

2.2.4 Interesting data structure example: Leonardo 11

2.2.5 Self-animated algorithm example: Jeliot 13

2.3 Concretization in Computer Science Education 14

2.3.1 Algorithm concretization with robotics 16

2.3.2 Concretizing Bubble Sort algorithm with Lego Mindstorms . . . 16

2.4 Summary . 18

3 Design of the Framework 19

3.1 Principles of design . 19

3.2 Sketch of the framework and the application 20

3.3 Working with the framework . 21

3.4 Architecture of the framework .. 22

3.4.1 Environment layer . 23

3.4.2 Transfer layer . 23

3.4.3 Object layer . 24

3.5 Code . 24

3.6 Restrictions of the approach .25

3.6.1 Physical environment . 27

3.6.2 User knowledge . 28

4 Implementation 29

4.1 An overview of CELM . 29

iii

4.2 Role-based concretization .. 30

4.3 Constraints on CELM . 33

4.4 Environment layer . 33

4.5 Transfer layer . 36

4.6 Object layer . 38

5 Evaluation and future directions 45

6 Conclusion 47

References 50

Appendix 1: The complete LeJOS code 54

Appendix 2: Answers from the Evaluation 56

iv

1 Introduction

One of the main difficulties that students of computer science face is understanding algo-

rithms. Traditionally, algorithms have been taught by verbal explanation with the use of

blackboard or slides. With these it is only possible to visualize algorithms in a static way.

In past decades, researchers have developed different kinds of systems for algorithm visu-

alization. Most of these systems allows the user to interactwith the visualization and the

algorithms are often visualized through animation (Stasko, 1990; Ben-Ari et al., 2002).

Visualization has been used also in other fields of computer science. For example, a

simulator tool has been developed for teaching computer architecture (Yehezkel, 2002).

However, in this thesis I will focus only on algorithm visualization.

Robot technology has become cheaper and has been adopted widely to teach program-

ming and computer science especially to novices. Robotics has been used to motivate

students to learn programming. A student can create concrete new knowledge and learn

in a constructionist way by interacting with real world objects (Ben-Ari, 1998). This can

also lead more to hands-on learning with algorithms. Inalgorithm concretization, the

algorithm’s execution is emulated by robotics or other realworld objects. In this way,

robots engage the student with the algorithm thereby fostering learning.

However, it might be difficult to implement even a simple algorithm (e.g. Bubble Sort)

for robots. This is because of the low-level implementationwhich should be done in order

to get robots to produce a visualization (González, 2004).

In this thesis I will introduce a novel framework for concretizing algorithms. Further-

more, I will implement an application which is based on the framework. With this appli-

cation, the user is able to make concretizations for sortingalgorithms in a visual way and

more easily than it has been done in (González, 2004). In thisway, it is not necessary to

rewrite the whole code of the algorithm for every single object. The framework and the

application are not developed for algorithm visualizationprimarily but for constructing

concretizations in a visual way. However, the framework supports a simulator tool, which

can be used for visualizing algorithms. Furthermore, the framework allows the user to

1

construct the concretizations with arole-based concretizationapproach. This approach

usesinteresting eventsof the algorithm (Demetrescu et al., 2002; Stasko 1990).

Questions.

The research questions in this thesis are as follows.

1. What should be the general characteristics of a framework to support algorithm

concretization by visualization?

2. What kind of architecture should the framework have in order to be used in diverse

concretizing platforms such as Lego Mindstorms or EK Japan Co., Ltd.’s Soccer

RoboR© 915?

3. What kind of additional features does such a framework facilitate?

Methods.

As the questions illustrate, the current study analyzes novel concepts. To assess the poten-

tial usefulness of the approach, I use concept implementation as the research methodology.

To get answers to the questions above, I design the frameworkand implement an applica-

tion of it. Finally, I gather feedback from users of the application. Based on this feedback

and the experiences I have gathered during the planning and the implementation, I will

draw conclusions to the research questions.

It is important to notice that this work uses an existing workas its basis. The protocol used

for communication between the Lego Mindstorms robots has been defined in (González,

2004) and it constructs the object layer of the application described in Chapter 4. It

also gives inspiration for discussion concerning the role-based concretization approach.

Although I have not implemented the communication protocol, I will describe it to make

it clear how the object layer of the application works.

The structure of this thesis will be as follows. In Chapter 2, Iwill examine the background

of the framework. I will also provide an overview of the field and I will analyze existing

systems. Moreover, some problems on the field of concretization will be examined.

2

In Chapter 3, I describe the design of the framework on the abstract level. Chapter 4

describes the exact implementation of this application. I will discuss the user feedback on

the framework and the application in Chapter 5. I will presentthe results in Chapter 6.

3

2 Background: Using Illustrations in Computer Science

Education

The ways that algorithm visualization can be used have changed rapidly during the past

few decades. However, it is not so clear whether visualization improves the learning

process or not. Petre and Green concluded that the information contained in secondary

notation is the main advantage of the visualization. This notation can be, for example,

the placement of visualized elements, the colors or the indentation (Petre 1995; Petre

and Green 1993). In the light of these studies, I will discusshow visualizations improve

learning of computer science concepts. I will also present some techniques and tools

for visualization which have been used in computer science education. At the end of

this chapter, I will present the theoretical background to the framework which I have

developed for this thesis. I will present the framework thoroughly in Chapters 3 and 4.

The framework is based on the interesting event approach which I describe in Sections

2.2.2 and 2.2.3.

2.1 Algorithm and Program Animation in Computer Science Educa-

tion

Learning algorithms has been seen as one of the main difficulties that students of com-

puter science face during their studies. Therefore algorithm animation has been used for

decades to aid in the learning process. The first purely educational algorithm animation

was the videotape "Sorting Out Sorting" in 1981 (Baecker, 1981). This video explains

nine sorting algorithms and also makes a comparison betweenthe algorithms’ running

time.

In general, the field of software visualization has been divided into two domains. In

the program visualization domain (PV), views of program structures are generated auto-

matically (Korhonen, 2003). Views of this visualization type can be dynamic or static

(Brown, 1988). These views trace the execution of the algorithm step-by-step; they are

4

low-level views that are not expressive enough to adequately convey how the algorithm

works (Korhonen, 2003). The second domain, algorithm visualization (AV), visualizes

all the states of the data structures during the execution ofan algorithm. These visual-

izations are required to fully understand the behavior of the algorithm (Korhonen, 2003).

Figure 1 presents how the different domains of software visualizations are related to each

other (Price et al., 1993). The size of each circle is not significant, only the intersections

between them.

Software visualization

Algorithm

Visualization

Program

Visualization

Static Algorithm

Visualization

Dynamic Algorithm

Visualization

Static Code

Visualization

Static Data

Visualization

Dynamic Code

Visualization

Dynamic Data

Visualization

Figure 1: Venn diagram for different domains in software visualization (Price et al., 1993).

In the field of AV, it is crucial to preserve only those characteristics of data structures that

are essential. Thus, some trivial data types or variables which do not offer any additional

information about the algorithm’s behavior, can be omitted(Korhonen, 2003). Price et al.

(1993) write that algorithm animation is considered to be the dynamic visualizations of

algorithms that are implemented later, and program animation is considered to be the

dynamic visualization of the actual implementation of programs. Many systems contain

features from both of these fields. However, our framework and application focuses only

on algorithm animation.

The methods of algorithm visualization can be divided into three categories. Different

tools use typically one of these three methods for visualization. In the following list, I

5

will go through these different methods and discuss their advantages and disadvantages.

1. Hand-coded visualization.At the lowest level, the algorithm isre-written to pro-

duce the visualization during the execution of the algorithm. This approach has

been used, for example, by González (2004). Usually, this isa quite hard task be-

cause it might even take hours to produce a good animation fora simple algorithm

(e.g. Bubble Sort).

2. Visualization library. At the second level visualization is done byadding function

calls to some external visualization library. This is done in order to get interesting

events visualized. This level of visualization is used in many tools. For example

Tango (Stasko, 1990), XTango (Stasko, 1992) and Balsa (Brown,1988) use this

method of visualization. I will use this method in my framework.

3. Automatic visualization. At the third level visualization tools useself-animated

algorithms. In this approach there is no need to add functioncalls to the code. In-

stead, the code is interpreted by the visualization system and the system producesthe

visualization based on the real code of the algorithm. This is the easiest way for end

user to produce a visualization. For example, the Jeliot family (Ben-Ari et al., 2002)

uses this method.

Creating a good animation is usually a difficult and time-consuming task. For this rea-

son, many tools for aiding this work have been developed. However, some doubts about

these tools has been presented. For example, Fleischer and Kucera (2002) argued that the

approach of trying to generate program animations automatically is futile. Instead they

belive that a good animation must be designed and implemented by hand. Also, many

empirical studies do not support the claim that visualizations unequivocally improve the

learning of computer science concepts. For example, in the study by Stasko et al. (1993)

the group that used animation to learn a complicated algrorithm did not perform better

than the control group. They found that students had difficulties mapping the graphic

elements of the animation to the algorithm since students had not used animation before.

6

According to Petre (1995) novice and expert programmers notice and concentrate on dif-

ferent graphical details. Petre definessecondary notationas an informal part of graphics

(e.g. placement or color). Novices misinterpret secondarynotation and cannot use graph-

ics in on efficient way. Petre and Green concluded also that novices must be taught to read

graphics (e.g. through visualization).

Ben-Ari et al. (2002) noticed that using Jeliot 2000 animations in the classroom was most

beneficial for mediocre students. They noticed that the stronger students in the animation

group had the same kind of difficulties as the stronger students in the control group. Stu-

dents in the animation group believed that they could use thematerial and learn without

Jeliot. In light of these studies, one can conclude that it isnot certain if algorithm visu-

alization is a good way to learn in all cases. However, there are several indicators that

visualization can positively affect to the learning process.

2.2 Visualization techniques

The first step during the development process of algorithm visualization system is to de-

fine what kind of technique one would like to use. There are twomain approach in the

field of visualization: theevent drivenand thestate drivenapproach. The self-animated

approach has also been used in some visualization tools.

2.2.1 Event-Driven approach

The event-driven approach is probably the most commonly used approach to visualize

algorithms. In this technique, an author of the visualization defines theinteresting events

of an algorithm. This event might be, for example, a swap operation in the code of a

sorting algorithm. It is crucial to remember when defining these events that they have

to be meaningful for visualization purposes. Then, these interesting events have to be

associated with a suitable algorithm scene (Demetrescu et al., 2002).

Listing 1 presents a bubblesort algorithm in Java. In Listing 2 some interesting events

7

have been added to the code in order to get a visualization. Inline 3 of Listing 2 the visu-

alization is initialized with an array to be sorted and the size of this array. The interesting

event generating the visualization has been added to line 10just after a swap operation

at the algorithm level. Note that this is only an example and it does not represent any

real system. In Section 2.2.3, I will present an existing visualization system called Polka

where visualization is based on interesting events.

1 i n t tmp ;

2 i n t [] i n t A r r a y = {12 , 4 , 5 , 8 , 7 , 9 , 45 , 11 } ;

3 f o r (i n t i =0 ; i <(i n t A r r a y . l eng th−1); i ++) {

4 f o r (i n t j =(i + 1) ; j < i n t A r r a y . l e n g t h ; j ++) {

5 i f i n t A r r a y [i] < i n t A r r a y [j] {

6 tmp = i n t A r r a y [i] ;

7 i n t A r r a y [i] = i n t A r r a y [j] ;

8 i n t A r r a y [j]= tmp ;

9 }

10 }

11 }

Listing 1: Bubble Sort algorithm.

2.2.2 Data-Driven approach

In the data-driven approach an animation is based on a graphical interpretation of the

interesting data structures. The animation should reflect, at any time, the state of the

program and its computation. This approach has been also used with commonly used

debuggers. Debuggers update the display after each change of the program, for example

in sorting algorithms, when a variable gets a new value or when two cells of an array are

swapped.

8

1 i n t [] i n t A r r a y = {12 , 4 , 5 , 8 , 7 , 9 , 45 , 11 } ;

2 i n t tmp ;

3 c l . I n i t (i n t A r r a y , i n t A r r a y . l e n g t h) ;

4 f o r (i n t i =0 ; i <(i n t A r r a y . l eng th−1); i ++) {

5 f o r (i n t j =(i + 1) ; j < i n t A r r a y . l e n g t h ; j ++) {

6 i f i n t a r r a y [i] < i n t A r r a y [j] {

7 tmp = i n t A r r a y [i] ;

8 i n t A r r a y [i] = i n t A r r a y [j] ;

9 i n t A r r a y [j]= tmp ;

10 c l . Swap (i , j) ; / / An i n t e r e s t i n g e v e n t

11 }

12 }

13 }

Listing 2: Bubble Sort algorithm with an interesting event.

2.2.3 Interesting event example: Polka

Polka is a system for visualizing programs written in C++ (Demetrescu et al., 2002).

Polka was originally written for X Window System, but a version for Microsoft Windows

(PolkaW) has been released too. To create a visualization with Polka, the user has to carry

out the following steps:

1. The user has to annotate the program source withAlgorithm Operations, which are

Polka’s version of interesting events.

2. The user has to createAnimation Sceneswhich perform an animation chunk.

3. The user has to specify a mapping between algorithm operations and animation

scenes.

Listing 3 presents the Bubble Sort algorithm implemented in C++ (Demetrescu et al.,

2002). To visualize this algorithm with Polka, the user has to specify which pieces of

information related to the algorithm’s execution should bevisualized and how it should

9

be done (e.g. what kind of graphical elements there should be). A possible approach is

to use horizontal rectangles to represent the elements to besorted and animate the swap

operation which is at line 6 in Listing 3. Figure 2 presents a PolkaW visualization of this

algorithm.

1 i n t v [] = { 3 , 5 , 2 , 9 , 6 , 5 , 1 , 8 , 0 , 7 } , n =10 , i , j ;

2 vo id main (vo id) {

3 f o r (j =n ; j >0; j −−)

4 f o r (i =1; i < j ; i ++)

5 i f (v [i −1]>v [j]) {

6 i n t temp=v [i] ; v [i]= v [i −1]; v [i −1]= temp ;

7 }

8 }

Listing 3: Bubble Sort algorithm in C++ (Demetrescu et al., 2002).

To achieve the visualization presented in Figure 2, the designer has added some interesting

event calls to the code. These calls initialize and invoke the animation scene. At line 3 in

Listing 4, the event call "Input" signifies that all the array values to be sorted are set and

that the animation should draw the initial configuration of the array (Demetrescu et al.,

2002). Basically, this event creates and lays out the set of the horizontal rectangles and

scales them according to the corresponding array values. The second event, "Exchange",

signifies that a swap operation between two elements of the array has occurred. Array

elements which were exchanged are passed as parameters.

In the PolkaW visualization, the "Exchange" event invokes theExchange method in the

Rects class. This class produces the animation. The code of theExchange method is

presented in Listing 5.

2.2.4 Interesting data structure example: Leonardo

Leonardo is an integrated developing environment (IDE) fordeveloping, executing and

visualizing C programs (Demetrescu, 2001). Leonardo provides two major improvements

10

1 i n t v [] = { 3 , 5 , 2 , 9 , 6 , 5 , 1 , 8 , 0 , 7 } , n =10 , i , j ;

2 vo id main (vo id) {

3 b s o r t . SendAlgoEvt ("Input" , n , v) ;

4 f o r (j =n ; j >0; j −−)

5 f o r (i =1; i < j ; i ++)

6 i f (v [i −1]>v [j]) {

7 i n t temp=v [i] ; v [i]= v [i −1]; v [i −1]= temp ;

8 b s o r t . SendAlgoEvt ("Exchange" , i , i −1);

9 }

10 }

Listing 4: Bubble Sort algorithm in C++ with interesting eventcalls (Demetrescu et al.,

2002).

which traditional IDEs do not have (Demetrescu et al., 2002):

1. Support for visualizing computation of the program graphically by attaching graph-

ical representations to key variables.

2. A run-time environment that supports fully reversible execution of C programs.

With this visualization technique, basic animation can be obtained typically by adding a

few lines of additional code to the original source. However, Leonardo does not realize

the real state mapping technique since it allows users to choose and control which vi-

sualization declarations are active at any time (Demetrescu et al., 2002). The Leonardo

system is distributed with a collection of animations of algorithms and data structures (see

Demetrescu (2001) for more information).

Visualization declarations in Leonardo are written inALPHA, which is a simple declara-

tive language. Declarations are enclosed within separators /** and**/. To produce a

visualization of Bubble Sort, the user has to append the code presented in Listing 6 to the

code of the algorithm.

11

1 i n t Rec ts : : Exchange (i n t i , i n t j) {

2 Loc ∗ l o c1 = b l o c k s [i]−>Where (Part_NW) ;

3 Loc ∗ l o c2 = b l o c k s [j]−>Where (Part_NW) ;

4 Ac t ion a ("MOVE" , loc1 , loc2 , 1) ;

5 Ac t ion ∗b = a . Reverse () ;

6 i n t l e n = b l o c k s [i]−>Program (t ime ,&a) ;

7 t ime = Animate (t ime , l e n) ;

8 l e n = b l o c k s [j]−>Program (t ime , b) ;

9 t ime = Animate (t ime , l e n) ;

10 R e c t a n g l e ∗ t = b l o c k s [i] ;

11 b l o c k s [i] = b l o c k s [j] ;

12 b l o c k s [j] = t ;

13 re turn l e n ;

14 }

Listing 5: The code of the method which animates the swap operation of Bubble Sort

(Demetrescu et al., 2002).

1 /∗ ∗

2 View (Out 1) ;

3 R e c t a n g l e (Out ID , Out X , Out Y , Out L , Out H, 1)

4 For N: InRange (N, 0 , n−1)

5 Ass ign X=20+20∗N Y=20 L=15 H=15∗v [N] ID=N;

6 ∗ ∗ /

Listing 6: The ALPHA code which produces the visualization for Bubble Sort (Deme-

trescu et al., 2002).

2.2.5 Self-animated algorithm example: Jeliot

The history of the Jeliot family goes back to the 1990’s. Researchers at the University

of Helsinki created an animation library that could be used to animate programs written

in C. Also, a library of self-animating data types was created(Sutinen et al., 1997). In

this approach, there is no need to add extra notation to the program code.Eliot was the

12

Figure 2: PolkaW visualization of Bubble Sort.

first product of the Jeliot family (Sutinen et al., 1997). After that, Jeliot I, Jeliot 2000 and

Jeliot 3 have been released (Myller, 2004).

Developers of Jeliot 3 continue their work by adding new features to Jeliot. For example,

by combining program visualization and collaborative authoring tools, it was possible to

bring new aspects to the field of visualization. JeCo (JEliot COllaborative), introduced

a novel concept that supports both program visualization and peer-to-peer collaboration

(Moreno et al., 2004). This concept is calledcollaborative program visualization, and it

supports the theory ofsocio-cultural constructivismwhere a learner should have possibil-

ities to communicate with other members in a learning community (Duffy and Cunning-

ham, 1996).

BlueJ is an integrated Java development environment specifically designed for introduc-

13

tory teaching. The environment presents object-oriented structures graphically and it is

targeted for teaching programming with the "objects-first approach" (Kölling et al., 2003).

Authors of Jeliot have developed an extension for BlueJ whichallows the user to animate

the BlueJ project (Jeliot 3, 2004).

Figure 3: Visualization of a program by Jeliot 3

2.3 Concretization in Computer Science Education

In the few past decades, researchers and industries have developed a number of different

robot kits designed to help learning in scientific fields suchas mathematics, physics and

computer science. These kits typically contain all the parts which are needed to construct

a robot: motors, sensors, wheels, gearwheels and belts. Some of the kits (for example

LEGO Dacta and LEGO CyberMaster) include cable or radio equipment that make it

possible to connect the device to the computer. This allows the user to control the robot.

Another approach uses autonomous robots. There is a small computer inside autonomous

14

robots, so they can communicate and move independently according the program the user

has constructed. These kits have been built according to educational principles which

have been derived from Jean Piaget’s theories of cognitive development (Miglino and

Lund, 1999). Seymour Papert has revised these theories. According to this approach the

active learner is the center of the learning process. Learners enlarge their knowledge by

manipulating and constructing objects (Miglino and Lund, 1999).

These rather cheap robotic kits can be used, for example, forteaching Java programming

to novices (Barnes, 2002). Artificial organisms have also been used for teaching the de-

sign and construction of industrial prototypes to engineers who have a bachelor’s degree.

Often they have excellent knowledge of fundamental theoretical concepts, but they lack

experience in construction (Miglino and Lund, 1999).

However, there might be some problems when teaching, for example, object-oriented

problem solving with robots. For example, in the object-oriented programming approach,

if we want to model a car, it might be necessary to model wheels, axles, petrol tanks, win-

dows and so on. However, when using the LeJOS environment with Lego Mindstorms and

RCX, motor and sensor objects are obtained via a pre-created static reference. This is not

an appropriate way to teach object-oriented programming (Barnes, 2002). Also, physical

restrictions of the RCX unit might prevent one from using it teaching programming. Lack

of memory and difficulties in debugging programs with a RCX unitmust be taken into

account when planning courses and instructional materials.

Fagin and Merkle (2003) argued that the use of robots in teaching computer science is

ineffective. They ran a year-long quantitative experimentin which they noticed that test

scores were lower in the robotics laboratory sections than in the non-robotics sections.

However, they believed that the most significant factor accounting for this result was the

lack of a simulator for the programming environment that wasin use. Students were

unable to practice the write-run-debug loop that seems to bean important part of the

learning process.

In the study of Fagin and Merkle, the authors also discussed the role of teacher experience

as a factor in the negative result. All of the teachers in the experiment had only one

15

semester experience teaching the robotic sections. Although the authors had planned the

robot exercises very carefully. Fagin and Merkle (2003) didnot believe that they were

completely successful in controlling for the lack of teacher experience with the robotics

as a factor in student learning.

2.3.1 Algorithm concretization with robotics

Robotics have been used widely to teach computer science concepts. Programming, net-

working, artificial intelligence and many other topics are taught with robots. However,

algorithmshave typically been taught in traditional ways. González etal. (2004) present

a novel way to teach sorting algorithms with robots. The authors ran an empirical study

where they taught a bubblesort algorithm to 13-to-15-year-old students. The data was

collected with a questionnaire and by taping the lesson. Results showed that at least some

of students understood the sorting algorithm taught with robotics.

One can say that the added value of concretization, comparedto the visualization, is the

hands-on character of robotics which may positively affecta certain type of student. This

issue is further addressed in this thesis.

2.3.2 Concretizing Bubble Sort algorithm with Lego Mindstorms

In his research, Javier Gonzales developed some concretizations of sorting algorithms

with Lego Mindstorms (González, 2004). The main idea in his work was to use a master

robot which controls other robots (slaves). In this scheme,every robot has an individual

id and a weight. This information is used to sort the robots with a sorting algorithm. At

the moment, Bubble Sort and Selection Sort have been implemented. The main idea for

handling the communication is to use a pre-defined protocol which the robots use when

communcating with each other. Furthermore, some kind of synchronization is needed to

ensure, that the excecution of the concretization proceedssmoothly. Algorithms for the

robots were developed in NQC (Not Quite C), which is a C-like programming language

for Lego Mindstorms robots (Baum et al., 2000), and in Java with LeJOS. There is a

16

certain algorithm for the master and the slave robot. All slaves use the same code with

only two slight differences: all slaves have an individual id and weight. This infomation

is changed via the communication protocol. For more information about implementation,

see González (2004).

As it can be seen in González (2004), algorithms with robots are complicated. This makes

it difficult to use concretization in an efficient way, for example, when teaching program-

ming or algorithms to novices. It needs much code to implement even a simple sorting al-

gorithm, like Bubble Sort (see González (2004)). However, ashas been stated in González

et al. (2004), this method of teaching is promising and worthfurther study. With the envi-

ronment I am developing for this thesis it is possible to construct concretization in a more

sophisticated way.

The protocol defined in González (2004) is based on the behaviours of robots. In sorting

algorithms, two particular behaviours, which repeat on every round of the algorithms, can

be found. We call themleft andright since they are associated with the physical

position of the robot. In González (2004), the behaviour is one pre-defined movement

of the robot. Behaviours are implemented as NQC tasks. The code of the slave robot

contains three tasks: the main task, which starts the execution, and tasks for left and right

behaviour.

One round of concretization of the sorting algorithm contains the following steps:

1. The master sends a message to the first slave.

2. The slave confirms this message by answering the master with its own id.

3. The master sends the slave a message which contains information about the slave’s

role (whether it is left or right).

4. The slave moves in the direction specified by the master.

5. The slave sends a signal, which shows that they have done the work, to the master.

6. The master sends a confirmation signal to the slave.

17

After one round of the loop the master sends the ids and behaviours to new slaves. Figure

4 illustrates thisprotocol. The technical details of the protocol and communication can be

found in Section 4.6.

Master Slave n

Master sends id n

Slave n answers with

its id

n

Master waits for

a response

Master sends left

or right behaviour

left / right

Slaves makes the movement

Slave n sends done

message
doneMaster waits

done message

Master sends

a confirmation

confirmation

Figure 4: The protocol between master and slaves (González,2004).

2.4 Summary

In this chapter, I have described an existing communicationprotocol which allows the

robots to sort themselves according different sorting algorithms. However, the protocol

is hard to implement. Also, it is a time consuming task to develop concretizations for

new algorithms. For this reason, there is need for a framework, which defines the parts

which are needed for the application which allows the user toconstruct concretizations

for robots in a visual way.

In this chapter, I have also examined existing program and algorithm visualization ap-

proaches and tools. By using interesting events of the algorithm, it is possible to define

18

a framework which allows the user to develop concretizations easily. I will present this

framework in the next chapter.

19

3 Design of the Framework

In this chapter, I will explain the main design issues for a general Concretization Envi-

ronment Framework (CEF). I will discuss the principles of thedesign in the Section 3.1,

sketch the CEF in Sections 3.2 and 3.3 and discuss the structure of the whole framework

in Sections 3.4 and 3.5. In Section 3.6, I will present the limitations of the architecture

and the approach. The CEF itself, and the principles behind its design are discussed in

this chapter and illustrated by using some examples from theCELM environment. The

technical issues concerning implementation are discussedin Chapter 4.

3.1 Principles of design

The main goal of this project was to develop an application which may help the user

(teacher, instructor) construct concretizations for sorting algorithms. The application is

directed, especially, at teachers and those who would like to get a better understanding

of a particular algorithm which they already know at least onsome level. However, the

application is not primarily targeted at novices who aim to learn themselves, because the

user has to know how the algorithm works in order produce a suitable concretization of it

(see Section 3.6).

The environment uses an event-driven approach where interesting events of an algorithm

are visualized (for more information about this approach, see Chapter 2.2.1).

The main difference between the work described in this thesis and existing systems that

use the same technique (for example Tango (Stasko, 1990)) isthat interesting events and

their visualizations (and concretizations) are constructed using a graphical interface.

In the Jeliot family, one can also use a graphical user interface. However, Jeliot I is the

member of Jeliot family that is most targeted to algorithm visualization. The Jeliot prod-

ucts after Jeliot I are primarily involved in the field of programming visualization. The

main difference between this framework and Jeliot I is that Jeliot I uses aself-animating

approach. The visualization of Jeliot is also based more on data structures of an algorithm

20

than interesting events.

3.2 Sketch of the framework and the application

In the application I have implemented for this thesis, I willuse thetheater metaphorin

the same way that the Jeliot family uses it (Myller, 2004). Parts of this metaphor in this

application are:

• Action: An interesting event in the algorithm in which the actors participates.

• Actor: A concrete object (e.g. a robot).

• Director: A user who leads the actors.

• Stage: A place where actors conduct actions.

• Storyboard: A place for gathering actions.

Figure 5 presents an outline of the application. All actionsare played on a stage. The

director can move actors over the stage by dragging with the mouse. Actors will try to

realize the path the director has prescribed but will necessarily end up performing an ap-

proximation because of the inevitable noise in a physical surrounding environment. There

can be numerous actors on the stage at the same time and these actors can communicate

and interact with each other. These movements and discussions determine the code which

can be sent to concrete objects (e.g. robots). The user can produce as many events as it is

necessary to concretize a particular part of the algorithm.These events are collected on a

storyboard. This can be seen as a filmstrip which contains short animatedfilms.

The user can load a code containing the algorithm in thecodewindow. In that window,

user can mark an interesting event with a mouse. The content of a particular event is listed

in aneventlist.

21

Actors

Stage

Algorithm

Storyboard

Act

Figure 5: Outlines of the system.

3.3 Working with the framework

A generic workflow of the application is presented in Figure 6. Figure 6 shows how

a user’s mental model becomes concrete by using robots as a concrete model. In the

beginning, users have only a mental model of how the algorithm shouldwork in their

minds.

The user defines the interesting events of the application and visualizations for these

events. Visualizations are defined by dragging robots on thestage of the application.

After that, the user allows the application to upload the code to the robots. Then, the

robots will execute the visualization. In this way, the mental models which users have in

their minds become concretized in the material world.

22

The user defines interesting

events for the algorithm

The user constructs

visualizations for events

The user uploads

events to robots

Robots execute

the visualization

The user

Digital reality

Robot

Physical reality

Visualizations

Events

Concretization code

Concrete

model

Mental model

Figure 6: A workflow of the system.

3.4 Architecture of the framework

The architecture of the framework is designed in a way that itcan be used in different do-

mains. For example, controlling a Lego Mindstorms robot with a dedicated environment

is one application of this framework. This thesis contains adiscussion about this field.

Another example could be controlling an enterprise robot via a network. These possible

applications are presented in Chapter 6.

The architecture of the framework contains three separate layers. For each layer, there is

some output which serves as input in the next layer. Communication between layers is

bi-directional. This means that physical objects can communicate and send information

about their states to the application. In this way, it is possible to track the movement of the

robot. Figure 7 presents this structure and communication between layers. The figure also

shows the idea how this kind of framework should be suitable in different domain areas.

The communication protocol and other technical issues are presented in the Chapter 4.

Theenvironment layer(EL) takes care of the communication between the user and robots.

Results of these actions are sent to atransfer layer(TL) which takes care of transferring

and converting the code produced by the environment layer toa object layer(OL). This

layer represents the physical objects which concretize thealgorithm. This object might

be, for example, a Lego Mindstorms robot (Ferrari, 2001).

23

Environment

layer (EL)

Transfer

layer (TL)

Object

layer (OL)

Lego Mindstorms

robot

Application

File system

EL

TL

OL

Enterprise

robot

Control application

Internet

EL

TL

OL

Domain area 1

Domain area 2

Lego ro
bot

Enterprise robot

Native code

Commands

Feedback

Feedback

Figure 7: Architecture of the system

3.4.1 Environment layer

This layer is visible to the user as an application. The user can define interesting events

and visualizations by using the interface of the application. Basically, there can be several

objects on the stage at the same time. However, it might be difficult to handle, for example,

discussion between objects if there are more than four of them present at the same time.

3.4.2 Transfer layer

This layer transfers the concretization constructed by theuser to the object layer. Basi-

cally, this layer interprets the code for the robot that is inuse (see Chapter 3.5). In this

way, it is rather simple to replace only this layer accordingto the robot which is in use. For

example, with Lego Mindstorms robots, this layer turns the code to LeJOS-code (Laver-

dae, 2001) and then it sends the LeJOS-code to the robot via aninfrared transmitter. This

layer also transfers the feedback given by object layer to the application.

24

3.4.3 Object layer

The purpose of this layer is to concretize the algorithm in the same way that users desire

their mental models concretized with physical objects. These objects (robots etc.) can

be seen asphysical learning objects(Eronen et al., 2004). There have been some studies

done which show that physical objects can facilitate students’ building of mental models

during the learning process (e.g. see Poon (2000)). In our case, robots represent the data

of the algorithm (e.g. cells of an array or an individual variable). One robot can represent

one variable at a time. The user can change this mapping during the execution of the

program. Robots can exchange data in order to concretize, forexample, a swap operation,

which is commonly used in different sorting algorithms.

The object layer gets instructions for the concretization from the transfer layer. The format

of instructions depends on what kind of concretization toolis in use. In the case of our

application, the interpreter turns the robot code to LeJOS-code (see the Chapter 4).

3.5 Code

The environment layer produces code which it sends to the object layer via the transfer

layer. The code contains instructions on how the robot should move and behave. The code

uses object-oriented notation as in Java, where an individual robot is identified by a name.

A dot follows the name and, after the dot, a method call is invoked with some parameters.

For example, a simple instruction for movement may look likethis:

robotA.move(20, FORWARD)

In this example, the command contains the following parts:

This instruction makes a robot namedrobotA, move 20 units forward. The user has to

define the unit amount in the application. Thiscalibration is necessary to ensure accurate

movement of robots (González, 2004). The whole set of commands is rather small and

simple. The complete list of commands is presented in Table 2.

25

Table 1: The structure of the command.

Part Purpose

robotA Name of the robot (representing a variable)

move A method, which makes the robot to move

20 Quantity to move

FORWARD A direction to move

Table 2: Set of commands.

Command Purpose Example

stop Stops movement robotA.stop

move(quantity, direction) Move a robot a certain

amount in a certaindirec-

tion

robotA.move(20, FORWARD)

rotation(direction, degrees)Turns a robot todirection

amount ofdegrees

robotA.turn(RIGHT, 90)

send(value) Sends some value robotA.send(25)

send(value, robot) Sends somevalueto a spe-

cific robot

robotA.send(25, robotB)

receive(robot) Receive any message from

a specificrobot

robotA.receive(robotB)

receive(msg, robot) Receive a specific message

(msg) from a specificrobot

robotA.receive(25, robotB)

3.6 Restrictions of the approach

The main problem with this approach is how to concretize loopand condition structures.

For example, a condition statement basically needs two different concretizations - one for

the case that the statement gets thetrue value and another one for thefalse value.

26

However, this is quite easy to handle by constructing two possible concretizations for this

particular statement.

The situation is more complicated when there is aloop structure. Loops are very im-

portant control structures in programs. However, in this concretization approach loops

cause a very difficult problem. The number of different possible execution paths of the

algorithm is so large that it is impossible to produce a concretization for each of them.

Listing 7 presents a Bubble Sort algorithm. During the execution of the algorithm, lines

6-8 are invoked approximatelyO(n2) times, wheren is the number of robots. Basically,

every iteration of the lines 6-8 has to be represented by a quite distinct concrete action. Ta-

ble 3 shows the approximate numbers of steps (concretization events) for different sorting

algorithms whenn represents the number of robots.

Table 3: Steps in different sorting algorithms.

Algorithm Average time consumption n Steps

Bubble Sort O(n2) 3 9

Selection Sort O(n2) 4 16

Shell Sort O(n
5

4) 5 7

Possible approaches to solve this problem are:

1. A concretization is constructed separately for each event inside the loop. This

is problematic, because there might be too many steps to produce (see Table 3).

The developer of the visualization has to explicitly model the precise positions and

arrangement of the robot for each step of the algorithm. Unless this is possible, the

expressive power of concretization using robots cannot be exploited.

2. The user definesroles for robots. For example, in the sorting algorithm, robots

which represent cells of an array always have a role calledleft or a role calledright

(González, 2004). It is possible to define a generic behaviour for both of these roles.

After that, the movement of the robot depends on its role and on where it is located.

27

The direction and the quantity of movement are calculated based on the robot’s

index in the array. In Listing 7, variablesi andj define indexes and furthermore,

identify the robots which are used in one particular step of the execution. Later on,

this approach is calledrole-based concretization(see Chapter 4.2).

1 i n t tmp ;

2 i n t [] i n t A r r a y = {12 , 4 , 5 , 8 , 7 , 9 , 45 , 11 } ;

3 f o r (i n t i =0 ; i <(i n t A r r a y . l eng th−1); i ++) {

4 f o r (i n t j =(i + 1) ; j < i n t A r r a y . l e n g t h ; j ++) {

5 i f i n t A r r a y [i] < i n t A r r a y [j] {

6 tmp = i n t A r r a y [i] ;

7 i n t A r r a y [i] = i n t A r r a y [j] ;

8 i n t A r r a y [j]= tmp ;

9 }

10 }

11 }

Listing 7: Bubble Sort algorithm.

There are also two other categories of restriction to which this approach is subject. Noise

in the physical environment or lack of user ability to understand the algorithm to be con-

cretized or a lack of programming knowledge may lead to difficulties.

3.6.1 Physical environment

The fact that robots operate in a concrete world causes problems due the limitations of

working in a physical environment. For example, the movement of the robot may vary on

different kinds of surfaces. Also the voltage level of batteries may cause different speeds

between similar robots. Light conditions may change radically during the execution of

the concretization and this may cause some strange results if light sensors have been

used. More information about these problems and methods to reduce them can be found

in González (2004).

28

3.6.2 User knowledge

The user has to construct all the movements and communication events for the robots

with the application. Thus, the user has to know, at least on some level, how the algorithm

works. This means that the system is more useful for those whoare teaching programming

than to those who are studying it. In the investigation conducted by González (2004), us-

ing of robots in teaching seemed to lead more deeper understanding. However, to be sure

about this issue, investigations which are more structured, with good research methods,

are needed.

From a technical point of view, although it seems quite easy for the expert programmer to

replace, for example, the object layer (physical objects) with another one, this might be

difficult for the nonprofessional programmer.

29

4 Implementation

In this chapter, I will discuss one option for the application of the framework. The ap-

plication is calledCELM (ConcretizationEnvironment withLego M indstorms). The

framework and the approach itself are so complicated that itwas impossible to totally

implement it for this thesis (see Chapter 3.6). In the application I use the role-based

concretization approach. In this approach, the user definesroles for the robot. When

concretizing sorting algorithms, only two roles (left and right) are needed. The aim of

the application is to enable the user to construct movementsfor these roles. Later on, the

aim is to make the application less specific by allowing the user to invoke roles in a more

general way. Some inspiration for this might be drawn from the work of Sajaniemi and

Kuittinen on the role of variables in general procedural programs (Sajaniemi and Kuitti-

nen, 2003). However, we will need more studies for this. I will present the limitations of

the application in Chapter 4.3. In this chapter, I will discuss the technical implementation

of the application.

In Section 4.4, I will go through the issues concerning the application layer. In Section

4.5, I will discuss the implementation of the transfer layerand in the Section 4.6, the

object layer. The last layer is discussed in more detail by González (2004).

4.1 An overview of CELM

I have developed an application for the framework describedin the Chapter 3. The ap-

plication is called CELM, which stands forConcretization Environment with Lego Mind-

storms. As will be shown, I have implemented this application for Lego Mindstorms

robots. Figure 8 shows how CELM (the application) and CEF (the framework) are related

to each other.

Figure 9 illustrates the application and how it turns the user’s mental model to a concrete

one. The code in the Figure 9 is a Bubble Sort algorithm. The user has constructed a

behaviour for this algorithm. The behaviour contains several small pieces of commands,

30

Environment

layer (EL)

Transfer

layer (TL)

Object

layer (OL)

Lego Mindstorms

robot

CELM

File system

EL

TL

OL
Native code

Commands

Feedback

Feedback

Domain area
Lego Mindstroms

robot

Framework

Application

Figure 8: The relation between the framework and the application.

that will be sent to the robot by the application. The robots then concretize the algorithm

according to the movements the user has defined.

4.2 Role-based concretization

Role-based concretization is a novel way to define concretizations with robots. The con-

cept is based on idea that the data of a program or an algorithmhas a certainrole. It

has been found that the following list of roles of variables covers 99% of all variables

in novice-level programs (Sajaniemi, 2002): constants, stepper, follower, most-recent

holder, most-wanted holder, gatherer, one-way flag, temporary and organizer. With these

roles, it is possible to define a representation for each variable in the program. Plan-Ani

(Sajaniemi and Kuittinen, 2003) is a tool for representing roles with graphic visualization.

In addition to images, Plan-Ani uses animation for visualization as well.

However, in this application we see the concept of role in a different way. González

(2004) has defined two roles for concretizing sorting algorithms: left and right. This is

31

Figure 9: Mental model turns to the concrete one with the application.

based on the idea that, in the sorting algorithms, the data tocompare can be illustarated as

it has been presented in the Figure 10. In the figure, each square represents an item to sort.

Typically, this item is a data in the cell of an array or in other data structure in a program.

In the concrete world, for example, a robot represents this item. Items to sort are in one

row and items to compare have been taken out from the row. The role is defined based on

physical position of the robot or other object. In Figure 10,Item 2 has the roleleft and

Item 5 has the roleright.

The difference between González’s roles and the roles in Sajaniemi (2002) is that the

role in González (2004) is defined by the object’s physical position related to other ob-

jects, whereas the role in Sajaniemi (2002) gets its definition from the semantics of the

program. Therefore role-based concretization could belocation-basedor position-based

32

Item 1

Item 2

Item 3 Item 4

Item 5

Left Right

Figure 10: Roles left and right are defined by their physical position.

concretization as well. However, this terminology needs more studies, so from now on in

this thesis I use the termrole-based concretizationfor the approach I present in this thesis.

In role-based concretization, the user defines some movement or other action for the robot

or other concretization tool. During the execution of the algorithm, this role is invoked

when needed. For example, González (2004) has implemented roles as NQC sub-routines.

The master robot leads the execution of concretization and it tells the slave robots which

role to adopt (see Chapter 4.6 for more information).

In this approach, the user creates concretizations for these roles with the application. For

common sorting algorithms (Bubble Sort, Selection Sort) theuser has to define four dif-

ferent movements (Table 4). The environment produces the complete LeJOS-code which

is needed for moving robots based on these movements. In thisimplementation, one role

is implemented as one method. MovementsR1 andR2 will be inserted to the method

right_behaviour, which implements theright role. In the same way, movements

L1 andL2 will be inserted to the methodleft_behaviour, which implements the

left role.

33

Table 4: Movements the user has to define for sorting algorithms.

Movement Role Swapping

R1 Right No

R2 Right Yes

L1 Left No

L2 Left Yes

4.3 Constraints on CELM

This thesis contains a description of the framework for an application discussed in Chap-

ter 3. The implementation of the application is described inthis chapter. However, it is

important to note that the application does not implement all the features I have described

in Chapter 3. Because of the problem with loops, I decided that the application should

be targeted only for concretization of sorting algorithms (see Chapter 3.6 for more infor-

mation about the difficulties with loops). Also, recursive sorting algorithms (for example

Quick Sort) are not included in this study because

1. They are not so important for novices, and

2. It is difficult to implement a recursive visualization or concretization.

These limitations change the generic workflow. The application itself makes it possible

to work with sorting algorithms only, but not in as generic way as it has been described in

Chapter 3.3.

4.4 Environment layer

The environment layer contains an application which is dedicated to the control of one or

more robots. With the application, the user can construct movements and other behaviours

for robots, and send them to the robot. The application has been implemented purely

34

with Java, so it can be used in diverse platforms, such as Windows, Linux or Macintosh.

The only requirement is the need for a LeJOS environment, which is used in the transfer

layer to compile the code produced by the environment layer to the native code of the

object layer. It is also possible to produce any layer of the framework with some other

programming language. The most important issue is to ensurethat the layers give output

in the right format. Also, each layer has to have the capability to use the output of the

previous level as its input. Figure 11 presents the part of the workflow which belongs to

the environment layer.

Figure 11: The part of the workflow which belongs to the environment layer.

The user interface of the application (Figure 12) allows users to interact with the robots

presented on the screen in the normal way that user use computers (such as a drag-n-drop

and a context menu from the rightmost mouse button).

The program has been implemented with Java using an object-oriented approach. This

means, for example, that it is easy to replace a robot with another one. The shape of the

robot can be replaced just by replacing the existing picturewith new one. However, it is

not very difficult to extend the behaviour of the robot because a single class represents

the robot. Table 5 presents the most important classes whichbelong to the environment

layer, and the purposes for them. There are also a few more classes which are not men-

tioned here because they are only for constructing the graphical user interface (GUI) of

the application.

35

Figure 12: The user interface of the application.

Table 5: Java classes that construct the application.

Class Purpose

Behaviour Represents a single behaviour of the robot. Contains a vec-

tor where instances of theMovement class are stored

Movement Contains one single movement (moving, turning, sending

etc.)

RoboData Contains the information about the single robot

Robot Represents the robot. Each robot has its own instance of

this class

RoboPanel Receives user interactions with the robot and delivers them

forward if necessary

Robots Contains all robot objects

36

4.5 Transfer layer

The transfer layer contains those part of the framework which are needed to transfer the

code produced by the environment layer to the object layer. This layer can contain pro-

grams, data transfer devices (network, hard drive) and different protocols for them. The

transfer layer of the CELM application contains parts of the program and an infrared

transmitter which is connected to the computer. Figure 13 illustrates the transfer layer as

a part of the general workflow of CEF.

In the application, I have used Lego Mindstorms robot kits. The kit contains a RCX unit

(see Chapter 4.6 for more information), which uses infrared for communication. By using

this infrared techinique, the user uploads the programs to the robots which the user has

produced on the computer. The infrared transmitter can alsowork as a receiver and, in this

way, the robots can communicate and give feedback about their states to the application.

There are some advantages and disadvantages to this approach: one advantage is that

robots can work independently and move freely because thereare no wires which connect

them to the computer. On the other hand, a disadvantage is that the infrared link is rather

slow and there might be problems during the communication ifthe robot and the infrared

transmitter are far away from each other. Also, the concurrent communcation produced

by several robots can be a problem for the application. Therefore it is a key issue also to

develop a strong enough protocol for this layer.

There is particular default firmware1 in the RCX unit. This firmware also can be replaced

in order to get more control or other features to the device. The default firmware of

the RCX unit can be replaced for example with LeJOS, which is a JVM (Java Virtual

Machine) for the RCX unit (LeJOS, 2004). The LeJOS firmware offers the programmer

a more rich API than the default firmware. The LeJOS interfaceimplements a subset of

features of the standard JVM (Java 2 Standard Edition, Sun Microsystems (2004b)), as

does J2ME (Java 2 Micro Edition, Sun Microsystems (2004a)).

The workflow of the transfer layer is as follows:

1Firmware is like an operating system and it can be replaced with other firmware.

37

Figure 13: The part of the workflow which belongs to the transfer layer.

1. The user constructs the movement of robot within the CELM application.

2. The user compiles the code to the LeJOS code. In practice, this is done by passing

the code to theCodeGenerator class which interprets the code.

3. The application compiles the LeJOS-code to the Java bytecode which the LeJOS

environment sends to the robot via an infrared device.

Code interpretation is needed to run the CELM code in Lego Mindstorms robots. This

interpretation is done by theCodeGenerator class of the application. An interface of

the class is follows:

public CodeGenerator ()

public String Generate (Vector m)

The constructor does not take any argument. Instead, it creates an empty instance of the

class.Generatemethod takes a vector as an argument. This vector contains instances of

theMovement class, which contains information about the action made by asingle robot

(type, direction and amount). TheCodeGenerator class interprets these movements

to the LeJOS code, and the method returns this code as a string. This string will be saved

to file and then sent to the robot by the LeJOS environment.

For example, the user constructs the code presented in Listing 8 with the CELM appli-

38

cation. TheCodeGenerator class interprets it to LeJOS code. In this example, the

robot’s name is A, and its internal id is 1. The robot’s weightis 20.

1 A.move(FORWARD, 132)

2 A. rotation (RIGHT, 90)

3 A.move(FORWARD, 141)

Listing 8: The original CELM code.

These commands are converted into LeJOS code (the complete code is presented in the

Appendix 1). The most interesting lines of the code are presented in Listing 9.

1 nav. travel (132);

2 nav. rotate (−90);

3 nav. travel (141);

Listing 9: The CELM code has been turned to the LeJOS code.

In this implementation, aTimingNavigator class is used (nav is an instance of this

class). The class is a part of the LeJOS class library, and it contains methods for per-

forming basic navigational movements (LeJOS API, 2004). This code is compiled to Java

bytecode and that code is then sent to the object layer.

4.6 Object layer

The object layer is the part of the framework which makes the visualization concrete. It

is possible to use different robots or other concrete objects in this layer. In our research

group, we have used Lego Mindstroms robots for many years (see Jormanainen et al.

(2002)). Therefore, it was easy to decide which technique touse at the object layer of our

application. Figure 14 presents these robots as a part of theworkflow of the framework.

The name of the application, CELM, came from Lego Mindstorms actually. The history

of Lego Mindstorms goes back to 1986 when a research group supervised by Seymort

Papert and Mitchel Resnick, started to developProgrammable Brick, a small unit capable

39

Figure 14: The part of the workflow which belongs to the objectlayer.

of connecting to the external world through a variety of sensors and actuators. The brick

was designed for the creation of robots and other applications in which a computer might

interact with everyday objects (Laverdae, 2001).

With Lego Mindstorms kits, it is possible to construct an independent and autonomous

robot. The Mindstorms kit includes a RCX unit (Robotic Command Explorer), which is

the core of the kit. The RCX unit is flexible, because it can be programmed by using many

programming languages (NQC, Java, Visual Basic etc.). The Lego Mindstorms package

also contains a programming environment, theRCX Code, which is a RCX specific pro-

gramming language. Figure 15 shows the RCX unit.

The RCX unit contains the following parts (Laverdae, 2001):

• Processor:8bit Hitachi H8/ 3292 microprocessor, running a 16 MHz CPU speed

• ROM: (Read Only Memory) 16 Kb

• SRAM: 512 bytes on chip, 32 Kb external

• Outputs: 3 motor ports, 9V 500 mA

• Inputs: 3 sensor ports

• Display: LCD display

40

• Timers: Four system timers (8bit)

• Batteries: 6x 1.5V

• Communications: IR port (transmitter + receiver)

These parts compose an individual computer which has a simple structure. Figure 16

presents the block diagram of the RCX unit (Laverdae, 2001).

With this hardware, it is possible to produce autonomous robots, which can also com-

municate, during execution, with a computer or with each other via an infrared device.

However, the communication is rather slow and there is a needfor a strong protocol in

order to ensure that the communication is reliable (González, 2004). In the CELM appli-

cation, slave robots realize the concretization independently. This means that they do not

receive any messages from the computer. Instead, slaves communicate with each other

Figure 15: The RCX unit from Lego Mindstorms Robotic Invention System kit.

41

Programs

Firmware

ROM Code

Processor

Figure 16: The logic structure of RCX unit (Laverdae, 2001)

and with the master robot. Figure 17 shows robots during the concretization of a sorting

algorithm. In the figure, two robots are just exchanging messages in order to find out

which one is bigger and whether they should change places or not.

Figure 17: Robots communicating with each other during the execution of a sorting algo-

rithm.

Lego Mindstorms robots communicate with each other via an infrared transmitter/re-

ceiver. Therefore, there might be some problems during the communication. For example,

42

a message can get lost if robots can not "see" each other (the infrared transmitter/receiver

is located in the front of the RCX unit. It is the black part of theunit in Figure 15). Fur-

thermore, only one robot is allowed to send a message at one time (González, 2004). To

avoid these problems, a well defined protocol2 must be used for communication between

robots. The protocol in this application ensures that robots get the messages and that the

message sending will happen in the right order. The completecommunication protocol

for the Bubble Sort algorithm implemented in González (2004)is defined in Figure 18.

LEFT MASTER RIGHT

RIGHT_ID

RIGHT_ID

RIGHT
BEHAVIOUR

LEFT_ID

LEFT_ID

LEFT

BEHAVIOUR

DONE DONE

ACK
ACK

Figure 18: The complete protocol for the Bubble Sort algorithm (González, 2004).

The original work by González (2004) is based on message passing between master and

slave robots. The system has been implemented with NQC. The communication protocol

is simple: the master contacts a slave and send the slave’s role (left or right) to it. After

the slaves have done their work, they send a confirmation. Between these steps, there are

of course some defined messages which help the robots to be sure that all the messages

have passed. The protocol can be defined as follows:

1. The master sends a message containing the slave’sID to the first slave.

2Protocol is a pre-defined set of rules, which all parts of communication must accept and use.

43

2. The slave confirms this message by answering the master with its ownID.

3. The master sends the slave a message which contains information about the slave’s

role (whether it isLEFT or RIGHT).

4. The slave makes the movement that has been defined in the behaviour correspond-

ing to the message.

5. The slave sends aDONE message, which shows that it has done the work, to the

master.

6. The master sends anACK (confirmation) signal to the slave.

In the protocol, it has been decided that the master will sendan id and a behaviour to the

right slave first. After that, the master sends the same information to the left slave. There

is no defined order in which to retrieve theDONE message, because the execution speed

of the algorithm may vary depending on the robot.

When the slaves have started their execution, they make pre-defined movement to certain

locations defined by the user. After moving, these robots start to compare their data with

each other. In Figure 17, the robot in the center and the roboton the right are sending

messages to each other. The part of the protocol, in the case that the robots are not going

to swap their places (the left robot’s weight is smaller thanright’s weight), is presented in

Figure 19.

LEFT RIGHT

LEFT_WEIGHT

FALSE

Figure 19: The part of the protocol which is used to compare the weight of the robots

(González, 2004).

44

Furthermore, if the left robot’s weight is bigger than right’s weight, robots exchange their

ids (see Figure 20). After that, the robots change places by using the pre-defined move-

ment.

LEFT RIGHT

LEFT_WEIGHT

RIGHT_ID

LEFT_ID

Figure 20: The part of the protocol which is used to compare the weight of the robots

(González, 2004). With this protocol, robots are going to change their places.

45

5 Evaluation and future directions

To assess the potential usefulness of the approach and to getan objective view of its

merits, limitations and prospects, I made a questionnaire in which I asked for opinions

and suggestions about the application and the framework. The group (n = 6) completed

the questionnaire during the Educational Techonology Summer School in August 2004 at

the Mekrijärvi Research Station, Finland. The members of thegroup were participants

in the Kids’ Club trackof the summer school; they all were CS educators and they had

experience in the field of educational techonology. Questions were in paper form and they

were answered as part of track activities. The following questions were used:

1. Mention three issues where the application could help onewhen learning an algo-

rithm by concretizing it with the robotics.

2. By the termrole we refer to... How do you understand the concept of role in the

context of this application? Could you come up with some otherterm for this con-

cept?

3. Suggest one idea in which direction this project could continue (techniques, ap-

proaches etc.).

4. Mention one other application area which may use this concretization approach and

the framework.

According to the answers, the application and robotics can be used to illustrate abstract

concepts, such as sorting and searching algorithms especially when teaching children or

novices. Furthermore, participants believed that the explicit nature of the robotics gives

understanding of what is happening in a clear way. However, according to the answers

it is not so clear that the concrete objects in the real world makes it easier to really learn

an abstract concept like algorithm. At least, the way in which to use robotics needs to be

planned in more detail.

46

According to the answers, the concept of role can be used withthis approach. However,

the term should be defined more clearly. For example, terms right and left are suitable for

sorting algorithms, but it is not possible to use them in general. Also, it is not so clear

whether the robotics can be utilised as comprehensively as visualizations for example in

Jeliot.

Also, some directions for future developement were presented in answers. The usage of

the application as a first programming tool for children could be an interesting approach.

The approach might be useful also when programming industrial robots. The combina-

tion of this approach and Empirical Modelling (Roe, 2003) is definitely an interesting

approach. To expand the power of the expression of the robots, it might be a good idea to

see the robots as agents with a rich set of actions and allowedinteractions.

Some very concrete suggestions were also presented in the answers. For example, an

important feature to add to the application is a time scale. This feature allows user to

examine the position of the robot at a certain moment of time.Furthermore, according to

the answers, there is a need for implementation of bi-directional communication between

layers. This communication allows the robots to send data tothe application (e.g. posi-

tions at the certain moment of time). The framework defines this feature, but the CELM

application does not implement it.

47

6 Conclusion

The concept of concretizing algorithms with the robotics isbased on research done at the

Department of Computer Science, University of Joensuu (González 2004; González et al.

2004). However, it has been found that it is hard to produce even a simple concretization

because of the low level implementation that robots need. Therefore there is a need for a

framework and for an application which a user (for example a teacher or other instructor)

can use to produce concretizations. The research questionsI had in this thesis, were:

1. What should be the general characteristics of a framework to support algorithm

concretization by visualization?

2. What kind of architecture should the framework have in order to be used in diverse

concretizing platforms such as Lego Mindstorms or EK Japan Co., Ltd.’s Soccer

RoboR© 915?

3. What kind of additional features does such a framework facilitate?

To answer the first and the second question, I used concept implementation as the research

methodology. I developed a framework which makes it possible to use diverse platforms

in an easy way. The framework is based onlayerswhich can be replaced with another

one. Layers are:

1. The environment layer: Takes care of the communication between the user and

robots.

2. The transfer layer: Takes care of transferring and converting the code produced

by the environment layer to the object layer.

3. The object layer: Represents physical objects which concretize the algorithm.

These objects might be, for example, Lego Mindstorms robots.

For example, Lego robots in the object layer can be replaced with some other robot kit.

The only requirement is that these robots understand the code which the transfer layer

48

gives to them. When replacing the object layer, it might be necessary also replace the

transfer layer, or part of it. However, one can replace the whole transfer layer or part of it

without changing the object layer or the environment layer at all.

To achieve full support for these features, definitions for interfaces between layers must

be developed further. Especially, interfaces from the object layer to the environment layer

(via the transfer layer) have to be developed carefully in the future. For this thesis, I

decided on an interface from the environment layer to the transfer layer. This interface

contains codes which the application at the environment layer has to produce. The transfer

layer has to have the capability to transfer this code to the native code for robots (or other

objects) at the object layer.

In this thesis, I have developed a novel concept,role-based concretization, which could

be a topic for further studys. The schema for roles of variables presented in Sajaniemi

(2002) could be an interesting research topic. These roles could also be implemented for

robotics: it would also be interesting to study whether roles (used with robotics) positively

affect the learning process, as it has been found in Sajaniemi and Kuittinen (2003).

To answer the third question and to get a view of the concept ofrole, I conducted a

questionnaire. Six researchers in computer science education answered the questionnaire.

Answers indicated that the conceptrole can be used with this approach. However, some

doubts about the approach were presented. Answers indicated also some ideas for future

development concerning the framework and the application.

In this thesis, I have presented one possible application (CELM) for the CEF framework.

Another possibility for the application could be use as a collaborative tool, which allows

several student to work with the same concretizations over the Internet. For example, a

user could produce a concretization for a robot, and then theuser could share or upload

it to network. Other users could download the concretization and use it with their own

robots. From a techical point of view, the implementation ofthis kind of application

could use a client-server model or peer-to-peer networkingfor communication between

users. Furthermore, the application in the environment layer could allow users to work

with the same concretization in collaboration with each others.

49

One really interesting approach could be to combine concretization with robotics and

Empirical Modelling (EM). The EM approach has been developed at the University of

Warwick since 1983 by Dr. Meurig Beynon. The Empirical Modelling is an approach

for constructing computer based models that can assist in the understanding of a phenom-

enon. The approach has an emphasis on experiment, observation and interaction during

the developement process (Roe, 2003). For example, a simulator that could observe the

behaviours of robots, based on EM, could be a very interesting topic for further study.

50

References

Baecker, R., 1981. Sorting out Sorting. Videotape, 30 minutes, presented at ACM SIG-

GRAPH ’81 and excerpted in ACM SIGGRAPH Video Review #7.

Barnes, D. J., 2002. Teaching introductory Java through LEGOMINDSTORMS mod-

els. In: Proceedings of the 33rd SIGCSE technical symposium on Computer science

education. ACM Press, pp. 147–151.

Baum, D., Baum, D., Gasperi, M., Hempel, R., Villa, L., 2000. Extreme Mindstorms: an

Advanced Guide to LEGO MINDSTORMS. APress.

Ben-Ari, M., 1998. Constructivism in computer science education. SIGCSE Bulletin

30 (1), 257–261.

Ben-Ari, M., Myller, N., Sutinen, E., Tarhio, J., 2002. Perspectives on program anima-

tion with Jeliot. In: Software Visualization: International Seminar. Lecture Notes in

Computer Science 2269. Dagstuhl Castle, Germany, pp. 31–45.

Brown, M. H., 1988. Perspectives on algorithm animation. In:Proceedings of the SIGCHI

conference on Human factors in computing systems. ACM Press,pp. 33–38.

Demetrescu, C., 2001. Leonardo IDE: C Compiler and Software Visualiza-

tion System. WWW-page,http://www.dis.uniroma1.it/~demetres/

Leonardo/ (Accessed 2004-06-17).

Demetrescu, C., Finocchi, I., Stasko, J. T., 2002. Specifying Algorithm Visualizations:

Interesting Events or State Mapping? In: Diehl, S. (Ed.), Software Visualization State-

of-the-Art-Survey. Vol. LNCS 2269 of Lecture Notes in Computer Science. Springer-

Verlag, pp. 16–30.

Duffy, T. M., Cunningham, D. J., 1996. Constructivism: Implications for the design and

delivery of instruction. In: Jonassen, D. H. (Ed.), Handbook of Research for Educa-

tional Communications and Technology. pp. 170–198.

51

Eronen, P. J., Silander, P., Sutinen, E., Virnes, M., 2004. Keksivä oppiminen ja fyysiset

oppimisaihiot teknologiaympäristön rikastuttajina (in Finnish). Symposium presenta-

tion at ITK ’04 conference, abstract:http://www.hameenkesayliopisto.

fi/itk04/eronen_etal.html (Accessed 2004-08-31).

Fagin, B., Merkle, L., 2003. Measuring the effectiveness of robots in teaching computer

science. In: Proceedings of the 34th SIGCSE technical symposium on Computer sci-

ence education. ACM Press, pp. 307–311.

Ferrari, M., 2001. Building Robots with Lego Mindstorms. Syngress Publishing, Rock-

land, MA, USA.

Fleischer, R., Kucera, L., 2002. Algorithm Animation For Teaching. In: Software Visu-

alization: International Seminar. Lecture Notes in Computer Science 2269. Dagstuhl

Castle, Germany, pp. 113–128.

González, J. L., 2004. Software Visualization with Lego Mindstorms. Master’s thesis,

University of Joensuu, Department of Computer Science.

González, J. L., Myller, N., Sutinen, E., 2004. Sorting out sorting through concretization

with robotics. In: Proceedings of the working conference onAdvanced visual inter-

faces. ACM Press, pp. 377–380.

Jeliot 3, 2004. Jeliot 3 - BlueJ extension. WWW-page,http://cs.joensuu.fi/

jeliot/downloads/bluej.php (Accessed 2004-08-13).

Jormanainen, I., Kannusmäki, O., Sutinen, E., 2002. IPPE - How to Visualize Program-

ming with Robots. In: Ben-Ari, M. (Ed.), Second Program Visualization Workshop.

HornstrupCentert, Denmark, pp. 69–73.

Kölling, M., Quig, B., Patterson, A., Rosenberg, J., 2003. TheBlueJ system and its peda-

gogy. Journal of Computer Science Education, Special issue on Learning and Teaching

Object Technology 13 (4), 243–247.

Korhonen, A., 2003. Algorithm Visualization and Simulation. Ph.D. thesis, Helsinki Uni-

versity of Technology.

52

Laverdae, D. (Ed.), 2001. Programming Lego Mindstorms withJava. Syngress Publish-

ing, Rockland, MA, USA.

LeJOS, 2004. leJOS, Java for RCX. WWW-page,http://www.lejos.org (Ac-

cessed 2004-06-15).

LeJOS API, 2004. LeJOS API documentation. WWW-page,http://www.lejos.

org/apidocs/ (Accessed 2004-06-16).

Miglino, O., Lund, H. H., 1999. Robotics as an Educational Tool. Journal of Interactive

Learning Research 10 (1), 25–47.

Moreno, A., Myller, N., Sutinen, E., 2004. Collaborative Program Visualization with

Woven Stories and Jeliot 3. In: Proceedings of the IADIS International Conference on

Web Based Communities. pp. 482–485.

Myller, N., 2004. The Fundamental Design Issues of Jeliot 3.Master’s thesis, University

of Joensuu, Department of Computer Science.

Petre, M., 1995. Why Looking Isn’t Always Seeing: Readership Skills and Graphical

Programming. Communications of the ACM 38 (6), 33–44.

Poon, J., 2000. Java meets teletubbies: an interaction between program codes and physical

props. In: Proceedings of the Australasian conference on Computing education. ACM

Press, pp. 195–202.

Price, B. A., Baecker, R. M., Small, I. S., 1993. A Principled Taxonomy of Software

Visualization. Journal of Visual Languages & Computing 4 (3), 211–266.

Roe, C., 2003. Computers for Learning: An Empirical Modelling perspective. Ph.D. the-

sis, Department of Computer Science, University of Warwick.

Sajaniemi, J., 2002. An Empirical Analysis of Roles of Variables in Novice-Level Proce-

dural Programs. In: Proceedings of IEEE 2002 Symposia on Human Centric Comput-

ing Lanuguages and Environments (HCC’02). IEEE Computer Society, pp. 37–39.

53

Sajaniemi, J., Kuittinen, M., 2003. Program animation based on the roles of variables. In:

Proceedings of the 2003 ACM symposium on Software visualization. ACM Press, pp.

7–16.

Stasko, J., September 1990. Tango: A framework and system for algorithm animation.

IEEE Computer 23 (9), 27–39.

Stasko, J., 1992. Animating algorithms with XTANGO. ACM SIGACT News 23 (2), 67–

71.

Stasko, J., Badre, A., Lewis, C., 1993. Do algorithm animations assist learning?: an em-

pirical study and analysis. In: Proceedings of the SIGCHI conference on Human factors

in computing systems. ACM Press, pp. 61–66.

Sun Microsystems, 2004a. Java 2 Platform, Micro Edition (J2ME). WWW-page,http:

//java.sun.com/j2me/index.jsp Accessed 2004-06-15.

Sun Microsystems, 2004b. Java 2 Platform, Standard Edition(J2SE). WWW-page,

http://java.sun.com/j2se/index.jsp Accessed 2004-06-15.

Sutinen, E., Tarhio, J., Lahtinen, S.-P., Tuovinen, A.-P.,Rautama, E., Meisalo, V.,

1997. Eliot – an Algorithm Animation Environment. Report A-1997-4, Department

of Computer Science, University of Helsinki, Helsinki, Finland,http://www.cs.

helsinki.fi/TR/A-1997/4/A-1997-4.ps.gz.

Yehezkel, C., 2002. Visualization of computer architechture. In: Second Program Visual-

ization Workshop. HornstrupCentert, Denmark, pp. 113–117.

54

Appendix 1: The complete LeJOS code

1 import josx . platform . rcx .∗;

2 import josx . util .∗;

3 import josx . robotics .∗;

4

5 public class Robot1 {

6 public static byte id ; // robot ’s identifier

7 public static byte weight; // robot ’s weight

8 public static float speed; // robot ’s linear speed

9 public static float rotation_speed ;// robot ’s rotation speed

10 private static TimingNavigator nav;

11

12 Robot1 (byte id , byte weight, float speed, float rotation_speed) {

13 this . id = id ;

14 this .weight = weight;

15 this .speed = speed;

16 this . rotation_speed = rotation_speed ;

17 nav =newTimingNavigator (Motor.C,

18 Motor.A, speed, rotation_speed);

19 nav.setMomentumDelay ((short) 95);

20 }

21 public static void main (String [] args)

22 throws InterruptedException {

23 Robot1 robot =newRobot1 ((byte) 1, (byte)20, 7.8f , 6.55f);

24 Motor.A.setPower (3);

25 Motor.C.setPower (3);

26 nav. travel (132);

27 nav. rotate (−90);

28 nav. travel (141);

29 nav.stop ();

30 Sound.systemSound (true, 5);

31 TextLCD.print ("END");

55

32 }

33 }

56

Appendix 2: Answers from the Evaluation

Questions:

1. Mention three issues where the application could help onewhen learning an algo-

rithm by concretizing it with the robotics.

2. By the termrole we refer to... How do you understand the concept of role in the

context of this application? Could you come up with some otherterm for this con-

cept?

3. Suggest one idea in which direction this project could continue (techniques, ap-

proaches etc.).

4. Mention one other application area which may use this concretization approach and

the framework.

Answers:

Answer 1

1. Helping to expose the operational interpretation of algs, i.e. concept of a virtual

machine; giving access to the internal state of the executing algorithms, to assist

debugging; promoting the awareness of the significance of observation in under-

standing algorithms

2. Role is a good term, provided that it is understand as context-dependent. The the-

atre analogy helps, but the notion of role you invoke is much more specific than

"playing a particular character". Perhaps phrases like "role in sorting / in the ex-

change/comparison" might help.

3. Definitely an interesting link with Empirical Modeling. Several ideas here; not all

in scope of short-term research. Possibilities:

(a) extend the EM bubblesort

57

(b) take model further with EM heapsort

(c) try to make a more general study relating capabilities ofagents to algs they

can concretize

4. Other sorting algorithms (as above) variations - Showingconcurrent/autonomous

sorting; playing games, eg. variations of noughts-&-cross.

Answer 2

1. Difficult issues, when someone needs some concretizing. This is useful maybe to

young childrens (understanding of a difficult structure that is not a part of their

everyday knowledge); Planning of a program = designing a program; algorithm by

using the application = no need to write a code; testing of algorithms that are not

able to do with a real life robots; Learning of concepts of programming, but this is

needed to plan more detailed... how to do it?

2. Role of robot is related to the robot’s behavior and robot’srole in an algorithm...

I’m thinking... :) actually the role can be both static and dynamic, but it depens on

whether you think a role as an actor or operator (onkohan tämäoikea termi?) = like

an independent robot doing a thing as an actor or a task that a robot is doing. In this

case "a role" is the task. Siis kohdistuu joko robottiin tai toimintoon.

3. Could a robot write a code or a pseudocode by moving a robot bya player/program-

mer? Or is it already doing so? Like programming by building,but you’ll get a code

(I-Blocks does not give a code but a result). Can robot do the same as concretizing

"animation" = trasferring the behaviour of the "virtual robot" to a real robot?

4. Could the application be used for learning of concepts of programming? Well, this

is maybe not a answer to the question... :)

Answer 3

58

1. First of it helps one to understand that basic algorithms are executing one com-

mand after another; It shows the connection between the abstract command and

the concrete action it triggers; Perhaps playing wih robotsin concrete world could

be directed back to the application, which would show those acions animated with

information about the actors (ID, the weight of the variableetc.) <= kind of like

vice-versa -approach.

2. You have used the right and the left, which are suitable forconcretizing algorithms

like sorting. But it is an another question, wheter we can haverobotsics in a role

of "general concretization tool" similar to Jeliot? Perhaps, robots carrying displays

(PDA’s or small LCD’s?) with changing images, i.e. picture ofroles, could serve

there being actors on the stage in the reality.

3. I find it interesting to use this application as a first tool for children to a kind of

animations in the real world. They could orchestrate movements of several small

robots to create for example robot ballet. I would also suggest including a time

scale to a program, where you could see the position of robot at certain moment of

time.

4. I would think this would be VERY fruitful, if combined to a model of real envi-

ronment presented in scale. Then you could for example program industrial robot

(robots by moving them and seeing how do they behave in that model in an envi-

ronment with a number of other similar robots. NOTE: Answers(3) and (4) are

a kind of combined idea from animating of a model to concrete world movement

without a programming phase in between. Programming by animating. It would be

more than shear visualization. It should also be two-directed from animation to a

real world movement and from real world movement to animatedmodel.

Answer 4

1. The explicit nature of the robotics gives clear understanding of what is happening;

Does the explicit nature make it easier to ’learn’ the algorithm?

59

2. It seems that when the robots move to do their actions they are like actors in a

play who come forward to tolk the stage for this ’act’. The ’performance’ is the

algorithm and each step is an ’act’.

3. Can you show the educationally benefit of the explicit nature of the robotics? Valde-

mar Setzer has some possibly relevant work on manual sortingby children using

playcards.

4. Could you use robotics to illustrate mathematical concepts?

Answer 5

1. Visualization of abstract concepts (sorting/searching); able to explain in own lan-

guage the algorithm (by explaining robotic actions); by storing convete perhaps will

help later recall when trying to use algorithm in future.

2. Behaviour? Procedure?

3. Given a concrete model of an algorithm can students then derive a procedural algo-

rithm, ie. after watching robots do a sort can they spot main features + code. Later

on, do students remember the concrete model to recall the algorithm??

4. searching? Object interaction (communication); networking theory?

Answer 6

1. Visualizing the algorithm;

2. The type of move/action allowed to a given robot at a given point in time.

3. Maybe expand moving robots (with limited actions and degrees of freedom) to

agents with a rich set of actions and allowed interactions.

4. Describing / visualizing the behaviour / performance of asystem. For example, the

process in an OS, or threads in a distributed system.

60

