
Dynamic Indexing Using Hierarchy of Clusters,

Updating Multiple Objects

Martin Gunia

December 22, 2005

University of Joensuu

Department of Computer Science

Master’s Thesis

Abstract

Most metric indexes are designed to work with static data sets which cannot be changed

once the index is built. This is impractical in situations in which the objects are often up-

dated or their number changes frequently. Existing approaches are only capable of inserting

or removing single object at a time. We present methods for both insertion and removal

that operate multiple objects at the same time and show their advantage over single object

manipulation experimentally. Moreover, we relax the accuracy of the methods with an error

threshold parameter, which can be used for controlling the trade-off between speed of the

update operations and quality of the index.

Table of Contents

1 Introduction 1

1.1 Motivation for metric indexes . 1

1.2 Applications . 3

1.3 The theory of metric spaces . 4

1.3.1 Metrics and metric spaces . 4

1.3.2 Vector spaces . 6

1.3.3 Example metric spaces . 7

1.3.4 Query operations . 7

1.3.5 Basic principles for metric indexing 8

1.3.6 Dimensionality and related issues . 15

2 Related work 17

2.1 Retrieval methods for vector spaces . 17

2.2 Distance preserving methods . 18

2.3 Distance based methods . 19

2.4 Pivot selection . 23

3 Dynamic indexing using unbalanced structures 24

i

TABLE OF CONTENTS

3.1 Dynamic capabilities of existing indexes . 25

3.2 Dynamic vp-tree indexing . 26

3.2.1 Insertion . 28

3.2.2 Removal . 32

3.3 Dynamic indexing using Hierarchy of Clusters 34

3.3.1 Multiple object insertion . 36

3.3.2 Multiple object removal . 37

3.3.3 Insertion with error control . 38

3.4 The tree quality . 40

3.5 Complexity analysis . 40

4 Experimental results 44

4.1 Block size for updating multiple objects . 45

4.2 Mean square error . 47

4.3 Search comparison . 50

5 Conclusions and future work 52

Bibliography 55

A Pseudocode 59

ii

List of Figures

1.1 Boundaries of balls in 2 dimensional space R2 with covering radius r under

L1, L2 and L∞ metrics. 9

1.2 The model for indexing and querying on metric spaces. 10

1.3 a) Partition using 1 pivot, b) 3 pivots, c) Voronoi partition, d) Assymetric

clusters. Objects marked c and p represent centers and pivots. 12

1.4 Comparing against more pivots to increase pruning. 14

3.1 Structure of internal DVPT node. 27

3.2 The effect of redistribution. Old boundaries are drawn in solid lines, the new

boundary is dashed. Objects that are being moved are marked in grey. a)

Shrinking class B by moving objects from B to C. b) Expanding class B by

moving objects from C to B. 30

3.3 Splitting of node C. a) Splitting and inserting the new node in the tree. b)

Updating the boundary. 2 levels of decomposition are shown for node C and

C ′. 31

4.1 Insertion cost in distance calculations for blocks of 10, 100 and 1000 objects.

a) 10 dimensional clustered data, h(n) = 1/4. b) 15 dimensional uniformly

distributed data, h(n) =
√

n. 45

iii

LIST OF FIGURES

4.2 Insertion cost in distance calculations for exact insertion with ε = 0.01 and

blocks of 10, 100 and 1000 objects. a) 10 dimensional clustered data, h(n) =

1/4. b) 15 dimensional uniformly distributed data, h(n) =
√

n. 46

4.3 Removal cost in distance calculations for ε = 0.01 and blocks of 10, 100 and

1000 objects. a) 10 dimensional clustered data, h(n) = 1/4. b) 15 dimensional

uniformly distributed data, h(n) =
√

n. 47

4.4 Error and construction cost for exact insertion for ε = 0.01, 0.05, 0.1. At

the top 10 dimensional clustered vector space, at the bottom 15 dimensional

space of uniformly distributed vectors. 48

4.5 Error and construction cost for object removal for different values of ε = 0.01,

0.05, 0.1. At the top 10 dimensional clustered vector space, at the bottom 15

dimensional space of uniformly distributed vectors. 49

4.6 Search efficiency for different values of ε = 0.01, 0.05, 0.1. and for non-exact

insertion method. a) 10 dimensional clustered vector space, b) 15 dimensional

space of uniformly distributed vectors. 50

A.1 The redistribution algorithm for HC-Tree. If the algorithm is called from

within an Insert EXACT function, it also calls Insert EXACT instead of Insert

and packs the node from which objects were removed to ensure the minimal

error. 60

A.2 The trivial split algorithm. The algorithm rebuilds the whole splitted tree,

possibly choosing new pivots. 61

A.3 The bulk insertion algorithm for Hierarchy of Clusters. Insert may return a

new node in case of splitting, so we start the insertion by root = Insert (root,

O). 61

A.4 The exact insertion algorithm for Hierarchy of Clusters. The algorithm may

return a new node in case of splitting, so we start the insertion by root =

Insert EXACT (root, O, ε). 62

iv

LIST OF FIGURES

A.5 The merge algorithm. Merges left and right subtrees of A and replaces A with

the result. 63

A.6 Remove algorithm. 63

A.7 Pack algorithm. Pack may return a new node if the root subtrees were merged.

We start the algorithm by root = Pack (root, ε). 64

v

Chapter 1

Introduction

The aim of this work is to survey existing approaches to dynamic metric indexes and propose

algorithms for insertion and removal on Hierarchy of Clusters. Additionally we consider

updating multiple objects at once, which is more efficient than doing the same amount of

work one by one. The thesis is organised as follows. The Chapter 1 provides basic information

on metric spaces and the necessary theory. Chapter 2 presents existing methods for metric

indexing. Chapter 3 is dedicated to dynamic indexes and propose new methods for inserting

and removing multiple objects. Chapter 4 shows results from experiments conducted on the

proposed algorithms. Conclusions and suggestions for further improvements are stated in

Chapter 5.

1.1 Motivation for metric indexes

The most popular database systems these days are based on a relational data model. The

model was first presented by E. F. Codd in 1970 [Codd 1970]. The main motivation be-

hind his work was to offer more convenient and powerful models than the two opponents,

hierarchical and network models. Founded on set and relational algebra, relational model is

suitable for efficient implementations and has been successfully adopted in many commercial

1

Chapter 1. Introduction

solutions. Codd proposed to organise data in tables of fixed size records and assign each

record a unique key as an identifier. Moreover, he sketched a simple set language that would

be capable to retrieve subsets of the data using single operators. His work led to the design

of the SQL language, which was adopted as a standard in 1986.

Relational databases are build around the concept of exact searching, where a record is

included in the answer if its key matches the given query key (so called querying by key).

Usually, one can also search for a range of keys. Optimal search algorithms exist, provided

that there is a total linear ordering or at least an equivalence relation defined on the keys so

that queries can be solved using a binary search method in O(log(n)) worst case time, where

n is the size of the database. Noticeably a weak point of this arrangement is that the database

entries are accessed by an arbitrary identifier rather than the data itself. In a vast number

of applications, however, searching on contents is essential and we speak about querying

by contents or querying by example. The latter name comes from the fact, that we give

an example object (query), that may not be in the database, and search by comparing the

database against the example. The only way to search a relational database using the whole

record is to declare the whole record a key. Unfortunately as the key becomes complex, both

indexing and searching becomes too difficult and no longer to any benefit. Moreover, the

requirements posed on a key strongly restrict the data types that can be used for indexing. A

good example is a database of images, which cannot be meaningfully represented by a single

key and for which no linear ordering is defined. Despite the fact that some workarounds

to query by contents exist for specific domains (f.e. prefix search on textual databases),

indexing complex data in general becomes very difficult or even impossible task for the

relational model.

The querying on contents approach offers much higher level of freedom compared to the

key based technique. Naturally, the set of relevant entries might not just contain the elements

that match exactly but rather be defined by some relevance criterion. We may consider two

situations. In the first one we have a complete query and we are looking for objects that

are similar. In the second case, we only have a partial query and we aim to find the full

record. Both share the same idea of retrieval of objects based on their proximity. Existing

2

Chapter 1. Introduction

solutions to proximity searching are based on the metric space model1, where a distance

function is defined over a set of objects. The objects can be of any type such as vectors,

strings, images, documents or graphs which cannot be indexed by traditional databases.

The distance function fulfils certain basic properties (see Section 1.3) that can be used for

filtering out irrelevant objects.

Trivial way to evaluate a query would be to measure its distance to all objects but since the

distance is usually expensive to compute, this is not practical for large databases. Therefore

we look for a way to preprocess the database using the pairwise distances (i.e. build a metric

index) so that at the query time we calculate as few distances as possible.

Metric indexes usually scale well with the size of the database and offer good performance

to a certain extent. The most challenging obstacle in using metric indexes is their sensitivity

to the dimensionality of the space. In general, the efficiency of searching in metric spaces

drops drastically with increasing dimension and no algorithm can cope with data of insintric

dimensionality higher than 20 without using some dimensionality reduction method.

Most metric databases are essentially static and the structure is fixed after the index was

built. Update operations are very expensive on such indexes and very often the only way

to add or remove an element is to rebuild the whole index from scratch. This may not be

reasonable for many applications and some improvements towards dynamic operations have

been done in [Ciaccia et al. 1997, Fu et al. 2000, Navarro and Reyes 2002; 2003].

1.2 Applications

We name a few domains, for which the concept of similarity searching is fundamental. A key

to discover the range of application is to look at the data to be indexed and a set of queries

to be answered.

Multimedia data types such as images, sounds or video cannot be meaningfully indexed

using a traditional approach. Having a collection of images or songs, a typical query would

1Many of them are based on vector spaces as a special case of metric spaces.

3

Chapter 1. Introduction

be: “Find an image that is similar to this one.”. Clearly, this cannot be done by assigning an

image a key and then compare the keys. One workaround is to tag the images manually, i.e.

to extract the features of the image and compare the sets of features. Metric indexes, on the

other hand, allow indexing on the contents itself eliminating the error caused by the feature

extraction. Another examples where metric spaces come to use is pattern recognition, video

compression where metric indexes can be used for finding image blocks that differ from the

previous frame, image compression where we try to find nearest match for parts of the image,

audio retrieval or searching for similar DNA patterns.

1.3 The theory of metric spaces

In this section, we present basic theory that is necessary to understand how the distance

information can be used for indexing and searching. At first, we introduce metric and metric

space as the fundamental model for metric based indexing. We pay attention to a special class

of metric spaces, so called vector spaces, for they are used used in a variety of applications

such as spatial information systems or multimedia databases. We define basic operations on

the metric spaces that are to our interest, namely range and nearest neighbour search. At

the end of this chapter we speak about the importance of the dimensionality of the space

and how it affects the efficiency of searching.

Let X denote the universe of all possible objects and its finite subset U ⊂ X objects to

be searched. U will be called the database or dictionary. X can consist of any objects, such

as numbers, vectors, text strings but also graphs or images.

1.3.1 Metrics and metric spaces

The concept of proximity queries can be formalised using the metric space model. Metric

space is a space of objects X where a distance between pairs of objects is defined. The

mathematical abstraction of distance is called a metric and as such must follow some basic

properties.

4

Chapter 1. Introduction

Definition 1.1. A function d : X × X → R is called a metric if it satisfies the following

axioms:

A. ∀x, y ∈ X, d(x, y) ≥ 0 (non-negativeness)

B. ∀x, y ∈ X, d(x, y) = d(y, x) (symmetry)

C. ∀x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

D. ∀x, y ∈ X, d(x, y) = 0 if and only if x = y (identity of indiscernibles)

A metric must be a nonnegative function. Most often, metrics are symmetric, but the

symmetry criterion can be omitted in some cases which results in a quasi-metric. The

triangle inequality reflects the fact, that one side of a triangle is always less than or equal

to the sum of the lengths of the other sides or, in other words, that there is no shorter path

than a straight one — from a geometrical point of view. Triangle inequality and symmetry

are the two essential properties of metrics for any metric based indexing algorithm to work.

Dropping the axiom D we obtain a pseudo-metric, allowing that two distinct objects exist

at zero distance from each other. Depending on the domain of possible return values, the

metrics are either discrete or continuous.

For clarity, we strictly refer to a metric when speaking about a distance function d in the

rest of the work.

Definition 1.2. Metric space is a pair (X, d), where X is a set of objects and d is a metric.

A metric space is a set where a notion of distance between elements of the set is defined

by the distance function d. Any subset A ⊂ X of metric space (X, d) is a metric space itself

with the metric dA(x, y) = d(x, y) for all x, y ∈ A.

5

Chapter 1. Introduction

1.3.2 Vector spaces

If the objects are vectors, we speak about a vector metric space or vector space for short.

Typically the objects are real numbered vectors but vectors of any types are possible2. Due

to the geometrical nature of vector spaces, which is not present in general metric spaces,

searching vector spaces takes advantage of the coordinate information. The algorithms are

presented in the next chapter. Vector spaces usually come together with an L (Minkowski)

metric.

Lk(~x, ~y) = k

√∑
i

(xi − yi)k (1.1)

The most widely used representative of the L family is the L2 metric, known as the Euclidean

distance. Euclidean metric corresponds to the natural notion of distance as the shortest

straight path in a Rn space.

L2(~x, ~y) =

√∑
i

(xi − yi)2 (1.2)

Due to its higher computational complexity, several approximations exist. Generally they

try to avoid the square root, which is expensive operation, using a polyhedral boundary to

provide acceptable error/speed rate.

L1 and L∞ are other important L metrics. Besides being used in analysis, they are

particularly useful because they are the lower respective higher bounds to the Euclidean

metric and compute much faster. L∞(x, y) ≤ L2(x, y) ≤ L1(x, y). The L1 metric is also

called City Block or Manhattan distance and corresponds to the sum of distances along the

coordinates. L∞ is the limit case of the equation (1.1) with k taken to the infinity, and can

be computed as the maximum distance over all coordinates. L∞ metric is sometimes referred

to as the Chessboard distance as it is the distance the King can reach in one move.

L1(~x, ~y) =
∑

i

|xi − yi| (1.3)

2In linear algebra, any objects that are closed upon addition and scalar multiplication qualify for vector
spaces

6

Chapter 1. Introduction

L∞(~x, ~y) = max
i
|xi − yi| (1.4)

For vector spaces, a whole group of searching algorithms exists, called spatial access

methods and will be described in more detail in the next chapter.

These algorithms make use of the coordinate information present to partition objects in

the space. These algorithms are, however very sensitive to the dimensionality of the space

and the searching has exponential complexity on the dimension, making them impractical

for dimensions higher than 10. In these cases, the general metric space can work better. In

[Ciaccia et al. 1997] author compares M-tree with an vector space method R-tree and shows

that M-tree outperforms R-tree in high dimensions. This phenomenon, known as the curse

of dimensionality, is discussed further in Section 1.3.6.

1.3.3 Example metric spaces

The most common metric space is the space of real numbers R with the metric d(x, y) =

|x− y| and space of n-dimensional real number vectors Rn with an L metric.

Another example is a space of strings and edit distance function. Edit distance returns

the minimal amount of characters that have to be inserted, deleted or replaced to transform

one string to the other. It is useful in applications that need to determine how similar two

strings are, such as spell checkers.

1.3.4 Query operations

Before we speak about query operations on metric spaces, we define few terms that are

closely related and that will appear through the rest of the thesis. Let x0 ∈ X and r > 0.

Definition 1.3. The set B:

B(x0, r) = {x ∈ X | d(x, x0) < r} (1.5)

is called an open ball (or ball) with center at x0 and radius r.

7

Chapter 1. Introduction

Definition 1.4. The set B:

B(x0, r) = {x ∈ X | d(x, x0) ≤ r} (1.6)

is called a closed ball with center at x0 and radius r.

The parameter r is called the covering radius of B.

By querying we understand retrieving objects from the database, using an arbitrary object

q, q ∈ X as a query object. Note that q does not have to be in the database. The result is a

set of objects that are in a relation to q. The relation is determined by the distance function,

see Figure 1.1. There are basically 3 interesting query operations, although one could argue

about other candidates.

Definition 1.5. Given a query object q and a range r, range query (q, r) retrieves a set of

objects that are within the distance r from the query object q. In other words, range query

retrieves a ball centred at q with radius r.

Definition 1.6. Given a query object q, Nearest Neighbour query (q) retrieves an object u

closest to q. That is {u ∈ U | ∀v ∈ U− u, d(u, q) < d(v, q)}.

Definition 1.7. Given a query object q and a threshold k, k-Nearest Neighbour query (q, k)

retrieves a set of objects S ⊆ U, |S| = k that are closest to the query object q.

S = {ui ∈ U | ∀v ∈ U− ui, d(ui, q) < d(v, q) for i = 1 . . . k}

1.3.5 Basic principles for metric indexing

Despite there are currently dozens of algorithms for searching in metric spaces, they have

many things in common. Being based on the metric space model they rely merely on the

distance information to drive the search. We do not consider special cases such as vector

spaces in this section as they are not important topic in this thesis.

The common strategy of all algorithms is to partition the space into equivalence classes

(further called classes for simplicity), which can be marked relevant or irrelevant as a whole

8

Chapter 1. Introduction

L1

x0

r

L2

x0

r

L∞

x0

r

Figure 1.1: Boundaries of balls in 2 dimensional space R2 with covering radius r under L1,
L2 and L∞ metrics.

during searching. This way, the number of objects to be searched can be narrowed quickly.

The equivalence classes are built around a specially elected object (or a small sets of objects)

called routing objects. The searching process can be summarised into two steps:

1. Find the candidate set — a subset of the database, which may be relevant to the query.

2. Search the candidate sets exhaustively for the answer.

In the first step, the index is traversed and the query is compared against routing objects

stored in the index, discarding all non relevant classes using an exclusion criteria. This

includes distance calculations and some extra CPU time, together referred to as the internal

complexity. The remaining classes are candidates for the answer and are searched exhaus-

tively. This corresponds to the external complexity of the search. Routing objects play a

special role in the first step and it is natural that their selection significantly affects the

performance (see Section 2.4).

Most indexes are built recursively, suggesting a tree organisation. The decomposition

continues until there is only one object to process in each subset. Additionally one may

specify a constant b and stop the execution if there are less than b objects in every class.

The objects are stored in buckets without any further processing. Controlling the granularity

of the decomposition has it importance. Indexes with small buckets will have many internal

9

Chapter 1. Introduction

qDecomposition

Figure 1.2: The model for indexing and querying on metric spaces.

nodes, hence higher internal complexity. The external complexity, on contrary, will be

reduced.

A way to evaluate the quality of the decomposition and the exclusion criteria used is to cal-

culate a discriminative power of the search algorithm with respect to the given query.[Chávez

et al. 2001b] The discriminative power is tightly related to the external complexity and is

defined as the number of the objects in the database relevant to the query divided by the

number of objects that have to searched exhaustively. Discriminative power grows with de-

creasing external complexity and it is to the responsibility of the application programmer to

find the optimal balance.

Partitioning strategies

Pivoting — given the set of objects S ⊂ U and a routing object (pivot) p ∈ X, we consider

distances d(x, p) for all x ∈ S. Two elements x and y are considered equivalent

(belonging to the same class) if d(x, p) = d(y, p). We obtain a collection of disjoint

spherical shells centred at p. Note that this is practical only if the distance is discrete

or takes very few values. Otherwise the probability that two objects will be at exactly

the same distance is minimal and we rather specify a lower and upper bounds on

the distances allowed within each class. The same way, the elements x and y are

considered equivalent if their distances to the pivot fall within the same range rmin <

|d(x, p)− d(y, p)| ≤ rmax. Clear disadvantage of using only one pivot is that the outer

10

Chapter 1. Introduction

rings tend to be very thin if the objects are distributed equally among the classes i.e.

the index is balanced. The classes have very low locality as the distance of a pair of

objects inside a class can be very high (see Figure 1.3a). The situation can be improved

using k pivots [Bozkaya and Ozsoyoglu 1997] so that the above relations must hold for

all pivots pi, i = 1 . . . k, obtaining 2k partitions. The locality increases significantly

with increasing number of pivots as can be seen in Figure 1.3b.

Voronoi decomposition — given the set of objects S ⊂ U and k routing objects (centers)

{ci ∈ X, i = 1 . . . k} we assign each object to its nearest center3. That is we create

one class for each ci containing all objects x ∈ S for which d(x, ci) < d(x, cj) for all

j = 1 . . . k, j 6= i. An example partition with four centers can be seen in Figure 1.3c.

Clustering — given the set of objects S ⊂ U and k routing objects {ci ∈ X, i = 1 . . . k}
we divide the objects into k + 1 classes, where each i-th class, i = 1 . . . k, contains

all objects inside the ball Bi(ri, ci). (k + 1)-th class contains the remaining objects.

While the previous methods always create disjoint partitions, clustering does not. For

an arbitrary object there might be one or more classes that qualify. It is interesting to

remark that in case of overlapping classes the order in which they are traversed may

matter. In such case we speak about asymmetric partition. If the traversal order does

not matter (i.e. the object can be in any of the qualifying classes), the partition is

symmetric. An example of an assymetric clustered partition is in Figure 1.3d.

Exclusion criteria

As mentioned before, at search time, the query is systematically compared against small

subsets of the database and those that do not intersect with the query are discarded from

further search. All the criteria follow from the triangle inequality as it is the only property

that can be used for pruning in general metric spaces. Depending on the partitioning strategy

3A true Voronoi decomposition is only guaranteed to exist for Euclidean metric as the equidistant locus
of two centers may not be a hyperplane in general case. We use the name for its graphical convenience.

11

Chapter 1. Introduction

p
p2

p3p1

c2

c1 c3

c1

c2

c4

c3

c)

a) b)

d)

Figure 1.3: a) Partition using 1 pivot, b) 3 pivots, c) Voronoi partition, d) Assymetric
clusters. Objects marked c and p represent centers and pivots.

12

Chapter 1. Introduction

used, the most common way to evaluate the intersection is to compare the query against the

covering radii of the subsets or the hyperplanes between the neighbouring subsets.

Let S be a subset of U and p the routing object assigned to S.

Covering radius criterion bounds the set of objects S by considering a ball B(p, cr) such

that S is fully contained in B, hence cr = maxu∈S d(u, p). Given a query q and the

search radius r, S can be discarded if

d(p, q)− r > cr (1.7)

Covering ring criterion is a slight modification of the previous technique, which is in par-

ticular useful when p is far away from S. Covering ring defines both the upper and

lower bounds on distances crmin = minu∈S d(u, p) and crmax = maxu∈S d(u, p). S can

be discarded if

d(p, q) + r < crmin or d(p, q)− r > crmax (1.8)

Hyperplane criterion considers the hyperplane between two neighbouring subsets of a

Voronoi decomposition. If c is the center closest to q then the query of course intersects

with the partition of c. The query does not intersect with a partition of ci if it does

not intersect with the hyperplane between c and ci:

d(q, c) + r < d(q, ci)− r (1.9)

A way to decrease internal complexity without sacrificing the discriminative power is to

use more routing objects for discarding irrelevant subsets.[Yianilos 1993, Brin 1995] Using

the covering ring criterion, for example, we can discard all subsets for which (1.8) holds for

any routing object considered. In general, a good idea is to use routing objects stored in

the ancestral nodes [Yianilos 1993, Brin 1995] or on the same level [Brin 1995] of a tree as

d(q, pi) has already been computed in the earlier stage of the search. The effect of using

more pivots is illustrated in Figure 1.4. In the left part, S has to be processed for q1. q2,

however, lies outside the ring and thus S can be skipped in that case. In the right part, S

13

Chapter 1. Introduction

does not have to be considered for both queries.

p1p

crmaxcrmin

q2

d(p, q)

p2

q1q1

q2

Figure 1.4: Comparing against more pivots to increase pruning.

Query complexity

In the first step, distance from a partition to a specially selected object is done and the

partition is rejected using triangle inequality if it falls outside the query ball. As most of

the indexes are hierarchical, the process is repeated until all partitions, that haven’t been

discarded yet, have been tested. The cost of this step is called the internal complexity. The

partitions, that might contain relevant objects are searched exhaustively and the cost of the

search is called external complexity. The total complexity to evaluate a query is then the

sum of internal and external complexities. In other way the overall time to evaluate a query

can be expressed as

T = ND × TD + TCPU + TI/O , (1.10)

where ND is the number of distance calculations, TD is the time per one distance calculation,

TCPU is the extra CPU time and TI/O is time needed for input/output operations.

The main task is to minimise the T . This is, however, dependent on the application

domain and the optimal setup has to be proposed by the application developer. In many

applications, a distance computation is very costly operation and thus the aim is to minimise

the number of distance computations. The other factors can be neglected. In some cases,

the index can suffer from very slow I/O access, mainly if the database is huge and does not

fit in the main memory and have to be stored on the disk. Then we are trying to organise

14

Chapter 1. Introduction

the structure in order to minimise the number of page accesses. Most often the task of

finding the optimal performance means finding the optimal trade-off between the number of

distance calculations and the storage size (I/O cost).

1.3.6 Dimensionality and related issues

As mentioned before, the main obstacle for using metric indexes is their high sensitivity to

the space dimensionality. Vector space indexing methods are exponentially dependent on

the representational dimensionality of the data (that is on the dimensionality of the data

representation, disregarding the “geometry” of the space) as the ball containing the answer

grows exponentially with the dimension.[Chazelle 1994] This is true for all metric spaces and

the phenomenon is generally known as The Curse of Dimensionality. The Curse of Dimen-

sionality was first coined by Richard Bellman in [Bellman 1961], who relates the problem to

the rapid growth of volume when increasing the dimensionality of a space. Bellman givens

an example of 100 observations on 1 dimensional interval 〈0, 1〉. While in 1 dimension, 100

observations cover the interval quite well, considering a 10 dimensional space, 100 observa-

tions would be just few isolated points in a huge empty space. To get the same coverage,

one would have to use 1020 observations instead. Another way to look at the dimensionality

problem is to consider the histogram of distances between objects in U. [Chávez et al. 2001b,

Brin 1995] refers to the histogram as a fundamental analytical measure of the dimensionality

related properties in generic metric spaces, independent of their nature. High dimensional

spaces have a histogram concentrated around the mean, with low variance, suggesting that

the distances between objects are very similar and therefore carry less information.

The representational dimensionality is overcome in general metric spaces as the distance

information uncovers the geometry of the space. The true dimensionality is also called

the intrinsic dimensionality. In practise, insintric dimensionality can be much lower as

the data does not occupy the whole space but rather agglomerates in clusters. [Chávez

et al. 2001b] gives an example of a hyperplane embedded in a 50 dimensional space whose

representational dimensionality is 50 but insintric dimensionality is 2. Formally we define

15

Chapter 1. Introduction

the insintric dimensionality of a metric space ρ as

ρ =
µ2

2σ2
(1.11)

where µ is the mean and σ2 the variance of the histogram of distances of the space.

Algorithms that use Voronoi-like decomposition, try to overcome the high insintric di-

mension by increasing the number of centers used for the decomposition. This approach,

however, requires a lot of memory or disk space and poses a limit on the amount of centers

that can be used. Additionally, if the data is organised on disk, large amount of centers will

increase the disk page accesses, slowing down both search and update operations.

In [Chávez and Navarro] authors show the disadvantage of using partitions with equally

sized classes for spaces with high insintric dimensionality. The problem is related to the

exponential growth of volume as the dimension increases. To have equal volumes, the classes

farther from the center have to be very narrow compared to classes lying closer. While the

effect is negligible in low dimensional spaces, in high dimension the query ring may intersect

with many classes or, in the worst case, with all of them, decreasing the efficiency of searching.

Some solution to this problem are List of Clusters and Hierarchy of Clusters described later,

which use unbalanced partitions.

Another solution to indexing high dimensional spaces are the probabilistic algorithms.

The probabilistic framework presented in [Chávez and Navarro 2001, Chávez and Navarro

2003] can be applied to any indexing algorithm and significantly improves the search per-

formance at the cost of very few errors. The idea is to relax the border of the result by a

confidence ε, which defines how much can the outcome of the query differ from the correct

answer. Searching for a query q with radius r, the algorithm discards all objects u for which

|d(u, p)− d(p, q)| > r/β, where p is a pivot and β is a stretching factor. The main goal is to

find a maximum β so that the probability of missing an answer is at most ε.

16

Chapter 2

Related work

In this chapter we present existing metric indexes. This survey is based on the comprehensive

work of [Chávez et al. 2001b]. We divide the survey into three parts. First we introduce

retrieval algorithms for vector spaces for their importance in practice, then we briefly present

algorithms that retrieve objects by mapping the original space into a vector space. At last

we focus on the metric indexes, which are central in this work.

2.1 Retrieval methods for vector spaces

Multidimensional access methods (also called spatial access methods — SAM) provide ef-

ficient searching in spatial databases. Spatial database is a collection of points or, more

generally, shapes embedded in a Rn space1. Shapes can be approximated by a single point

and a covering radius or by a polygonal boundary. In case of points, the space is indeed

a vector space, usually grouped with an Euclidean distance. A typical operation on a spa-

tial database is searching for all objects in a given area, either fully or partially contained.

Efficient spatial indexes are essential in geographical and CAD applications as well as multi-

media databases, which often represent indexed objects as points in multidimensional space

1Rn is the most common but in general, vectors of any data type are possible

17

Chapter 2. Related work

for efficient retrieval.

A general solution to multidimensional indexing is a grid file presented in [Nievergelt et al.

1984]. Given a set of n dimensional vectors, grid file defines a search space of n dimensions

where each dimension represents an ordering on the corresponding component of the data.

This is, in fact, identical to indexing over all fields in a relational database and does not

overcome the restrictions such as the data types that can be indexed. For this reason, grid

file is considered a type of disk data organisation, rather than an index itself. Amongst

the other indexes, the most popular are kd-trees [Bentley 1975; 1979], R-trees [Guttman

1984] (and its modifications: R+-trees, R∗-trees) and X-trees [Berchtold et al. 1996]. All

recursively partition the space into disjoint subspaces in order to discard regions that do not

contain the query. K-d tree uses hyperplane partitioning along the coordinates, very simple

yet effective technique. R-tree divides the space into hyper-rectangles.

Unfortunately, the search complexity of the above algorithms is exponentially dependent

on the dimensionality of the space. High dimensional data with low insintric dimensionality

is common to many real applications, programmers sometimes resort to general metric spaces

where the insintric dimensionality shows up without any need for an additional workaround.

2.2 Distance preserving methods

Distance preserving method try to transform the general metric space into a vector space

so that the objects can be retrieved using a SAM method. The technique of mapping from

the general metric space to a vector space is called multidimensional scaling (MDS). MDS

reduces each object in the original space into a representative vector so that the distances

in the target space are preserved as much as possible. The two reasons for using MDS.

The first is efficiency — complex analysis on high dimensional spaces is inefficient (or even

impossible), reducing the dimensionality while preserving distances allows us to perform

operations faster. The second reason is visualisation of highly dimensional data. Reducing

to 2 or 3 dimensional vectors can help to better understand the structure of the analysed

space.

18

Chapter 2. Related work

In [Kruskal and Wish 1978] author defines a stress function that ranks the dissimilarity

between the pairwise distances using a stress function. The algorithm first guesses the target

vectors and then tries to minimise the stress. The algorithm uses O(n2) distance calculations.

Probably the most known example is the FastMap algorithm [Faloutsos and Lin 1995]

which offers similar quality of the mapping as the previous algorithm, but only takes O(nk)

distance calculations.

In [Fu et al. 2000] authors show experimentally that the accuracy grows with the dimen-

sionality of the target space. In other words, to have accurate mapping, we need the target

space to be of high dimensionality also, speaking clearly in favour of distance based methods

presented in the next section.

2.3 Distance based methods

Nowadays, it is common for multimedia databases to index their contents, f.e. images, using

feature vectors. However, it is not easy and often not possible at all to transform the original

data into a vector of limited size without a loss of accuracy in searching. Moreover, some data

types, such as text, are completely resistant to feature extraction and cannot be transformed

by any means. Metric indexes overcome this problems by using the distance information only

rather than relying on other way of representation.

Distance based indexes are the central topic in this work. We introduce the indexes in

chronological order, as they appeared, because many of them are in fact closely related or just

slight modifications of previous algorithms. We try to point out the similarities. Attention

is payed to the VP-Tree, List of Clusters and Hierarchy of Clusters, because the indexes will

be referenced in the next chapters.

The first general solution for searching metric spaces was given in [Burkhard and Keller

1973]. They propose a tree, hence called Burkhard-Keller Tree (BKT), that partitions the

space using one pivot per node. BKT assumes discrete distance function as each partition

consists of objects whose distance to the pivot is equal, i.e. for each distinct distance there

19

Chapter 2. Related work

will be one partition. The process is repeated recursively. A slight improvement of BKT is

the Fixed Query Tree [Baeza-Yates et al. 1994] which uses one pivot per level of the tree.

Authors claim that the tree can save some distance computations during backtracking and

show this fact experimentally. In [Chávez et al. 2001a], Fixed Query Array is presented,

which is no more than a compact representation of FQT, which corresponds to the elements

of the FQT stored in an array when traversing the tree in-order. Despite BKT and FQT,

FQA quantizes the distances to fit in a predefined number of bits, making the index as

compact as possible. This allows to use more pivots in sacrifice of the precision, which may

give better performance than using the original distance.

In [Uhlmann 1991] Uhlmann presented a structure called Metric Tree. Later, the same

idea was extended in [Yianilos 1993] and called the Vantage Point Tree (VPT). VPT is a

binary tree built recursively by taking an element as a vantage point and calculating the

median of distances from all elements to it. Elements whose distance is smaller or equal to

the median are put in the left subtree and elements whose distance is bigger are put into the

right subtree. The construction continues recursively for both subtrees. Yianilos extends

the tree by storing the upper and lower bounds in each internal node for its corresponding

subspace as viewed from the ancestor vantage points. Since the distances have already been

computed, the construction cost remains O(n log(n)). Searching the tree is similar to BKT.

The distance from the query to the vantage point is measured and the search enters all

subtrees that intersect with the query ball until a leaf node is found. Some subtrees can be

discarded without having to measure the distance by evaluating the bounds stored in the

node for intersection with the query. The tree can be generalised to m-ary tree (MVPT) by

taking m − 1 uniform percentiles instead of the median or using more vantage points per

node, as suggested in [Bozkaya and Ozsoyoglu 1997]. The first technique slightly improves

the search efficiency compared to the binary tree but not in all circumstances. In high

dimensional spaces, for example, the effect is negligible as the outer rings tend to be very

thin and the search will likely enter many subtrees. Authors show that using more pivots

improves the search efficiency by 20% – 80%.

Uhlmann also suggests taking two centers and dividing the space using a hyperplane

between the centers, hence the name Generalised Hyperplane Tree (GHT). The advantage,

20

Chapter 2. Related work

compared to VPT, is that the decomposition is symmetric in volume, so that the volumes

of so created partitions are equal. The search algorithm uses the hyperplane as the pruning

criterion. Brin proposed to use m centers to obtain better partitioning of the space in [Brin

1995]. Result is the Geometric Near Neighbour Access Tree (GNAT). In addition to the

hyperplane criterion, GNAT also uses the lower and upper boundaries of each partition with

respect to the other centers to save distance computations during searching. This idea is

very similar to that of Yianilos.

An algorithm which is different from the others is the Approximating Eliminating Search

Algorithm (AESA) by [Ruiz 1986]. AESA does not rely on hierarchal decomposition but

uses a matrix of precomputed pairwise distances between all objects in the database. At

search time, the algorithm picks an object p ∈ U from the database and discards all objects

u ∈ U that do not satisfy d(p, q) − r ≤ d(u, p) ≤ d(p, q) + r. The process is continued

until no objects can be eliminated and the rest is searched exhaustively. Because all d(u, p)

distances are precomputed, only one distance calculation is needed at each step. AESA

performs remarkably better than any other index in the terms of distance computations,

but its disadvantage is the O(n2) space consumption, which makes it impractical for larger

databases. [Micó et al. 1994] overcomes the problem by taking k sample objects and storing

the distances to all remaining objects so that the index occupies O(kn) space. This simpli-

fication comes from the assumption that k steps are enough in most situations to achieve

efficient pruning.

Another algorithm that does not divide the space using centers is the Spatial Approxima-

tion Tree (SAT) [Navarro 2002]. The tree is constructed as follows. An element p is selected

at the root of the tree and is connected to a set of neighbours N ⊂ U such that every object

in N is closer to p than to any other object in N . The remaining objects (not in N) are

assigned to their closes object from N and processed recursively. Searching is also different

from the other indexes. When searching with zero radius, we simply move to the neighbour,

which is closest to the query. If the radius r is greater than zero, we pretend we are searching

for an unknown element q′ whose distance from q is at most r. Therefore the search may

enter more neighbours, not only the closest one. If c is the closest neighbour to q, we enter

into all neighbours u ∈ N for which d(u, q)− r ≤ d(c, q) + r satisfies.

21

Chapter 2. Related work

M-Tree presented in [Ciaccia et al. 1997] divides the objects by their distance to the

centers chosen at each node. Each class within the partition stores its center and covering

radius. The search algorithm enters into all subtrees that qualify for the answer. Due to the

symmetric partitioning scheme, and because all objects are stord in leaves, M-tree handles

both insertion and removal operations very efficiently.

In [Chavez and Navarro 2000, Chávez and Navarro] authors propose List of Clusters (LC),

a linear clustering technique that groups objects in the space into balls of defined radius.

The construction starts by choosing a center c ∈ U and a radius rc and divides the set U
into two subsets

IU,c = {u ∈ U− {c}, d(u, c) ≤ rc}

EU,c = {u ∈ U− {c}, d(u, c) > rc},

where I is the set of internal objects lying inside the ball B(c, rc) and E stands for the set

of external objects, lying outside the ball B(c, rc). The set I is stored in a bucket while

the set E is processed recursively until E contains no objects. The result is a list of triplets

(ci, ri, Ii). It is important to note that the partition is asymmetric and the first center chosen

has a preference in case of overlapping balls. The search algorithm starts at the beginning

of the list (i = 1) and measures the distance from the query q to the i-th center d(q, ci). c

is added to the result if it lies inside the query ball (q, r), that is if d(q, ci) ≤ r. If the query

ball has an intersection with the ball B(ci, ri), the bucket Ii is searched exhaustively. The

search continues for i + 1 until the end of the list is reached. The search does not always

have to scan the whole list. Due to the asymmetry, the process can be stopped if the query

ball is fully contained inside B(ci, ri).

We can see List of Clusters as a special case of tree, similar to the VP-Tree. The main

difference is that LC is highly unbalanced, because I is typically much smaller than E.

Authors show both analytically and experimentally that unbalanced structures work better

in high dimensions.

List of Clusters can be easily turned into Hierarchy of Clusters [Fredriksson 2005] by

processing both sets I and E recursively, until each contains only one object, which is stored

22

Chapter 2. Related work

in a leaf, or b objects stored in a bucket. Rather than relying on a fixed size or fixed radius,

function h(n) is used used to control the size of the set I, hence

IU,c = {u ∈ U− {c}, d(u, c) ≤ h(|U|)}

EU,c = {u ∈ U− {c}, d(u, c) > h(|U|)}

Depending on the h(n) the tree can be either balanced h(n) = n/2 or unbalanced. In a

way HC can be seen as a generalisation of the simple VP-tree, which always creates balanced

partition. Searching the Hierarchy of Clusters is identical to searching the VP-Tree.

2.4 Pivot selection

Most algorithms, that use routing objects for indexing select the objects randomly. However,

it is known that the pivot selection significantly affects the search time and some heuristics

better than the random selection have been presented independently in [Brin 1995, Chavez

and Navarro 2000, Chávez et al. 2001b]. In general they try to use objects that are far from

each other. In [Brin 1995], for example, authors suggest to choose objects farthest from each

other using a greedy algorithm so that they are likely to be in the centers of the partitions.

Centers bunched up nearby each other would not be of much use since their distances to a

random object would be similar. [Chavez and Navarro 2000] suggests, for each new center,

picking an object that maximises the sum of distances to previous centers so as to minimise

the overlap of clusters. More complete work on pivot selection is presented in [Bustos et al.

2003]. They define an efficiency criterion to estimate the capability of a set of pivots to filter

out objects outside the query. The criterion is based merely on the distance distribution of

the data set. They show that good pivots tend to be outliers, hence objects that are far

from each other and far from the rest of the objects in the database but not all outliers are

good candidates for pivots.

23

Chapter 3

Dynamic indexing using unbalanced

structures

Most metric indexes are designed to work with static data sets which cannot be changed once

the index is built. This is impractical in situations in which the objects are often updated

or their number changes frequently. Trivial solution to the problem would be to generate

a new index every time the data is changed but this is not efficient, considering that such

databases typically consist of tens of thousands of objects. Modifying even a small portion

of the data set would require rebuilding the whole index from scratch. For this reason it is

useful to look for indexes capable of efficient insertion and removal of objects. Note that

an object in the data set can be modified by removing from the database and inserting it’s

updated version. The basic requirements on a dynamic index can be summarised as follows:

1. The modification is local — in order to ensure efficiency, the modification should not

require global reorganisation of the index. The cost should be proportional to the

amount of objects inserted or removed.

2. The quality of the decomposition should not decrease after subsequent modifications

or stay within a defined bound.

24

Chapter 3. Dynamic indexing using unbalanced structures

Inserting and removing is a difficult task for hierarchal indexes, which often have to

reorganise the partitions to maintain their quality. The difficulty then depends mainly on

the partitioning scheme used. Partitions that create disjoint classes of equals sizes, which

are the most commonly used in metric indexes (for example BKT, VPT or Hierarchy of

Clusters), are very resistant to any updates. This is because the partitioning in lower levels

of the hierarchy depends on the partitioning in the upper levels, closer to the root of the

hierarchy tree, and changes to any node have to be propagated downwards. Non-hierarchal

indexes usually handle both operations without difficulties.

3.1 Dynamic capabilities of existing indexes

Among the indexes presented in Section 2.3 the only representatives that can truly handle

both insertion and deletion are FQT (and it’s modifications FQHT and FQA), AESA (and

LAESA), GHT, GNAT and M-Tree. FQT has no internal nodes and the decomposition

is predetermined by the set of pivots, therefore an object can be added or removed from

the tree without any structural reorganisation. However, after a large amount of objects

being inserted or removed, pivots may not fit to the data anymore, leading to increase in

performance. In such situation, a global reorganisation may be needed. AESA and LAESA

can handle updates without any difficulty since they are just matrices of distances between

pairs of objects. GHT and GNAT do not rely on global statistics (such as median for VPT)

so that any reorganisation happens in leaf nodes only. Like for FQA, the centers may become

inappropriate after a while and global restucturalization may be needed. Removing a center

is also a problem.

M-Tree presented in [Ciaccia et al. 1997] takes advantage of symmetric partition which

allows fast insertion and removal of objects. The inserted object is placed in the subtree for

which the increase in radius is minimal or zero in ideal case. When the leaf node is reached,

the object is stored and if the node overflows, it is split into two and one node is promoted

upwards. Similar strategy is used for removing objects, where an underflown node is merged

with its neighbour and the merging is propagated upwards until needed.

25

Chapter 3. Dynamic indexing using unbalanced structures

SAT does not support any insertions or deletions as the whole dataset has to be known

in advance to find the candidate neighbours. Some work on dynamic SAT (DSAT) has been

done in [Navarro and Reyes 2002]. Deletions were furthermore improved in [Navarro and

Reyes 2003].

VP-Tree and MVP-Tree suffers from relying on median (or uniform percentiles for MVPT)

of distances from the vantage point so that inserting or removing objects from leaf nodes

affect the decomposition at higher levels (closer to the root). In [Fu et al. 2000] authors

propose a modification of VPT called Dynamic VPT (DVPT), which supports insertion and

deletion. The technique resembles that of M-Tree but requires more careful reorganisation

since it uses disjoint partitions and may lead to global reorganisation as well.

List of Clusters handles insertion and removal easily for clusters of fixed radius because

the partitions are not modified. The optimality of the chosen radius may be affected after

many objects have been inserted or removed and therefore a periodical rebuilding of the

structure is suggested. If the size of cluster is fixed, the update operations are more complex

and resemble that of DVPT.

3.2 Dynamic vp-tree indexing

In this section we present a dynamic index suggested in [Fu et al. 2000] that derives from

the VP-Tree, hence called DVP-Tree. The index supports both insertion and removal of a

single object with reasonable efficiency. In the worst case, however, insertion of an object

may result in rebuilding the whole tree, the matter is discussed later. Taking advantage of

the similarity of the two indexes, we use their work as a basis for our algorithms. In fact, the

algorithms for inserting and removing a single object from HC are just slight adaptations of

the DVP-Tree algorithms that treat the balance rather as a parameter than a fixed state.

The structure of DVP-Tree is nearly identical to the VP-Tree. Consider a finite set of

objects S and a parameter M, M ≥ 2. In each internal node, the tree stores one routing

object vp ∈ S (vantage point) and divides the data set into M classes Si, i = 1 . . . M of

roughly equal sizes depending on their distance to the vantage point. The boundary distance

26

Chapter 3. Dynamic indexing using unbalanced structures

P pointer to the parent node
vp vantage point
µi, i = 1 . . . M–1 i-th class boundary
childi, i = 1 . . . M i-th child pointer

Figure 3.1: Structure of internal DVPT node.

of i-th class is denoted by µi so that for each s ∈ S, µi−1 < d(s, vp) ≤ µi.
1 The structure

of an internal node is shown in Figure 3.1. Note that since the classes are constructed on

the whole set S, the vantage point is also contained in one of the sets Si. Therefore the tree

stores all objects in the leaves, which results in somewhat taller trees, but has it’s reason.

Having all objects in leaves, one can easily remove an arbitrary object from the tree without

destroying it’s functionality. Otherwise it’s difficult to remove a routing object because there

is a part of the tree depending of it. One solution would be to give each routing object a tag

marking whether it has been deleted or not. Upon deletion, the tag would be set to true and

the object would remain in it’s place. The negative effect of this approach is that quality of

the tree decreases after many routing objects have been deleted. Duplicated routing objects,

present the same efficiency drawback but do not require any special treating while deleting

objects. In practise, the decrease of efficiency caused by routing objects being replicated in

leaves is only visible in low dimensional spaces. The structure of DVP-Tree node is shown

in Figure 3.1.

Let us also define several operations on the nodes of the tree, which will be used throughout

the thesis:

Definition 3.1. If A is a node, then [A] denotes the set of objects held in the tree rooted at

A. For leaf node [A] contains all objects stored in the bucket of A. If A is an internal node

with m children then

[A] =
m⋃

i=1

([A.childi]) (3.1)

Definition 3.2. If A is a node, then count(A) denotes the the number of objects held in

the tree rooted at A. For leaf node count(A) equals to the number of objects in the bucket

1Provided that µ0 = 0 and µM = ∞

27

Chapter 3. Dynamic indexing using unbalanced structures

of A. If A is an internal node with m children then

count(A) =
m∑

i=1

(count(A.childi)) (3.2)

Definition 3.3. Let level(A) be the level of the node A, i.e. the distance of the node to the

leaf level. Level of a leaf node equals to 0.

Definition 3.4. If A is a node, then capacity(A) denotes the the maximum number of

objects that can be held in the tree rooted at A. Let bucketsize be the capacity of a leaf

node and M the maximum number of children an internal node can have. Then

capacity(A) = bucketsize ·M level(A) (3.3)

Definition 3.5. If A is a node, then free(A) denotes the size of unoccupied space under A.

Free(A) is defined for convenience only and can be calculated as

free(A) = capacity(A)− count(A) (3.4)

3.2.1 Insertion

Being a hierarchal index that partitions the space in a top-down manner using classes of

fixed size, DVP-Tree relies on complex reorganisation techniques in order to maintain the

quality of the partition and a global reorganisation may result. To avoid global reorganisation

until necessary, the update algorithms look for the smallest portion of the tree that needs

structural changes. To insert an object, the reorganisation is forced when there is no place

to store the inserted object, using two methods: redistribute and split.

Redistribution does not create any new nodes in the tree but moves objects between

adjacent siblings in order to make the space for insertion available. Assume that the new

object is being inserted into k-th child of a node A. Let’s also assume that the k-th child

cannot accommodate any new object (capacity(A.childk) = count(A.childk)) but there exist

at least one child l which can (capacity(A.childl) > count(A.childl)). We move objects

28

Chapter 3. Dynamic indexing using unbalanced structures

from k-th child to it’s nearest non-full sibling l so that the new object can later be inserted.

For simplicity, we will only focus on the situation when the redistribution happens between

two adjacent trees, i.e. l = k + 1 or l = k − 1, even though in general, we might need

to move objects from a node to any of it’s siblings. This can be achieved by subsequent

redistributions. The algorithm for redistributing between adjacent k-th and (k+1)-th nodes

follows.

1. Calculate the average amount of objects under both nodes.

n =
count(A.childk) + count(A.childk+1)

2
(3.5)

2. If count(A.childk) > n we move objects outside k-th child (shrinking k-th class).

Collect objects from k-th child plus the inserted object and divide the objects into two

subsets SS1 and SS2 so that SS1 contains n objects closest to the vantage point of

A and S2 contains the remaining ones. Remove all objects in S2 from k-th child and

reinsert them into (k+1)-th child. If the inserted object was in the set SS1 insert it in

the k-th child. At last update the boundary A.µk:

A.µk =
max(d(A.vp, si) ∀si ∈ SS1) + min(d(A.vp, si) ∀si ∈ SS2)

2
(3.6)

3. Otherwise, we move objects from (k+1)-th inside k-th child (expanding k-th class).

Collect objects from (k+1)-th child plus the inserted object and divide the objects

into two subsets SS1 and SS2 so that SS2 contains n objects farthest from the vantage

point of A and SS1 contains the remaining ones.Remove all objects in SS1 from (k+1)-

th child and reinsert them into k-th child. If the inserted object was in the set SS2

insert it in the (k+1)-th child. At last update the boundary A.µk using formula 3.6.

Figure 3.2 shows the effect of the redistribution on a binary node. Pseudocode of the

algorithm is in Appendix A.

The second operation mentioned above is node splitting. A node usually needs to be

splitted if no redistribution is possible and the parent still has a place for one more child.

29

Chapter 3. Dynamic indexing using unbalanced structures

vpA

C
D

vpA

C

B

D

a) b)

B

Figure 3.2: The effect of redistribution. Old boundaries are drawn in solid lines, the new
boundary is dashed. Objects that are being moved are marked in grey. a) Shrinking class
B by moving objects from B to C. b) Expanding class B by moving objects from C to B.

Otherwise the reorganisation would have to be propagated to the upper levels, involving even

larger part of the tree. The task is to split the given node into two so that both new nodes

contain part of the objects and additional free space. Unlike redistribution, split allocates

new space in the tree. In [Fu et al. 2000] authors split either a leaf or non-leaf node using two

algorithms whose semantic is, however, identical. Hence we only present a general method

for splitting any node, be it a leaf or internal node. Let the splitted node be the k-th child

of a node A. We collect all objects from the k-th child and order them by their distance

to parent’s vantage point. We divide the set into two subsets of equal sizes S1 and S2. We

create a new node containing objects in S2 and remove them from the k-th child node. We

place the new node just after the k-the child as shown in Figure 3.3.

Having understood the meaning of redistribute and split operations, we now describe how

to use them to reorganise the tree to provide free space needed to insert the new object

while preserving the desired structure of the tree. To insert an object we traverse the tree

starting at the root level. At each node, we measure the distance d from the new object

to the vantage point and descend into a subtree, whose range covers d until we reach a leaf

node L. If L has room for one more object, we insert the new object and the work is done.

Otherwise we reorganise the tree in the following way:

30

Chapter 3. Dynamic indexing using unbalanced structures

a)

A A

DB C B C DC’

vpA

C

vpA

B

C’

C

vpCvpC

vpC′

b)
D D

B

Figure 3.3: Splitting of node C. a) Splitting and inserting the new node in the tree. b)
Updating the boundary. 2 levels of decomposition are shown for node C and C ′.

1. Trace back looking for the nearest ancestor node A of L, for which capacity(A) >

count(A). Suppose that such an ancestor exists. Let B be the immediate child of A

which is also ancestor of L.

a) If A has a place for once more child, we split the node B and insert the new object

in one of the newly created nodes, where appropriate.

b) Otherwise, since capacity(A) > count(A), there exist at least one sibling of B

which can accommodate one more object. Find the nearest sibling of B and call

it C. Redistribute the objects plus the inserted one amongst nodes B and C

inclusively.

2. If no such node A is found or L is the root node, we split the root node. We create a

new root with the old root as it’s child and split it. The tree grows one level higher.

The strategy described above favours node splits over redistributions but the other way

is also possible. Authors show experimentally that the split-first approach performs better

in the terms of page accesses. The redistribute-first algorithm tends to keep the arity of the

nodes low and does not allocate any more space in the tree. Therefore the redistributions

are becoming more costly, until all children of the node reach saturation and the arity is

increased by a split. Splitting as soon as possible reduces this effect by taking advantage

of using as many child nodes as possible. Note that every now and then the process of

31

Chapter 3. Dynamic indexing using unbalanced structures

subsequent insertions reaches a state, where the whole tree is saturated and the root node

has to be splitted. Using trivial split method described above, this means to rebuild the

whole tree from scratch, which is very expensive. More sophisticated methods for node

splitting can reuse the information about the underlying data set gathered up to the point

of split. This is however, beyond the scope of this paper and is left for future work. Some

ideas are sketched in Chapter 5.

3.2.2 Removal

When inserting objects, reorganisation of the tree is necessary to provide space for the

inserted object by creating new nodes or moving objects from one part of the tree to another.

To delete an object, no such reorganisation is crucial but for the sake of effectivity it is

preferred to keep the tree in a compact form. In [Fu et al. 2000] it is achieved by eliminating

underflown nodes. Authors define, that a node A underflows if it contains less objects than

a threshold MINdata(A)

MINdata(A) = MINleaf · (MINfan)level(A) , (3.7)

where MINleaf is the minimum number of objects a leaf node should have, MINfan is the

minimum number of children an internal node should have. If a node A underflows, it is

merged with its neighbouring siblings if possible. Let the underflown node be the k-th child

of its parent node A. We try to move objects from the underflown node to its adjacent

siblings so that the underflown node can be removed from the tree. The merge algorithm is

described below.

1. If (k+1)-th subtree can accommodate objects from k-th child: capacity(A.childk+1) ≥
count(A.childk)+count(A.childk+1), we move all objects from the k-th child to (k+1)-

th and remove k-th child from the tree.

2. If (k-1)-th subtree can accommodate objects from k-th child: capacity(A.childk−1) ≥
count(A.childk−1)+count(A.childk), we move all objects from the k-th child to (k-1)-th

32

Chapter 3. Dynamic indexing using unbalanced structures

and remove k-th child from the tree.

3. Otherwise, if both (k-1)-th and (k+1)-th subtrees can accommodate the objects from

k-th child, i.e. capacity(A.childk−1) + capacity(A.childk+1) ≥ count(A.childk−1) +

count(A.childk) + count(A.childk+1), we calculate how many objects should be moved

from the k-th child to (k-1)-th:

n =
count(A.childk−1) + count(A.childk) + count(A.childk+1)

2
− count(A.childk−1)

We move n objects from the k-th child to (k-1)-th and the remaining objects to (k+1)-

th subtree and remove k-th child from the tree.

If the objects from the underflown node cannot be accommodated in its adjacent siblings,

we redistribute all objects from A among its child subtrees excluding k-th, which is removed

at last. If A has only one child after merging, the child replaces A to reduce the tree height.

To remove an object from the tree, we traverse the tree in the same way as the insertion

algorithm until we reach a leaf node L. We remove from L and if it does not underflow, the

work is done. If L underflows, we perform one of the following steps:

1. Trace back looking for the nearest ancestor node A of L, for which count(A) ≥
MINdata(A). Suppose that such an ancestor exists. Let B be the immediate child

of A which is also ancestor of L.

a) If one adjacent node or both adjacent nodes together can accommodate the objects

is B, merge the node B. If A has only one child after merging, replace A with

A.child0.

b) Otherwise, we redistribute all the objects under A among its child nodes excluding

B and remove B from the tree.

2. No such node A is found or L is the root node. If the root node is an internal node we

merge the child node from which the object was removed. If the root node only has

one child after merge, the child becomes new root. If the root is a leaf node, hence L

is the root node, no further action is taken.

33

Chapter 3. Dynamic indexing using unbalanced structures

3.3 Dynamic indexing using Hierarchy of Clusters

The algorithms presented in Section 3.2 can be adapted to work with Hierarchy of Clusters

described in Chapter 2. We pinpoint two major differences between the indexes. At first, HC

uses a function h(n) to control the balancedness of the tree. For this reason we cannot rely on

formula 3.3 and 3.7 to calculate capacity and underflow threshold for a node. We redefine

the capacity of a node A as the number of leaf nodes under A multiplied by the bucket

size. Note that the capacity can no longer be determined from position of A in the tree but

relies merely on structure of its subtrees. That has an impact on the removal algorithm, as

described later. The second difference is that Hierarchy of Clusters is strictly a binary tree.

This fact simplifies implementation of the redistribute, split and merge methods, as well as

the insertion and removal algorithms themselves. In a binary tree, two siblings are always

adjacent, hence there is no need for the general redistribution and merge methods operating

on non-adjacent subtrees. For simplicity we refer to child1 as to the left child and to child2

as to the right child. In the same manner we refer to the boundary between the left and

right child of a node as to µ, meaning µ0.

Inserting or removing single object is inefficient and not practical. In real applications we

are often interested in updating many objects at a time. A naive solution would be to insert

or remove all objects one by one in a loop. The disadvantage of this approach is that for an

arbitrary node in the tree the reorganisation may be forced in every iteration of the loop.

Consider insertion in the DVP-Tree. The probability that a node will require reorganisation

grows with growing amount of objects in the tree, compared to its capacity. In extreme case,

when the tree is nearly full, the probability approaches 1. Inserting objects will very likely

reorganise large part of the tree in every iteration, until the saturation level is reached and a

split is launched. This behaviour can be eliminated by inserting objects in blocks and forcing

a reorganisation as soon as it is clear a node will overflow or underflow. The method we

present in this section is suitable for both insertion and removal of objects and guarantees

the reorganisation to happen once per node at maximum. To increase efficiency of single

object insertions or removals, we can for example store the inserted or removed objects in an

auxiliary index and delay modification of the main index until a certain amount of changes

34

Chapter 3. Dynamic indexing using unbalanced structures

had been requested and then execute all at once, saving lot of effort for reorganisation.

To assure correct structure of the HC tree and allow multiple object insertion, we modify

the redistribution and split methods from the previous section. As for the redistribute

operation, only two modifications are necessary. At first, we replace the mean in condition

(3.5) with the h(n) function so that each redistribution will assure the correct amount of

objects in both nodes. To support multiple object insertion we give the algorithm two sets of

inserted objects, one for each node. The size of the sets helps to calculate the right amount of

objects to be moved so that the h(n) criterion is met after insertion. The new redistribution

algorithm which redistributes objects among both subtrees of a node A is shown below. O1

and O2 are the candidate objects to be inserted in the two subtrees. Pseudocode of the

algorithm can be found in the appendix.

1. Calculate the amount of objects the left subtree should have.

n = h(count(A.left) + |O1|+ count(A.right) + |O2|) (3.8)

2. If count(A.left)+|O1| > n we move objects outside the left child. Let S = [A.left]∪O1.

Divide S two subsets SS1 and SS2 so that SS1 contains n objects closest to the vantage

point of A and S2 contains the remaining ones. Remove all objects in SS2 from the

left child and reinsert them into the right one. Then insert all objects present in both

O1 and SS1 into the left child and all objects in O2 into the right child. Update the

boundary A.µ using (3.6).

3. Otherwise, we move objects from the right child inside the left. Let S = [A.right]∪O2.

Divide S into two subsets SS1 and SS2 so that SS2 contains n objects farthest from

the vantage point of A and SS1 contains the remaining ones. Remove all objects in

SS1 from the right child and reinsert them into the left one. Then insert all objects

present in both O2 and SS2 into the right child and all objects in O1 into the left child.

Update the boundary A.µ using (3.6).

Note that the objects are inserted and removed all at once using the methods described

35

Chapter 3. Dynamic indexing using unbalanced structures

later. When removing objects from the left or right child, we prefer no reorganisation

(redistributions or node merging) because the free space obtained will be used for inserting

objects from O1 or O2.

DVPT allowed splitting of a node if its parent had a place for one more child to accom-

modate the second fraction of the splitted node. Such a situation does not occur in HC

because the arity of internal nodes is fixed. Splitting has, however, importance for the in-

sertion algorithm as it increases the tree capacity. We will use a trivial split operation that

collects objects from the splitted node and builds a new tree using method for static HC

construction. This is, however, very inefficient approach. A possible solution is to reuse the

existing decomposition and is left as an open problem. The main obstacle is how to allocate

a new space in such a tree and how to choose new pivots. Note that the new split forces the

tree to grow in height rather than in width. To increase the performance of insertions, we

force the split algorithm to create a tree which is not entirely full, so that the split operations

will be less frequent. In [Fu et al. 2000] a reasonable value of leaf utilization was set to 70%.

The merge algorithm does not require any modification as its task is simply to concatenate

objects from two nodes into a single one and hence does not depend on the way objects

are distributed amongst the nodes. Since Hierarchy of Clusters is a binary tree, merge

will, however only consider two adjacent siblings and will always reduce the height of the

underlying tree because the number of children of the parent node was reduced to one. The

parent is then replaced with the merged node.

3.3.1 Multiple object insertion

To insert a set of objects into the tree, we traverse the tree starting at the root. In every

internal node we divide the inserted objects into two subsets to be inserted in the left and

right subtrees. Let A be an internal node and O1 and O2 the candidate sets to be inserted

in A.left and A.right. We use the sizes of the two sets to immediately determine, whether

a reorganisation is needed in a following way:

1. If free(A.left) ≥ |O1| and free(A.right) ≥ |O2| we continue recursively in both

36

Chapter 3. Dynamic indexing using unbalanced structures

subtrees.

2. Otherwise, if the overall free space can accommodate objects from O1 and O2, i.e.

free(A.left) + free(A.right) ≥ |O1| + |O2|, we redistribute the objects from A.left

and A.right plus the inserted objects O1 and O2 among left and right child nodes of

A.

3. Otherwise the node A overflows and has to be splitted.

If a leaf node is reached, the objects are stored and the work is done. It is interesting

to remark that the leaf node usually does not overflow because such a situation would be

handled in the higher levels of the tree by the steps 1 and 2. The only exception is the root

node, which must be split if the overall free space in the tree is insufficient for storing the

new objects. We expect a behaviour similar to the DVP-Tree, where the amount of work

needed to insert new objects depends on the amount of free space in the tree.

3.3.2 Multiple object removal

Using similar approach as for the insertion, one might consider a node to underflow if the

amount of objects stored in it is lower than its capacity, multiplied by a specified threshold

value. While this is fine for the DVP-Tree, this approach cannot be used in HC because the

correct capacity of a node is not known. Therefore we look for a different way to recognise

an underflown node. We measure the error of an internal node A as the square of the relative

difference of the number of objects under left (or right) child to from the ideal case.

EN(A) =

(
h(count(A))− count(A.left)

h(count(A))

)2

(3.9)

In addition to this we define ε, ε ∈ 〈0, 1〉 as a maximal error allowed per node. If E(A) > ε,

the node A has to be reorganized.

When inserting objects, we could immediately decide whether the node needs reorgani-

sation from size of the inserted set, eliminating the effort for restructuring the tree to the

37

Chapter 3. Dynamic indexing using unbalanced structures

necessary minimum. For removal such a technique can only be used if all the removed ob-

jects are indeed present in the tree. This is not practical for situations when the amount

of objects truly removed is not known beforehand. An example would be a range removal,

where all the objects within a specified distance from the given objects shall be removed. For

this reason we split the removal operation into two phases. In the first phase we remove the

candidate objects the tree without any reorganisation. This can be achieved by traversing

the tree, dividing the set of candidates into two sets according to their distance from the

vantage point and the boundary value µ. When a leaf node is reached, all objects in the

candidate sets are removed. In the second phase, we pack the tree into a compact form by

eliminating all empty and underflown nodes. We traverse the tree starting at the root and

in each internal node A we use the following strategy:

1. Calculate the square error EN(A) using formula (3.9).

2. If EN(A) > ε, the left and right subtrees are not balanced enough hence require

reorganisation.

a) If free(A.left) ≥ count(A.right) or free(A.right) ≥ count(A.left), merge the

left and right child and replace A with the result of the merge.

b) Otherwise redistribute the objects among A.left and A.right.

Changing the value of ε, one can optimise the removal speed as compared to the quality

of the tree. Setting ε low will produce trees close to the optimal state but removing objects

will require many reorganisations. Higher error, on the contrary, can be found useful if we

are removing objects frequently and prefer speed over the quality.

3.3.3 Insertion with error control

The error function defined above can be useful for designing an error driven insertion method,

where the necessity of reorganisation is decided by the quality rather than by insufficient

capacity. The disadvantage of using capacity as the limit is that the amount of free space

38

Chapter 3. Dynamic indexing using unbalanced structures

will affect the overall quality of the tree. An almost full tree will tend to have node with

low error while a tree with large capacity and very few objects may loose its qualities after

massive insertions.

Like in the previous insertion method, we traverse the tree starting at the root. In every

internal node A we divide the inserted objects into two subsets O1 to be inserted in the left

child and O2 to be inserted in the right one. We use the following strategy to check whether

the node needs reorganisation and take the appropriate action.

1. If the overall amount of free space under A is sufficient for inserting O1 and O2, that

is free(A.left) + free(A.right) ≥ |O1| + |O2|, we predict the error E(A) as if the

insertions were completed.

EN(A) =

(
h(count(A))− (count(A.left) + O1)

h(count(A))

)2

a) If EN(A) > ε we redistribute the objects from A.left and A.right plus the inserted

objects O1 and O2 among left and right child nodes of A.

b) Otherwise if each child can accommodate the inserted objects, we continue recur-

sively in both children.

2. Otherwise the node A overflows and has to be splitted.

Even though the two algorithms look similar, there is a fundamental difference in how the

capacity is being treated. The first insertion algorithm only allows node splitting at the root

level, so that the insertion has to reorganise large part of the tree in order to provide place

for the inserted objects. If this is not possible, the root node is splitted, increasing the tree

height and capacity. The former method, however, allows a node to be splitted anywhere in

the tree, which eliminates the need to reorganise large parts of the tree in search for available

space. The use of the split and redistribute operations is controlled by the ε parameter.

We call the algorithm exact insertion to differentiate from the previous insertion algo-

rithm. The name comes form the fact that the lower bound on the quality of the tree can

be set explicitly by the parameter ε.

39

Chapter 3. Dynamic indexing using unbalanced structures

3.4 The tree quality

To express the quality of the tree quantitatively we measure a weighted average of the

relative square error of all internal nodes. We prefer the weighted average to make the

overall error relative to the tree size. This way the quality of two trees with different sizes

can be compared. We define the average error of a tree T as

ET =

∑
A∈T (EN(A)2 · wA)∑

A∈T (wA)
, (3.10)

where wA is the weight of node A

wA =
count(A)

count(root)
(3.11)

Since ε is the upper bound for the square error for every internal node, it is also the upper

bound for the average error ET of the tree.

ET ≤ ε (3.12)

Note that ET refers to the (un)balancedness of the tree, as compared to its ideal state

where each node contains h(n) objects in its left and n−h(n) objects in its right child (where

n is the amount of objects stored under the node). ET alone, however, does not determine

the quality of the partition and hence lower error does not ensure better performance of

search operations. Among other factors influencing the partition quality we shall recall the

pivot selection strategy, which can lead to major improvements.

3.5 Complexity analysis

We use amortized analysis to show that the insertion cost is proportional to the tree height.

Our complexity measure will be the number of calculated distances. We define three opera-

40

Chapter 3. Dynamic indexing using unbalanced structures

tions: traverse, redistribute and split.

Traverse is an amortized operation of comparing an object against a node to decide

which path to continue. For this we need to compare the object against the pivot, hence the

cost of the operation is 1.

Redistribute is the operation of redistribution under a certain node. If n is the number of

objects stored under the node then a single redistribution requires O(n) distance calculations.

In the worst case the redistribution may continue recursively until the leaf nodes are reached,

hence requiring O(kn) distances to be calculated, where k is the height of the tree rooted at

the node.

Split is the operation of splitting of a node and its worst case complexity is O(kn),

where n is the number of objects under the node and k is the height of the new tree. This

corresponds to rebuilding the whole tree from scratch.

Let us first assume a simplified case without redistributions, as if the objects were being

inserted in such a way that no reorganization is needed until the tree is full and the root is

splitted. We try to find such value of the amortized cost Ctraverse for the traverse operation

so that it is able to pay off for the split operation triggered after a certain amount of

traversals has been finished. We assign split the amortized cost of zero. Having an empty

tree of capacity m with height k, we insert the first m objects in O(mk) (we need k traversals

to reach a leaf node). Each traverse operation donates a certain amount of credits, which

equals the difference between the amortized and the real costs of the operation. Inserting

(m + 1)-th object requires splitting of the tree before the actual insertion. If the newly

constructed tree was of the same height, the split cost would be O(km) and therefore 2km

credits would be required (km to reinsert m objects from the original tree and km to reinsert

another m objects from the original tree). Since the tree grows in height by one, the split

cost will in fact be O((k + 1)m) and we need extra m credits for the splitting. We cannot

count on the first m/2 objects in the tree to pay for the new one, as it already paid for

the current one, so we rely on the last m/2 objects to donate the necessary m credits. We

also have to add the real cost of the operation. We can calculate the amortized cost for the

41

Chapter 3. Dynamic indexing using unbalanced structures

traverse operation as

Ctraverse(k,m) =
2km

km
+

m
km
2

+ 1 = 2 +
2

k
+ 1.

Since the cost has to be a constant, we take the limit of the 2
k

expression for k →∞.

Ctraverse(k, m) = 3

For a large tree, the effect of increasing height becomes negligible and therefore no addition

is in fact needed to the amortized cost of the traverse operation. Note that the above

analysis assumes that the tree always doubles its capacity upon root split. That corresponds

to the utilization ratio of 50%.

Redistributions do not occur in a way splits do. It is not possible to say when a redistri-

bution will happen because it depends on the extent of utilization of individual leaf nodes.

Let us consider the worst scenario when inserting an object triggers redistribution in the

highest node, which subsequently forces the lower nodes to redistribute as well, resulting in

redistribution in every node. Having a tree of height k which contains m objects, such a

global redistribution would require O(km) distance calculations. At this point there must

be enough credits since every insertion donates 2k. It is important, that the redistribution

balances out the utilization of the affected branches. As a result, following redistribution

will move at most one object at each node of the tree along the path of insertion (since all

branches are balanced out and a single object is being inserted). Therefore the donation

made by the inserted object will be sufficient for the redistribution. Under these circum-

stances we can say that the number of distance calculations caused by redistributions is

not greater than 2k(m + 1) for any tree of height k containing m objects. We increase the

amortized cost of the traverse operation by 2 so as to pay off for the redistributions (1 for

removing an object during redistribution and 1 for inserting it into new node).

Ctraverse(k, m) = 5

42

Chapter 3. Dynamic indexing using unbalanced structures

Since traverse is the only operation with nonzero amortized cost and we perform k

traversals in order to insert an object, we can see that the total amortized complexity of the

insertion is proportional to 5k or

T ∈ O(k) . (3.13)

Same principle applies to the removal algorithm.

43

Chapter 4

Experimental results

To study performance of the update algorithms, we implemented Hierarchy of Clusters and

the proposed insert and remove methods in C++. The implementation is independent of

the indexed data and the distance function as well as the h(n) function and pivot selection

strategy. Currently the whole index is kept in the primary memory and we use pointers

to objects in nodes. The objects themselves are stored in a separate array. Due to this

organization we did not experiment with the disk access cost of the tested operations but

merely used the number of distance computations as a complexity measure. The two costs

are, however, related since more distance computations require accessing more disk pages

and vice versa so that reduction of I/O cost can be achieved by both decreasing the number

of distance calculations and organizing the nodes effectively in a page. A disk organization

similar to [Fu et al. 2000], where the nodes are packed into pages in breadth-first order is

possible for Hierarchy of Clusters as well.

We used two data sets for testing, each containing 50,000 objects. The first data set

consisted of 15 dimensional vectors picked randomly from uniform distribution on interval

〈0, 1〉 on each dimension. The indexes that operated on the dataset were strongly unbalanced

using h(n) =
√

n. The second data set consisted of 10 dimensional vectors that formed

clusters. The number of clusters was chosen to be 100 and their centers were picked at

random but respecting that no object inside the cluster falls outside the unit hypercube.

44

Chapter 4. Experimental results

Objects from every cluster were uniformly distributed on interval 〈−0.1, 0.1〉 relative to

the cluster center. The clustered data set was considered rather low dimensional since its

insintric dimensionality was expected to be less than the representational. Hence we used

h(n) = n/4 for indexes that worked with the dataset. Pivots were picked at random from

the input dataset as it does not require extra distance calculations and hence does not affect

the overall cost of the tested algorithms.

4.1 Block size for updating multiple objects

First we tested how the amount of objects updated at once affects the performance. To

test the insertion method, we created an empty index and inserted 50,000 vectors in blocks

of 10, 100 and 1000 objects at once. For better results, we set the leaf utilization rate to

70% as suggested in [Fu et al. 2000]. The construction costs for both data sets are shown in

Figure 4.1. We also show the cost of the static construction for comparison.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects inserted

a)

x 10
x 100

x 1000

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects inserted

b)

x 10
x 100

x 1000
static static

Figure 4.1: Insertion cost in distance calculations for blocks of 10, 100 and 1000 objects. a)
10 dimensional clustered data, h(n) = 1/4. b) 15 dimensional uniformly distributed data,
h(n) =

√
n.

We can see that both cost functions have a characteristic pulsating shape. Regions of the

plot, where the function is steepest correspond to the tree as it is approaching the saturation

level. The closer, the larger part of the tree needs to be redistributed to provide enough

place for the inserted objects, demanding more and more distance calculations. When the

45

Chapter 4. Experimental results

tree cannot accommodate any more inserted objects, the root node is splitted and the whole

tree is rebuilt. From that point on, the tree has enough of free space and can handle the

coming insertions with little effort, until the free space is consumed and the cycle is repeated.

Using blocks of higher sizes reduces the amount of executed redistributions, we observe the

largest benefit when the tree is close to saturation since every redistribution is very costly.

The efficiency of splitting of the root node is not affected. Note that the insertion cost

grows rapidly as the tree is becomes more unbalanced. This is because unbalanced trees are

taller than balanced ones, hence requiring more pivot–object comparisons when traversing

the tree. The same problem is present while building the tree statically. The complexity of

the static construction is O(kn), which can turn out to be O(n log n) for a balanced tree or

O(n2) in case of an extremely unbalanced one.

We carried out identical test for the exact insertion method with fixed value of ε, ε = 0.01.

The benefit of inserting larger amount of objects at once was not as high as in the previous

case but still notable. The reason for it is that the exact insertion controls reorganizations

by the parameter ε. Hence the tree has no saturation level and cost for redistributions does

not dominate the overall construction cost anymore. Figure 4.2 shows the result for the 15

dimensional space. The advantage of exact insertion is that it has more predictable behaviour

because of the absence of the saturation barrier. Additionally, the speed of insertion can be

regulated by setting the error threshold ε.

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects inserted

a)

x 10
x 100

x 1000

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects inserted

b)

x 10
x 100

x 1000
staticstatic

Figure 4.2: Insertion cost in distance calculations for exact insertion with ε = 0.01 and
blocks of 10, 100 and 1000 objects. a) 10 dimensional clustered data, h(n) = 1/4. b) 15
dimensional uniformly distributed data, h(n) =

√
n.

46

Chapter 4. Experimental results

At last we put the removal algorithm to test. We built an optimal HC index statically on

the whole data set and then removed all 50,000 vectors in blocks of 10, 100 and 1000. We set

the leaf node utilization ratio to 100% to achieve faster removal. In practice, however, lower

value might be preferred as the insertions and removals are combined. Results for both data

sets are shown in Figure 4.3.

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects removed

a)

x 10
x 100

x 1000

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects removed

b)

x 10
x 100

x 1000

Figure 4.3: Removal cost in distance calculations for ε = 0.01 and blocks of 10, 100 and
1000 objects. a) 10 dimensional clustered data, h(n) = 1/4. b) 15 dimensional uniformly
distributed data, h(n) =

√
n.

4.2 Mean square error

Besides the construction time, we also focused on the quality of the trees after a large amount

of objects has been inserted or removed. We used the same data sets as above and conducted

several tests to study the behaviour of the exact insertion and removal algorithms for varying

ε. Like in the previous section, we created an empty index and inserted 50,000 objects using

the exact insertion algorithm. We tried ε = 0.01, 0.05 and 0.1, the size of block was fixed

to 1000 objects. Figure 4.4 shows the mean square error ET (see Section 3.4) for both data

sets and chosen ε. We included the error and construction cost of the non exact insertion

method for comparison.

From plots 4.4a and 4.4b we can see that the exact insertion method introduces lower

error than the non exact insertion algorithm. The construction cost is more predictable

47

Chapter 4. Experimental results

not exact
eps = 0.001
eps = 0.01
eps = 0.1

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 10000 20000 30000 40000 50000

Er
ro

r

Number of objects inserted

a)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects inserted

b)

not exact
eps = 0.001
eps = 0.01
eps = 0.1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0 10000 20000 30000 40000 50000

Er
ro

r

Number of objects inserted

c)

not exact
eps = 0.001
eps = 0.01
eps = 0.1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects inserted

d)

not exact
eps = 0.001
eps = 0.01
eps = 0.1

Figure 4.4: Error and construction cost for exact insertion for ε = 0.01, 0.05, 0.1. At the
top 10 dimensional clustered vector space, at the bottom 15 dimensional space of uniformly
distributed vectors.

48

Chapter 4. Experimental results

because there is no saturation barrier after which a global reorganization would be needed.

Note that the error function for the non exact insertion has a pulsating character closely

related to its construction cost. When the tree is nearly full, the little amount of free space

only allows a minimal error. As the tree is approaching the saturation level, the allowed

error is very small and therefore every insertion is very expensive. When splitting the root

node, the tree is rebuilt with optimal amount of objects under every node, hence zero error.

Plots 4.4c and 4.4d show similar error for the removal algorithm.

 0

 0.005

 0.01

 0.015

 0.02

 0 10000 20000 30000 40000 50000

Er
ro

r

Number of objects removed

a)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects removed

b)

eps = 0.01
eps = 0.05
eps = 0.1

eps = 0.01
eps = 0.05
eps = 0.1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10000 20000 30000 40000 50000

Er
ro

r

Number of objects removed

c)

eps = 0.01
eps = 0.05
eps = 0.1

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 3.5e+07

 0 10000 20000 30000 40000 50000

D
ist

an
ce

 c
al

cu
la

tio
ns

Number of objects removed

d)

eps = 0.01
eps = 0.05
eps = 0.1

Figure 4.5: Error and construction cost for object removal for different values of ε = 0.01,
0.05, 0.1. At the top 10 dimensional clustered vector space, at the bottom 15 dimensional
space of uniformly distributed vectors.

Note that for both algorithms the error converges to a value that is much lower than ε.

This is caused by frequent redistributions and splits, which restore correct (un)balance in

the affected portion of index. Therefore the error reaches the maximum value very seldom.

A probabilistic solution might find a higher value of ε, ε′ > ε, for which the actual ET would

49

Chapter 4. Experimental results

still be within ε with some confidence level.

4.3 Search comparison

To evaluate the quality of the index in practical way, we tested the search performance on

both data sets, with trees of different error. We used the exact insertion method and inserted

50,000 objects into an empty index with error thresholds ε = 0.01, 0.05, 0.1 and using the

non-exact method. Then we run a series of range queries with increasing radius and measured

the number of distance calculations needed to find the answer. To eliminate random error,

we run every range search with 100 different queries and calculated the average number of

distance calculations. For both datasets, the range was chosen so that 0.2% of the database

was retrieved at maximum. We used the pivot selection strategy that maximizes the sum

of distances of the pivot to the previously selected ones as proposed in [Brin 1995, Chavez

and Navarro 2000, Chávez et al. 2001b]. To increase the performance, the selection did not

operate on the whole dataset but 100 random candidates were chosen. Similarly, since the

number of pivots may be high for unbalanced trees, the algorithm picked 50 random pivots

from the previously selected ones to compare against the candidate set. Results are shown

in Figure 4.6.

 0

 500

 1000

 1500

 2000

 2500

 0 0.05 0.1 0.15 0.2 0.25 0.3

D
ist

an
ce

 c
al

cu
la

tio
ns

Search range

a)

eps = 0.01
eps = 0.05
eps = 0.1
not exact

 0

 5000

 10000

 15000

 20000

 25000

 0 0.1 0.2 0.3 0.4 0.5

D
ist

an
ce

 c
al

cu
la

tio
ns

Search range

b)

eps = 0.01
eps = 0.05
eps = 0.1
not exact

Figure 4.6: Search efficiency for different values of ε = 0.01, 0.05, 0.1. and for non-exact
insertion method. a) 10 dimensional clustered vector space, b) 15 dimensional space of
uniformly distributed vectors.

50

Chapter 4. Experimental results

From both plots we can see that the impact of the error on the search is minimal. As

mentioned in Section 3.4, the error ET serves rather as way to quantify the (un)balancedness

of the tree, as compared to the ideal one, rather than determining the quality of the decom-

position itself. The experiments show that the tree with lowest ET does not necessarily yield

best search performance, which is demonstrated in plot 4.6a.

51

Chapter 5

Conclusions and future work

We studied the problematics of metric indexing and various techniques that use the distance

information to reduce the candidate set while searching. We surveyed existing metric indexes

and payed special attention to how can they handle non-static data.

We studied in detail the algorithms for dynamic indexing proposed for Vantage Point Tree

in [Fu et al. 2000] and adapted the algorithms for Hierarchy of Clusters. We extended both

insertion and removal algorithms to operate on multiple objects. We show experimentally

that inserting or removing multiple objects at once effectively reduces the amount of distance

calculations. For the insertion algorithm, the number of distance calculations dropped by

nearly 60% inserting 1000 objects at once compared to inserting 10 objects at once. Moreover

we proposed a new algorithm for insertion that uses a threshold parameter ε to limit the

maximum allowed error. Exact insertion, unlike the original algorithm, is more sensitive to

the (un)balancedness of the tree. While the almost balanced tree with h(n) yielded 50%

decrease of distance calculations inserting blocks of 1000 objects as compared to 10, for

highly unbalanced tree h(n) =
√

n the effect was not so strong. The number of distance

calculations dropped by 20%. Similar results were achieved with the removal algorithm.

The advantage of the exact insertion algorithm is that the trade-off between insertion

speed and tree quality can be controlled using the maximal error threshold. This is very

52

Chapter 5. Conclusions and future work

useful especially for highly unbalanced indexes, where the construction cost is very high.

Another advantage is its predictable behaviour, where the cost function is not disturbed

by the presence of a saturation barrier. In our tests, the exact insertion always required

less distance computations for highly unbalances trees, compared to the original insertion

method.

The presented dynamic indexes clearly beat the static ones in situations when a relatively

small amount of new objects is inserted into a large database. The amortized average case

complexity was shown to be t ∈ O(k), where k is the height of the tree. The naive approach

would require O(kn) distance calculations to rebuild the whole index from scratch.

Open problems and our suggestions for future work:

In the search and remove methods, some distance computations could be saved when

traversing the tree using the distance of the inserted/removed objects to k previous vantage

points on the traversal path. For some objects we can guess whether they will fall into the

left or right subtree of the node without actually having to calculate the distance from the

current vantage point.

The main disadvantage of the insertion algorithm is the periodical reorganisation of the

entire tree when the capacity is exceeded and the root node must be splitted. The same

problem applies to DVP-Tree. More sophisticated split algorithm would significantly increase

the insertion. Since splitting can be implemented using range search, a possible solution

would be to use nearest neighbour search on the existing tree. The effectivity of nn search

would, however, be a problem when the dimensionality of the space is high and the gain

would be minimal.

Another option would be a lazy split operation, that preserves the decomposition in low

level nodes, and only reorganises nodes in higher levels, treating the low level nodes as

“unbreakable” groups. This would reduce the number of objects involved in the operation,

as each group could be represented by its center and covering radius. On the other hand,

this technique would require the decomposition to be symmetric.

From the experimental results we see, that the exact insertion and removal algorithms

53

Chapter 5. Conclusions and future work

tend to create trees with error much lower than the threshold ε. This is caused by frequent

split and redistribute operations, which balance the tree to the optimal state. A probabilistic

framework may be used to estimate a higher value of ε so that the overall error of the tree

is within the requested limit with a certain confidence.

54

Bibliography

R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using fixed-

queries trees. In CPM ’94: Proceedings of the 5th Annual Symposium on Combinatorial

Pattern Matching, pages 198–212. Springer-Verlag, 1994. ISBN 3-540-58094-8.

R. E. Bellman. Adaptive Control Processes. Princeton University Press, Princeton, NJ, 1961.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.

ACM, 18(9):509–517, 1975. ISSN 0001-0782.

J. L. Bentley. Multidimensional binary search trees in database applications. IEEE Trans-

actions on Software Engineering, 5(4):333–340, 1979.

S. Berchtold, D. A. Keim, and H.Kriegel. The x-tree: an index structure for high-dimensional

data. In VLDB ’96: Proceedings of the 22th International Conference on Very Large Data

Bases, pages 28–39, 1996.

T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces.

In SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international conference on

Management of data, pages 357–368. ACM Press, 1997. ISBN 0-89791-911-4.

S. Brin. Near neighbor search in large metric spaces. In VLDB ’95: Proceedings of the 21th

International Conference on Very Large Data Bases, pages 574–584. Morgan Kaufmann

Publishers Inc., 1995. ISBN 1-55860-379-4.

W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching. Commun.

ACM, 16(4):230–236, 1973. ISSN 0001-0782.

55

BIBLIOGRAPHY

B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for proximity searching in

metric spaces. Pattern Recogn. Lett., 24(14):2357–2366, 2003. ISSN 0167-8655.

E. Chávez, J. L. Marroqúın, and G. Navarro. Fixed queries array: A fast and economical

data structure for proximity searching. Multimedia Tools Appl., 14(2):113–135, 2001a.

ISSN 1380-7501.

E. Chávez and G. Navarro. A compact space decomposition for effective metric indexing.

Pattern Recognition Letters. To appear.

E. Chavez and G. Navarro. An effective clustering algorithm to index high dimensional metric

spaces. In SPIRE ’00: Proceedings of the Seventh International Symposium on String

Processing Information Retrieval (SPIRE’00), pages 75–86. IEEE Computer Society, 2000.

ISBN 0-7695-0746-8.

E. Chávez and G. Navarro. A probabilistic spell for the curse of dimensionality. In ALENEX

’01: Revised Papers from the Third International Workshop on Algorithm Engineering and

Experimentation, pages 147–160. Springer-Verlag, 2001. ISBN 3-540-42560-8.

E. Chávez and G. Navarro. Probabilistic proximity search: Fighting the curse of dimension-

ality in metric spaces. Information Processing Letters, 85:39–46, 2003.

E. Chávez, G. Navarro, R. Baeza-Yates, and J. Luis Marroqúın. Searching in metric spaces.

ACM Comput. Surv., 33(3):273–321, 2001b. ISSN 0360-0300.

B. Chazelle. Computational geometry: a retrospective. In STOC ’94: Proceedings of the

twenty-sixth annual ACM symposium on Theory of computing, pages 75–94. ACM Press,

1994. ISBN 0-89791-663-8.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity

search in metric spaces. In Proceedings of the 23rd International Conference on Very Large

Data Bases (VLDB’97), pages 426–435, Athens, Greece, August 1997. Morgan Kaufmann

Publishers, Inc.

56

BIBLIOGRAPHY

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 26(1):

64–69, 1970. ISSN 0001-0782.

C. Faloutsos and King-Ip Lin. Fastmap: a fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets. In SIGMOD ’95: Proceedings of the

1995 ACM SIGMOD international conference on Management of data, pages 163–174.

ACM Press, 1995. ISBN 0-89791-731-6.

K. Fredriksson. Exploiting distance coherence to speed up range queries in metric indexes.

Information Processing Letters, 95(1):287–292, 2005.

Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, and Yiu Sang Moon. Dynamic

vp-tree indexing for n-nearest neighbor search given pair-wise distances. The VLDB Jour-

nal, 9(2):154–173, 2000. ISSN 1066-8888.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD ’84:

Proceedings of the 1984 ACM SIGMOD international conference on Management of data,

pages 47–57. ACM Press, 1984. ISBN 0-89791-128-8.

J. B. Kruskal and M. Wish. Multidimensional scaling. SAGE publications, Beverly Hills,

1978.

M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour approximat-

ing and eliminating search algorithm (aesa) with linear preprocessing time and memory

requirements. Pattern Recogn. Lett., 15(1):9–17, 1994. ISSN 0167-8655.

G. Navarro. Searching in metric spaces by spatial approximation. The VLDB Journal, 11

(1):28–46, 2002. ISSN 1066-8888.

G. Navarro and N. Reyes. Fully dynamic spatial approximation trees. In Proceedings of

the 9th International Symposium on String Processing and Information Retrieval (SPIRE

2002), LNCS 2476, pages 254–270. Springer, 2002.

57

BIBLIOGRAPHY

G. Navarro and N. Reyes. Improved deletions in dynamic spatial approximation trees. In

Proc. of the XXIII International Conference of the Chilean Computer Science Society

(SCCC’03), pages 13–22. IEEE CS Press, 2003.

J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid file: An adaptable,

symmetric multikey file structure. ACM Trans. Database Syst., 9(1):38–71, 1984. ISSN

0362-5915.

E. V. Ruiz. An algorithm for finding nearest neighbours in (approximately) constant average

time. Pattern Recogn. Lett., 4(3):145–157, 1986. ISSN 0167-8655.

J. Uhlmann. Satisfying general proximity/ similarity queries with metric trees. Information

Processing Letters, 40:175–179, November 1991.

P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric

spaces. In SODA ’93: Proceedings of the fourth annual ACM-SIAM Symposium on Dis-

crete algorithms, pages 311–321. Society for Industrial and Applied Mathematics, 1993.

ISBN 0-89871-313-7.

58

Appendix A

Pseudocode

In this appendix we present algorithms for insertion and removal on Hierarchy of Clusters

proposed in Section 3.3.

59

Chapter A. Pseudocode

Redistribute (A:tree node, O1, O2:set of objects)

{
n = h(count(A.left) + count(A.right))
if count(A.left) + |O1| > n then {

S = [A.left] ∪O1

order objects in S by their distance to A.vp
SS1 = {S1, S2, . . . , Sn}
SS2 = {Sn+1, Sn+2, . . . , S|S|}

Remove (A.left, SS2 −O1)

Insert (A.left, O1 − SS2)

Insert (A.right, O2 ∪ SS2)

A.µ = (max(d(A.vp, si) ∀si ∈ SS1) + min(d(A.vp, si) ∀si ∈ SS2))/2
}
else {

S = [A.left] ∪O2

order objects in S by their distance to A.vp
SS1 = {S1, S2, . . . , S|S|−n−1}
SS2 = {S|S|−n, S|S|−n+1, . . . , S|S|}

Remove (A.right, SS1 −O2)

Insert (A.right, O2 − SS1)

Insert (A.left, O1 ∪ SS1)

A.µ = (max(d(A.vp, si) ∀si ∈ SS1) + min(d(A.vp, si) ∀si ∈ SS2))/2
}

}

Figure A.1: The redistribution algorithm for HC-Tree. If the algorithm is called from within
an Insert EXACT function, it also calls Insert EXACT instead of Insert and packs the node
from which objects were removed to ensure the minimal error.

60

Chapter A. Pseudocode

Split (A:tree node, O:set of objects)

{
S = [A] ∪O
A = Build Tree (S)

}

Figure A.2: The trivial split algorithm. The algorithm rebuilds the whole splitted tree,
possibly choosing new pivots.

Insert (A:tree node, O:set of Objects) returns tree node

{
if A is leaf then {

store O in A
}
else if free(A.left) + free(A.right) ≥ |O| {

divide O into two subsets O1 and O2 so that

O1 = {x ∈ O : d(x, A.vp) <= A.µ}
O2 = {x ∈ O : d(x, A.vp) > A.µ}

if free(A.left) ≥ |O1| and free(A.right) ≥ |O2| then {
A.left = Insert (A.left, O1)

A.right = Insert (A.right, O2)

}
else

Redistribute (A, O1, O2)

}
else

A = Split (A, O)

return A
}

Figure A.3: The bulk insertion algorithm for Hierarchy of Clusters. Insert may return a new
node in case of splitting, so we start the insertion by root = Insert (root, O).

61

Chapter A. Pseudocode

Insert EXACT (A:tree node, O:set of Objects, ε:float) returns tree node

{
if A is leaf then {

store O in A
}
else if free(A.left) + free(A.right) ≥ |O| {

divide O into two subsets O1 and O2 so that

O1 = {x ∈ O : d(x, A.vp) <= A.µ}
O2 = {x ∈ O : d(x, A.vp) > A.µ}

n = h(count(A) + |O|)
nε = n · ε
if count(A.left) + |O1| ≥ n− nε or count(A.left) + |O1| ≤ n + nε then {
{

A.left = Insert EXACT (A.left, O1)

A.right = Insert EXACT (A.right, O2)

}
else

Redistribute (A, O1, O2)

}
else

return Split (A, O)

return A
}

Figure A.4: The exact insertion algorithm for Hierarchy of Clusters. The algorithm may
return a new node in case of splitting, so we start the insertion by root = Insert EXACT

(root, O, ε).

62

Chapter A. Pseudocode

Merge (A:tree node, ε:float)
{

if free(A.left) < count(A.right) {
SRC = [A.right]
DST = [A.left]

}
else if free(A.right) < count(A.left) {

SRC = [A.left]
DST = [A.right]

}
else

let SRC be that child of A that stores more objects and

DST the other one

S = [SRC]
Insert EXACT (DST, S, ε)
replace A with DST

}

Figure A.5: The merge algorithm. Merges left and right subtrees of A and replaces A with
the result.

Remove (A:tree node, O: set of objects)

{
if A is leaf then

remove objects in O from A
else {

divide O into two subsets O1 and O2 so that

O1 = {x ∈ O : d(x, A.vp) <= A.µ}
O2 = {x ∈ O : d(x, A.vp) > A.µ}

Remove (A.left, O1)

Remove (A.right, O2)

}
}

Figure A.6: Remove algorithm.

63

Chapter A. Pseudocode

Pack (A:tree node, ε:float) returns tree node

{
if A is leaf then return A
else {

nopt = h(count(A.left) + count(A.right))

if count(A.left) < nopt · (1− ε) or count(A.left) > nopt · (1 + ε) then {
if free(A.left) ≥ count(A.right) or free(A.right) ≥ count(A.left) then

A = Merge (A)

else

Redistribute (A, ∅, ∅)
}

return Pack (A, ε)
}

}

Figure A.7: Pack algorithm. Pack may return a new node if the root subtrees were merged.
We start the algorithm by root = Pack (root, ε).

64

