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Abstra
tVe
tor map 
an be modelled with di�erent data models. First, we build topo-logi
al information from the map with spaghetti model. We will look through basi
ve
tor obje
ts, des
ribe the stru
ture of topology of the map, and then how a non-topologi
al map is transformed to a topologi
al map is explained. Next, bounding
ontainers are explained for more e�
ient a

essing of obje
ts. We do not needwhole detailed information of ea
h obje
t in some 
ases. Di�erent bounding 
on-tainers are explained, and how minimal bounding re
tangle (MBR) is implementedis des
ribed. Ar
, one of ve
tor obje
ts in the map, 
an be represented by hier-ar
hi
al stru
ture. Well known tree stru
tures, strip and ar
 trees, are reviewed,and smallest bounding area (SBA) tree is proposed. Hierar
hi
al representation
an be used in many areas. We 
an keep the topologi
al information while doingpolygonal approximation. Also, hierar
hi
al stru
ture 
an make windowing, 
lip-ping, and point in
lusion more e�
ient. We 
ompare di�erent bounding 
ontainers,and di�erent hierar
hi
al stru
tures in experiments.



Chapter 1Introdu
tion
This 
hapter des
ribes ba
kground and motivation of this work. Also the outline ofthis thesis is presented.1.1 Ba
kgroundMaps have guided people for thousands of years. Traditionally maps were hand-made and for the last 
entury they were printed. These paper maps 
ould not bemodi�ed. Then 
omputer revolution 
ame, and these days most of the maps aredigitized and stored in digital format, so they 
an be easily 
reated and pro
essedby a 
omputer. Digital map pro
essing allows many map te
hnologies whi
h arenot able in paper maps su
h as storing a huge set of maps, 
ompress maps usingimage 
ompression te
hnologies, 
omfortable interfa
e for browsing maps and so on.There exists two di�erent formats for presenting digital maps. These are rastermaps and ve
tor maps. Raster maps store visual information as a raster image ora set of raster images. Raster image 
onsists of pixels and ea
h pixel 
an have oneof the several 
olors, depending on the 
olor depth of the image. Typi
al imageformats for this map are PPM, GIF and PNG. Ve
tor maps store visual and ge-ographi
al information using ve
tor graphi
s. This map is not a image but a setof graphi
al entities su
h as Point, Polyline, Polygon, Ar
, Node, and so on. Thiswork 
on
entrates on the latter map format.1



2 CHAPTER 1. INTRODUCTIONVe
tor maps 
an have topology whi
h means relationships between entities in maps.Topology des
ribes how map elements are 
onne
ted ea
h other. If the map hastopologi
al information, then ea
h element is aware of its neighbors, therefore, edit-ing or updating maps 
an be easier.Data modelling for the ve
tor map 
an be applied in many di�erent areas. It 
anhelp to make the pro
ess more e�
ient and faster. One of most useful geometri-
al 
omputations is �nding interse
tions between obje
ts. This 
an be in use forpolygonal approximation, windowing, 
lipping, and et
.1.2 MotivationThere are many areas in GIS where data modelling for the ve
tor map 
an makepro
esses more e�
ient. For example, polygonal approximation is a method formodifying 
omplex ve
tor map so that less important elements are removed. Thisoperation is useful be
ause maps with 
omplex elemental stru
ture are expensive topro
ess and approximated maps 
an still be used in many appli
ations. However,while map being approximated, errors 
an o

ur. This is be
ause topology is not
onsidered. For topologi
ally 
onsistent simpli�
ation, hierar
hi
al representationof ar
s 
an be helpful for faster and more e�
ient pro
essing. For windowing, 
lip-ping, and point in
lusion, it also 
an be helpful, be
ause their basi
 
omputation is�nding interse
tions between a line segment and an obje
t.Ar
, line segment whi
h has topologi
al information, 
an be modelled by a hierar
hi-
al stru
ture. Tree data stru
ture is 
ommonly used. The widely known te
hniquesare Strip Tree [Bal81℄, Ar
 Tree [GW90℄, and Bezier Tree [Bez74℄. In this paper,we �rst show how ve
tor maps with di�erent data models are embodied and howto build a topologi
al stru
ture, and then look through di�erent kinds of bounding
ontainers. Next, Strip Tree and Ar
 Tree will be 
ompared with new designed tree.Finally, how these tree stru
tures 
an be applied in many GIS areas. C++ librarywhi
h has all fun
tions was built for implementation.1.3 OutlineThe thesis begins with ba
kground knowledge about digital images and maps, andthen explains the motivation for this study and de�nes the obje
tive. Next, the



1.3. OUTLINE 3stru
ture of ve
tor map is de�ned and a pro
ess of building a topologi
al stru
turefrom a non-topologi
al ve
tor map is explained. Chapter 3 is about bounding 
on-tainers whi
h are used for an approximation of obje
ts, and then two well-knownhierar
hi
al stru
tures of ar
s, using a minimal bounding re
tangle as a bounding
ontainer, are explained. A new hierar
hi
al stru
ture is proposed and its per-forman
e is 
ompared with others in 
hapter 4. Several applied areas are lookedthrough and how the usage of a hierar
hi
al stru
ture of ar
s a�e
ts to the perfor-man
e is explained in 
hapter 5. Experiments for 
omparing performan
es with andwithout the hierar
hi
al stru
ture and with di�erent bounding 
ontainers, and for
omparing performan
es between di�erent hierar
hi
al stru
tures are des
ribed in
hapter 6. Finally, 
on
lusions are presented and future works are dis
ussed.
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Chapter 2Ve
tor Data Model
This 
hapter des
ribes about ve
tor data representation, di�erent ve
tor data modelsand how they are implemented.2.1 Ve
tor Data RepresentationVe
tor data represents the real world using dis
rete points, lines or polygons. In realworld, most obje
ts 
onsist of 
urved lines and areas with soft boundaries. However,those real obje
ts are substituted for dis
ontinuous lines and points, so that theirboundaries do not look soft and natural [KO03, HA03℄. If the data are representedwith smaller and more obje
ts, they look more natural but size will be in
reased.Figure 2.1 shows how real world 
an be 
hanged to ve
tor data.Here are more detailed explanation about typi
al primary obje
ts whi
h are usedin ve
tor data [HCC02, BV02, DeM05℄.2.1.1 PointPoint is zero-dimensional abstra
tion of an obje
t represented by a single set of xand y 
oordinates. It 
an be used to depi
t map features or symbols su
h as lo
ationof buildings on a small-s
aled map. 5
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Figure 2.1: Transformation to ve
tor data2.1.2 NodeNode is same format with Point, but it has additionally topologi
al information.Points where lines from di�erent polygon or polyline interse
t are 
hosen to nodes.Node is also the end point of ar
 whi
h will be explained later, so it has ar
 infor-mation whi
h has the node. Figure 2.2 shows an example of point and node obje
ts.
2.1.3 LineLine is a set of x and y 
oordinates that represent the shape of geographi
 featuressu
h as 
ontours, street 
enterlines, or streams or linear features with no area su
has 
ountry boundary lines. It is also 
alled polyline.2.1.4 Ar
Ar
 is same format with Line whi
h starts and ends with nodes and has adja
entpolygon information. Ar
 has start and end nodes, left and right polygon identi-�
ations, and points between nodes. Figure 2.3 shows an example of line and ar
obje
ts.
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Figure 2.2: Point and node obje
ts

Figure 2.3: Line and ar
 obje
ts
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Figure 2.4: Polygon 
onsisting of points and ar
s2.1.5 PolygonPolygon is a feature used to represent areas su
h as swamps or lakes. It 
an be aset of x and y 
oordinates as the same of a line, but start and end points should besame be
ause polygon is a 
losed polyline. Lines of polygon should not interse
t.Polygon also 
an 
onsist of ar
s. In this 
ase, polygon does not have a set of pointsbut a set of ar
s whi
h has adja
ent polygon's information. Figure 2.4 shows andexample of polygons with points and ar
s.2.2 Ve
tor Data ModelsVe
tor map 
an be based on several di�erent data models. Common to all thesemodels is that they 
ontain one or more geographi
al obje
ts. Some models 
on-tain also information about obje
t relations. This following se
tion introdu
es twodi�erent ve
tor data models: Non-Topologi
al Model and Topologi
al Model, andshows how they are implemented in real data.2.2.1 Non-Topologi
al ModelThis is the simplest ve
tor data model that stores the data without establishingrelationships among the geographi
 features. This is sometimes 
alled the spaghettimodel, be
ause lines overlap but do not interse
t, just like spaghetti on a plate. All
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Figure 2.5: Polygons with spaghetti modelobje
ts in the map are stored as independent entities and ea
h is represented as aset of x and y 
oordinates (See Fig. 2.5).The best advantage of spaghetti model is simpli
ity. In addition, it is easy for endusers to input new obje
ts be
ause all obje
ts are independent. On the other hand,there are disadvantages of this model and they are mostly be
ause of the la
k oftopologi
al information su
h as adja
en
y. For example, if we want to know whi
hboundaries are shared with other polygons, we need expensive pro
ess. Se
ondly,data is stored with some redundan
y be
ause lines between adja
ent polygons mustbe represented twi
e. If data size is large then waste of memory will be noti
eable.Thirdly, risk of in
onsisten
y exists. If we use di�erent sour
es of information or
hange or move some obje
ts, there 
an be a gap or sliver between adja
ent polygons.2.2.2 Topologi
al ModelsThere are two di�erent topologi
al models - Network Model and Topologi
al Model.They are similar that they have nodes and ar
s. In fa
t, network model does nothave perfe
t topologi
al stru
ture. It is mainly for network (graph)-based data su
has transportation servi
es. Node is an interse
tion point between di�erent linesand ar
 is a line whi
h starts and ends with nodes. This model does not in
luderelationship between 2D obje
ts. Therefore, network model is useful for �nding anoptimal path using the 
onne
tivity. There are planar and non-planar networks. Ina planar network, ea
h line interse
tion is 
hosen as a node, even though that nodeis not a geographi
al obje
t. In non-planar network, it is possible that lines may
ross and interse
tion is not a node. An example of network model of planar andnon-planar networks is shown in �gure 2.6.
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Planar Network Model Non-planar Network ModelFigure 2.6: Network model - planar and non-planarTopologi
al model has relationship information between adja
ent polygons. Nodeand ar
 are same with ones in network model ex
ept that ar
 has information whi
hpolygon is on left and right side. In addition, polygon 
onsists of a series of ar
s,not points. Nodes and ar
s are not dupli
ated and they 
an be referen
ed to morethan one polygon. Boundaries whi
h are shared by two polygons will be storedonly on
e, so redundan
y problem in spaghetti model 
an be solved. This is oneof advantages of topologi
al model. Another bene�t is e�
ien
y to ask topologi
alqueries. For example, if you want to sear
h a polygon adja
ent to a given polygonP, then 
he
k the ar
s of P. Ea
h ar
 will give the information of adja
ent polygons.In addition, it is easier to maintain 
onsisten
y when the map data is updated oredited. In non-topologi
al model, there may be errors when the map is edited. Onthe other hand, in topologi
al model, there is no error, be
ause the border ar
 isshared between two polygons (See Fig. 2.7).There are also disadvantages in this model. Data stru
ture is more 
omplex thanspaghetti model, so it may slow down some other operations. Another one is thattopology should be established again after ea
h updating.Existing topologi
al data formatsDXF (Drawing Inter
hange Format)DXF �les are de�ned to assist in inter
hanging drawings between AutoCAD andother programs. DXF �les are standard ASCII text �les. They 
an be easily trans-lated to the formats of other CAD systems or other programs for spe
ialized analysis.DIGEST (Digital Geographi
 Information Ex
hange Standard)DIGEST is developed by DGIWG (Digital Geographi
 Information Working Group)
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Figure 2.7: Editing in a ve
tor map with topologi
al and non-topologi
al models

Figure 2.8: Ve
tor map with topologi
al model
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hange and 
o-produ
tion among NATO nations. It supportsraster, ve
tor, and matrix data ex
hange and the entire range of topologi
al stru
-tures from no topology to full topology.TIGER (Topologi
ally Integrated Geographi
 En
oding and Referen
-ing)TIGER is digital database developed at the U.S. Census Bureau to support its map-ping needs for the De
ennial Census and other Bureau programs. TIGER/Line �lesare for geographi
 features like roads, rivers, lakes, legal boundaries, et
.TIGER/Line data format 
onsists of
• Node : topologi
al jun
tion of two or more links or 
hains, or end point of a
hain
• Entity point : point for identifying the lo
ation of point features like towers,buildings, et
.
• Chain : simple polyline with start and end nodes and list of intermediatepoints. A 
omplete 
hain has referen
es to left and right polygons and anetwork 
hain doesn't have.
• GT-polygon : list of 
omplete 
hains that form its boundary.STDS (Spatial Data Transfer Standard)U.S. Geologi
al Survey (USGS) developed STDS for a
ademi
, industrial and fed-eral, state, and lo
al government users of 
omputer mapping and GIS.NTF (National Transfer Format)NTF �les are provided by the Ordnan
e Survey in the United Kingdom.

2.3 Building A Topologi
al Stru
tureWhy topology is ne
essary? Topology is a mathemati
al approa
h that allows us tostru
ture data based on the relationships between obje
ts. These relationships are
onne
tivity, 
ontiguity and 
ontainment. Conne
tivity refers to the inter
onne
ted
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h as streets, ele
tri
al power lines, streams and transporta-tion networks. Conne
tivity fun
tions are useful to �nd optimal routes through thenetwork. Contiguity is the spatial relationship between obje
ts that tou
h ea
hother. Adja
en
y has same meaning with 
ontiguity. Containment refers to theinterse
tion between obje
ts, for example, by boolean relationships su
h as "and""or" "inside" "outside" "interse
ting" "non-interse
ting" et
. Therefore, topologi
aldata model 
an qui
kly answer these queries:
• Whi
h roads are 
onne
ted to the 
enter?
• How many people have a 
ar in the neighboring region?
• Where the fa
tory 
an be built in? - not in the forest "and" not 
lose to the
enterLibrary for building a topologi
al stru
ture from simple spaghetti ve
tor map arebuilt for this paper. First we will look into the ve
tor map with spaghetti model,and how to �nd nodes and ar
s, then lastly, topologi
al ve
tor map and XML output�les. Ve
tor map �les are ASCII �les for easy input and editing.2.3.1 Non-topologi
al Ve
tor MapThis �le is simple. It has label, number of points, and a list of points. Point hasX and Y 
oordinates and one number (0 or 2) for separating polygons. Figure 2.9shows an example �le.This �le has two obje
ts - Polyline and Point. Polyline 
lass is for polygon, whi
his 
losed polyline, or not 
losed polyline features. It 
ontains 1 to N point obje
ts.In addition, it 
ontains a bounding box for redu
ing 
omparing time when �ndinga neighbor polygon. It has fun
tions for �nding nodes and ar
s. Point 
lass is forpoint obje
t. It 
ontains the number of neighbor polygons and their id numbers aswell as x and y 
oordinates. Figure 2.10 shows obje
t diagram of non-topologi
alve
tor map.2.3.2 Finding NodesNext step is �nding nodes. First shared points with adja
ent polygons should befound and then 
ount how many neighbor polygons ea
h point has. All points in ea
hpolygon should be 
ompared with all points in all other polygons. However, pointsa
tually 
an be shared with 
lose polygons, so not all points need to be 
he
ked.
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Figure 2.9: Ve
tor map data �le with spaghetti model

Figure 2.10: Obje
t diagram of non-topologi
al model
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Figure 2.11: Counting adja
ent polygonsFor this, bounding box of ea
h polygon is used. First 
he
k if bounding boxesare interse
ting between two polygons, then 
he
k only points inside interse
tionbetween two bounding boxes. Bounding box is easy to 
al
ulate and operations su
has in
luding or interse
tion are 
heap. Figure 2.11 shows the pro
ess of 
ountingneighbor polygons.Count values in �gure 2.11 will de
ide whi
h point is a node and whi
h is not. Thereare several 
ases that show the point is a node.1. Count value is more than 2 : Node2. Count value 
hanges 0 to 1 or 1 to 0 : Node3. Count values are same with 1 in a row : should 
he
k their neighbors. Ifneighbor polyline id numbers are same, then the point is not a node. If theyare di�erent, then it is a node (see Fig. 2.12).4. Current 
ount value is 1 and previous or next is more than 2 : Node5. If the polyline is not 
losed : start and end points are nodes.In �gure 2.13, you 
an see that shared points have a list of neighbor polygons' idnumbers. They will be used for �nding ar
s.2.3.3 Finding Ar
sAr
 starts and ends with nodes. For ea
h polygon, all points are looked up andif �rst one node is found, then ar
 saving starts and middle points will be storeduntil another node appears. In addition, ar
 should have neighbor information -
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Figure 2.12: Finding neighbor polygons and de
iding whether a point is a node ornotleft and right polygons' id numbers. If there are any points between start and endnodes, then it is straightforward - 
he
king the neighbor polygon id from the middlepoints. However, if there is no middle point, then neighbor polygons of start andend nodes are 
he
ked. If they have same neighbor polygons, ar
s in not-sure arrayare 
he
ked for �nding the same ar
 whi
h has same neighbor polygons. If there issame ar
, the ar
 will be removed from not-sure array and be stored as a normalar
. If there is no, the ar
 will be new not-sure ar
. During the whole pro
ess, samear
 should not be saved twi
e.In addition, while �nding ar
s, polygon should be saved with new form - referen
ingar
s but not points.2.3.4 Topologi
al Ve
tor MapFinally after building a topologi
al stru
ture from spaghetti ve
tor map, topologi
alve
tor map will be stored as a �le. There are two fun
tions for generating ASCII�le and XML �le. XML �le is easy to see the stru
ture. For loading XML �les,existing library - Xer
es C++ Parser is used [Apa℄. Table 2.1 shows the stru
tureof node, ar
 and polygon and tags for XML �le, and following �gure shows ASCIIand XML �les.
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Figure 2.13: Finding ar
s

Figure 2.14: Topologi
al ve
tor map data �le - ASCII
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Figure 2.15: Topologi
al ve
tor map data �le - XML

Figure 2.16: Building a topologi
al stru
ture
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Node <nodes>id Node id number <nodeId>X X 
oordinate <nodeX>Y Y 
oordinate <nodeY>Number of Ar
s How many ar
s have this node <belongsAr
Num>Ar
 id numbers List of ar
 id numbers <belongsAr
Id>Ar
 <ar
s>id Ar
 id number <ar
Id>start node Start node id number <startNodeId>end node End node id number <endNodeId>Left Poly Left polygon id number <leftPolyId>Right Poly Right polygon id number <rightPolyId>Number of points Number of middle points <midPointsNum>X X 
oordinate of middle point <midX>Y Y 
oordinate of middle point <midY>TopoPoly <topoPolys>id Polygon id number <polyId>
losed Boolean value for 
he
king 
losed or not <
losed>Number of ar
s Number of ar
s <ownAr
Num>Ar
 id numbers Ar
 id number <ownAr
Id>Table 2.1: Stru
ture of topologi
al obje
ts and XML tags
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Chapter 3Bounding Containers
This 
hapter des
ribes bounding 
ontainers as a �nite geometri
 obje
t and howminimum re
tangle area, whi
h is one of linear bounding 
ontainers, is implemented.3.1 What Is Bounding Container?Bounding 
ontainer is a simple geometri
 obje
t for bounding a 
ompli
ated obje
t.It is useful for 
omputational geometry appli
ation su
h as ray tra
ing, 
ollisionavoidan
e, hidden obje
t dete
tion, et
 [Suna℄. Before doing expensive interse
-tion or 
ontainment pro
ess of a 
ompli
ated obje
t, simple pro
ess of a bounding
ontainer 
an redu
e the possibility of interse
tion and 
ontainment, and no morepro
ess is needed. For example, when two 
ompli
ated obje
ts are far from ea
hother and should be 
he
ked for interse
tion, 
he
king two obje
ts perfe
tly is notne
essary if simple 
omparing with bounding 
ontainers of two obje
ts is done andshows that there is no interse
tion between them. For this usefulness, bounding
ontainers should satisfy some important requirements [Suna℄.
• If the bounding 
ontainer in
lude all points of an obje
t, then it also shouldin
lude the whole obje
t. For example, if two verti
es are inside the bounding
ontainer, then the line joining them will be in
luded in it.
• The test for 
ontainment and interse
tion, su
h as 
he
king one point is insideor outside the 
ontainer, two bounding 
ontainers are disjoint, and a line21
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ts the 
ontainer, should be easy. Therefore, 
ontainer should have asmall number of inequalities to test in
lusion of a point.
• The bounding 
ontainer should be e�
ient to build and store. Linear time -

O(n) and small spa
e for storing are aimed. However, there is trade-o�. Moree�
ient 
ontainer needs more time for pro
essing.
• The 
ontainer 
an approximate the obje
t. Smaller area of the 
ontainer willbe more a

urate.There are two basi
 types of bounding 
ontainers - linear and quadrati
 
ontainers.In this paper, linear 
ontainers will be fo
used. In the following se
tions, di�erentlinear bounding 
ontainers will be introdu
ed and then how one of linear 
ontainers,minimal bounding re
tangle, is implemented will be explained.3.2 Linear Bounding ContainersA linear 
ontainer is a 
onvex polygon whi
h is bounded by �nite inequalities. In2D, a 
ontainer 
an have k inequalities : fi(x, y) = aix + biy + ci ≤ 0(i = 1, k)[Suna℄. If a point(x, y) is true to all inequalities, then it is inside the 
ontainer.If any inequalities fails, then the point is outside the 
ontainer. Ea
h inequalityde
ides a half-spa
e Hi bounded by the line Li : fi(x, y) = 0. The interse
tion ofthese half-spa
es is the region of the 
ontainer (See Fig. 3.1).3.2.1 Orthogonal Bounding Re
tangleThe orthogonal bounding re
tangle is de�ned by two extreme points (xmin, ymin)and (xmax, ymax) and four edges are parallel to the 
oordinate axes. It has fourinequalities, so if all inequalities are true with the point, then the point is insidethe box. If any one of inequalities fails, then the point is outside the box. Eventhough there are four inequalities, on the average, the point will be de
ided insideor outside after two tests. The test for disjoint of two re
tangles is similar to thetest for the point. It is done by 
omparing their minimum and maximum extentsof two boxes. For example, if xmax1 < xmin2 or xmax2 < xmin1, then box1 and box2are disjoint.The orthogonal bounding re
tangle is the simplest 
ontainer so that it is used mostfrequently in many appli
ations. It is simple be
ause minimum and maximum
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Figure 3.1: Li, half-spa
e Hi by Li, and bounding area
oordinate values 
an be found easily in linear time O(n) with one s
an of all pointsin the obje
t. In addition, 
omparing test does not have any arithmeti
 
omputing,but only 
omparing x and y 
oordinate values with extent values (See Fig. 3.2).3.2.2 Bounding DiamondThe bounding diamond is a re
tangle rotated by 45◦, so it looks like a diamond. Ithas four inequalities and they are 
omputed by the simplest arithmeti
 expressions,adding and subtra
ting. They are p = (x + y) and q = (x − y) whi
h are lineswith slopes of -1 and 1. All points will be s
anned, p and q 
omputed, and then
(pmin, pmax, qmin, qmax) will be found. For the test of point in
lusion, it needs a bitmore 
omputation than the bounding box, but it still 
an be done in O(n) timewith single s
an of all points in the obje
t. Also disjoint test of two obje
ts is easybe
ause only parallel edges will be 
ompared. Figure 3.2 shows the example of thebounding diamond.3.2.3 Bounding O
tagonThe bounding o
tagon is the 
ombined geometri
 obje
t of an orthogonal boundingre
tangle and bounding diamond. It thus is de�ned by eight inequalities. The
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Figure 3.2: Orthogonal bounding re
tangle and bounding diamond

Figure 3.3: Bounding o
tagon and 
onvex hullbounding o
tagon is used frequently be
ause it is smaller area then the orthogonalbounding re
tangle and bounding diamond and still 
an be 
omputed in lineartime. For example, �rst, the point in
lusion test 
an be 
he
ked by extents of theorthogonal bounding re
tangle. If the point is inside, se
ondly, (x + y) and (x− y)will be 
al
ulated and the point in
lusion is de
ided by the bounding diamond. Thetest for disjoint of two o
tagons is pro
essed similarly with the point in
lusion test.Figure 3.3 shows the example of the bounding o
tagon.3.2.4 Convex HullConvex hull is the smallest 
onvex set of points of an obje
t. It is easy to understandif you imagine surrounding the set of points by a large, stret
hed rubber band
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ause it is the smallest region, it approximates an obje
tmost 
losely and it has the least area among all bounding 
ontainers. Ea
h boundary
an be de�ned by a linear equation (ax+ by + c = 0). Therefore, the point in
lusiontest 
an be done with an inequality : (ax + by + c) ≤ 0. An example of a 
onvexhull is in Figure 3.3. In spite of the most a

urate approximation of an obje
t,
onvex hull is not used pra
ti
ally as a bounding 
ontainer, be
ause it may havea lot of boundaries and then it needs mu
h 
omputation for 
he
king independentinequalities. Moreover, the test for disjoint of two 
onvex hulls is more 
ompli
ated,be
ause two hulls 
an not have always opposed parallel edges. There are manyexisting algorithms for 
omputing the 
onvex hull - Grahamhull, Gift-wrappingapproa
h, Quikhull, Mergehull, et
 [PS85℄.3.2.5 Minimal Bounding Re
tangleMinimal bounding re
tangle is the result of 
ombining two features whi
h are mini-mizing area of the 
ontainer and redu
ing inequalities for point in
lusion test. There-fore, it approximates an obje
t more pre
isely and, at the same time, it has only fourinequalities, so easy and fast to de
ide the point is inside or outside the 
ontainer.It has two pairs of parallel lines, f1 = (a1x + b1y) and f2 = (a2x + b2y), and ea
hpair has minimum and maximum extents. If a point P (x, y) ful�lls
f1min ≤ a1x + b1y ≤ f1max

f2min ≤ a2x + b2y ≤ f2maxthen P is inside the re
tangle [Suna℄. For the algorithm �nding a minimal bound-ing re
tangle, 'Rotating Calipers' [Tou83℄ 
an be used be
ause it 
an 
ompute theminimal bounding re
tangle in O(n) time if an obje
t is 
onvex. If an obje
t is not
onvex, then �rst, a 
onvex hull should be found. More details about how 'RotatingCalipers' is used will be explained in following se
tion.3.3 Implementation of Minimal Bounding Re
tan-gleIn this 
hapter, how to implement minimal bounding re
tangle will be des
ribed.If we use 'Rotating Calipers', time 
omplexity 
an be O(n), but obje
t should be
onvex. We will 
ompute minimal bounding re
tangles mainly for ar
s in this paper,therefore, �rst should make a 
onvex hull for ea
h ar
 before minimal boundingre
tangle. Algorithms for 
onvex hull and rotating 
alipers will be explained.
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onvex hullFor �nding a minimal bounding re
tangle for an ar
, 
onvex hull for ea
h ar
 shouldbe 
omputed. There are existing algorithms for 
onvex hull and general 
omputingtime is O(nlogn). This is be
ause all points should be sorted before �nding a hulland sorting algorithm generally takes O(nlogn). After sorting, 
omputing a hulltakes O(n) time. However, there is more e�
ient algorithm for 
onne
ted simplepolyline by (Melkman,1987). Ar
 is a 
onne
ted simple polyline be
ause it is a seriesof ordered points and there is no self-interse
tion. Therefore, Melkman's algorithm
an be applied for an ar
. Important features of his algorithm are1. It works for a simple polyline.2. It does not need prepro
essing for sorting. All points will be pro
essed se-quentially on
e.3. It uses a double-ended queue (a deque) to store pro
essed points whi
h indi-
ates an in
reasing hull [Sunb℄.The deque (double-ended queue) has both top and bottom. It allows one to pushor pop on the top of deque and to insert or remove from the bottom of the deque.Melkman's algorithm is straightforward. It pro
esses ea
h point of the polyline atea
h stage. Let the simple polyline be PL = P0, P1, ..., Pn. Initial 
onvex hull ismade with �rst three points, and then the next point Pk is 
onsidered in ea
h stage.If point Pk is inside the 
urrent 
onvex hull, then it 
an be ignored. Therefore,
onvex hull CHk will be same with CHk−1. If it is outside the 
urrent 
onvex hull,then new 
onvex hull should be built. The new point simply 
an be added at thebottom and top of the deque. However, points whi
h will be inside the new 
onvexhull should be removed before adding new point for new in
reased 
onvex hull intothe deque. Figure 3.4 shows how his algorithm works.Melkman Algorithm1. Make a 
onvex triangle with �rst three points.2. Test that next point is inside the 
onvex hull. If it is inside, then skip thispoint and 
ontinue to next point.3. Remove points whi
h will be inside new 
onvex hull from the bottom of thedeque, then insert this point.
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Figure 3.4: Convex hull by Melkman's algorithm4. Remove points whi
h will be inside new 
onvex hull from the top of the deque,then push this point.5. Repeat steps 2 to 4 until all points in the polygon are tested.
3.3.2 Rotating CalipersIf 
onvex hull of an ar
 obje
t is ready, the pro
ess to �nd a minimal boundingre
tangle 
an be 
omputed in linear time using rotating 
alipers [Pir99℄. 'Calipers'are two pairs of parallel lines around the 
onvex hull and these pairs are orthogonal toea
h other. They are initialized with extreme points and rotated until 
alipers meetthe edges of 
onvex hull. This pro
ess 
an �nd a minimal area re
tangle be
ausethe re
tangle of minimum area en
losing a 
onvex polygon has a side 
ollinear withone of the edges of the polygon [Tou83℄.We 
an de�ne a minimal bounding re
tangle R with a given 
onvex polygon P su
hthat ∀p ∈ P, p ∈ R. If area(R) ≤ area(R′) for all re
tangles R′, then R is a minimalbounding re
tangle for P . In order to minimize the area, we 
an intuitively thinkthat the re
tangle's edges would have to tou
h the 
onvex polygon. Here is thistheorem and proof of it [Pir99, HR75℄.Theorem: The re
tangle of minimum area en
losing a 
onvex polygon has aside 
ollinear with one of the edges of the polygon.
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Figure 3.5: An example of en
losing re
tangle PProof: We have a given 
onvex polygon P , and let us assume that the small-est box is given and it does not have one side 
ollinear with one of P 's edges. In�gure 3.5, the re
tangle only tou
hes P at four points pi, pj, pk, pl. We 
an provethat it is always possible to �nd a smaller en
losing re
tangle.
A, the area of the en
losing re
tangle is l1l2 (See Fig. 3.5). Let dik = dist(pi, pk),and djl = dist(pj, pl). Therefore we get

l1 = djl cos(ϕj)

l2 = dik cos(ϕk)Both l1 and l2 
an be redu
ed by rotating their 
orresponding lines in their preferreddire
tion of rotation. Therefore there are two 
ases - 
ase 1, where l1 and l2 
an bede
reased by rotating all lines in the same dire
tion, and 
ase 2, where rotating ina given dire
tion de
reases one length but in
reases the other.Case 1: By rotating all lines 
ounter
lo
kwise by some angle η, both l1 and l2are de
reased. A′, the area of new box is determined by edges of length l′1 and l′2where
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l′1 = djl cos(ϕj + η)⇒ l′1 < l1

l′2 = dik cos(ϕk + η)⇒ l′2 < l2

⇒ A′ = l′1l
′

2 < AIn this 
ase it is always possible to �nd a smaller en
losing re
tangle.Case 2: The preferred dire
tions of rotation are di�erent. Let us de�ne δj as themaximum angle we 
an rotate the lines in l1's preferred dire
tion of rotation beforewe hit the edge, and in a same way we de�ne δk for l2. Let δ = min(|δj|, |δk|).Assume that the preferred dire
tion of rotation for l1 is 
lo
kwise and the preferreddire
tion of rotation for l2 is 
ounter
lo
kwise. If we rotate 
lo
kwise, we get newlengths l′1, l
′

2 and a new area AC :
l′1 = djl cos(ϕj + δ)

l′2 = dik cos(ϕk − δ)

⇒ AC = l′1l
′

2If we rotate 
ounter
lo
kwise, we get:
l′′1 = djl cos(ϕj + δ)

l′′2 = dik cos(ϕk − δ)

⇒ ACC = l′′1 l
′′

2If AC/A < 1 then we rotate 
lo
kwise and we 
an get a smaller en
losing re
tangle.However, if AC/A ≥ 1, then we have:
AC

A
=

cos(ϕj + δ) cos(ϕk − δ)

cos ϕj cos ϕk

≥ 1

⇔ cos2 δ + (tan ϕk − tan ϕj) cos δ sin δ − tan ϕj tan ϕk sin2 δ ≥ 1

⇔ (tan ϕk − tan ϕj) cos δ sin δ ≥ cos2 δ − tan ϕj tan ϕk sin2 δ − 1
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⇒

ACC

A
≤ 2(cos2 δ − tan ϕj tan ϕk sin2 δ)− 1

≤ 2(1− sin2 δ − tan ϕj tan ϕk sin2 δ)− 1

≤ 1− 2(1 + tanϕj tan ϕk) sin2 δ

< 1Hen
e we get ACC/A < 1, and it means that we 
an obtain a smaller en
losingre
tangle by rotating 
ounter
lo
kwise.Therefore, for both of 
ases, it is possible to have a smaller en
losing box.Rotating Calipers Algorithm1. Find four points with minimum and maximum x and y-
oordinates for thepolygon - PXmin, PXmax, PY min, PY max.2. Constru
t two sets of "
alipers", parallel to x and y axes, thus forming are
tangle en
losing the polygon.3. Let θ = min(θi, θj, θk, θl).4. Rotate the lines by θ, thus until any of them meets the edge of the polygon.5. Cal
ulate the area of a re
tangle built by four lines and 
ompare with minimumarea. If it is smaller, then keep the new re
tangle as our new "minimum".6. Re
ompute θi, θj, θk, and θl.7. Repeat steps 3 and 6, until the lines are rotated an angle more than 90◦.
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Figure 3.6: Rotating 
alipers

Figure 3.7: Minimal bounding re
tangle by using rotating 
alipers
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Algorithm 1 Ar
.
al
SmallBBox()CH ← 
al
ulate_
onvexhull();for (all points of 
onvex hull) dop ← initial points by xmin, xmax, ymin, ymaxend for
al
ulate_
alipers();box ← 
al
ulate_MBR();while (sumθ < 90◦) dofor (k=0;k<4;k++) do

θ ← angle between the 
aliper p[k] and new 
aliper with next pointif θ < minθ then
minθ ← θminP ← kend ifend forrotate_
aliper(k);
al
ulate_
alipers();sumθ ← sumθ + minθtempBox ← 
al
ulate_MBR();area ← area(tempBox);if area < minArea thenbox ← tempBoxminArea ← areaend ifend while



Chapter 4Hierar
hi
al Representation of Ar
s
This 
hapter des
ribes hierar
hi
al representation s
hemes for ar
s and di�erentmethods of them. Two 
ommonly used tree stru
tures, strip and ar
 tree, will beexplained and new approa
h with a splitting point de
ided by the minimum area ofthe bounding 
ontainer will be introdu
ed.4.1 Hierar
hi
al RepresentationCurves are important two-dimensional stru
tures in many areas. For example,
urves are used to represent map features su
h as 
ontour lines, roads, and riversin geography. If a map is huge and very large amount of data is involved, e�
ien
yto perform operations, su
h as �nding an interse
tion of road and river or 
he
kingsome point features are inside or outside of some areas, on this data is 
ru
iallyneeded. Hierar
hi
al tree stru
ture for representation of 
urves is one of methodsto do these operations more e�
iently be
ause the operations are performed fasterat lower resolutions than the ultimate resolution [Bal81℄. lt is built re
ursively andadded more detailed features of the 
urve. Every next level has more points ofthe 
urve, so the 
urve 
an be represented more pre
isely. These points that are
hosen for hierar
hi
al stru
ture are not independent ea
h other [SRS03℄. This isbe
ause a new point for next level should be 
hosen between start and end pointsof pre
eding level representation. Hen
e, as building more levels, the 
urve will besubdivided re
ursively into shorter sub-
urves. Ea
h tree node is this sub-
urve andit is approximated by bounding 
ontainers. If the 
urve is well-behaved, interse
tion33
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lusion 
al
ulations 
an be solved in O(logn) where n is the number ofpoints of the 
urve.There are various well-known s
hemes for hierar
hi
al representation of 
urves.They are Strip Tree [Bal81℄, Ar
 Tree [GW90℄ and Bezier Tree [Bez74℄. Theses
hemes are mainly di�erent with what kind of bounding 
ontainer is 
hosen, howdividing point is de
ided, and how mu
h information is stored in ea
h level. In fol-lowing se
tions, Strip Tree and Ar
 Tree will be explained and additionally, a newtree by di�erent approa
h to how to de
ide a dominant splitting point will be de-s
ribed. This paper is fo
used on how di�erent method of de
omposition - it meanswhi
h point is de
ided as a splitting point - is performed and 
ompared. Therefore,all trees use minimal bounding re
tangle as a bounding 
ontainer in 
ommon.In this paper, ar
s in a topologi
al map are similar with 
urves, so hierar
hi
alrepresentation method is used for ar
s.4.2 Strip Tree4.2.1 Strip Tree de�nitionStrip tree was proposed by Dana H. Ballard in 1981. It has a binary tree as ahierar
hi
al stru
ture, and a node of the tree has a strip whi
h bounds a 
urveand pointers to left and right 
hildren nodes. A strip is de�ned by six values
(Ps(xs, ys), Pe(xe, ye), wr, wl) where (xs, ys) is starting point of the strip, (xe, ye) isending point, and wr and wl are right and left distan
es from the dire
ted linebetween the starting and ending points of the strip to the strip borders [Bal81℄.Figure 4.1 is a strip segment de�ned.Root of the strip tree has a bounding re
tangle for the entire 
urve, and the 
urveis divided to two sub-
urves by a splitting point. This splitting point is de
ided bythe farthest distan
e between the point and the dire
ted line PsPe. This pro
ess isre
ursively done to the two 
hildren until every strip has a width w = wr +wl whi
his less than predetermined limit value.Figure 4.2 shows the pro
ess of building a strip tree for a 
urve C. Root strip S1 isdivided to two strips S2 and S3 �rst, and then strip S3 is divided again to two partsbe
ause the width of the strip is longer than the limit length. S3 is divided to S4and S5, then the pro
ess is �nished.
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Figure 4.1: De�nition of a strip segment

Ps

Pe

S1

S2S2

S3S3

S4

S5

width limitFigure 4.2: Building a strip tree by top-down method
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Ps

Pe

S5

S1S1

S4S4
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Figure 4.3: Building a strip tree by bottom-up method

Figure 4.4: Non-regular stripsThis pro
ess is a top-down method. This method needs a sear
h to �nd the splittingpoints in ea
h node. Ea
h point is 
he
ked at ea
h of the log2n levels, thus it takes
O(nlog2n) time. There is the se
ond method in bottom-up style. First make strips
S0, S1 . . . Sn−1 for ea
h su

essive pair of points (P0, P1)(P1, P2) . . . (Pn−1, Pn), thenmake pairs with strips, that is, (S0, S1)(S2, S3) . . ., and 
over them with larger strips.Continue until there is a single strip as a root. It takes O(n) time, but approxi-mation result is not better than the �rst method. Figure 4.3 shows the bottom-upmethod.The example of the 
urve above is regular whi
h means that the 
urve is 
onne
tedand its end points are on both end edges of strips [Bal81℄. There are more 
omplex
urves su
h as 
losed one, 
urve whi
h extend its end points, or 
urve whi
h 
onsistsof dis
onne
ted segments. These 
urves need more 
omplex 
al
ulation for �ndinga bounding strip. Examples are in Fig. 4.4.
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NULL CLEAR POSSIBLEFigure 4.5: Three possible results of interse
ting two strips
Figure 4.6: Data stru
ture of strip treeStrip tree is useful to �nd interse
tion between 
urves su
h as �nding in whi
h areariver and road 
rosses. For solving this query, �rst interse
tion between strip treesshould be 
he
ked. There are three di�erent 
ases - null, 
lear, and possible (SeeFig. 4.5).If the result is null, then it means that there is no interse
tion. If the result is 
lear,then two strips are 
learly interse
ting. If the result is possible, then they may beinterse
ting, so more spe
i�
 pro
ess is ne
essary. Thus, their 
hildren nodes shouldbe 
he
ked. The pro
ess is going on in this way until the result is determined nullor 
lear. If strips are more pre
ise, so if the answer - null or 
lear - is determinedfaster, then exe
ution time will be saved a lot. That is why de
omposition of strips isimportant. For well-behaving 
urves, exe
ution time is expe
ted to O(log2n) where

n is the number of points 
onstru
ting the 
urve.4.2.2 Implementation of Strip TreeStrip tree whi
h is implemented in this paper is a little di�erent with de�nition ofstrip tree. Minimal bounding re
tangle is used as a bounding 
ontainer instead ofa strip. Figure 4.6 shows data stru
ture of a strip tree.
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h is minimal bounding re
tangle, and pointers to left and right 
hildren nodes.Width of a strip, wL and wR, is used for de
iding a splitting point. The farthestpoint from a line 
onne
ted between start and end points is the one whi
h dividesthe 
urve to two strips on next level.Algorithm 2 buildStripTree()if there are only two points thenFinish building the strip treeelse
al
ulate_MBR(box,start,end);division← Find the farthest point from the line 
onne
ted with two end pointsbuildStripTree(start, division)buildStripTree(division, end)end ifStrip tree is re
ursively built until node has only two points, that is one line segment.This is be
ause the exa
t interse
ting segment should be found. Figure 4.7 shows theexample of building a strip tree and �nding an interse
tion with a random segment.4.3 Ar
 Tree4.3.1 Ar
 Tree de�nitionAr
 tree was proposed by Günther in 1987. It is 
lose with strip tree but the rule ofde
omposition of the 
urve is di�erent. The 
urve is divided based on its length toseveral sub-polylines. All sub-polylines should have same length. Thus, the 
urve isapproximated to the 
onne
ted line between two endpoints in the �rst level of thear
 tree, then the 
urve is divided to two sub-polylines of same length by a midpointre
ursively as the tree is built deeper. Figure 4.8 shows how the ar
 tree is built.If the 
urve C has kth ar
 tree and its length is l, then it means that C is approx-imated with 2k line segments and the length of ea
h line segment is l/2k(k ≥ 0).A fun
tion C(t) is de�ned in interval [0:1℄ with 2D Eu
lidean spa
e. Thus, the kthapproximation of C(t) is a sequen
e of line segments 
onsisting of points C(i/2k)and C((i + 1)/2k), 0 ≤ i < 2k. The approximation pro
ess is done re
ursively untilthe error is less than a given limit.
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Figure 4.7: Strip tree with minimal bounding re
tangle and �nding interse
tionswith random line segments
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Figure 4.8: Building an ar
 tree
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Figure 4.9: Ar
 tree with ellipsesThe 
onstru
tion of an ar
 tree in
ludes two pro
esses. One is dividing the polylineby the length and the other is 
al
ulating a bounding 
ontainer. For an ar
 tree,an ellipse is used for a bounding 
ontainer. This ellipse is de�ned by a major axiswhose length is l/2k and two fo
al points whi
h are at C(i/2k) and C((i + 1)/2k)(See Fig. 4.9).Using ellipses as a bounding 
ontainer has an advantage over using a strip in a striptree, su
h as no need to worry about 
losed 
urves or 
urves that extend their twoendpoints. However, ellipses are not easy to use. For example, when two polylinesare interse
ting, the interse
tion of ellipses should be tested �rst. This is not asimple operation. Therefore, bounding box or bounding 
ir
le is used more ofteninstead of an ellipse.4.3.2 Implementation of Ar
 TreeThe 
urves used in this paper 
onsist of straight line segments. Therefore, we do notneed arti�
ial points C(i/2k) but use the median point. For example, if the 
urvehas n + 1 points labeled p1, p2, · · · , pn+1, it will be de
omposed at ppn/2q. Thus, thedepth of the tree will be log2n in maximum. This is 
alled polygon ar
 tree [GW90℄.In the de�nition of the ar
 tree, an ellipse was a bounding 
ontainer. However,be
ause of a 
omplex operation, minimal bounding re
tangle is used instead of anellipse in this paper. You 
an see the data stru
ture of the ar
 tree in �gure 4.10.It is similar with the strip tree.Building an ar
 tree is faster than the strip tree be
ause it does not need mu
h
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Figure 4.10: Data stru
ture of ar
 treepro
essing time to 
hoose the splitting point. The polyline is divided by the medianpoint until only two points are left so that there is no approximation error.Algorithm 3 buildAr
Tree()if there are only two points thenFinish building the ar
 treeelse
al
ulate_MBR(box,start,end);division ← ppn/2qbuildAr
Tree(start, division)buildAr
Tree(division, end)end ifFigure 4.11 shows the example of an ar
 tree whi
h is applied to real data.4.4 Smallest Bounding Area Tree4.4.1 Smallest Bounding Area Tree de�nitionTwo well-known hierar
hi
al representations, strip tree and ar
 tree, are mainlydi�erentiated by how to 
hoose the splitting point for building a next level of thetree. New idea was from here: how the tree 
an be more e�
ient by di�erent split-ting points? If the de
omposition of the polyline is optimized, will the tree alsobe optimized? More optimized de
omposition means that a bounding 
ontainerof a tree stru
ture approximates the polyline more pre
isely, therefore, it does nothave mu
h va
ant spa
e. Figure 4.12 shows two 
ases with di�erent splitting points.There are same polyline and line segment l in both examples in �gure 4.12, butthey have di�erently de
omposed sub-polylines. When the operation to �nd the
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Figure 4.11: Ar
 tree with minimal bounding re
tangle and �nding interse
tionswith random line segments
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a b
l lFigure 4.12: Comparing two trees by di�erent splitting pointsinterse
tion between the polyline and a line segment l is exe
uted, more pro
essesare needed for the 
ase in �gure 4.12a. This is be
ause the bounding 
ontainer isinterse
ting with l, although l is a
tually not interse
ting the polyline. Interse
tionis possible in this 
ase. However, the 
ase in �gure 4.12b is null, whi
h means thatthere is no interse
tion 
learly. Therefore, we 
an know whether there is interse
tionor not faster so that we do not need extra operations.More optimized de
omposition 
an be a
hieved when the area of bounding 
ontain-ers is the smallest so that there is less va
ant spa
e. You 
an easily see that the areaof bounding 
ontainers in �gure 4.12b is smaller than in �gure 4.12a. Thus, whenwe de
ide the splitting point in the pro
ess for building the tree, all possible pointsbetween two end points are 
he
ked, and then the one whi
h has the smallest areaof bounding 
ontainers will be a splitting point.4.4.2 Implementation of Smallest Bounding Area TreeThere are two approa
hes: by greedy algorithm and by dynami
 programming.Greedy AlgorithmIt is easy to understand by greedy approa
h. Splitting point is the point whi
hmakes the sum of divided bounding areas minimum in ea
h level of resolution (seeAlgorithm 6). In ea
h level of the tree, all points between starting and ending pointsare 
he
ked: if the 
urve is divided by ea
h point, how big is the sum of areas ofminimal bounding re
tangles of sub-
urves? Then 
hoose the one whi
h makes the
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an make a 
ost fun
tion Cwith S whi
h is the fun
tion 
al
ulating the area of a minimal bounding re
tangleof a sub-
urve with starting and ending points.
C(i, k) = min

j
{S(i, j) + S(j, k)}We 
an 
al
ulate all values of fun
tion S between all points and make a matrix.It takes O(n2) time and spa
e, and it takes O(nlogn) for 
al
ulating a minimalbounding re
tangle. Hen
e it takes O(n3logn) for the matrix. In addition, O(logn)is ne
essary for building a tree stru
ture.Algorithm 4 buildGreedyTree(start,end,tree)
al
ulate_MBR(box,start,end);for k = start+1 TO end do

S1 ← 
al
ulate_MBR(box1,start,k);
S2 ← 
al
ulate_MBR(box2,k,end);if (S1 + S2 ≤ minArea) thenminArea ← S1 + S2;division ← k;end ifend forleft ← initiate_new_node();right ← initiate_new_node();tree.bbox ← box;tree.left
hild ← left;tree.right
hild ← right;if there are more than two points thenbuildGreedyTree(start,division,left);end ifif there are more than two points thenbuildGreedyTree(division,end,right);end ifDynami
 ProgrammingThe pro
ess of building smallest bounding area (SBA) tree by dynami
 program-ming has two steps. First, 
al
ulate the area of minimal bounding re
tangles of all
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 and make a matrix of smallest bounding area by dynami
programming (see Algorithm 4). Then, by using this matrix, �nd an optimal split-ting point and build SBA tree (see Algorithm 5). Figure 4.13 shows the example ofthe pro
ess.We have a 
ost fun
tion C, whi
h is the area of all minimal bounding re
tangles atthe tree 
onstru
ted for a pie
e of P from a vertex i to vertex k.
Cr(i, k) = min

j
{Cr−1(i, j) + Cr−1(j, k)} where r is the depth of the treeFor a leaf node in level 1: (k − i) ≤ 3, C is 
al
ulated by a fun
tion S whi
h is thesum of areas of minimal bounding re
tangles.
C1(i, k) = min

j
{S(i, j) + S(j, k)}If all possible points are 
he
ked and ea
h area of minimal bounding re
tangles is
al
ulated, then pro
essing time is not short. Time 
omplexity of 
al
ulating a min-imal bounding re
tangle is O(nlogn), thus, time 
omplexity for making S matrixof smallest bounding area is O(n3logn). It takes additionally O(n2) time and spa
efor C matrix.In this paper, the fo
us is on how di�erent tree stru
tures work e�
iently, not onhow fast tree stru
tures 
an be built. This is be
ause we 
an use the tree stru
turemany times after building it on
e.Algorithm 5 
al
BoxArea(r,n1,n2)for n1 = 1 TO N dofor n2 = 1 TO N do
al
ulate_MBR(box,n1,n2);end forend for
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Figure 4.13: Cal
ulating a matrix of splitting points and building SBA tree bygreedy algorithm and dynami
 programming
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Figure 4.14: SBA tree with minimal bounding re
tangle and �nding interse
tionswith random line segments
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Algorithm 6 area = 
onstru
tTree(start,end)
S0 ← 
al
BoxArea(start,end);r ← plog2(end− start + 1)q;if r > 1 thenfor j=start+1 TO end-1 do

S1 ← 
onstru
tTree(start,j);
S2 ← 
onstru
tTree(j,end);if S0 + S1 + S2 < Smin then

Smin ← S0 + S1 + S2;division ← j;end ifend forreturn Smin;elsereturn S0;end if



Chapter 5Applied Areas
This 
hapter des
ribes areas hierar
hi
al representation of ar
s 
an be applied to.How the hierar
hi
al data modelling 
an help to solve the problems is explained.5.1 Using a Hierar
hi
al Stru
ture for ReportingInterse
tionsA hierar
hi
al stru
ture 
an be applied in many areas of 
omputational geometry.Line segment interse
tion (LSI) is one of most important and basi
 problems, be-
ause 
omputational problems su
h as polygon interse
tion or point in
lusion 
anbe based on LSI problem. Algorithms for LSI are reviewed and 
ompared to analgorithm with a hierar
hi
al stru
ture.5.1.1 Line Segment Interse
tion(LSI)Line segment interse
tion problem is de�ned as follows:
• A set S = s1, s2, . . . sn of n line segments(see Fig. 4.15)
• Find all pairs (si, sj) ∈ S2 su
h that i 6= j and si ∩ sj 6= φ49
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S1 S4

S7
S3

S8

S6

S2

S5Figure 5.1: A set S of n line segmentsThere are di�erent algorithms for reporting all interse
tions between line segments.Ea
h has di�erent time 
omplexity. Brute for
e algorithm takes O(n2), simply �ndsinterse
tions between all possible groups of two line segments. LSI with plane-sweepte
hnique [PS85, dBvKOS00℄ 
an be solved in O(nlogn).LSI problem 
an be applied to �nd interse
tions between ar
s and a line segment,be
ause ar
s 
onsist of several line segments. One simple method is �rst sorting allline segments of ar
s then �nding interse
tions. This takes O(nlogn) for sorting (in
ase of merge sorting) plus O(logn) for sear
hing interse
tions.5.1.2 Hierar
hi
al Stru
ture and LSIA hierar
hi
al stru
ture 
an be used for �nding interse
tions between ar
s and aline segment. This takes O(Mlogk) su
h that M is a number of ar
s and k is anumber of line segments of ea
h ar
. Therefore, using a hierar
hi
al stru
ture maybe faster than using LSI algorithm or quite same - it depends on M and k.Using a hierar
hi
al stru
ture 
an have bene�ts(+) and losses(�) against LSI asfollows:+ More understandable and more heuristi
+ Ea
h ar
, not individual line segment, has topologi
al information - saving spa
e.� More 
omputationally 
ompli
ated� It takes time and needs spa
e to 
onstru
t a hierar
hi
al stru
ture.
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Figure 5.2: Not big di�eren
e between original and simpli�ed maps at small s
ale5.2 Polygonal Approximation
5.2.1 De�nition of Polygonal ApproximationPolygonal approximation is a pro
ess of elimination of points whi
h produ
e theleast errors. This pro
ess is ne
essary be
ause a size of data 
an be redu
ed mu
hso that data retrieval and management 
an be faster. Also, it takes less time to showthe map data. At small s
ale map, not many points are ne
essary be
ause visualdi�eren
e is not noti
eable with human bare eyes (See Fig. 5.2). Ve
tor pro
essingsu
h as point in
lusion or polygon interse
tion 
an be faster be
ause a simpli�edpolygon has less boundaries to be 
he
ked [Tay℄.Line segment L in 2-dimensional spa
e is represented by ordered point set P whi
hhas N points: P = p1, . . . , pN = (x1, y1), . . . , (xN , yN). After polygonal approxima-tion pro
ess, L has a new ordered point set Q whi
h is represented by M points:
Q = q1, . . . , qM . The point set of Q is a subset of P and M ≤ N . The end pointsof Q are same with the end points of P : q1 = p1, qM = pN [Kol03℄.
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p1 = q1

pN = qM

pi (i=1,...,N)

qj (j=1,...,M)Figure 5.3: P and Q sets5.2.2 AlgorithmsHeuristi
 AlgorithmsMany algorithms for polygonal approximation are developed with di�erent te
h-niques. Heuristi
 algorithms are not always optimal but the pro
ess is easy tounderstand and 
an be done quite fast. Heuristi
 algorithms 
an be grouped by twostrategies, de
imation and re�nement [KDE05℄.Most of algorithms are de
imation methods in whi
h removable points by a given er-ror toleran
e are 
hosen and removed. This pro
ess starts with all points des
ribinga line, and the result is simpli�ed line with less points. On 
ontrast to de
imationalgorithms, Douglas-Peu
ker algorithm(1973) is by a re�nement strategy. It startswith two endpoints of a line, and points are getting inserted a

ording to a givenerror 
riterion.Polygonal Boundary Redu
tion is a simple de
imation algorithm proposed by Leuand Chen [GL98℄. This algorithm 
onsiders boundary ar
s of two and three edges.It 
al
ulates the maximum distan
e between the ar
 and the dire
ted line of twoendpoints. If the distan
e is less than a given threshold, then it repla
es the ar
 tothe dire
ted line of two endpoints (See Fig. 5.4).
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thresholdFigure 5.4: Polygonal boundary redu
tionOptimal ApproximationsThere are two di�erent types by error bounds(Imai and Iri, 1998).

• min-ε : minimizing the approximation error for a 
ertain number of points
• min-♯ : minimizing the number of points for a given error bound ε5.2.3 Topologi
ally Consistent Simpli�
ation Using Hierar-
hi
al Stru
turePolygonal approximation algorithms do not always guarantee topologi
al 
onsis-ten
y. There may be some in
onsisten
ies su
h as an interse
tion with neighborobje
ts or a self-interse
tion [EM01℄. Figure 5.5 and 5.6 shows the examples ofin
onsisten
y of topology.Self-interse
tion 
an o

ur in an approximation of severely bent 
urves [HK01℄. In�gure 5.5, self-interse
tion is generated by using Douglas-Peu
ker algorithm [JSG99℄.These interse
tions make wrong topologi
al information. Therefore, they should befound before or after approximation and be �xed.For an e�
ient pro
ess to �nd interse
tions, a hierar
hi
al stru
ture of 
urves de-s
ribed in 
hapter 4 is used. Che
king all 
urves in the map for interse
tion withnew simpli�ed line segment is not e�
ient be
ause it is obvious for 
urves far awayfrom the 
orresponding line segment not to interse
t ea
h other. Irrelevant 
urvesare ex
luded by 
he
king an interse
tion with a bounding 
ontainer whi
h bounds
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Figure 5.5: Islands disappeared after polygonal approximation

thresholdFigure 5.6: Self-interse
tion after polygonal approximation by Douglas-Peu
ker al-gorithm
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error

thresholdFigure 5.7: Nested 
urves to whi
h simpli�
ation by de�ning safe sets 
an not beapplied
the whole 
urve. Hen
e, it is 
omputationally faster than without the hierar
hi
alstru
ture.
There are two methods for �xing errors. First method is �xing errors after approx-imation pro
ess. As an example, Estkowski and Mit
hell proposed Simple Detours(SD) heuristi
 idea in 2001 [EM01℄. First, a standard polygonal approximation isapplied, then interse
tions are found. One of interse
ting segments is de
lared as adetour segment, and detour graph G(s) is 
onstru
ted. In G(s), two points 
an bejoined if and only if the 
orresponding line segment is error-tolerant and does notinterse
t with another line segment.
Se
ond method is applying approximation pro
ess only when a new simpli�ed linesegment does not make any interse
tions with neighbor obje
ts, that is, when thereare no topologi
al errors. There is an a
tual work of preventing topologi
al 
hangesby de�ning "safe sets" using a Vornoi diagram [MS00℄. This method is workingbetter for maintaining an original shape than �rst method be
ause a simpli�
ation
an o

ur only in a safety zone. However, this safety 
an be a weak point in some
ases. Figure 5.7 shows the example of nested 
urved lines and an error bound forapproximation [EM01℄. In this 
ase, approximation may not be applied.
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A and B

A or B

A B

Figure 5.8: Interse
tion and union of sets A and B5.3 Windowing and Clipping5.3.1 Polygon OverlayMap overlay operations are often ne
essary in GIS. For example, when making landuse de
ision, there 
an be many layers of geographi
al data su
h as environmental orso
ial fa
tors. Topologi
al map overlay 
reates new obje
ts and attribute relationsby overlaying obje
ts from many input map layers. A polygon 
an be thought ofas representing a set. When two sets (polygons) A and B are overlaid, we 
an haveset 
on
epts interse
tion and union (see Fig. 5.8). There are 16 possible 
ombina-tions of boolean expression, but interse
tion is of most interest in polygon overlayoperations.In following se
tions, we will look through windowing and 
lipping whi
h are inter-se
tion between the window re
tangle and polygon obje
ts of the map data.5.3.2 WindowingThere is a given re
tangle R, whi
h is the window, and whether a shape S interse
tsthe re
tangle R or not is tested [RSV02℄. In a simple method, we 
an basi
allylook through all segments of all ar
s and �nd interse
tions with the re
tangle R. Ifthe ar
 is interse
ting R or inside R, then the ar
 and the polygon whi
h has thear
 is visualized. This 
an have many redundant operations, for example, when ifthe window re
tangle R is very small and the map is big so that there are manypolygons far away from the R. Therefore, if we use hierar
hi
al stru
ture for ar
s,we 
an redu
e these operations. If some ar
s are inside the R or interse
ting the R,then polygons related to those ar
s interse
t the re
tangle R. From the information
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Figure 5.9: Example of windowing
of left and right polygons of the ar
, we know whi
h polygons are related.
In �gure 5.9, there are three possible 
ases. In 
ase A, the bounding box of the ar
is in
luded in the R, so polygons whi
h has this ar
 are interse
ting the R. In 
aseB, the ar
 and bounding box of the ar
 are interse
ting the R, so polygons relatedwith this ar
 are interse
ting. In 
ase C, the ar
 is not interse
ting the R, but thebounding box of the ar
 is interse
ting the R. In this 
ase, more detailed levels ofthe tree stru
ture of the ar
 are 
he
ked and whether the ar
 is interse
ting the Ror not is 
on�rmed.
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Figure 5.10: Example of 
lipping5.3.3 ClippingClipping is similar with windowing, however it needs more 
ompli
ated operations.There is a given re
tangle R, and we 
lip the polygons whi
h are inside the re
tan-gle R. After 
lipping, new obje
ts are 
reated, be
ause the segment of ar
s whi
h isinterse
ting the re
tangle R will be 
ut by the edge of the R.The usage of hierar
hi
al stru
ture of ar
s is basi
ally same with windowing. If thebounding 
ontainer of the ar
 is inside the R, then the whole ar
 is in
luded. Ifthe bounding 
ontainer and the ar
 are interse
ting the R, then we should �nd theinterse
ting point between the edge of the re
tangle R and the ar
. By using thispoint, the line segment interse
ting the edge of R 
an be 
ut (See Fig. 5.10).



5.4. POINT INCLUSION 59
Q

P1

P2

P1

P2

Q

Figure 5.11: In
lusion of the point P in the polygon Q5.4 Point In
lusionPoint in
lusion is one of basi
 operations in GIS. Hierar
hi
al stru
ture of an ar
also 
an be useful to 
he
k the point in
lusion. If we want to know that the point Pis inside the polygon Q, we have to �nd out how many times a ray from the pointP interse
ts edges of the polygon Q (See Fig. 5.11). When �nding interse
tions,hierar
hi
al stru
ture 
an make it more e�
ient. If the ray from the point P inter-se
ts times of an even number, P is outside Q. If the ray interse
ts times of an oddnumber, P is inside Q.
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Chapter 6Experiments
Smallest Bounding Area Tree whi
h is proposed in this thesis have implementedand tested with real data for its e�
ien
y and e�e
tiveness. These tests are donewith one 1,400MHz Intel Pentium M pro
essor and 512MB of memory.Test data are a digital map whi
h has 1,941 points and a map whi
h has 10,925points (See Fig. 6.1).Tests are for 
he
king how hierar
hi
al stru
tures make interse
tion 
he
king e�-
ient. Therefore, map data is tested with hierar
hi
al stru
tures or without, andhow mu
h time was taken in ea
h 
ase is 
al
ulated and 
ompared. Figure 6.2 showsthe example of interse
tions between random line segments and Map1. The map istransformed to a map with topologi
al stru
ture - Node, Ar
, and Polygon beforethe test.
6.1 Comparison 1: With Di�erent Bounding Con-tainers and WithoutFirst experiment is �nding interse
tions between random line segments and themap with a hierar
hi
al stru
ture and without. For the test, 1000 line segments forMap1 and 500 line segments for Map2 are randomly 
reated. Smallest BoundingArea Tree (SBA Tree) is used as a hierar
hi
al stru
ture and orthogonal box and61
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Figure 6.1: Map1 and Map2 for testing

Figure 6.2: Map1, long and short random line segments, and interse
tions
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Orthogonal Box Minimal Bounding Rectangle

(MBR)

Figure 6.3: Map1 and Map2 with orthogonal boxes and with minimal boundingre
tangles



64 CHAPTER 6. EXPERIMENTSminimal bounding re
tangle (MBR) are used as a bounding 
ontainer (See Fig. 6.3).Without hierar
hi
al stru
tures, all segments of all ar
s should be 
he
ked for ea
hline segment. If the line segment is far away from some polygons, then it is notne
essary to do a 
he
king pro
ess with them, hen
e, it is not e�
ient.Using MBR as a bounding 
ontainer is slightly faster than using orthogonal boxes inaverage time, but there is not big di�eren
e between them. Che
king interse
tionswith an orthogonal box is faster than with a MBR. Therefore, even though MBRapproximates more pre
isely than orthogonal box, using orthogonal boxes 
an befaster in some 
ases (See Table 6.1 and 6.2).
6.2 Comparison 2: Di�erent Hierar
hi
al Stru
turesSe
ond experiment is 
omparing e�
ien
y of three di�erent hierar
hi
al stru
tures- Ar
 Tree, Strip Tree, and Smallest Bounding Area Tree (SBA tree). Figure 6.5shows the pro
ess of building ea
h tree stru
ture for the map.You 
an see that boxes by Ar
 tree are bigger than Strip and SBA tree. Boxes byStrip tree look also well-behaving, however, if a line is 
ompli
ated and distorted,boxes by SBA tree is more e�
ient. Figure 6.4 shows an example of a 
ompli
atedline and boxes by Strip and SBA trees.Table 6.3 and 6.4 show how mu
h time is taken to �nd interse
tions between randomlines and all obje
ts of the map using Strip, Ar
, and SBA trees. SBA tree worksbetter than Strip and Ar
 trees, not always but generally a

ording to the tests. Ar
tree works generally worst among three of them, be
ause the area of its boundingboxes is bigger so that its approximation of obje
ts is not better than others.We 
an de
ide whi
h tree we 
an use by 
onsidering what kind of map is. Also, howmany times the tree is used 
an be 
onsidered. If ar
s of the map are simple, andthe tree stru
ture is not used mu
h, then we 
an use an ar
 tree be
ause buildingtime is short. If ar
s of the map are 
ompli
ated, and the tree stru
ture is usedmany times again, then strip tree and SBA tree are better than ar
 tree, though ittakes more time to build them.
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Map Without With SBA Tree With SBA Tree (DP)(1,941) Tree + Orthogonal Box + MBR0.620 0.421 0.4300.591 0.441 0.3410.671 0.401 0.3110.632 0.260 0.3510.600 0.330 0.3710.571 0.341 0.3500.570 0.401 0.3400.625 0.300 0.3910.561 0.441 0.3700.630 0.190 0.4000.611 0.341 0.4210.586 0.320 0.3000.580 0.360 0.2710.627 0.421 0.3300.590 0.360 0.2310.600 0.291 0.3600.592 0.351 0.3910.610 0.431 0.3610.561 0.331 0.3510.630 0.340 0.351Averagetime 0.6029 0.3536 0.3511Table 6.1: Running time (se
onds) for �nding interse
tions between 1,000 randomline segments and all features of Map1 (1,941 points). Tests are done 20 times andaverage time is 
al
ulated.
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Map Without With SBA Tree With SBA Tree (DP)(10,925) Tree + Orthogonal Box + MBR1.552 0.441 0.4611.563 0.420 0.4621.532 0.441 0.3911.532 0.431 0.3811.532 0.440 0.4401.543 0.431 0.4601.532 0.421 0.4401.512 0.420 0.4411.512 0.421 0.5011.512 0.420 0.4811.502 0.411 0.4401.513 0.421 0.3821.502 0.440 0.4501.522 0.421 0.4111.512 0.430 0.3711.512 0.431 0.4501.502 0.441 0.5301.533 0.440 0.4411.512 0.411 0.4311.502 0.421 0.412Averagetime 1.5217 0.42765 0.4388Table 6.2: Running time (se
onds) for �nding interse
tions between 500 randomline segments and all features of Map2 (10,925 points). Tests are done 20 times andaverage time is 
al
ulated.
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Map With With With SBA Tree With SBA Tree(1,941) Ar
 Tree Strip Tree DP Greedy Alg.0.441 0.390 0.310 0.4010.451 0.342 0.420 0.3300.440 0.381 0.410 0.3310.410 0.400 0.321 0.4110.350 0.511 0.341 0.3800.432 0.330 0.401 0.3800.420 0.331 0.361 0.4300.360 0.402 0.390 0.3900.502 0.360 0.390 0.2800.380 0.341 0.381 0.4200.431 0.320 0.412 0.3800.300 0.401 0.390 0.4510.330 0.420 0.421 0.3710.340 0.440 0.361 0.4010.410 0.421 0.310 0.3810.350 0.421 0.442 0.3300.420 0.351 0.441 0.3200.370 0.401 0.451 0.3500.371 0.420 0.350 0.3910.380 0.431 0.270 0.452Averagetime 0.3944 0.3907 0.37865 0.379Table 6.3: Running time (se
onds) for �nding interse
tions with three di�erent treestru
tures between 1,000 random line segments and all features of Map1 (1,941points). Tests are done 20 times and average time is 
al
ulated.
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Map With With With SBA Tree With SBA Tree(10,925) Ar
 Tree Strip Tree DP Greedy Alg.0.540 0.471 0.381 0.4410.380 0.490 0.431 0.5310.460 0.511 0.412 0.4400.330 0.442 0.530 0.5110.440 0.431 0.440 0.5210.471 0.491 0.481 0.4000.520 0.472 0.490 0.3200.430 0.583 0.430 0.3900.562 0.460 0.420 0.4010.421 0.450 0.401 0.5400.450 0.410 0.512 0.4410.481 0.420 0.380 0.5520.480 0.451 0.411 0.4900.441 0.380 0.511 0.5210.421 0.581 0.380 0.4710.581 0.511 0.440 0.2900.431 0.430 0.390 0.5720.480 0.490 0.361 0.4910.481 0.542 0.400 0.3700.440 0.371 0.502 0.500Averagetime 0.4620 0.46935 0.43515 0.45965Table 6.4: Running time (se
onds) for �nding interse
tions with three di�erenttree stru
tures between 500 random line segments and all features of Map2 (10,925points). Tests are done 20 times and average time is 
al
ulated.
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Strip Tree SBA TreeFigure 6.4: Comparing strip tree and SBA treeStarting and ending points of random lines used for the tests are 
hosen randomly sothat the length of most lines are long. Hen
e there are many interse
tions betweenthe line and map obje
ts. One more test with short random lines is pro
essed,be
ause there are also operations for interse
tions with mostly short lines. For ex-ample, for polygonal approximation, most of operations may be with short lines.The part of approximated lines is short, be
ause new approximated line segment is
he
ked for interse
tions not with other approximated line segments but with otheroriginal line segments. This means that the approximation is more stri
t and notmu
h shape-
hanged (See Fig.6.6).Approximated line segment Q1 is illegal if we �nd interse
tions between Q1 andother polyline P2, however, Q1 approximation is possible if we �nd interse
tionsbetween Q1 and Q2, new approximated line segment of the part of P2. Table 6.5 isthe result of �nding interse
tions between 1000 random short lines and Map1.
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Arc Tree Arc Tree Arc Tree

Strip Tree Strip Tree Strip Tree

SBA Tree SBA Tree SBA Tree

Figure 6.5: Building ar
 tree, strip tree, SBA tree for Map1
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Map With With With SBA Tree With SBA Tree(1,941) Ar
 Tree Strip Tree DP Greedy Alg.0.300 0.380 0.290 0.3320.330 0.300 0.361 0.3100.290 0.402 0.320 0.3000.380 0.311 0.350 0.2710.350 0.330 0.321 0.3100.350 0.330 0.351 0.3000.341 0.320 0.381 0.2900.320 0.341 0.321 0.3300.380 0.281 0.350 0.3010.280 0.371 0.340 0.3310.271 0.351 0.310 0.3500.310 0.391 0.350 0.2510.340 0.340 0.291 0.3510.271 0.371 0.320 0.3600.290 0.410 0.311 0.3310.331 0.320 0.310 0.3100.351 0.370 0.271 0.3200.290 0.351 0.310 0.3410.361 0.350 0.340 0.2700.320 0.332 0.330 0.340Averagetime 0.3228 0.3476 0.3264 0.31495Table 6.5: Running time (se
onds) for �nding interse
tions with three di�erent treestru
tures between 1,000 random short line segments and all features of Map1 (1,941points). Tests are done 20 times and average time is 
al
ulated.
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approximated line

               Q1

P1P2

approximated line

               Q1

P1P2

approximated line

               Q2

Legal approximation

Figure 6.6: Illegal and legal approximations



Chapter 7Con
lusion and Future Work
In this paper, data modelling for a ve
tor map is studied. Ve
tor data model 
anbe divided to non-topologi
al and topologi
al models. Spaghetti model is non-topologi
al, and it is the simplest ve
tor map type. The map with spaghetti modelis transformed to a topologi
al ve
tor map whi
h has the information of neighbors.The topologi
al stru
ture built in this paper has node, ar
, and polygon obje
ts.Ar
 is similar with a line obje
t but it has left and right neighbors' information.For more e�
ient representing ar
s, hierar
hi
al stru
tures are in use. First, sev-eral bounding 
ontainers are explained, and minimal bounding re
tangle (MBR) isdes
ribed in detail and implemented using rotating 
alipers. With these bounding
ontainers, strip and ar
 trees whi
h are widely used are explained and implemented.Smallest bounding area (SBA) tree is newly suggested in this paper. This tree isbuilt by the splitting point whi
h is optimized by bounding area. Splitting pointis the point whi
h has the smallest bounding area. This is a

omplished by greedyalgorithm and by dynami
 programming. The bounding area is optimized in 
urrentlevel by greedy approa
h, and the bounding area is optimized in whole levels of thetree by dynami
 programming.SBA tree makes �nding interse
tions with random lines faster sometimes, but notalways in experiments. Ea
h tree stru
ture has good and bad sides. It is fast tobuild an ar
 tree, be
ause it does not have 
ompli
ated 
al
ulation for de
iding thesplitting point. However, bounding area made by ar
 tree 
an not approximate thereal obje
t well in some 
ases. Strip tree works quite good, but if the ar
 is 
ompli-
ated and distorted mu
h, approximation by strip tree 
an be not that good. SBAtree takes more time to be built than other trees, but it approximates the real obje
t73
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tures 
an be used in many operations for managinga ve
tor map. Polygonal approximation is one of important operations for manyreasons su
h as simpler visualization and faster transmission. When the map is ap-proximated, topologi
al information 
an be 
hanged. Hen
e, we should avoid wrongtopologi
al 
hanges and keep the original one. This 
an be done by approximatingonly if the topology is same, and �xing errors after approximation. For both 
ases,the most important and often used operation is �nding interse
tions with other ar
sor line segments. Therefore, hierar
hi
al stru
tures 
an be used for topologi
ally
onsistent simpli�
ation. In addition, we 
an also apply the stru
tures to window-ing, 
lipping, and point in
lusion test. For windowing and 
lipping, we 
an use thehierar
hi
al stru
ture when we �nd whi
h ar
 is interse
ting the re
tangle R, thenget the polygon information from the ar
 and �nd interse
tion between the re
tan-gle R and the line segment of the ar
. For point in
lusion, we should �nd out howmany times the ray from the point is interse
ting the polygon. Using hierar
hi
alstru
ture also 
an help the pro
ess. More applied areas 
an be studied in the future.Stru
tures for hierar
hi
al representation are fo
used on in this paper, so imple-mentations of some parts are not e�
ient. For example, the algorithm for �ndinginterse
tions between MBRs or between MBR and line segment is not e�
ient.Therefore, this 
an be improved more in the future. More various bounding 
on-tainers 
an be implemented with the SBA tree, so we 
an de
ide whi
h bounding
ontainer works better with the SBA tree. Also, if we �nd not perfe
tly optimizedsplitting point, then time for building the tree 
an be shorter. It may be a
hievedby 
ombining optimal and heuristi
 algorithms. This issue also 
an be improved inthe future.
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