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AbstratVetor map an be modelled with di�erent data models. First, we build topo-logial information from the map with spaghetti model. We will look through basivetor objets, desribe the struture of topology of the map, and then how a non-topologial map is transformed to a topologial map is explained. Next, boundingontainers are explained for more e�ient aessing of objets. We do not needwhole detailed information of eah objet in some ases. Di�erent bounding on-tainers are explained, and how minimal bounding retangle (MBR) is implementedis desribed. Ar, one of vetor objets in the map, an be represented by hier-arhial struture. Well known tree strutures, strip and ar trees, are reviewed,and smallest bounding area (SBA) tree is proposed. Hierarhial representationan be used in many areas. We an keep the topologial information while doingpolygonal approximation. Also, hierarhial struture an make windowing, lip-ping, and point inlusion more e�ient. We ompare di�erent bounding ontainers,and di�erent hierarhial strutures in experiments.



Chapter 1Introdution
This hapter desribes bakground and motivation of this work. Also the outline ofthis thesis is presented.1.1 BakgroundMaps have guided people for thousands of years. Traditionally maps were hand-made and for the last entury they were printed. These paper maps ould not bemodi�ed. Then omputer revolution ame, and these days most of the maps aredigitized and stored in digital format, so they an be easily reated and proessedby a omputer. Digital map proessing allows many map tehnologies whih arenot able in paper maps suh as storing a huge set of maps, ompress maps usingimage ompression tehnologies, omfortable interfae for browsing maps and so on.There exists two di�erent formats for presenting digital maps. These are rastermaps and vetor maps. Raster maps store visual information as a raster image ora set of raster images. Raster image onsists of pixels and eah pixel an have oneof the several olors, depending on the olor depth of the image. Typial imageformats for this map are PPM, GIF and PNG. Vetor maps store visual and ge-ographial information using vetor graphis. This map is not a image but a setof graphial entities suh as Point, Polyline, Polygon, Ar, Node, and so on. Thiswork onentrates on the latter map format.1



2 CHAPTER 1. INTRODUCTIONVetor maps an have topology whih means relationships between entities in maps.Topology desribes how map elements are onneted eah other. If the map hastopologial information, then eah element is aware of its neighbors, therefore, edit-ing or updating maps an be easier.Data modelling for the vetor map an be applied in many di�erent areas. It anhelp to make the proess more e�ient and faster. One of most useful geometri-al omputations is �nding intersetions between objets. This an be in use forpolygonal approximation, windowing, lipping, and et.1.2 MotivationThere are many areas in GIS where data modelling for the vetor map an makeproesses more e�ient. For example, polygonal approximation is a method formodifying omplex vetor map so that less important elements are removed. Thisoperation is useful beause maps with omplex elemental struture are expensive toproess and approximated maps an still be used in many appliations. However,while map being approximated, errors an our. This is beause topology is notonsidered. For topologially onsistent simpli�ation, hierarhial representationof ars an be helpful for faster and more e�ient proessing. For windowing, lip-ping, and point inlusion, it also an be helpful, beause their basi omputation is�nding intersetions between a line segment and an objet.Ar, line segment whih has topologial information, an be modelled by a hierarhi-al struture. Tree data struture is ommonly used. The widely known tehniquesare Strip Tree [Bal81℄, Ar Tree [GW90℄, and Bezier Tree [Bez74℄. In this paper,we �rst show how vetor maps with di�erent data models are embodied and howto build a topologial struture, and then look through di�erent kinds of boundingontainers. Next, Strip Tree and Ar Tree will be ompared with new designed tree.Finally, how these tree strutures an be applied in many GIS areas. C++ librarywhih has all funtions was built for implementation.1.3 OutlineThe thesis begins with bakground knowledge about digital images and maps, andthen explains the motivation for this study and de�nes the objetive. Next, the



1.3. OUTLINE 3struture of vetor map is de�ned and a proess of building a topologial struturefrom a non-topologial vetor map is explained. Chapter 3 is about bounding on-tainers whih are used for an approximation of objets, and then two well-knownhierarhial strutures of ars, using a minimal bounding retangle as a boundingontainer, are explained. A new hierarhial struture is proposed and its per-formane is ompared with others in hapter 4. Several applied areas are lookedthrough and how the usage of a hierarhial struture of ars a�ets to the perfor-mane is explained in hapter 5. Experiments for omparing performanes with andwithout the hierarhial struture and with di�erent bounding ontainers, and foromparing performanes between di�erent hierarhial strutures are desribed inhapter 6. Finally, onlusions are presented and future works are disussed.



4 CHAPTER 1. INTRODUCTION



Chapter 2Vetor Data Model
This hapter desribes about vetor data representation, di�erent vetor data modelsand how they are implemented.2.1 Vetor Data RepresentationVetor data represents the real world using disrete points, lines or polygons. In realworld, most objets onsist of urved lines and areas with soft boundaries. However,those real objets are substituted for disontinuous lines and points, so that theirboundaries do not look soft and natural [KO03, HA03℄. If the data are representedwith smaller and more objets, they look more natural but size will be inreased.Figure 2.1 shows how real world an be hanged to vetor data.Here are more detailed explanation about typial primary objets whih are usedin vetor data [HCC02, BV02, DeM05℄.2.1.1 PointPoint is zero-dimensional abstration of an objet represented by a single set of xand y oordinates. It an be used to depit map features or symbols suh as loationof buildings on a small-saled map. 5
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Figure 2.1: Transformation to vetor data2.1.2 NodeNode is same format with Point, but it has additionally topologial information.Points where lines from di�erent polygon or polyline interset are hosen to nodes.Node is also the end point of ar whih will be explained later, so it has ar infor-mation whih has the node. Figure 2.2 shows an example of point and node objets.
2.1.3 LineLine is a set of x and y oordinates that represent the shape of geographi featuressuh as ontours, street enterlines, or streams or linear features with no area suhas ountry boundary lines. It is also alled polyline.2.1.4 ArAr is same format with Line whih starts and ends with nodes and has adjaentpolygon information. Ar has start and end nodes, left and right polygon identi-�ations, and points between nodes. Figure 2.3 shows an example of line and arobjets.
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Figure 2.2: Point and node objets

Figure 2.3: Line and ar objets
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Figure 2.4: Polygon onsisting of points and ars2.1.5 PolygonPolygon is a feature used to represent areas suh as swamps or lakes. It an be aset of x and y oordinates as the same of a line, but start and end points should besame beause polygon is a losed polyline. Lines of polygon should not interset.Polygon also an onsist of ars. In this ase, polygon does not have a set of pointsbut a set of ars whih has adjaent polygon's information. Figure 2.4 shows andexample of polygons with points and ars.2.2 Vetor Data ModelsVetor map an be based on several di�erent data models. Common to all thesemodels is that they ontain one or more geographial objets. Some models on-tain also information about objet relations. This following setion introdues twodi�erent vetor data models: Non-Topologial Model and Topologial Model, andshows how they are implemented in real data.2.2.1 Non-Topologial ModelThis is the simplest vetor data model that stores the data without establishingrelationships among the geographi features. This is sometimes alled the spaghettimodel, beause lines overlap but do not interset, just like spaghetti on a plate. All
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Figure 2.5: Polygons with spaghetti modelobjets in the map are stored as independent entities and eah is represented as aset of x and y oordinates (See Fig. 2.5).The best advantage of spaghetti model is simpliity. In addition, it is easy for endusers to input new objets beause all objets are independent. On the other hand,there are disadvantages of this model and they are mostly beause of the lak oftopologial information suh as adjaeny. For example, if we want to know whihboundaries are shared with other polygons, we need expensive proess. Seondly,data is stored with some redundany beause lines between adjaent polygons mustbe represented twie. If data size is large then waste of memory will be notieable.Thirdly, risk of inonsisteny exists. If we use di�erent soures of information orhange or move some objets, there an be a gap or sliver between adjaent polygons.2.2.2 Topologial ModelsThere are two di�erent topologial models - Network Model and Topologial Model.They are similar that they have nodes and ars. In fat, network model does nothave perfet topologial struture. It is mainly for network (graph)-based data suhas transportation servies. Node is an intersetion point between di�erent linesand ar is a line whih starts and ends with nodes. This model does not inluderelationship between 2D objets. Therefore, network model is useful for �nding anoptimal path using the onnetivity. There are planar and non-planar networks. Ina planar network, eah line intersetion is hosen as a node, even though that nodeis not a geographial objet. In non-planar network, it is possible that lines mayross and intersetion is not a node. An example of network model of planar andnon-planar networks is shown in �gure 2.6.
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Planar Network Model Non-planar Network ModelFigure 2.6: Network model - planar and non-planarTopologial model has relationship information between adjaent polygons. Nodeand ar are same with ones in network model exept that ar has information whihpolygon is on left and right side. In addition, polygon onsists of a series of ars,not points. Nodes and ars are not dupliated and they an be referened to morethan one polygon. Boundaries whih are shared by two polygons will be storedonly one, so redundany problem in spaghetti model an be solved. This is oneof advantages of topologial model. Another bene�t is e�ieny to ask topologialqueries. For example, if you want to searh a polygon adjaent to a given polygonP, then hek the ars of P. Eah ar will give the information of adjaent polygons.In addition, it is easier to maintain onsisteny when the map data is updated oredited. In non-topologial model, there may be errors when the map is edited. Onthe other hand, in topologial model, there is no error, beause the border ar isshared between two polygons (See Fig. 2.7).There are also disadvantages in this model. Data struture is more omplex thanspaghetti model, so it may slow down some other operations. Another one is thattopology should be established again after eah updating.Existing topologial data formatsDXF (Drawing Interhange Format)DXF �les are de�ned to assist in interhanging drawings between AutoCAD andother programs. DXF �les are standard ASCII text �les. They an be easily trans-lated to the formats of other CAD systems or other programs for speialized analysis.DIGEST (Digital Geographi Information Exhange Standard)DIGEST is developed by DGIWG (Digital Geographi Information Working Group)
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Figure 2.7: Editing in a vetor map with topologial and non-topologial models

Figure 2.8: Vetor map with topologial model



12 CHAPTER 2. VECTOR DATA MODELto support data exhange and o-prodution among NATO nations. It supportsraster, vetor, and matrix data exhange and the entire range of topologial stru-tures from no topology to full topology.TIGER (Topologially Integrated Geographi Enoding and Referen-ing)TIGER is digital database developed at the U.S. Census Bureau to support its map-ping needs for the Deennial Census and other Bureau programs. TIGER/Line �lesare for geographi features like roads, rivers, lakes, legal boundaries, et.TIGER/Line data format onsists of
• Node : topologial juntion of two or more links or hains, or end point of ahain
• Entity point : point for identifying the loation of point features like towers,buildings, et.
• Chain : simple polyline with start and end nodes and list of intermediatepoints. A omplete hain has referenes to left and right polygons and anetwork hain doesn't have.
• GT-polygon : list of omplete hains that form its boundary.STDS (Spatial Data Transfer Standard)U.S. Geologial Survey (USGS) developed STDS for aademi, industrial and fed-eral, state, and loal government users of omputer mapping and GIS.NTF (National Transfer Format)NTF �les are provided by the Ordnane Survey in the United Kingdom.

2.3 Building A Topologial StrutureWhy topology is neessary? Topology is a mathematial approah that allows us tostruture data based on the relationships between objets. These relationships areonnetivity, ontiguity and ontainment. Connetivity refers to the interonneted



2.3. BUILDING A TOPOLOGICAL STRUCTURE 13pathways or networks, suh as streets, eletrial power lines, streams and transporta-tion networks. Connetivity funtions are useful to �nd optimal routes through thenetwork. Contiguity is the spatial relationship between objets that touh eahother. Adjaeny has same meaning with ontiguity. Containment refers to theintersetion between objets, for example, by boolean relationships suh as "and""or" "inside" "outside" "interseting" "non-interseting" et. Therefore, topologialdata model an quikly answer these queries:
• Whih roads are onneted to the enter?
• How many people have a ar in the neighboring region?
• Where the fatory an be built in? - not in the forest "and" not lose to theenterLibrary for building a topologial struture from simple spaghetti vetor map arebuilt for this paper. First we will look into the vetor map with spaghetti model,and how to �nd nodes and ars, then lastly, topologial vetor map and XML output�les. Vetor map �les are ASCII �les for easy input and editing.2.3.1 Non-topologial Vetor MapThis �le is simple. It has label, number of points, and a list of points. Point hasX and Y oordinates and one number (0 or 2) for separating polygons. Figure 2.9shows an example �le.This �le has two objets - Polyline and Point. Polyline lass is for polygon, whihis losed polyline, or not losed polyline features. It ontains 1 to N point objets.In addition, it ontains a bounding box for reduing omparing time when �ndinga neighbor polygon. It has funtions for �nding nodes and ars. Point lass is forpoint objet. It ontains the number of neighbor polygons and their id numbers aswell as x and y oordinates. Figure 2.10 shows objet diagram of non-topologialvetor map.2.3.2 Finding NodesNext step is �nding nodes. First shared points with adjaent polygons should befound and then ount how many neighbor polygons eah point has. All points in eahpolygon should be ompared with all points in all other polygons. However, pointsatually an be shared with lose polygons, so not all points need to be heked.
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Figure 2.9: Vetor map data �le with spaghetti model

Figure 2.10: Objet diagram of non-topologial model
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Figure 2.11: Counting adjaent polygonsFor this, bounding box of eah polygon is used. First hek if bounding boxesare interseting between two polygons, then hek only points inside intersetionbetween two bounding boxes. Bounding box is easy to alulate and operations suhas inluding or intersetion are heap. Figure 2.11 shows the proess of ountingneighbor polygons.Count values in �gure 2.11 will deide whih point is a node and whih is not. Thereare several ases that show the point is a node.1. Count value is more than 2 : Node2. Count value hanges 0 to 1 or 1 to 0 : Node3. Count values are same with 1 in a row : should hek their neighbors. Ifneighbor polyline id numbers are same, then the point is not a node. If theyare di�erent, then it is a node (see Fig. 2.12).4. Current ount value is 1 and previous or next is more than 2 : Node5. If the polyline is not losed : start and end points are nodes.In �gure 2.13, you an see that shared points have a list of neighbor polygons' idnumbers. They will be used for �nding ars.2.3.3 Finding ArsAr starts and ends with nodes. For eah polygon, all points are looked up andif �rst one node is found, then ar saving starts and middle points will be storeduntil another node appears. In addition, ar should have neighbor information -
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Figure 2.12: Finding neighbor polygons and deiding whether a point is a node ornotleft and right polygons' id numbers. If there are any points between start and endnodes, then it is straightforward - heking the neighbor polygon id from the middlepoints. However, if there is no middle point, then neighbor polygons of start andend nodes are heked. If they have same neighbor polygons, ars in not-sure arrayare heked for �nding the same ar whih has same neighbor polygons. If there issame ar, the ar will be removed from not-sure array and be stored as a normalar. If there is no, the ar will be new not-sure ar. During the whole proess, samear should not be saved twie.In addition, while �nding ars, polygon should be saved with new form - refereningars but not points.2.3.4 Topologial Vetor MapFinally after building a topologial struture from spaghetti vetor map, topologialvetor map will be stored as a �le. There are two funtions for generating ASCII�le and XML �le. XML �le is easy to see the struture. For loading XML �les,existing library - Xeres C++ Parser is used [Apa℄. Table 2.1 shows the strutureof node, ar and polygon and tags for XML �le, and following �gure shows ASCIIand XML �les.
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Figure 2.13: Finding ars

Figure 2.14: Topologial vetor map data �le - ASCII
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Figure 2.15: Topologial vetor map data �le - XML

Figure 2.16: Building a topologial struture
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Node <nodes>id Node id number <nodeId>X X oordinate <nodeX>Y Y oordinate <nodeY>Number of Ars How many ars have this node <belongsArNum>Ar id numbers List of ar id numbers <belongsArId>Ar <ars>id Ar id number <arId>start node Start node id number <startNodeId>end node End node id number <endNodeId>Left Poly Left polygon id number <leftPolyId>Right Poly Right polygon id number <rightPolyId>Number of points Number of middle points <midPointsNum>X X oordinate of middle point <midX>Y Y oordinate of middle point <midY>TopoPoly <topoPolys>id Polygon id number <polyId>losed Boolean value for heking losed or not <losed>Number of ars Number of ars <ownArNum>Ar id numbers Ar id number <ownArId>Table 2.1: Struture of topologial objets and XML tags
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Chapter 3Bounding Containers
This hapter desribes bounding ontainers as a �nite geometri objet and howminimum retangle area, whih is one of linear bounding ontainers, is implemented.3.1 What Is Bounding Container?Bounding ontainer is a simple geometri objet for bounding a ompliated objet.It is useful for omputational geometry appliation suh as ray traing, ollisionavoidane, hidden objet detetion, et [Suna℄. Before doing expensive interse-tion or ontainment proess of a ompliated objet, simple proess of a boundingontainer an redue the possibility of intersetion and ontainment, and no moreproess is needed. For example, when two ompliated objets are far from eahother and should be heked for intersetion, heking two objets perfetly is notneessary if simple omparing with bounding ontainers of two objets is done andshows that there is no intersetion between them. For this usefulness, boundingontainers should satisfy some important requirements [Suna℄.
• If the bounding ontainer inlude all points of an objet, then it also shouldinlude the whole objet. For example, if two verties are inside the boundingontainer, then the line joining them will be inluded in it.
• The test for ontainment and intersetion, suh as heking one point is insideor outside the ontainer, two bounding ontainers are disjoint, and a line21



22 CHAPTER 3. BOUNDING CONTAINERSintersets the ontainer, should be easy. Therefore, ontainer should have asmall number of inequalities to test inlusion of a point.
• The bounding ontainer should be e�ient to build and store. Linear time -

O(n) and small spae for storing are aimed. However, there is trade-o�. Moree�ient ontainer needs more time for proessing.
• The ontainer an approximate the objet. Smaller area of the ontainer willbe more aurate.There are two basi types of bounding ontainers - linear and quadrati ontainers.In this paper, linear ontainers will be foused. In the following setions, di�erentlinear bounding ontainers will be introdued and then how one of linear ontainers,minimal bounding retangle, is implemented will be explained.3.2 Linear Bounding ContainersA linear ontainer is a onvex polygon whih is bounded by �nite inequalities. In2D, a ontainer an have k inequalities : fi(x, y) = aix + biy + ci ≤ 0(i = 1, k)[Suna℄. If a point(x, y) is true to all inequalities, then it is inside the ontainer.If any inequalities fails, then the point is outside the ontainer. Eah inequalitydeides a half-spae Hi bounded by the line Li : fi(x, y) = 0. The intersetion ofthese half-spaes is the region of the ontainer (See Fig. 3.1).3.2.1 Orthogonal Bounding RetangleThe orthogonal bounding retangle is de�ned by two extreme points (xmin, ymin)and (xmax, ymax) and four edges are parallel to the oordinate axes. It has fourinequalities, so if all inequalities are true with the point, then the point is insidethe box. If any one of inequalities fails, then the point is outside the box. Eventhough there are four inequalities, on the average, the point will be deided insideor outside after two tests. The test for disjoint of two retangles is similar to thetest for the point. It is done by omparing their minimum and maximum extentsof two boxes. For example, if xmax1 < xmin2 or xmax2 < xmin1, then box1 and box2are disjoint.The orthogonal bounding retangle is the simplest ontainer so that it is used mostfrequently in many appliations. It is simple beause minimum and maximum
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Figure 3.1: Li, half-spae Hi by Li, and bounding areaoordinate values an be found easily in linear time O(n) with one san of all pointsin the objet. In addition, omparing test does not have any arithmeti omputing,but only omparing x and y oordinate values with extent values (See Fig. 3.2).3.2.2 Bounding DiamondThe bounding diamond is a retangle rotated by 45◦, so it looks like a diamond. Ithas four inequalities and they are omputed by the simplest arithmeti expressions,adding and subtrating. They are p = (x + y) and q = (x − y) whih are lineswith slopes of -1 and 1. All points will be sanned, p and q omputed, and then
(pmin, pmax, qmin, qmax) will be found. For the test of point inlusion, it needs a bitmore omputation than the bounding box, but it still an be done in O(n) timewith single san of all points in the objet. Also disjoint test of two objets is easybeause only parallel edges will be ompared. Figure 3.2 shows the example of thebounding diamond.3.2.3 Bounding OtagonThe bounding otagon is the ombined geometri objet of an orthogonal boundingretangle and bounding diamond. It thus is de�ned by eight inequalities. The
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Figure 3.2: Orthogonal bounding retangle and bounding diamond

Figure 3.3: Bounding otagon and onvex hullbounding otagon is used frequently beause it is smaller area then the orthogonalbounding retangle and bounding diamond and still an be omputed in lineartime. For example, �rst, the point inlusion test an be heked by extents of theorthogonal bounding retangle. If the point is inside, seondly, (x + y) and (x− y)will be alulated and the point inlusion is deided by the bounding diamond. Thetest for disjoint of two otagons is proessed similarly with the point inlusion test.Figure 3.3 shows the example of the bounding otagon.3.2.4 Convex HullConvex hull is the smallest onvex set of points of an objet. It is easy to understandif you imagine surrounding the set of points by a large, strethed rubber band



3.3. IMPLEMENTATION OF MINIMAL BOUNDING RECTANGLE 25[PS85, dBvKOS00℄. Beause it is the smallest region, it approximates an objetmost losely and it has the least area among all bounding ontainers. Eah boundaryan be de�ned by a linear equation (ax+ by + c = 0). Therefore, the point inlusiontest an be done with an inequality : (ax + by + c) ≤ 0. An example of a onvexhull is in Figure 3.3. In spite of the most aurate approximation of an objet,onvex hull is not used pratially as a bounding ontainer, beause it may havea lot of boundaries and then it needs muh omputation for heking independentinequalities. Moreover, the test for disjoint of two onvex hulls is more ompliated,beause two hulls an not have always opposed parallel edges. There are manyexisting algorithms for omputing the onvex hull - Grahamhull, Gift-wrappingapproah, Quikhull, Mergehull, et [PS85℄.3.2.5 Minimal Bounding RetangleMinimal bounding retangle is the result of ombining two features whih are mini-mizing area of the ontainer and reduing inequalities for point inlusion test. There-fore, it approximates an objet more preisely and, at the same time, it has only fourinequalities, so easy and fast to deide the point is inside or outside the ontainer.It has two pairs of parallel lines, f1 = (a1x + b1y) and f2 = (a2x + b2y), and eahpair has minimum and maximum extents. If a point P (x, y) ful�lls
f1min ≤ a1x + b1y ≤ f1max

f2min ≤ a2x + b2y ≤ f2maxthen P is inside the retangle [Suna℄. For the algorithm �nding a minimal bound-ing retangle, 'Rotating Calipers' [Tou83℄ an be used beause it an ompute theminimal bounding retangle in O(n) time if an objet is onvex. If an objet is notonvex, then �rst, a onvex hull should be found. More details about how 'RotatingCalipers' is used will be explained in following setion.3.3 Implementation of Minimal Bounding Retan-gleIn this hapter, how to implement minimal bounding retangle will be desribed.If we use 'Rotating Calipers', time omplexity an be O(n), but objet should beonvex. We will ompute minimal bounding retangles mainly for ars in this paper,therefore, �rst should make a onvex hull for eah ar before minimal boundingretangle. Algorithms for onvex hull and rotating alipers will be explained.



26 CHAPTER 3. BOUNDING CONTAINERS3.3.1 Algorithm for onvex hullFor �nding a minimal bounding retangle for an ar, onvex hull for eah ar shouldbe omputed. There are existing algorithms for onvex hull and general omputingtime is O(nlogn). This is beause all points should be sorted before �nding a hulland sorting algorithm generally takes O(nlogn). After sorting, omputing a hulltakes O(n) time. However, there is more e�ient algorithm for onneted simplepolyline by (Melkman,1987). Ar is a onneted simple polyline beause it is a seriesof ordered points and there is no self-intersetion. Therefore, Melkman's algorithman be applied for an ar. Important features of his algorithm are1. It works for a simple polyline.2. It does not need preproessing for sorting. All points will be proessed se-quentially one.3. It uses a double-ended queue (a deque) to store proessed points whih indi-ates an inreasing hull [Sunb℄.The deque (double-ended queue) has both top and bottom. It allows one to pushor pop on the top of deque and to insert or remove from the bottom of the deque.Melkman's algorithm is straightforward. It proesses eah point of the polyline ateah stage. Let the simple polyline be PL = P0, P1, ..., Pn. Initial onvex hull ismade with �rst three points, and then the next point Pk is onsidered in eah stage.If point Pk is inside the urrent onvex hull, then it an be ignored. Therefore,onvex hull CHk will be same with CHk−1. If it is outside the urrent onvex hull,then new onvex hull should be built. The new point simply an be added at thebottom and top of the deque. However, points whih will be inside the new onvexhull should be removed before adding new point for new inreased onvex hull intothe deque. Figure 3.4 shows how his algorithm works.Melkman Algorithm1. Make a onvex triangle with �rst three points.2. Test that next point is inside the onvex hull. If it is inside, then skip thispoint and ontinue to next point.3. Remove points whih will be inside new onvex hull from the bottom of thedeque, then insert this point.
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Figure 3.4: Convex hull by Melkman's algorithm4. Remove points whih will be inside new onvex hull from the top of the deque,then push this point.5. Repeat steps 2 to 4 until all points in the polygon are tested.
3.3.2 Rotating CalipersIf onvex hull of an ar objet is ready, the proess to �nd a minimal boundingretangle an be omputed in linear time using rotating alipers [Pir99℄. 'Calipers'are two pairs of parallel lines around the onvex hull and these pairs are orthogonal toeah other. They are initialized with extreme points and rotated until alipers meetthe edges of onvex hull. This proess an �nd a minimal area retangle beausethe retangle of minimum area enlosing a onvex polygon has a side ollinear withone of the edges of the polygon [Tou83℄.We an de�ne a minimal bounding retangle R with a given onvex polygon P suhthat ∀p ∈ P, p ∈ R. If area(R) ≤ area(R′) for all retangles R′, then R is a minimalbounding retangle for P . In order to minimize the area, we an intuitively thinkthat the retangle's edges would have to touh the onvex polygon. Here is thistheorem and proof of it [Pir99, HR75℄.Theorem: The retangle of minimum area enlosing a onvex polygon has aside ollinear with one of the edges of the polygon.
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Figure 3.5: An example of enlosing retangle PProof: We have a given onvex polygon P , and let us assume that the small-est box is given and it does not have one side ollinear with one of P 's edges. In�gure 3.5, the retangle only touhes P at four points pi, pj, pk, pl. We an provethat it is always possible to �nd a smaller enlosing retangle.
A, the area of the enlosing retangle is l1l2 (See Fig. 3.5). Let dik = dist(pi, pk),and djl = dist(pj, pl). Therefore we get

l1 = djl cos(ϕj)

l2 = dik cos(ϕk)Both l1 and l2 an be redued by rotating their orresponding lines in their preferreddiretion of rotation. Therefore there are two ases - ase 1, where l1 and l2 an bedereased by rotating all lines in the same diretion, and ase 2, where rotating ina given diretion dereases one length but inreases the other.Case 1: By rotating all lines ounterlokwise by some angle η, both l1 and l2are dereased. A′, the area of new box is determined by edges of length l′1 and l′2where
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l′1 = djl cos(ϕj + η)⇒ l′1 < l1

l′2 = dik cos(ϕk + η)⇒ l′2 < l2

⇒ A′ = l′1l
′

2 < AIn this ase it is always possible to �nd a smaller enlosing retangle.Case 2: The preferred diretions of rotation are di�erent. Let us de�ne δj as themaximum angle we an rotate the lines in l1's preferred diretion of rotation beforewe hit the edge, and in a same way we de�ne δk for l2. Let δ = min(|δj|, |δk|).Assume that the preferred diretion of rotation for l1 is lokwise and the preferreddiretion of rotation for l2 is ounterlokwise. If we rotate lokwise, we get newlengths l′1, l
′

2 and a new area AC :
l′1 = djl cos(ϕj + δ)

l′2 = dik cos(ϕk − δ)

⇒ AC = l′1l
′

2If we rotate ounterlokwise, we get:
l′′1 = djl cos(ϕj + δ)

l′′2 = dik cos(ϕk − δ)

⇒ ACC = l′′1 l
′′

2If AC/A < 1 then we rotate lokwise and we an get a smaller enlosing retangle.However, if AC/A ≥ 1, then we have:
AC

A
=

cos(ϕj + δ) cos(ϕk − δ)

cos ϕj cos ϕk

≥ 1

⇔ cos2 δ + (tan ϕk − tan ϕj) cos δ sin δ − tan ϕj tan ϕk sin2 δ ≥ 1

⇔ (tan ϕk − tan ϕj) cos δ sin δ ≥ cos2 δ − tan ϕj tan ϕk sin2 δ − 1
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⇒

ACC

A
≤ 2(cos2 δ − tan ϕj tan ϕk sin2 δ)− 1

≤ 2(1− sin2 δ − tan ϕj tan ϕk sin2 δ)− 1

≤ 1− 2(1 + tanϕj tan ϕk) sin2 δ

< 1Hene we get ACC/A < 1, and it means that we an obtain a smaller enlosingretangle by rotating ounterlokwise.Therefore, for both of ases, it is possible to have a smaller enlosing box.Rotating Calipers Algorithm1. Find four points with minimum and maximum x and y-oordinates for thepolygon - PXmin, PXmax, PY min, PY max.2. Construt two sets of "alipers", parallel to x and y axes, thus forming aretangle enlosing the polygon.3. Let θ = min(θi, θj, θk, θl).4. Rotate the lines by θ, thus until any of them meets the edge of the polygon.5. Calulate the area of a retangle built by four lines and ompare with minimumarea. If it is smaller, then keep the new retangle as our new "minimum".6. Reompute θi, θj, θk, and θl.7. Repeat steps 3 and 6, until the lines are rotated an angle more than 90◦.
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Figure 3.6: Rotating alipers

Figure 3.7: Minimal bounding retangle by using rotating alipers
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Algorithm 1 Ar.alSmallBBox()CH ← alulate_onvexhull();for (all points of onvex hull) dop ← initial points by xmin, xmax, ymin, ymaxend foralulate_alipers();box ← alulate_MBR();while (sumθ < 90◦) dofor (k=0;k<4;k++) do

θ ← angle between the aliper p[k] and new aliper with next pointif θ < minθ then
minθ ← θminP ← kend ifend forrotate_aliper(k);alulate_alipers();sumθ ← sumθ + minθtempBox ← alulate_MBR();area ← area(tempBox);if area < minArea thenbox ← tempBoxminArea ← areaend ifend while



Chapter 4Hierarhial Representation of Ars
This hapter desribes hierarhial representation shemes for ars and di�erentmethods of them. Two ommonly used tree strutures, strip and ar tree, will beexplained and new approah with a splitting point deided by the minimum area ofthe bounding ontainer will be introdued.4.1 Hierarhial RepresentationCurves are important two-dimensional strutures in many areas. For example,urves are used to represent map features suh as ontour lines, roads, and riversin geography. If a map is huge and very large amount of data is involved, e�ienyto perform operations, suh as �nding an intersetion of road and river or hekingsome point features are inside or outside of some areas, on this data is ruiallyneeded. Hierarhial tree struture for representation of urves is one of methodsto do these operations more e�iently beause the operations are performed fasterat lower resolutions than the ultimate resolution [Bal81℄. lt is built reursively andadded more detailed features of the urve. Every next level has more points ofthe urve, so the urve an be represented more preisely. These points that arehosen for hierarhial struture are not independent eah other [SRS03℄. This isbeause a new point for next level should be hosen between start and end pointsof preeding level representation. Hene, as building more levels, the urve will besubdivided reursively into shorter sub-urves. Eah tree node is this sub-urve andit is approximated by bounding ontainers. If the urve is well-behaved, intersetion33



34 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCSand point inlusion alulations an be solved in O(logn) where n is the number ofpoints of the urve.There are various well-known shemes for hierarhial representation of urves.They are Strip Tree [Bal81℄, Ar Tree [GW90℄ and Bezier Tree [Bez74℄. Theseshemes are mainly di�erent with what kind of bounding ontainer is hosen, howdividing point is deided, and how muh information is stored in eah level. In fol-lowing setions, Strip Tree and Ar Tree will be explained and additionally, a newtree by di�erent approah to how to deide a dominant splitting point will be de-sribed. This paper is foused on how di�erent method of deomposition - it meanswhih point is deided as a splitting point - is performed and ompared. Therefore,all trees use minimal bounding retangle as a bounding ontainer in ommon.In this paper, ars in a topologial map are similar with urves, so hierarhialrepresentation method is used for ars.4.2 Strip Tree4.2.1 Strip Tree de�nitionStrip tree was proposed by Dana H. Ballard in 1981. It has a binary tree as ahierarhial struture, and a node of the tree has a strip whih bounds a urveand pointers to left and right hildren nodes. A strip is de�ned by six values
(Ps(xs, ys), Pe(xe, ye), wr, wl) where (xs, ys) is starting point of the strip, (xe, ye) isending point, and wr and wl are right and left distanes from the direted linebetween the starting and ending points of the strip to the strip borders [Bal81℄.Figure 4.1 is a strip segment de�ned.Root of the strip tree has a bounding retangle for the entire urve, and the urveis divided to two sub-urves by a splitting point. This splitting point is deided bythe farthest distane between the point and the direted line PsPe. This proess isreursively done to the two hildren until every strip has a width w = wr +wl whihis less than predetermined limit value.Figure 4.2 shows the proess of building a strip tree for a urve C. Root strip S1 isdivided to two strips S2 and S3 �rst, and then strip S3 is divided again to two partsbeause the width of the strip is longer than the limit length. S3 is divided to S4and S5, then the proess is �nished.
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Figure 4.1: De�nition of a strip segment
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width limitFigure 4.2: Building a strip tree by top-down method
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Figure 4.3: Building a strip tree by bottom-up method

Figure 4.4: Non-regular stripsThis proess is a top-down method. This method needs a searh to �nd the splittingpoints in eah node. Eah point is heked at eah of the log2n levels, thus it takes
O(nlog2n) time. There is the seond method in bottom-up style. First make strips
S0, S1 . . . Sn−1 for eah suessive pair of points (P0, P1)(P1, P2) . . . (Pn−1, Pn), thenmake pairs with strips, that is, (S0, S1)(S2, S3) . . ., and over them with larger strips.Continue until there is a single strip as a root. It takes O(n) time, but approxi-mation result is not better than the �rst method. Figure 4.3 shows the bottom-upmethod.The example of the urve above is regular whih means that the urve is onnetedand its end points are on both end edges of strips [Bal81℄. There are more omplexurves suh as losed one, urve whih extend its end points, or urve whih onsistsof disonneted segments. These urves need more omplex alulation for �ndinga bounding strip. Examples are in Fig. 4.4.
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NULL CLEAR POSSIBLEFigure 4.5: Three possible results of interseting two strips
Figure 4.6: Data struture of strip treeStrip tree is useful to �nd intersetion between urves suh as �nding in whih areariver and road rosses. For solving this query, �rst intersetion between strip treesshould be heked. There are three di�erent ases - null, lear, and possible (SeeFig. 4.5).If the result is null, then it means that there is no intersetion. If the result is lear,then two strips are learly interseting. If the result is possible, then they may beinterseting, so more spei� proess is neessary. Thus, their hildren nodes shouldbe heked. The proess is going on in this way until the result is determined nullor lear. If strips are more preise, so if the answer - null or lear - is determinedfaster, then exeution time will be saved a lot. That is why deomposition of strips isimportant. For well-behaving urves, exeution time is expeted to O(log2n) where

n is the number of points onstruting the urve.4.2.2 Implementation of Strip TreeStrip tree whih is implemented in this paper is a little di�erent with de�nition ofstrip tree. Minimal bounding retangle is used as a bounding ontainer instead ofa strip. Figure 4.6 shows data struture of a strip tree.



38 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCSNode of strip tree has start and end point information, wL and wR values, smallBboxwhih is minimal bounding retangle, and pointers to left and right hildren nodes.Width of a strip, wL and wR, is used for deiding a splitting point. The farthestpoint from a line onneted between start and end points is the one whih dividesthe urve to two strips on next level.Algorithm 2 buildStripTree()if there are only two points thenFinish building the strip treeelsealulate_MBR(box,start,end);division← Find the farthest point from the line onneted with two end pointsbuildStripTree(start, division)buildStripTree(division, end)end ifStrip tree is reursively built until node has only two points, that is one line segment.This is beause the exat interseting segment should be found. Figure 4.7 shows theexample of building a strip tree and �nding an intersetion with a random segment.4.3 Ar Tree4.3.1 Ar Tree de�nitionAr tree was proposed by Günther in 1987. It is lose with strip tree but the rule ofdeomposition of the urve is di�erent. The urve is divided based on its length toseveral sub-polylines. All sub-polylines should have same length. Thus, the urve isapproximated to the onneted line between two endpoints in the �rst level of thear tree, then the urve is divided to two sub-polylines of same length by a midpointreursively as the tree is built deeper. Figure 4.8 shows how the ar tree is built.If the urve C has kth ar tree and its length is l, then it means that C is approx-imated with 2k line segments and the length of eah line segment is l/2k(k ≥ 0).A funtion C(t) is de�ned in interval [0:1℄ with 2D Eulidean spae. Thus, the kthapproximation of C(t) is a sequene of line segments onsisting of points C(i/2k)and C((i + 1)/2k), 0 ≤ i < 2k. The approximation proess is done reursively untilthe error is less than a given limit.
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Figure 4.7: Strip tree with minimal bounding retangle and �nding intersetionswith random line segments
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Figure 4.8: Building an ar tree
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Figure 4.9: Ar tree with ellipsesThe onstrution of an ar tree inludes two proesses. One is dividing the polylineby the length and the other is alulating a bounding ontainer. For an ar tree,an ellipse is used for a bounding ontainer. This ellipse is de�ned by a major axiswhose length is l/2k and two foal points whih are at C(i/2k) and C((i + 1)/2k)(See Fig. 4.9).Using ellipses as a bounding ontainer has an advantage over using a strip in a striptree, suh as no need to worry about losed urves or urves that extend their twoendpoints. However, ellipses are not easy to use. For example, when two polylinesare interseting, the intersetion of ellipses should be tested �rst. This is not asimple operation. Therefore, bounding box or bounding irle is used more ofteninstead of an ellipse.4.3.2 Implementation of Ar TreeThe urves used in this paper onsist of straight line segments. Therefore, we do notneed arti�ial points C(i/2k) but use the median point. For example, if the urvehas n + 1 points labeled p1, p2, · · · , pn+1, it will be deomposed at ppn/2q. Thus, thedepth of the tree will be log2n in maximum. This is alled polygon ar tree [GW90℄.In the de�nition of the ar tree, an ellipse was a bounding ontainer. However,beause of a omplex operation, minimal bounding retangle is used instead of anellipse in this paper. You an see the data struture of the ar tree in �gure 4.10.It is similar with the strip tree.Building an ar tree is faster than the strip tree beause it does not need muh
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Figure 4.10: Data struture of ar treeproessing time to hoose the splitting point. The polyline is divided by the medianpoint until only two points are left so that there is no approximation error.Algorithm 3 buildArTree()if there are only two points thenFinish building the ar treeelsealulate_MBR(box,start,end);division ← ppn/2qbuildArTree(start, division)buildArTree(division, end)end ifFigure 4.11 shows the example of an ar tree whih is applied to real data.4.4 Smallest Bounding Area Tree4.4.1 Smallest Bounding Area Tree de�nitionTwo well-known hierarhial representations, strip tree and ar tree, are mainlydi�erentiated by how to hoose the splitting point for building a next level of thetree. New idea was from here: how the tree an be more e�ient by di�erent split-ting points? If the deomposition of the polyline is optimized, will the tree alsobe optimized? More optimized deomposition means that a bounding ontainerof a tree struture approximates the polyline more preisely, therefore, it does nothave muh vaant spae. Figure 4.12 shows two ases with di�erent splitting points.There are same polyline and line segment l in both examples in �gure 4.12, butthey have di�erently deomposed sub-polylines. When the operation to �nd the
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Figure 4.11: Ar tree with minimal bounding retangle and �nding intersetionswith random line segments
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a b
l lFigure 4.12: Comparing two trees by di�erent splitting pointsintersetion between the polyline and a line segment l is exeuted, more proessesare needed for the ase in �gure 4.12a. This is beause the bounding ontainer isinterseting with l, although l is atually not interseting the polyline. Intersetionis possible in this ase. However, the ase in �gure 4.12b is null, whih means thatthere is no intersetion learly. Therefore, we an know whether there is intersetionor not faster so that we do not need extra operations.More optimized deomposition an be ahieved when the area of bounding ontain-ers is the smallest so that there is less vaant spae. You an easily see that the areaof bounding ontainers in �gure 4.12b is smaller than in �gure 4.12a. Thus, whenwe deide the splitting point in the proess for building the tree, all possible pointsbetween two end points are heked, and then the one whih has the smallest areaof bounding ontainers will be a splitting point.4.4.2 Implementation of Smallest Bounding Area TreeThere are two approahes: by greedy algorithm and by dynami programming.Greedy AlgorithmIt is easy to understand by greedy approah. Splitting point is the point whihmakes the sum of divided bounding areas minimum in eah level of resolution (seeAlgorithm 6). In eah level of the tree, all points between starting and ending pointsare heked: if the urve is divided by eah point, how big is the sum of areas ofminimal bounding retangles of sub-urves? Then hoose the one whih makes the



44 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCSsum of areas smallest (See Fig. 4.13). Therefore, we an make a ost funtion Cwith S whih is the funtion alulating the area of a minimal bounding retangleof a sub-urve with starting and ending points.
C(i, k) = min

j
{S(i, j) + S(j, k)}We an alulate all values of funtion S between all points and make a matrix.It takes O(n2) time and spae, and it takes O(nlogn) for alulating a minimalbounding retangle. Hene it takes O(n3logn) for the matrix. In addition, O(logn)is neessary for building a tree struture.Algorithm 4 buildGreedyTree(start,end,tree)alulate_MBR(box,start,end);for k = start+1 TO end do

S1 ← alulate_MBR(box1,start,k);
S2 ← alulate_MBR(box2,k,end);if (S1 + S2 ≤ minArea) thenminArea ← S1 + S2;division ← k;end ifend forleft ← initiate_new_node();right ← initiate_new_node();tree.bbox ← box;tree.lefthild ← left;tree.righthild ← right;if there are more than two points thenbuildGreedyTree(start,division,left);end ifif there are more than two points thenbuildGreedyTree(division,end,right);end ifDynami ProgrammingThe proess of building smallest bounding area (SBA) tree by dynami program-ming has two steps. First, alulate the area of minimal bounding retangles of all



4.4. SMALLEST BOUNDING AREA TREE 45possible parts of an ar and make a matrix of smallest bounding area by dynamiprogramming (see Algorithm 4). Then, by using this matrix, �nd an optimal split-ting point and build SBA tree (see Algorithm 5). Figure 4.13 shows the example ofthe proess.We have a ost funtion C, whih is the area of all minimal bounding retangles atthe tree onstruted for a piee of P from a vertex i to vertex k.
Cr(i, k) = min

j
{Cr−1(i, j) + Cr−1(j, k)} where r is the depth of the treeFor a leaf node in level 1: (k − i) ≤ 3, C is alulated by a funtion S whih is thesum of areas of minimal bounding retangles.
C1(i, k) = min

j
{S(i, j) + S(j, k)}If all possible points are heked and eah area of minimal bounding retangles isalulated, then proessing time is not short. Time omplexity of alulating a min-imal bounding retangle is O(nlogn), thus, time omplexity for making S matrixof smallest bounding area is O(n3logn). It takes additionally O(n2) time and spaefor C matrix.In this paper, the fous is on how di�erent tree strutures work e�iently, not onhow fast tree strutures an be built. This is beause we an use the tree struturemany times after building it one.Algorithm 5 alBoxArea(r,n1,n2)for n1 = 1 TO N dofor n2 = 1 TO N doalulate_MBR(box,n1,n2);end forend for
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Figure 4.13: Calulating a matrix of splitting points and building SBA tree bygreedy algorithm and dynami programming
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Figure 4.14: SBA tree with minimal bounding retangle and �nding intersetionswith random line segments
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Algorithm 6 area = onstrutTree(start,end)
S0 ← alBoxArea(start,end);r ← plog2(end− start + 1)q;if r > 1 thenfor j=start+1 TO end-1 do

S1 ← onstrutTree(start,j);
S2 ← onstrutTree(j,end);if S0 + S1 + S2 < Smin then

Smin ← S0 + S1 + S2;division ← j;end ifend forreturn Smin;elsereturn S0;end if



Chapter 5Applied Areas
This hapter desribes areas hierarhial representation of ars an be applied to.How the hierarhial data modelling an help to solve the problems is explained.5.1 Using a Hierarhial Struture for ReportingIntersetionsA hierarhial struture an be applied in many areas of omputational geometry.Line segment intersetion (LSI) is one of most important and basi problems, be-ause omputational problems suh as polygon intersetion or point inlusion anbe based on LSI problem. Algorithms for LSI are reviewed and ompared to analgorithm with a hierarhial struture.5.1.1 Line Segment Intersetion(LSI)Line segment intersetion problem is de�ned as follows:
• A set S = s1, s2, . . . sn of n line segments(see Fig. 4.15)
• Find all pairs (si, sj) ∈ S2 suh that i 6= j and si ∩ sj 6= φ49
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S1 S4

S7
S3

S8

S6

S2

S5Figure 5.1: A set S of n line segmentsThere are di�erent algorithms for reporting all intersetions between line segments.Eah has di�erent time omplexity. Brute fore algorithm takes O(n2), simply �ndsintersetions between all possible groups of two line segments. LSI with plane-sweeptehnique [PS85, dBvKOS00℄ an be solved in O(nlogn).LSI problem an be applied to �nd intersetions between ars and a line segment,beause ars onsist of several line segments. One simple method is �rst sorting allline segments of ars then �nding intersetions. This takes O(nlogn) for sorting (inase of merge sorting) plus O(logn) for searhing intersetions.5.1.2 Hierarhial Struture and LSIA hierarhial struture an be used for �nding intersetions between ars and aline segment. This takes O(Mlogk) suh that M is a number of ars and k is anumber of line segments of eah ar. Therefore, using a hierarhial struture maybe faster than using LSI algorithm or quite same - it depends on M and k.Using a hierarhial struture an have bene�ts(+) and losses(�) against LSI asfollows:+ More understandable and more heuristi+ Eah ar, not individual line segment, has topologial information - saving spae.� More omputationally ompliated� It takes time and needs spae to onstrut a hierarhial struture.
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Figure 5.2: Not big di�erene between original and simpli�ed maps at small sale5.2 Polygonal Approximation
5.2.1 De�nition of Polygonal ApproximationPolygonal approximation is a proess of elimination of points whih produe theleast errors. This proess is neessary beause a size of data an be redued muhso that data retrieval and management an be faster. Also, it takes less time to showthe map data. At small sale map, not many points are neessary beause visualdi�erene is not notieable with human bare eyes (See Fig. 5.2). Vetor proessingsuh as point inlusion or polygon intersetion an be faster beause a simpli�edpolygon has less boundaries to be heked [Tay℄.Line segment L in 2-dimensional spae is represented by ordered point set P whihhas N points: P = p1, . . . , pN = (x1, y1), . . . , (xN , yN). After polygonal approxima-tion proess, L has a new ordered point set Q whih is represented by M points:
Q = q1, . . . , qM . The point set of Q is a subset of P and M ≤ N . The end pointsof Q are same with the end points of P : q1 = p1, qM = pN [Kol03℄.
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p1 = q1

pN = qM

pi (i=1,...,N)

qj (j=1,...,M)Figure 5.3: P and Q sets5.2.2 AlgorithmsHeuristi AlgorithmsMany algorithms for polygonal approximation are developed with di�erent teh-niques. Heuristi algorithms are not always optimal but the proess is easy tounderstand and an be done quite fast. Heuristi algorithms an be grouped by twostrategies, deimation and re�nement [KDE05℄.Most of algorithms are deimation methods in whih removable points by a given er-ror tolerane are hosen and removed. This proess starts with all points desribinga line, and the result is simpli�ed line with less points. On ontrast to deimationalgorithms, Douglas-Peuker algorithm(1973) is by a re�nement strategy. It startswith two endpoints of a line, and points are getting inserted aording to a givenerror riterion.Polygonal Boundary Redution is a simple deimation algorithm proposed by Leuand Chen [GL98℄. This algorithm onsiders boundary ars of two and three edges.It alulates the maximum distane between the ar and the direted line of twoendpoints. If the distane is less than a given threshold, then it replaes the ar tothe direted line of two endpoints (See Fig. 5.4).
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thresholdFigure 5.4: Polygonal boundary redutionOptimal ApproximationsThere are two di�erent types by error bounds(Imai and Iri, 1998).

• min-ε : minimizing the approximation error for a ertain number of points
• min-♯ : minimizing the number of points for a given error bound ε5.2.3 Topologially Consistent Simpli�ation Using Hierar-hial StruturePolygonal approximation algorithms do not always guarantee topologial onsis-teny. There may be some inonsistenies suh as an intersetion with neighborobjets or a self-intersetion [EM01℄. Figure 5.5 and 5.6 shows the examples ofinonsisteny of topology.Self-intersetion an our in an approximation of severely bent urves [HK01℄. In�gure 5.5, self-intersetion is generated by using Douglas-Peuker algorithm [JSG99℄.These intersetions make wrong topologial information. Therefore, they should befound before or after approximation and be �xed.For an e�ient proess to �nd intersetions, a hierarhial struture of urves de-sribed in hapter 4 is used. Cheking all urves in the map for intersetion withnew simpli�ed line segment is not e�ient beause it is obvious for urves far awayfrom the orresponding line segment not to interset eah other. Irrelevant urvesare exluded by heking an intersetion with a bounding ontainer whih bounds
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Figure 5.5: Islands disappeared after polygonal approximation

thresholdFigure 5.6: Self-intersetion after polygonal approximation by Douglas-Peuker al-gorithm
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error

thresholdFigure 5.7: Nested urves to whih simpli�ation by de�ning safe sets an not beapplied
the whole urve. Hene, it is omputationally faster than without the hierarhialstruture.
There are two methods for �xing errors. First method is �xing errors after approx-imation proess. As an example, Estkowski and Mithell proposed Simple Detours(SD) heuristi idea in 2001 [EM01℄. First, a standard polygonal approximation isapplied, then intersetions are found. One of interseting segments is delared as adetour segment, and detour graph G(s) is onstruted. In G(s), two points an bejoined if and only if the orresponding line segment is error-tolerant and does notinterset with another line segment.
Seond method is applying approximation proess only when a new simpli�ed linesegment does not make any intersetions with neighbor objets, that is, when thereare no topologial errors. There is an atual work of preventing topologial hangesby de�ning "safe sets" using a Vornoi diagram [MS00℄. This method is workingbetter for maintaining an original shape than �rst method beause a simpli�ationan our only in a safety zone. However, this safety an be a weak point in someases. Figure 5.7 shows the example of nested urved lines and an error bound forapproximation [EM01℄. In this ase, approximation may not be applied.
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A and B

A or B

A B

Figure 5.8: Intersetion and union of sets A and B5.3 Windowing and Clipping5.3.1 Polygon OverlayMap overlay operations are often neessary in GIS. For example, when making landuse deision, there an be many layers of geographial data suh as environmental orsoial fators. Topologial map overlay reates new objets and attribute relationsby overlaying objets from many input map layers. A polygon an be thought ofas representing a set. When two sets (polygons) A and B are overlaid, we an haveset onepts intersetion and union (see Fig. 5.8). There are 16 possible ombina-tions of boolean expression, but intersetion is of most interest in polygon overlayoperations.In following setions, we will look through windowing and lipping whih are inter-setion between the window retangle and polygon objets of the map data.5.3.2 WindowingThere is a given retangle R, whih is the window, and whether a shape S intersetsthe retangle R or not is tested [RSV02℄. In a simple method, we an basiallylook through all segments of all ars and �nd intersetions with the retangle R. Ifthe ar is interseting R or inside R, then the ar and the polygon whih has thear is visualized. This an have many redundant operations, for example, when ifthe window retangle R is very small and the map is big so that there are manypolygons far away from the R. Therefore, if we use hierarhial struture for ars,we an redue these operations. If some ars are inside the R or interseting the R,then polygons related to those ars interset the retangle R. From the information
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Figure 5.9: Example of windowing
of left and right polygons of the ar, we know whih polygons are related.
In �gure 5.9, there are three possible ases. In ase A, the bounding box of the aris inluded in the R, so polygons whih has this ar are interseting the R. In aseB, the ar and bounding box of the ar are interseting the R, so polygons relatedwith this ar are interseting. In ase C, the ar is not interseting the R, but thebounding box of the ar is interseting the R. In this ase, more detailed levels ofthe tree struture of the ar are heked and whether the ar is interseting the Ror not is on�rmed.
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Figure 5.10: Example of lipping5.3.3 ClippingClipping is similar with windowing, however it needs more ompliated operations.There is a given retangle R, and we lip the polygons whih are inside the retan-gle R. After lipping, new objets are reated, beause the segment of ars whih isinterseting the retangle R will be ut by the edge of the R.The usage of hierarhial struture of ars is basially same with windowing. If thebounding ontainer of the ar is inside the R, then the whole ar is inluded. Ifthe bounding ontainer and the ar are interseting the R, then we should �nd theinterseting point between the edge of the retangle R and the ar. By using thispoint, the line segment interseting the edge of R an be ut (See Fig. 5.10).
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Q

P1

P2

P1

P2

Q

Figure 5.11: Inlusion of the point P in the polygon Q5.4 Point InlusionPoint inlusion is one of basi operations in GIS. Hierarhial struture of an aralso an be useful to hek the point inlusion. If we want to know that the point Pis inside the polygon Q, we have to �nd out how many times a ray from the pointP intersets edges of the polygon Q (See Fig. 5.11). When �nding intersetions,hierarhial struture an make it more e�ient. If the ray from the point P inter-sets times of an even number, P is outside Q. If the ray intersets times of an oddnumber, P is inside Q.
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Chapter 6Experiments
Smallest Bounding Area Tree whih is proposed in this thesis have implementedand tested with real data for its e�ieny and e�etiveness. These tests are donewith one 1,400MHz Intel Pentium M proessor and 512MB of memory.Test data are a digital map whih has 1,941 points and a map whih has 10,925points (See Fig. 6.1).Tests are for heking how hierarhial strutures make intersetion heking e�-ient. Therefore, map data is tested with hierarhial strutures or without, andhow muh time was taken in eah ase is alulated and ompared. Figure 6.2 showsthe example of intersetions between random line segments and Map1. The map istransformed to a map with topologial struture - Node, Ar, and Polygon beforethe test.
6.1 Comparison 1: With Di�erent Bounding Con-tainers and WithoutFirst experiment is �nding intersetions between random line segments and themap with a hierarhial struture and without. For the test, 1000 line segments forMap1 and 500 line segments for Map2 are randomly reated. Smallest BoundingArea Tree (SBA Tree) is used as a hierarhial struture and orthogonal box and61
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Figure 6.1: Map1 and Map2 for testing

Figure 6.2: Map1, long and short random line segments, and intersetions
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Orthogonal Box Minimal Bounding Rectangle

(MBR)

Figure 6.3: Map1 and Map2 with orthogonal boxes and with minimal boundingretangles



64 CHAPTER 6. EXPERIMENTSminimal bounding retangle (MBR) are used as a bounding ontainer (See Fig. 6.3).Without hierarhial strutures, all segments of all ars should be heked for eahline segment. If the line segment is far away from some polygons, then it is notneessary to do a heking proess with them, hene, it is not e�ient.Using MBR as a bounding ontainer is slightly faster than using orthogonal boxes inaverage time, but there is not big di�erene between them. Cheking intersetionswith an orthogonal box is faster than with a MBR. Therefore, even though MBRapproximates more preisely than orthogonal box, using orthogonal boxes an befaster in some ases (See Table 6.1 and 6.2).
6.2 Comparison 2: Di�erent Hierarhial StruturesSeond experiment is omparing e�ieny of three di�erent hierarhial strutures- Ar Tree, Strip Tree, and Smallest Bounding Area Tree (SBA tree). Figure 6.5shows the proess of building eah tree struture for the map.You an see that boxes by Ar tree are bigger than Strip and SBA tree. Boxes byStrip tree look also well-behaving, however, if a line is ompliated and distorted,boxes by SBA tree is more e�ient. Figure 6.4 shows an example of a ompliatedline and boxes by Strip and SBA trees.Table 6.3 and 6.4 show how muh time is taken to �nd intersetions between randomlines and all objets of the map using Strip, Ar, and SBA trees. SBA tree worksbetter than Strip and Ar trees, not always but generally aording to the tests. Artree works generally worst among three of them, beause the area of its boundingboxes is bigger so that its approximation of objets is not better than others.We an deide whih tree we an use by onsidering what kind of map is. Also, howmany times the tree is used an be onsidered. If ars of the map are simple, andthe tree struture is not used muh, then we an use an ar tree beause buildingtime is short. If ars of the map are ompliated, and the tree struture is usedmany times again, then strip tree and SBA tree are better than ar tree, though ittakes more time to build them.
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Map Without With SBA Tree With SBA Tree (DP)(1,941) Tree + Orthogonal Box + MBR0.620 0.421 0.4300.591 0.441 0.3410.671 0.401 0.3110.632 0.260 0.3510.600 0.330 0.3710.571 0.341 0.3500.570 0.401 0.3400.625 0.300 0.3910.561 0.441 0.3700.630 0.190 0.4000.611 0.341 0.4210.586 0.320 0.3000.580 0.360 0.2710.627 0.421 0.3300.590 0.360 0.2310.600 0.291 0.3600.592 0.351 0.3910.610 0.431 0.3610.561 0.331 0.3510.630 0.340 0.351Averagetime 0.6029 0.3536 0.3511Table 6.1: Running time (seonds) for �nding intersetions between 1,000 randomline segments and all features of Map1 (1,941 points). Tests are done 20 times andaverage time is alulated.
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Map Without With SBA Tree With SBA Tree (DP)(10,925) Tree + Orthogonal Box + MBR1.552 0.441 0.4611.563 0.420 0.4621.532 0.441 0.3911.532 0.431 0.3811.532 0.440 0.4401.543 0.431 0.4601.532 0.421 0.4401.512 0.420 0.4411.512 0.421 0.5011.512 0.420 0.4811.502 0.411 0.4401.513 0.421 0.3821.502 0.440 0.4501.522 0.421 0.4111.512 0.430 0.3711.512 0.431 0.4501.502 0.441 0.5301.533 0.440 0.4411.512 0.411 0.4311.502 0.421 0.412Averagetime 1.5217 0.42765 0.4388Table 6.2: Running time (seonds) for �nding intersetions between 500 randomline segments and all features of Map2 (10,925 points). Tests are done 20 times andaverage time is alulated.
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Map With With With SBA Tree With SBA Tree(1,941) Ar Tree Strip Tree DP Greedy Alg.0.441 0.390 0.310 0.4010.451 0.342 0.420 0.3300.440 0.381 0.410 0.3310.410 0.400 0.321 0.4110.350 0.511 0.341 0.3800.432 0.330 0.401 0.3800.420 0.331 0.361 0.4300.360 0.402 0.390 0.3900.502 0.360 0.390 0.2800.380 0.341 0.381 0.4200.431 0.320 0.412 0.3800.300 0.401 0.390 0.4510.330 0.420 0.421 0.3710.340 0.440 0.361 0.4010.410 0.421 0.310 0.3810.350 0.421 0.442 0.3300.420 0.351 0.441 0.3200.370 0.401 0.451 0.3500.371 0.420 0.350 0.3910.380 0.431 0.270 0.452Averagetime 0.3944 0.3907 0.37865 0.379Table 6.3: Running time (seonds) for �nding intersetions with three di�erent treestrutures between 1,000 random line segments and all features of Map1 (1,941points). Tests are done 20 times and average time is alulated.
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Map With With With SBA Tree With SBA Tree(10,925) Ar Tree Strip Tree DP Greedy Alg.0.540 0.471 0.381 0.4410.380 0.490 0.431 0.5310.460 0.511 0.412 0.4400.330 0.442 0.530 0.5110.440 0.431 0.440 0.5210.471 0.491 0.481 0.4000.520 0.472 0.490 0.3200.430 0.583 0.430 0.3900.562 0.460 0.420 0.4010.421 0.450 0.401 0.5400.450 0.410 0.512 0.4410.481 0.420 0.380 0.5520.480 0.451 0.411 0.4900.441 0.380 0.511 0.5210.421 0.581 0.380 0.4710.581 0.511 0.440 0.2900.431 0.430 0.390 0.5720.480 0.490 0.361 0.4910.481 0.542 0.400 0.3700.440 0.371 0.502 0.500Averagetime 0.4620 0.46935 0.43515 0.45965Table 6.4: Running time (seonds) for �nding intersetions with three di�erenttree strutures between 500 random line segments and all features of Map2 (10,925points). Tests are done 20 times and average time is alulated.
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Strip Tree SBA TreeFigure 6.4: Comparing strip tree and SBA treeStarting and ending points of random lines used for the tests are hosen randomly sothat the length of most lines are long. Hene there are many intersetions betweenthe line and map objets. One more test with short random lines is proessed,beause there are also operations for intersetions with mostly short lines. For ex-ample, for polygonal approximation, most of operations may be with short lines.The part of approximated lines is short, beause new approximated line segment isheked for intersetions not with other approximated line segments but with otheroriginal line segments. This means that the approximation is more strit and notmuh shape-hanged (See Fig.6.6).Approximated line segment Q1 is illegal if we �nd intersetions between Q1 andother polyline P2, however, Q1 approximation is possible if we �nd intersetionsbetween Q1 and Q2, new approximated line segment of the part of P2. Table 6.5 isthe result of �nding intersetions between 1000 random short lines and Map1.
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Arc Tree Arc Tree Arc Tree

Strip Tree Strip Tree Strip Tree

SBA Tree SBA Tree SBA Tree

Figure 6.5: Building ar tree, strip tree, SBA tree for Map1
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Map With With With SBA Tree With SBA Tree(1,941) Ar Tree Strip Tree DP Greedy Alg.0.300 0.380 0.290 0.3320.330 0.300 0.361 0.3100.290 0.402 0.320 0.3000.380 0.311 0.350 0.2710.350 0.330 0.321 0.3100.350 0.330 0.351 0.3000.341 0.320 0.381 0.2900.320 0.341 0.321 0.3300.380 0.281 0.350 0.3010.280 0.371 0.340 0.3310.271 0.351 0.310 0.3500.310 0.391 0.350 0.2510.340 0.340 0.291 0.3510.271 0.371 0.320 0.3600.290 0.410 0.311 0.3310.331 0.320 0.310 0.3100.351 0.370 0.271 0.3200.290 0.351 0.310 0.3410.361 0.350 0.340 0.2700.320 0.332 0.330 0.340Averagetime 0.3228 0.3476 0.3264 0.31495Table 6.5: Running time (seonds) for �nding intersetions with three di�erent treestrutures between 1,000 random short line segments and all features of Map1 (1,941points). Tests are done 20 times and average time is alulated.
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approximated line

               Q1

P1P2

approximated line

               Q1

P1P2

approximated line

               Q2

Legal approximation

Figure 6.6: Illegal and legal approximations



Chapter 7Conlusion and Future Work
In this paper, data modelling for a vetor map is studied. Vetor data model anbe divided to non-topologial and topologial models. Spaghetti model is non-topologial, and it is the simplest vetor map type. The map with spaghetti modelis transformed to a topologial vetor map whih has the information of neighbors.The topologial struture built in this paper has node, ar, and polygon objets.Ar is similar with a line objet but it has left and right neighbors' information.For more e�ient representing ars, hierarhial strutures are in use. First, sev-eral bounding ontainers are explained, and minimal bounding retangle (MBR) isdesribed in detail and implemented using rotating alipers. With these boundingontainers, strip and ar trees whih are widely used are explained and implemented.Smallest bounding area (SBA) tree is newly suggested in this paper. This tree isbuilt by the splitting point whih is optimized by bounding area. Splitting pointis the point whih has the smallest bounding area. This is aomplished by greedyalgorithm and by dynami programming. The bounding area is optimized in urrentlevel by greedy approah, and the bounding area is optimized in whole levels of thetree by dynami programming.SBA tree makes �nding intersetions with random lines faster sometimes, but notalways in experiments. Eah tree struture has good and bad sides. It is fast tobuild an ar tree, beause it does not have ompliated alulation for deiding thesplitting point. However, bounding area made by ar tree an not approximate thereal objet well in some ases. Strip tree works quite good, but if the ar is ompli-ated and distorted muh, approximation by strip tree an be not that good. SBAtree takes more time to be built than other trees, but it approximates the real objet73



74 CHAPTER 7. CONCLUSION AND FUTURE WORKmore tightly. These tree strutures an be used in many operations for managinga vetor map. Polygonal approximation is one of important operations for manyreasons suh as simpler visualization and faster transmission. When the map is ap-proximated, topologial information an be hanged. Hene, we should avoid wrongtopologial hanges and keep the original one. This an be done by approximatingonly if the topology is same, and �xing errors after approximation. For both ases,the most important and often used operation is �nding intersetions with other arsor line segments. Therefore, hierarhial strutures an be used for topologiallyonsistent simpli�ation. In addition, we an also apply the strutures to window-ing, lipping, and point inlusion test. For windowing and lipping, we an use thehierarhial struture when we �nd whih ar is interseting the retangle R, thenget the polygon information from the ar and �nd intersetion between the retan-gle R and the line segment of the ar. For point inlusion, we should �nd out howmany times the ray from the point is interseting the polygon. Using hierarhialstruture also an help the proess. More applied areas an be studied in the future.Strutures for hierarhial representation are foused on in this paper, so imple-mentations of some parts are not e�ient. For example, the algorithm for �ndingintersetions between MBRs or between MBR and line segment is not e�ient.Therefore, this an be improved more in the future. More various bounding on-tainers an be implemented with the SBA tree, so we an deide whih boundingontainer works better with the SBA tree. Also, if we �nd not perfetly optimizedsplitting point, then time for building the tree an be shorter. It may be ahievedby ombining optimal and heuristi algorithms. This issue also an be improved inthe future.
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