Topological Data Modelling for
Vector Map

Master’s Thesis

Hyeyeon Park

30.6.2006

Department of computer science
University of Joensuu

Contents

1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Outline.o 2

2 Vector Data Model 5
2.1 Vector Data Representation 5

21.1 Pointo 5
21.2 Node 6
21.3 Line 6
214 Arc. . .. 6
2.1.5 Polygon 8
2.2 Vector Data Models L. 8
2.2.1 Non-Topological Model 8
2.2.2 Topological Models 9
2.3 Building A Topological Structure 12
2.3.1 Non-topological Vector Map 13
2.3.2 Finding Nodes. oL 13
2.3.3 Finding Arcs 15
2.3.4 Topological Vector Map 16

4 CONTENTS
3 Bounding Containers 21
3.1 What Is Bounding Container? 21
3.2 Linear Bounding Containers 22
3.2.1 Orthogonal Bounding Rectangle 22

3.2.2 Bounding Diamondo 23

3.2.3 Bounding Octagon 23

324 Convex Hullo o oo 24

3.2.5 Minimal Bounding Rectangle 25

3.3 Implementation of Minimal Bounding Rectangle 25
3.3.1 Algorithm for convex hull 26

3.3.2 Rotating Calipers 27

4 Hierarchical Representation of Arcs 33
4.1 Hierarchical Representation 33
4.2 Strip Tree L 34
4.2.1 Strip Tree definition 34

4.2.2 Implementation of Strip Tree 37

4.3 ArcTree 38
4.3.1 Arc Tree definition 38

4.3.2 Implementation of Arc Tree 40

4.4 Smallest Bounding Area Tree 41
4.4.1 Smallest Bounding Area Tree definition 41

4.4.2 Implementation of Smallest Bounding Area Tree 43

5 Applied Areas 49
5.1 Using a Hierarchical Structure for Reporting Intersections 49
5.1.1 Line Segment Intersection(LSI) 49

5.1.2 Hierarchical Structure and LSI 50

CONTENTS 5

5.2 Polygonal Approximation o1
5.2.1 Definition of Polygonal Approximation 51
5.2.2 Algorithms 51

5.2.3 Topologically Consistent Simplification Using Hierarchical Struc-
ture 53
5.3 Windowing and Clipping, 95
5.3.1 Polygon Overlay 95
5.3.2 Windowing Lo o6
5.3.3 Clipping e 56
5.4 Point Inclusiono 29
6 Experiments 61
6.1 Comparison 1: With Different Bounding Containers and Without . 61
6.2 Comparison 2: Different Hierarchical Structures 66
7 Conclusion and Future Work 73

Bibliography 74

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13
2.14
2.15
2.16

3.1
3.2
3.3

Transformation to vector data
Point and node objects L L
Line and arc objects
Polygon consisting of points and arcs
Polygons with spaghetti model
Network model - planar and non-planar
Editing in a vector map with topological and non-topological models
Vector map with topological model
Vector map data file with spaghetti model
Object diagram of non-topological model
Counting adjacent polygons

Finding neighbor polygons and deciding whether a point is a node or
not . . .o

Findingares
Topological vector map data file- ASCIT
Topological vector map data file- XML

Building a topological structure L.

L;, half-space H; by L;, and bounding area
Orthogonal bounding rectangle and bounding diamond

Bounding octagon and convex hull

7

© oo N N O

3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
411

4.12
4.13

4.14

5.1
5.2
5.3
5.4
5.9

LIST OF FIGURES

Convex hull by Melkman’s algorithm 27
An example of enclosing rectangle P 28
Rotating caliperso 31
Minimal bounding rectangle by using rotating calipers 31
Definition of a strip segment 35
Building a strip tree by top-down method 35
Building a strip tree by bottom-up method 36
Non-regular strips Lo 36
Three possible results of intersecting two strips. 37
Data structure of strip tree 37
Strip tree with minimal bounding rectangle and finding intersections

with random line segmentso 39
Building an arc treeo 39
Arc tree with ellipseso 40
Data structure of arc tree 41
Arc tree with minimal bounding rectangle and finding intersections

with random line segments 42
Comparing two trees by different splitting points 43
Calculating a matrix of splitting points and building SBA tree by

greedy algorithm and dynamic programming 46
SBA tree with minimal bounding rectangle and finding intersections

with random line segments 0oL 47
A set S of nlinesegments L. 50
Not big difference between original and simplified maps at small scale 51
Pand Qsets 52
Polygonal boundary reduction 53
Islands disappeared after polygonal approximation. 53

LIST OF FIGURES

5.6 Self-intersection after polygonal approximation by Douglas-Peucker
algorithmo

5.7 Nested curves to which simplification by defining safe sets can not be
applied

5.8 Intersection and union of sets Aand B
5.9 Example of windowing oL
5.10 Example of clipping L
5.11 Inclusion of the point P in the polygon Q

6.1 Mapl and Map?2 for testing L.
6.2 Mapl, long and short random line segments, and intersections

6.3 Mapl and Map2 with orthogonal boxes and with minimal bounding
rectangles

6.4 Comparing strip tree and SBA tree
6.5 Building arc tree, strip tree, SBA tree for Mapl
6.6 Illegal and legal approximations

o4

o4
29
57
o8
29

62
62

List of Tables

2.1

6.1

6.2

6.3

6.4

6.5

Structure of topological objects and XML tags

Running time (seconds) for finding intersections between 1,000 ran-
dom line segments and all features of Map1 (1,941 points). Tests are
done 20 times and average time is calculated.

Running time (seconds) for finding intersections between 500 random
line segments and all features of Map2 (10,925 points). Tests are done
20 times and average time is calculated.

Running time (seconds) for finding intersections with three different
tree structures between 1,000 random line segments and all features
of Mapl (1,941 points). Tests are done 20 times and average time is
calculated.o Lo

Running time (seconds) for finding intersections with three different
tree structures between 500 random line segments and all features of
Map2 (10,925 points). Tests are done 20 times and average time is
calculated.o Lo

Running time (seconds) for finding intersections with three different
tree structures between 1,000 random short line segments and all
features of Mapl (1,941 points). Tests are done 20 times and average
time is calculated.o oo

11

64

65

68

69

Abstract

Vector map can be modelled with different data models. First, we build topo-
logical information from the map with spaghetti model. We will look through basic
vector objects, describe the structure of topology of the map, and then how a non-
topological map is transformed to a topological map is explained. Next, bounding
containers are explained for more efficient accessing of objects. We do not need
whole detailed information of each object in some cases. Different bounding con-
tainers are explained, and how minimal bounding rectangle (MBR) is implemented
is described. Arc, one of vector objects in the map, can be represented by hier-
archical structure. Well known tree structures, strip and arc trees, are reviewed,
and smallest bounding area (SBA) tree is proposed. Hierarchical representation
can be used in many areas. We can keep the topological information while doing
polygonal approximation. Also, hierarchical structure can make windowing, clip-
ping, and point inclusion more efficient. We compare different bounding containers,
and different hierarchical structures in experiments.

Chapter 1

Introduction

This chapter describes background and motivation of this work. Also the outline of
this thesis is presented.

1.1 Background

Maps have guided people for thousands of years. Traditionally maps were hand-
made and for the last century they were printed. These paper maps could not be
modified. Then computer revolution came, and these days most of the maps are
digitized and stored in digital format, so they can be easily created and processed
by a computer. Digital map processing allows many map technologies which are
not able in paper maps such as storing a huge set of maps, compress maps using
image compression technologies, comfortable interface for browsing maps and so on.

There exists two different formats for presenting digital maps. These are raster
maps and vector maps. Raster maps store visual information as a raster image or
a set, of raster images. Raster image consists of pixels and each pixel can have one
of the several colors, depending on the color depth of the image. Typical image
formats for this map are PPM, GIF and PNG. Vector maps store visual and ge-
ographical information using vector graphics. This map is not a image but a set
of graphical entities such as Point, Polyline, Polygon, Arc, Node, and so on. This
work concentrates on the latter map format.

2 CHAPTER 1. INTRODUCTION

Vector maps can have topology which means relationships between entities in maps.
Topology describes how map elements are connected each other. If the map has
topological information, then each element is aware of its neighbors, therefore, edit-
ing or updating maps can be easier.

Data modelling for the vector map can be applied in many different areas. It can
help to make the process more efficient and faster. One of most useful geometri-
cal computations is finding intersections between objects. This can be in use for
polygonal approximation, windowing, clipping, and etc.

1.2 Motivation

There are many areas in GIS where data modelling for the vector map can make
processes more efficient. For example, polygonal approximation is a method for
modifying complex vector map so that less important elements are removed. This
operation is useful because maps with complex elemental structure are expensive to
process and approximated maps can still be used in many applications. However,
while map being approximated, errors can occur. This is because topology is not
considered. For topologically consistent simplification, hierarchical representation
of arcs can be helpful for faster and more efficient processing. For windowing, clip-
ping, and point inclusion, it also can be helpful, because their basic computation is
finding intersections between a line segment and an object.

Arc, line segment which has topological information, can be modelled by a hierarchi-
cal structure. Tree data structure is commonly used. The widely known techniques
are Strip Tree [Bal81|, Arc Tree [GW90|, and Bezier Tree |Bez74]. In this paper,
we first show how vector maps with different data models are embodied and how
to build a topological structure, and then look through different kinds of bounding
containers. Next, Strip Tree and Arc Tree will be compared with new designed tree.
Finally, how these tree structures can be applied in many GIS areas. C++ library
which has all functions was built for implementation.

1.3 Outline

The thesis begins with background knowledge about digital images and maps, and
then explains the motivation for this study and defines the objective. Next, the

1.3. OUTLINE 3

structure of vector map is defined and a process of building a topological structure
from a non-topological vector map is explained. Chapter 3 is about bounding con-
tainers which are used for an approximation of objects, and then two well-known
hierarchical structures of arcs, using a minimal bounding rectangle as a bounding
container, are explained. A new hierarchical structure is proposed and its per-
formance is compared with others in chapter 4. Several applied areas are looked
through and how the usage of a hierarchical structure of arcs affects to the perfor-
mance is explained in chapter 5. Experiments for comparing performances with and
without the hierarchical structure and with different bounding containers, and for
comparing performances between different hierarchical structures are described in
chapter 6. Finally, conclusions are presented and future works are discussed.

CHAPTER 1. INTRODUCTION

Chapter 2

Vector Data Model

This chapter describes about vector data representation, different vector data models
and how they are implemented.

2.1 Vector Data Representation

Vector data represents the real world using discrete points, lines or polygons. In real
world, most objects consist of curved lines and areas with soft boundaries. However,
those real objects are substituted for discontinuous lines and points, so that their
boundaries do not look soft and natural [KO03, HA03]. If the data are represented
with smaller and more objects, they look more natural but size will be increased.
Figure 2.1 shows how real world can be changed to vector data.

Here are more detailed explanation about typical primary objects which are used
in vector data [HCCO02, BV02, DeMO05].

2.1.1 Point

Point is zero-dimensional abstraction of an object represented by a single set of x
and y coordinates. It can be used to depict map features or symbols such as location
of buildings on a small-scaled map.

6 CHAPTER 2. VECTOR DATA MODEL

real world —— wvector map

+|::

Figure 2.1: Transformation to vector data

2.1.2 Node

Node is same format with Point, but it has additionally topological information.
Points where lines from different polygon or polyline intersect are chosen to nodes.
Node is also the end point of arc which will be explained later, so it has arc infor-
mation which has the node. Figure 2.2 shows an example of point and node objects.

2.1.3 Line

Line is a set of x and y coordinates that represent the shape of geographic features
such as contours, street centerlines, or streams or linear features with no area such
as country boundary lines. It is also called polyline.

2.1.4 Arc

Arc is same format with Line which starts and ends with nodes and has adjacent
polygon information. Arc has start and end nodes, left and right polygon identi-
fications, and points between nodes. Figure 2.3 shows an example of line and arc
objects.

2.1.

VECTOR DATA REPRESENTATION

|

- |

'_\ |

p [

*onl 5
) T --EI —._ ng \

1/ Ty
i) ag|

‘45 and B

H.H'\-\. -~ n
L '
\
-\.\‘ |I /

Faoint

p Lyl
pl {517
pe (12,19

MNode

nogs yh
ni ¢ 8200
ng (18,18
n3 (18,120
nd {11, 8
nb {2140

arcs
ah, al
al, as
ad, ad
a3, ad
ad, ah

Figure 2.2: Point and node objects

,-"f |

< C |

"l . \
:-/'L/ 2 al ¥

Line

linel ¢ 2.14;
(11, &
(1812

Arc
a1 start Mode! nl
end Mode: n?
rmiddle Points
pe (12.149)
left Folygon: C
right Polyaon: &

Figure 2.3: Line and arc objects

CHAPTER 2. VECTOR DATA MODEL

.-'"f |
Y] C | Faolvgon A
o ' with with
/5-- _ E'? ne__ J\ pointe aArcE
PLoE al ¥ { 8,20 al
/ & ag| (12,19 al
ns 1 B (18,18) a3
~ad P (18,12) ad
| ~_ \ (11, 8 ah
*na (214
L '. '+ (BT
. \ (.20
-, \ i

Figure 2.4: Polygon consisting of points and arcs

2.1.5 Polygon

Polygon is a feature used to represent areas such as swamps or lakes. It can be a
set of x and y coordinates as the same of a line, but start and end points should be
same because polygon is a closed polyline. Lines of polygon should not intersect.
Polygon also can consist of arcs. In this case, polygon does not have a set of points
but a set of arcs which has adjacent polygon’s information. Figure 2.4 shows and
example of polygons with points and arcs.

2.2 Vector Data Models

Vector map can be based on several different data models. Common to all these
models is that they contain one or more geographical objects. Some models con-
tain also information about object relations. This following section introduces two
different vector data models: Non-Topological Model and Topological Model, and
shows how they are implemented in real data.

2.2.1 Non-Topological Model

This is the simplest vector data model that stores the data without establishing
relationships among the geographic features. This is sometimes called the spaghett:
model, because lines overlap but do not intersect, just like spaghetti on a plate. All

2.2. VECTOR DATA MODELS 9

A B C
¥R B
(2,2) (6,2) (8,11
(6,2) (16,2) (10,8)
(9,4) (16,8) (16,8)
(10,8) (10,8) (14,15)
(8,11) (9,4) (8,11)

(3,13) (6,2)

Figure 2.5: Polygons with spaghetti model

objects in the map are stored as independent entities and each is represented as a
set of and y coordinates (See Fig. 2.5).

The best advantage of spaghetti model is simplicity. In addition, it is easy for end
users to input new objects because all objects are independent. On the other hand,
there are disadvantages of this model and they are mostly because of the lack of
topological information such as adjacency. For example, if we want to know which
boundaries are shared with other polygons, we need expensive process. Secondly,
data is stored with some redundancy because lines between adjacent polygons must
be represented twice. If data size is large then waste of memory will be noticeable.
Thirdly, risk of inconsistency exists. If we use different sources of information or
change or move some objects, there can be a gap or sliver between adjacent polygons.

2.2.2 Topological Models

There are two different topological models - Network Model and Topological Model.
They are similar that they have nodes and arcs. In fact, network model does not
have perfect topological structure. It is mainly for network (graph)-based data such
as transportation services. Node is an intersection point between different lines
and arc is a line which starts and ends with nodes. This model does not include
relationship between 2D objects. Therefore, network model is useful for finding an
optimal path using the connectivity. There are planar and non-planar networks. In
a planar network, each line intersection is chosen as a node, even though that node
is not a geographical object. In non-planar network, it is possible that lines may
cross and intersection is not a node. An example of network model of planar and
non-planar networks is shown in figure 2.6.

10 CHAPTER 2. VECTOR DATA MODEL

A 4

A 4

A
v
T

Planar Network Model Non-planar Network Model

Figure 2.6: Network model - planar and non-planar

Topological model has relationship information between adjacent polygons. Node
and arc are same with ones in network model except that arc has information which
polygon is on left and right side. In addition, polygon consists of a series of arcs,
not points. Nodes and arcs are not duplicated and they can be referenced to more
than one polygon. Boundaries which are shared by two polygons will be stored
only once, so redundancy problem in spaghetti model can be solved. This is one
of advantages of topological model. Another benefit is efficiency to ask topological
queries. For example, if you want to search a polygon adjacent to a given polygon
P, then check the arcs of P. Each arc will give the information of adjacent polygons.
In addition, it is easier to maintain consistency when the map data is updated or
edited. In non-topological model, there may be errors when the map is edited. On
the other hand, in topological model, there is no error, because the border arc is
shared between two polygons (See Fig. 2.7).

There are also disadvantages in this model. Data structure is more complex than
spaghetti model, so it may slow down some other operations. Another one is that
topology should be established again after each updating.

Existing topological data formats

DXF (Drawing Interchange Format)

DXF files are defined to assist in interchanging drawings between AutoCAD and
other programs. DXF files are standard ASCII text files. They can be easily trans-
lated to the formats of other CAD systems or other programs for specialized analysis.

DIGEST (Digital Geographic Information Exchange Standard)
DIGEST is developed by DGIWG (Digital Geographic Information Working Group)

2.2. VECTOR DATA MODELS

topological editing

non-topological editing

11

Figure 2.7: Editing in a vector map with topological and non-topological models

Arc

. start end left right mid-
id node node paly paly paints

1

PUNHEZE OURWN
)

1

I

aut [2,2901,5)(3,13)
A C 0

A B (9,4
BoC 0

B oout (16,2)
Co oout (14,15

Palygon
id arcs
A 01,2,3
1 B 3,45
C 2,46

Fo o a2

Figure 2.8: Vector map with topological model

12 CHAPTER 2. VECTOR DATA MODEL

to support data exchange and co-production among NATO nations. It supports
raster, vector, and matrix data exchange and the entire range of topological struc-
tures from no topology to full topology.

TIGER (Topologically Integrated Geographic Encoding and Referenc-
ing)

TIGER is digital database developed at the U.S. Census Bureau to support its map-
ping needs for the Decennial Census and other Bureau programs. TIGER/Line files
are for geographic features like roads, rivers, lakes, legal boundaries, etc.

TIGER/Line data format consists of

e Node : topological junction of two or more links or chains, or end point of a
chain

e Entity point : point for identifying the location of point features like towers,
buildings, etc.

e Chain : simple polyline with start and end nodes and list of intermediate
points. A complete chain has references to left and right polygons and a
network chain doesn’t have.

e GT-polygon : list of complete chains that form its boundary.

STDS (Spatial Data Transfer Standard)
U.S. Geological Survey (USGS) developed STDS for academic, industrial and fed-
eral, state, and local government users of computer mapping and GIS.

NTF (National Transfer Format)
NTF files are provided by the Ordnance Survey in the United Kingdom.

2.3 Building A Topological Structure

Why topology is necessary? Topology is a mathematical approach that allows us to
structure data based on the relationships between objects. These relationships are
connectivity, contiguity and containment. Connectivity refers to the interconnected

2.3. BUILDING A TOPOLOGICAL STRUCTURE 13

pathways or networks, such as streets, electrical power lines, streams and transporta-
tion networks. Connectivity functions are useful to find optimal routes through the
network. Contiguity is the spatial relationship between objects that touch each
other. Adjacency has same meaning with contiguity. Containment refers to the
intersection between objects, for example, by boolean relationships such as "and"
"or" "inside" "outside" "intersecting" "non-intersecting" etc. Therefore, topological

data model can quickly answer these queries:

e Which roads are connected to the center?
e How many people have a car in the neighboring region?

e Where the factory can be built in? - not in the forest "and" not close to the
center

Library for building a topological structure from simple spaghetti vector map are
built for this paper. First we will look into the vector map with spaghetti model,
and how to find nodes and arcs, then lastly, topological vector map and XML output
files. Vector map files are ASCII files for easy input and editing.

2.3.1 Non-topological Vector Map

This file is simple. It has label, number of points, and a list of points. Point has
X and Y coordinates and one number (0 or 2) for separating polygons. Figure 2.9
shows an example file.

This file has two objects - Polyline and Point. Polyline class is for polygon, which
is closed polyline, or not closed polyline features. It contains 1 to N point objects.
In addition, it contains a bounding box for reducing comparing time when finding
a neighbor polygon. It has functions for finding nodes and arcs. Point class is for
point object. It contains the number of neighbor polygons and their id numbers as
well as z and y coordinates. Figure 2.10 shows object diagram of non-topological
vector map.

2.3.2 Finding Nodes

Next step is finding nodes. First shared points with adjacent polygons should be
found and then count how many neighbor polygons each point has. All points in each
polygon should be compared with all points in all other polygons. However, points
actually can be shared with close polygons, so not all points need to be checked.

14

CHAPTER 2. VECTOR DATA MODEL

Label : "POLYLINES"

Murnber of points

First Polygon @ start point

First Polygon @ intermediate point

First Palygon @ end point
Second Polygon @ start point

¢ polymap? - ﬂilEm
Opiky HE(E) M0
BIiV ESEHH)
POLYLINES s
u9
7 22 2
21 23 8 L
28 1 8 1
17 12 0
17 14 8
17 16 8
19 18 8
16 21 8
1 19 8
13 17 8
1 13 8
7 1 8
7 22 2
1 19 2
16 21 8
19 18 8
[

Figure 2.9: Vector map data file with spaghetti model

Mon—topological map

Palygoni

Figure 2.10: Object diagram of non-topological model

2.3. BUILDING A TOPOLOGICAL STRUCTURE 15

optimal
1 _» bounding
d box

Polyline Polyline

h .

Check intersection Check intersection between Increment ‘count” value of points which
hetween bounding boxes, bounding box and intersecting polygon, are shared by adjacent polygons.

Figure 2.11: Counting adjacent polygons

For this, bounding box of each polygon is used. First check if bounding boxes
are intersecting between two polygons, then check only points inside intersection
between two bounding boxes. Bounding box is easy to calculate and operations such
as including or intersection are cheap. Figure 2.11 shows the process of counting
neighbor polygons.

Count values in figure 2.11 will decide which point is a node and which is not. There
are several cases that show the point is a node.

1. Count value is more than 2 : Node
2. Count value changes 0 to 1 or 1 to 0 : Node

3. Count values are same with 1 in a row : should check their neighbors. If
neighbor polyline id numbers are same, then the point is not a node. If they
are different, then it is a node (see Fig. 2.12).

4. Current count value is 1 and previous or next is more than 2 : Node

5. If the polyline is not closed : start and end points are nodes.

In figure 2.13, you can see that shared points have a list of neighbor polygons’ id
numbers. They will be used for finding arcs.

2.3.3 Finding Arcs

Arc starts and ends with nodes. For each polygon, all points are looked up and
if first one node is found, then arc saving starts and middle points will be stored
until another node appears. In addition, arc should have neighbor information -

16 CHAPTER 2. VECTOR DATA MODEL

casel

. Neighhor

‘polyline 1™ —— count

id

Figure 2.12: Finding neighbor polygons and deciding whether a point is a node or
not

left and right polygons’ id numbers. If there are any points between start and end
nodes, then it is straightforward - checking the neighbor polygon id from the middle
points. However, if there is no middle point, then neighbor polygons of start and
end nodes are checked. If they have same neighbor polygons, arcs in not-sure array
are checked for finding the same arc which has same neighbor polygons. If there is
same arc, the arc will be removed from not-sure array and be stored as a normal
arc. If there is no, the arc will be new not-sure arc. During the whole process, same
arc should not be saved twice.

In addition, while finding arcs, polygon should be saved with new form - referencing
arcs but not points.

2.3.4 Topological Vector Map

Finally after building a topological structure from spaghetti vector map, topological
vector map will be stored as a file. There are two functions for generating ASCII
file and XML file. XML file is easy to see the structure. For loading XML files,
existing library - Xerces C++ Parser is used |[Apa]. Table 2.1 shows the structure
of node, arc and polygon and tags for XML file, and following figure shows ASCII
and XML files.

2.3. BUILDING A TOPOLOGICAL STRUCTURE 17

arc
start node : ni end node : n2
mic-points ;0
left pokygon 2 right polkygon @ 1
arc2

start node - n2 end node ;N3
mid-points : {9, 71 (6, 5)
left polygon - 3 right pokygon ;1

arc3
start node : n3 end node : n
mid-points : (5,0 (0, 8 (0, 113
left pokygon - out right polygon 1

Figure 2.13: Finding arcs

o topol - HI2ZE

B=%|

OHEY TEE) M2
TOPOPOLYLIMES

EI

CEEH

Lol Label " TOFOPOLYLINES”

HODE

¥

Label @ ™NUODE"

1 12 18 3 1 3
2 11 18 L 1 2
3

id w y Mumber arc

M
8

5 8 3 2 3 18

Mumber of nodes

structure of Mode

of Arcs id1 id2 id3

G 18 8 3 G Fi 1
7 13 8 3 ¥ 8 11
ARC Label @ "ARC"
11 Mumber ot arcs
1 1 2 1 2 5}
- start end left right number) })
il node node poly poly of peints A1 VI structure ot &rc
11 1] ¥ 5 & 2 16 12 3
POLYLIHE Label : "POLYLINE"
5 Mumber of polygons
1 1 3 1 2 3
2 1 i} L 5 1] 7

Murnber 3G)
id clogsd Dfu:m:r id1ide structure ot Faolygon
5 1 2 7 11

M

(£ il | (i)

Figure 2.14: Topological vector map data file - ASCII

18 CHAPTER 2. VECTOR DATA MODEL

- <topoMap>
- <nodes>
hnodeMum:=11=/nodemums
- <node=
<hodeld:1</hodeld:
shnodex=17</nodex=
<hode¥=14/hodey =
zbelongsarcHum=6+</belongsarchum=
<belongsarcld=1</belongsArcid=
=belongsarcld=7</belongsArcid=
<belongsarcld=9</belongsArclid=
=belongsarcid=10</belongsArclid=
<helongsarcldz16</belongsircIds=
<belongsarcid=17</belongsArcid=
</hodes

Figure 2.15: Topological vector map data file - XML

1400 T T T T . T T T T 1400
with Spaghett Model

with Topological Model

1200 1 1200

1000 1 1000

800

B00

400

200

D 1 1 1 1 L 1 1% 1 1 1 1 1 1 1 1 1 1 1
0 200 400 BOO SO0 1000 1200 1400 1600 1800 2000 DD 200 400 GO0 SO0 1000 1200 1400 1600 1800 2000

Figure 2.16: Building a topological structure

2.3. BUILDING A TOPOLOGICAL STRUCTURE 19
Node <nodes™>
id Node id number <nodeld >
X X coordinate <nodeX >
Y Y coordinate <nodeY >
Number of Arcs How many arcs have this node <belongsArcNum >
Arc id numbers List of arc id numbers <belongsArcld >
Arc <arcs>
id Arc id number <arcld>
start node Start node id number <startNodeld >
end node End node id number <endNodeld >
Left Poly Left polygon id number <leftPolyld >
Right Poly Right polygon id number <rightPolyld >
Number of points Number of middle points <midPointsNum >
X X coordinate of middle point <midX>
Y Y coordinate of middle point <midY >
TopoPoly <topoPolys>
id Polygon id number <polyld>
closed Boolean value for checking closed or not | <closed>
Number of arcs Number of arcs <ownArcNum >
Arc id numbers Arc id number <ownArcld>

Table 2.1: Structure of topological objects and XML tags

20

CHAPTER 2. VECTOR DATA MODEL

Chapter 3

Bounding Containers

This chapter describes bounding containers as a finite geometric object and how
manimum rectangle area, which is one of linear bounding containers, is implemented.

3.1 What Is Bounding Container?

Bounding container is a simple geometric object for bounding a complicated object.
It is useful for computational geometry application such as ray tracing, collision
avoidance, hidden object detection, etc [Sunal. Before doing expensive intersec-
tion or containment process of a complicated object, simple process of a bounding
container can reduce the possibility of intersection and containment, and no more
process is needed. For example, when two complicated objects are far from each
other and should be checked for intersection, checking two objects perfectly is not
necessary if simple comparing with bounding containers of two objects is done and
shows that there is no intersection between them. For this usefulness, bounding
containers should satisfy some important requirements [Suna].

e [f the bounding container include all points of an object, then it also should
include the whole object. For example, if two vertices are inside the bounding
container, then the line joining them will be included in it.

e The test for containment and intersection, such as checking one point is inside
or outside the container, two bounding containers are disjoint, and a line

21

22 CHAPTER 3. BOUNDING CONTAINERS

intersects the container, should be easy. Therefore, container should have a
small number of inequalities to test inclusion of a point.

e The bounding container should be efficient to build and store. Linear time -
O(n) and small space for storing are aimed. However, there is trade-off. More
efficient container needs more time for processing.

e The container can approximate the object. Smaller area of the container will
be more accurate.

There are two basic types of bounding containers - linear and quadratic containers.
In this paper, linear containers will be focused. In the following sections, different
linear bounding containers will be introduced and then how one of linear containers,
minimal bounding rectangle, is implemented will be explained.

3.2 Linear Bounding Containers

A linear container is a convex polygon which is bounded by finite inequalities. In
2D, a container can have k inequalities : fij(z,y) = a;x + by + ¢; < 0@ = 1,k)
[Sunal. If a point(z,y) is true to all inequalities, then it is inside the container.
If any inequalities fails, then the point is outside the container. Each inequality
decides a half-space H; bounded by the line L; : f;(z,y) = 0. The intersection of
these half-spaces is the region of the container (See Fig. 3.1).

3.2.1 Orthogonal Bounding Rectangle

The orthogonal bounding rectangle is defined by two extreme points (Zin, Ymin)
and (Zymaz, Ymaz) and four edges are parallel to the coordinate axes. It has four
inequalities, so if all inequalities are true with the point, then the point is inside
the box. If any one of inequalities fails, then the point is outside the box. Even
though there are four inequalities, on the average, the point will be decided inside
or outside after two tests. The test for disjoint of two rectangles is similar to the
test for the point. It is done by comparing their minimum and maximum extents
of two boxes. For example, if 2,021 < Tmin2 O Timaza < Tmini, then boxl and box2
are disjoint.

The orthogonal bounding rectangle is the simplest container so that it is used most
frequently in many applications. It is simple because minimum and maximum

3.2. LINEAR BOUNDING CONTAINERS 23

Elcﬂ.md:né" .
Area

Figure 3.1: L;, half-space H; by L;, and bounding area

coordinate values can be found easily in linear time O(n) with one scan of all points
in the object. In addition, comparing test does not have any arithmetic computing,
but only comparing x and y coordinate values with extent values (See Fig. 3.2).

3.2.2 Bounding Diamond

The bounding diamond is a rectangle rotated by 45°, so it looks like a diamond. It
has four inequalities and they are computed by the simplest arithmetic expressions,
adding and subtracting. They are p = (x + y) and ¢ = (z — y) which are lines
with slopes of -1 and 1. All points will be scanned, p and ¢ computed, and then
(Pmins Pmazs Qmins @maz) Will be found. For the test of point inclusion, it needs a bit
more computation than the bounding box, but it still can be done in O(n) time
with single scan of all points in the object. Also disjoint test of two objects is easy
because only parallel edges will be compared. Figure 3.2 shows the example of the
bounding diamond.

3.2.3 Bounding Octagon

The bounding octagon is the combined geometric object of an orthogonal bounding
rectangle and bounding diamond. It thus is defined by eight inequalities. The

24

CHAPTER 3. BOUNDING CONTAINERS

Bounding box

Wrnax

Bounding diarmond

Figure 3.2: Orthogonal bounding rectangle and bounding diamond

Ny

Bounding
Cctagon

Convex hull

Figure 3.3: Bounding octagon and convex hull

bounding octagon is used frequently because it is smaller area then the orthogonal
bounding rectangle and bounding diamond and still can be computed in linear
time. For example, first, the point inclusion test can be checked by extents of the
orthogonal bounding rectangle. If the point is inside, secondly, (z + y) and (x — y)
will be calculated and the point inclusion is decided by the bounding diamond. The
test for disjoint of two octagons is processed similarly with the point inclusion test.
Figure 3.3 shows the example of the bounding octagon.

3.2.4 Convex Hull

Convex hull is the smallest convex set of points of an object. It is easy to understand
if you imagine surrounding the set of points by a large, stretched rubber band

3.3. IMPLEMENTATION OF MINIMAL BOUNDING RECTANGLE 25

[PS85, dBvKOSO00|. Because it is the smallest region, it approximates an object
most closely and it has the least area among all bounding containers. Each boundary
can be defined by a linear equation (ax + by + ¢ = 0). Therefore, the point inclusion
test can be done with an inequality : (az + by + ¢) < 0. An example of a convex
hull is in Figure 3.3. In spite of the most accurate approximation of an object,
convex hull is not used practically as a bounding container, because it may have
a lot of boundaries and then it needs much computation for checking independent
inequalities. Moreover, the test for disjoint of two convex hulls is more complicated,
because two hulls can not have always opposed parallel edges. There are many
existing algorithms for computing the convex hull - Grahamhull, Gift-wrapping
approach, Quikhull, Mergehull, etc [PS85].

3.2.5 Minimal Bounding Rectangle

Minimal bounding rectangle is the result of combining two features which are mini-
mizing area of the container and reducing inequalities for point inclusion test. There-
fore, it approximates an object more precisely and, at the same time, it has only four
inequalities, so easy and fast to decide the point is inside or outside the container.
It has two pairs of parallel lines, f1 = (ayz + byy) and f2 = (asz + bay), and each
pair has minimum and maximum extents. If a point P(z,y) fulfills

flmm S a1z + bly S flma:r

fzmzn S Ao + b2y S f2ma:p
then P is inside the rectangle [Suna]. For the algorithm finding a minimal bound-
ing rectangle, ’Rotating Calipers’ [Tou83| can be used because it can compute the
minimal bounding rectangle in O(n) time if an object is convex. If an object is not
convex, then first, a convex hull should be found. More details about how "Rotating
Calipers’ is used will be explained in following section.

3.3 Implementation of Minimal Bounding Rectan-
gle

In this chapter, how to implement minimal bounding rectangle will be described.
If we use 'Rotating Calipers’, time complexity can be O(n), but object should be
convex. We will compute minimal bounding rectangles mainly for arcs in this paper,
therefore, first should make a convex hull for each arc before minimal bounding
rectangle. Algorithms for convex hull and rotating calipers will be explained.

26 CHAPTER 3. BOUNDING CONTAINERS

3.3.1 Algorithm for convex hull

For finding a minimal bounding rectangle for an arc, convex hull for each arc should
be computed. There are existing algorithms for convex hull and general computing
time is O(nlogn). This is because all points should be sorted before finding a hull
and sorting algorithm generally takes O(nlogn). After sorting, computing a hull
takes O(n) time. However, there is more efficient algorithm for connected simple
polyline by (Melkman,1987). Arc is a connected simple polyline because it is a series
of ordered points and there is no self-intersection. Therefore, Melkman’s algorithm
can be applied for an arc. Important features of his algorithm are

1. It works for a simple polyline.

2. It does not need preprocessing for sorting. All points will be processed se-
quentially once.

3. It uses a double-ended queue (a deque) to store processed points which indi-
cates an increasing hull [Sunb].

The deque (double-ended queue) has both top and bottom. It allows one to push
or pop on the top of deque and to insert or remove from the bottom of the deque.
Melkman’s algorithm is straightforward. It processes each point of the polyline at
each stage. Let the simple polyline be PL = F,, Py, ..., P,. Initial convex hull is
made with first three points, and then the next point Py is considered in each stage.
If point Py is inside the current convex hull, then it can be ignored. Therefore,
convex hull CHj, will be same with CHj_. If it is outside the current convex hull,
then new convex hull should be built. The new point simply can be added at the
bottom and top of the deque. However, points which will be inside the new convex
hull should be removed before adding new point for new increased convex hull into
the deque. Figure 3.4 shows how his algorithm works.

Melkman Algorithm

1. Make a convex triangle with first three points.

2. Test that next point is inside the convex hull. If it is inside, then skip this
point and continue to next point.

3. Remove points which will be inside new convex hull from the bottom of the
deque, then insert this point.

3.3. IMPLEMENTATION OF MINIMAL BOUNDING RECTANGLE 27

dbot+1

Figure 3.4: Convex hull by Melkman’s algorithm

4. Remove points which will be inside new convex hull from the top of the deque,
then push this point.

5. Repeat steps 2 to 4 until all points in the polygon are tested.

3.3.2 Rotating Calipers

If convex hull of an arc object is ready, the process to find a minimal bounding
rectangle can be computed in linear time using rotating calipers [Pir99|. ’Calipers’
are two pairs of parallel lines around the convex hull and these pairs are orthogonal to
each other. They are initialized with extreme points and rotated until calipers meet
the edges of convex hull. This process can find a minimal area rectangle because
the rectangle of minimum area enclosing a convex polygon has a side collinear with
one of the edges of the polygon [Tou83|.

We can define a minimal bounding rectangle R with a given convex polygon P such
that Vp € P,p € R. If area(R) < area(R’) for all rectangles R', then R is a minimal
bounding rectangle for P. In order to minimize the area, we can intuitively think
that the rectangle’s edges would have to touch the convex polygon. Here is this
theorem and proof of it [Pir99, HR75].

Theorem: The rectangle of minimum area enclosing a convex polygon has a
side collinear with one of the edges of the polygon.

28

CHAPTER 3. BOUNDING CONTAINERS

A
p.’
Im i x »
(p)JI- 9_,.
D4 ' [
" —E p,
0,
- 9" | v
- L p L1
ra 12
4

Figure 3.5: An example of enclosing rectangle P

We have a given convex polygon P, and let us assume that the small-

Proof:
est box is given and it does not have one side collinear with one of P’s edges. In
figure 3.5, the rectangle only touches P at four points p;, p;, pr, 1. We can prove

that it is always possible to find a smaller enclosing rectangle.

A, the area of the enclosing rectangle is 115 (See Fig. 3.5). Let dix = dist(p;, pr),

and dj = dist(pj, pi). Therefore we get
ly = dj cos(p;)

ly = dix, cos(pr)

Both [and Il5 can be reduced by rotating their corresponding lines in their preferred

direction of rotation. Therefore there are two cases - case 1, where [; and [y can be
decreased by rotating all lines in the same direction, and case 2, where rotating in

a given direction decreases one length but increases the other.

Case 1: By rotating all lines counterclockwise by some angle 7, both [; and [,
are decreased. A’, the area of new box is determined by edges of length [} and [},

where

3.3. IMPLEMENTATION OF MINIMAL BOUNDING RECTANGLE 29

Iy =djicos(p;j+n) =1 <l
ly = di cos(p + 1) = 15 <y

= A =1l <A

In this case it is always possible to find a smaller enclosing rectangle.

Case 2: The preferred directions of rotation are different. Let us define ¢; as the
maximum angle we can rotate the lines in [;’s preferred direction of rotation before
we hit the edge, and in a same way we define J; for lr. Let § = min(|d;|, |0x]).
Assume that the preferred direction of rotation for /; is clockwise and the preferred
direction of rotation for [y is counterclockwise. If we rotate clockwise, we get new
lengths /1,15 and a new area A¢:

I} = djicos(pj +6)
ly = dyi, cos(py, — 0)

If we rotate counterclockwise, we get:

I{ = dj; cos(p; +9)
15 = dyj, cos(pr — 0)

= ACC = lllllg

If Ac/A <1 then we rotate clockwise and we can get a smaller enclosing rectangle.
However, if Ac/A > 1, then we have:

Ac _ cos(p; + 6) cos(px — 9) > 1
A COS (;j COS Py, -

& cos? 0 + (tan oy — tan ;) cos § sin § — tan p; tan ¢y sin® § > 1

& (tan ¢ — tan ;) cosdsind > cos? § — tan p; tan ¢y sin® § — 1

30 CHAPTER 3. BOUNDING CONTAINERS

A
= % < 2(cos?§ — tan p; tan @y sin?§) — 1
< 2(1 —sin® § — tan p; tan gy sin® §) — 1
< 1-—2(1 + tan g, tan ¢y sin® §

<1

Hence we get Acc/A < 1, and it means that we can obtain a smaller enclosing
rectangle by rotating counterclockwise.

Therefore, for both of cases, it is possible to have a smaller enclosing box.

Rotating Calipers Algorithm

1. Find four points with minimum and maximum z and y-coordinates for the
POlngH - PXmin7 PXmam PYmina PYmam-

2. Construct two sets of "calipers", parallel to = and y axes, thus forming a
rectangle enclosing the polygon.

3. Let 8 = min(0;,0;,0,0,).
4. Rotate the lines by 6, thus until any of them meets the edge of the polygon.

5. Calculate the area of a rectangle built by four lines and compare with minimum
area. If it is smaller, then keep the new rectangle as our new "minimum".

6. Recompute 0;,0;, 0, and 0;.

7. Repeat steps 3 and 6, until the lines are rotated an angle more than 90°.

3.3. IMPLEMENTATION OF MINIMAL BOUNDING RECTANGLE

31

Fi

Bi <05, 8k, 8

Figure 3.7: Minimal bounding rectangle by using rotating calipers

Figure 3.6: Rotating calipers

Mirirmal
bouding
rectangle

32 CHAPTER 3. BOUNDING CONTAINERS

Algorithm 1 Arc.calcSmallBBox()

CH « calculate_ convexhull();
for (all points of convex hull) do
p < initial points by Z,in, Tmaz, Ymin, Ymaz
end for
calculate _calipers();
box « calculate MBR();
while (sumf < 90°) do
for (k=0;k<4;k++) do
f — angle between the caliper p[k] and new caliper with next point
if 0 < mind then
minf — 0
minP «— k
end if
end for
rotate caliper(k);
calculate _calipers();
sumf «— sumf + miné
tempBox « calculate_ MBR();
area <« area(tempBox);
if area < minArea then
box « tempBox
minArea < area
end if
end while

Chapter 4

Hierarchical Representation of Arcs

This chapter describes hierarchical representation schemes for arcs and different
methods of them. Two commonly used tree structures, strip and arc tree, will be
explained and new approach with a splitting point decided by the minimum area of
the bounding container will be introduced.

4.1 Hierarchical Representation

Curves are important two-dimensional structures in many areas. For example,
curves are used to represent map features such as contour lines, roads, and rivers
in geography. If a map is huge and very large amount of data is involved, efficiency
to perform operations, such as finding an intersection of road and river or checking
some point features are inside or outside of some areas, on this data is crucially
needed. Hierarchical tree structure for representation of curves is one of methods
to do these operations more efficiently because the operations are performed faster
at lower resolutions than the ultimate resolution [Bal81]. 1t is built recursively and
added more detailed features of the curve. Every next level has more points of
the curve, so the curve can be represented more precisely. These points that are
chosen for hierarchical structure are not independent each other [SRS03|. This is
because a new point for next level should be chosen between start and end points
of preceding level representation. Hence, as building more levels, the curve will be
subdivided recursively into shorter sub-curves. Each tree node is this sub-curve and
it is approximated by bounding containers. If the curve is well-behaved, intersection

33

34 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

and point inclusion calculations can be solved in O(logn) where n is the number of
points of the curve.

There are various well-known schemes for hierarchical representation of curves.
They are Strip Tree [Bal81|, Arc Tree [GW90| and Bezier Tree [Bez74]. These
schemes are mainly different with what kind of bounding container is chosen, how
dividing point is decided, and how much information is stored in each level. In fol-
lowing sections, Strip Tree and Arc Tree will be explained and additionally, a new
tree by different approach to how to decide a dominant splitting point will be de-
scribed. This paper is focused on how different method of decomposition - it means
which point is decided as a splitting point - is performed and compared. Therefore,
all trees use minimal bounding rectangle as a bounding container in common.

In this paper, arcs in a topological map are similar with curves, so hierarchical
representation method is used for arcs.

4.2 Strip Tree

4.2.1 Strip Tree definition

Strip tree was proposed by Dana H. Ballard in 1981. It has a binary tree as a
hierarchical structure, and a node of the tree has a strip which bounds a curve
and pointers to left and right children nodes. A strip is defined by six values
(Ps(xs,Ys), Po(Te, Ye), wy, wy) where (z4,ys) is starting point of the strip, (x.,y.) is
ending point, and w, and w; are right and left distances from the directed line
between the starting and ending points of the strip to the strip borders [Bal81].
Figure 4.1 is a strip segment defined.

Root of the strip tree has a bounding rectangle for the entire curve, and the curve
is divided to two sub-curves by a splitting point. This splitting point is decided by
the farthest distance between the point and the directed line P,P,. This process is
recursively done to the two children until every strip has a width w = w, +w; which
is less than predetermined limit value.

Figure 4.2 shows the process of building a strip tree for a curve C. Root strip S is
divided to two strips S5 and S5 first, and then strip S5 is divided again to two parts
because the width of the strip is longer than the limit length. S5 is divided to S
and S5, then the process is finished.

4.2. STRIP TREE

Figure 4.1: Definition of a strip segment

Iwidth limit

Figure 4.2: Building a strip tree by top-down method

35

36 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

Sl Sz

S5
S4

S3

Figure 4.3: Building a strip tree by bottom-up method

Figure 4.4: Non-regular strips

This process is a top-down method. This method needs a search to find the splitting
points in each node. Each point is checked at each of the logsn levels, thus it takes
O(nlogan) time. There is the second method in bottom-up style. First make strips
So,S1...S,_1 for each successive pair of points (P, P)(Py, P2) ... (Pn._1, P,), then
make pairs with strips, that is, (Sp, S1)(52, S3) .. ., and cover them with larger strips.
Continue until there is a single strip as a root. It takes O(n) time, but approxi-
mation result is not better than the first method. Figure 4.3 shows the bottom-up
method.

The example of the curve above is reqular which means that the curve is connected
and its end points are on both end edges of strips [Bal81|. There are more complex
curves such as closed one, curve which extend its end points, or curve which consists
of disconnected segments. These curves need more complex calculation for finding
a bounding strip. Examples are in Fig. 4.4.

4.2. STRIP TREE 37

1
NULL CLEAR POSSIBLE

Figure 4.5: Three possible results of intersecting two strips

struct stripTree

1
unsigned long int start, end;
double wL, wR;
smallBbox = bbox;
stripTree = leftchild;
stripTree = rightchild;

¥s

Figure 4.6: Data structure of strip tree

Strip tree is useful to find intersection between curves such as finding in which area
river and road crosses. For solving this query, first intersection between strip trees
should be checked. There are three different cases - null, clear, and possible (See
Fig. 4.5).

If the result is null, then it means that there is no intersection. If the result is clear,
then two strips are clearly intersecting. If the result is possible, then they may be
intersecting, so more specific process is necessary. Thus, their children nodes should
be checked. The process is going on in this way until the result is determined null
or clear. If strips are more precise, so if the answer - null or clear - is determined
faster, then execution time will be saved a lot. That is why decomposition of strips is
important. For well-behaving curves, execution time is expected to O(logsn) where
n is the number of points constructing the curve.

4.2.2 Implementation of Strip Tree

Strip tree which is implemented in this paper is a little different with definition of
strip tree. Minimal bounding rectangle is used as a bounding container instead of
a strip. Figure 4.6 shows data structure of a strip tree.

38 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

Node of strip tree has start and end point information, wL. and wR values, smallBbox
which is minimal bounding rectangle, and pointers to left and right children nodes.
Width of a strip, wL and wR, is used for deciding a splitting point. The farthest
point from a line connected between start and end points is the one which divides
the curve to two strips on next level.

Algorithm 2 buildStripTree()

if there are only two points then
Finish building the strip tree

else
calculate_ MBR(box,start,end);
division «— Find the farthest point from the line connected with two end points
buildStripTree(start, division)
buildStripTree(division, end)

end if

Strip tree is recursively built until node has only two points, that is one line segment.
This is because the exact intersecting segment should be found. Figure 4.7 shows the
example of building a strip tree and finding an intersection with a random segment.

4.3 Arc Tree

4.3.1 Arc Tree definition

Arc tree was proposed by Giinther in 1987. It is close with strip tree but the rule of
decomposition of the curve is different. The curve is divided based on its length to
several sub-polylines. All sub-polylines should have same length. Thus, the curve is
approximated to the connected line between two endpoints in the first level of the
arc tree, then the curve is divided to two sub-polylines of same length by a midpoint
recursively as the tree is built deeper. Figure 4.8 shows how the arc tree is built.

If the curve C has kth arc tree and its length is /, then it means that C' is approx-
imated with 2* line segments and the length of each line segment is [/2%(k > 0).
A function C(t) is defined in interval |0:1] with 2D Euclidean space. Thus, the k'
approximation of C(t) is a sequence of line segments consisting of points C(i/2%)
and C((i +1)/2%), 0 <i < 2. The approximation process is done recursively until
the error is less than a given limit.

4.3. ARC TREE

460

440

420

400

330

360

340

320

300

1220

39

b

|
1240 1260

1280 1300 1320 1340 1360

1380

1400

1420

Figure 4.7: Strip tree with minimal bounding rectangle and finding intersections
with random line segments

Figure 4.8: Building an arc tree

40 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

E3 Ea

Figure 4.9: Arc tree with ellipses

The construction of an arc tree includes two processes. One is dividing the polyline
by the length and the other is calculating a bounding container. For an arc tree,
an ellipse is used for a bounding container. This ellipse is defined by a major axis
whose length is [/2% and two focal points which are at C(i/2%) and C((i + 1)/2%)
(See Fig. 4.9).

Using ellipses as a bounding container has an advantage over using a strip in a strip
tree, such as no need to worry about closed curves or curves that extend their two
endpoints. However, ellipses are not easy to use. For example, when two polylines
are intersecting, the intersection of ellipses should be tested first. This is not a
simple operation. Therefore, bounding box or bounding circle is used more often
instead of an ellipse.

4.3.2 Implementation of Arc Tree

The curves used in this paper consist of straight line segments. Therefore, we do not
need artificial points C(i/2*) but use the median point. For example, if the curve
has n + 1 points labeled py, pa, - -+, ppy1, it will be decomposed at prj,/o7. Thus, the
depth of the tree will be logan in maximum. This is called polygon arc tree [GW90).

In the definition of the arc tree, an ellipse was a bounding container. However,
because of a complex operation, minimal bounding rectangle is used instead of an
ellipse in this paper. You can see the data structure of the arc tree in figure 4.10.
It is similar with the strip tree.

Building an arc tree is faster than the strip tree because it does not need much

4.4. SMALLEST BOUNDING AREA TREE 41

struct boxTree

{
unsigned long int start, end;
smallBbox *= bbox;
boxTree * leftchild;
boxTree = rightchild;
¥

Figure 4.10: Data structure of arc tree

processing time to choose the splitting point. The polyline is divided by the median
point until only two points are left so that there is no approximation error.

Algorithm 3 buildArcTree()

if there are only two points then
Finish building the arc tree

else
calculate_ MBR(box,start,end);
division < pry, /2
buildArcTree(start, division)
buildArcTree(division, end)

end if

Figure 4.11 shows the example of an arc tree which is applied to real data.

4.4 Smallest Bounding Area Tree

4.4.1 Smallest Bounding Area Tree definition

Two well-known hierarchical representations, strip tree and arc tree, are mainly
differentiated by how to choose the splitting point for building a next level of the
tree. New idea was from here: how the tree can be more efficient by different split-
ting points? If the decomposition of the polyline is optimized, will the tree also
be optimized? More optimized decomposition means that a bounding container
of a tree structure approximates the polyline more precisely, therefore, it does not
have much vacant space. Figure 4.12 shows two cases with different splitting points.

There are same polyline and line segment [in both examples in figure 4.12, but
they have differently decomposed sub-polylines. When the operation to find the

42 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

150

100 F =

50

I I I I I 1
1250 1300 1350 1400 1450 1500

Figure 4.11: Arc tree with minimal bounding rectangle and finding intersections
with random line segments

4.4. SMALLEST BOUNDING AREA TREE 43

Figure 4.12: Comparing two trees by different splitting points

intersection between the polyline and a line segment [is executed, more processes
are needed for the case in figure 4.12a. This is because the bounding container is
intersecting with [, although [is actually not intersecting the polyline. Intersection
is possible in this case. However, the case in figure 4.12b is null, which means that
there is no intersection clearly. Therefore, we can know whether there is intersection
or not faster so that we do not need extra operations.

More optimized decomposition can be achieved when the area of bounding contain-
ers is the smallest so that there is less vacant space. You can easily see that the area
of bounding containers in figure 4.12b is smaller than in figure 4.12a. Thus, when
we decide the splitting point in the process for building the tree, all possible points
between two end points are checked, and then the one which has the smallest area
of bounding containers will be a splitting point.

4.4.2 Implementation of Smallest Bounding Area Tree

There are two approaches: by greedy algorithm and by dynamic programming.

Greedy Algorithm

It is easy to understand by greedy approach. Splitting point is the point which
makes the sum of divided bounding areas minimum in each level of resolution (see
Algorithm 6). In each level of the tree, all points between starting and ending points
are checked: if the curve is divided by each point, how big is the sum of areas of
minimal bounding rectangles of sub-curves? Then choose the one which makes the

44 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

sum of areas smallest (See Fig. 4.13). Therefore, we can make a cost function C
with S which is the function calculating the area of a minimal bounding rectangle
of a sub-curve with starting and ending points.

C(i, k) = min{S(, j) + S5, k)}

We can calculate all values of function S between all points and make a matrix.
It takes O(n?) time and space, and it takes O(nlogn) for calculating a minimal
bounding rectangle. Hence it takes O(n3logn) for the matrix. In addition, O(logn)
is necessary for building a tree structure.

Algorithm 4 buildGreedyTree(start,end,tree)
calculate MBR(box,start,end);
for k = start+1 TO end do
S1 < calculate . MBR/(box1,start,k);
Sy « calculate . MBR (box2 k,end);
if (S;+ S < minArea) then
minArea «— S; + So;
division «+ k;
end if
end for
left < initiate _new mnode();
right < initiate _new node();
tree.bbox «— box;
tree.leftchild < left;
tree.rightchild « right;
if there are more than two points then
buildGreedyTree(start,division,left);
end if
if there are more than two points then
buildGreedyTree(division,end,right);
end if

Dynamic Programming

The process of building smallest bounding area (SBA) tree by dynamic program-
ming has two steps. First, calculate the area of minimal bounding rectangles of all

4.4. SMALLEST BOUNDING AREA TREE 45

possible parts of an arc and make a matrix of smallest bounding area by dynamic
programming (see Algorithm 4). Then, by using this matrix, find an optimal split-
ting point and build SBA tree (see Algorithm 5). Figure 4.13 shows the example of
the process.

We have a cost function C, which is the area of all minimal bounding rectangles at
the tree constructed for a piece of P from a vertex 7 to vertex k.

C"(i, k) = min{C" ' (5,7) + C""'(4,k)} where r is the depth of the tree
J

For a leaf node in level 1: (k — i) < 3, C' is calculated by a function S which is the
sum of areas of minimal bounding rectangles.

Ci, k) = min{S(i, j) + S(j, k)}

If all possible points are checked and each area of minimal bounding rectangles is
calculated, then processing time is not short. Time complexity of calculating a min-
imal bounding rectangle is O(nlogn), thus, time complexity for making S matrix
of smallest bounding area is O(n®logn). Tt takes additionally O(n?) time and space
for C' matrix.

In this paper, the focus is on how different tree structures work efficiently, not on
how fast tree structures can be built. This is because we can use the tree structure
many times after building it once.

Algorithm 5 calcBoxArea(r,nl,n2)
for n1 =1 TO N do
for n2 =1TO N do
calculate_ MBR(box,n1,n2);
end for
end for

46 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

2
5 6

Greedy Algorithm Dynamic Programming
M : area of MBR A : smallest bounding area

1 2 3 4 5 6 1 2 3 4 5 6
1 4.5 |145.5 230 [279.1] | 1 4.5 | 150 (265.5/|384.6 ara[1'3]<area[2'4]
2 64.5| 101 [127.1] | 2 64.5| 132 [212.6 — —

P[1][4] =3
3 31 | 80 3 31 | 101
4 o1 4 1 area[2-4] area[3-5]
A N > W
> P[2][5] =3

6 6
P : splitting point P : splitting point

1 2 3 4 5 6 1 2 3 4 5 6
1 2 1 313 |||t 2 1313 |®
2 3 3 4 2 3 3 4
3 41 @] |3 4 1@
4 5 4 5
5 5
6 6

Figure 4.13: Calculating a matrix of splitting points and building SBA tree by
greedy algorithm and dynamic programming

4.4. SMALLEST BOUNDING AREA TREE 47

250

200

150

100

a0

1200 1230 1300 1340 1400 1450 1500

Figure 4.14: SBA tree with minimal bounding rectangle and finding intersections
with random line segments

48 CHAPTER 4. HIERARCHICAL REPRESENTATION OF ARCS

Algorithm 6 area = constructTree(start,end)

So < calcBoxArea(start,end);
r < Tog,(end — start + 1),
if r > 1 then
for j=start+1 TO end-1 do
Sy « constructTree(start,j);
Sy «— constructTree(j,end);
if S() + Sl + 52 < Smm then
Smm — S() + S1 + SQ;
division « j;
end if
end for
return S,,;,;
else
return Sy;
end if

Chapter 5

Applied Areas

This chapter describes areas hierarchical representation of arcs can be applied to.
How the hierarchical data modelling can help to solve the problems is explained.

5.1 Using a Hierarchical Structure for Reporting
Intersections

A hierarchical structure can be applied in many areas of computational geometry.
Line segment intersection (LSI) is one of most important and basic problems, be-
cause computational problems such as polygon intersection or point inclusion can
be based on LSI problem. Algorithms for LSI are reviewed and compared to an
algorithm with a hierarchical structure.

5.1.1 Line Segment Intersection(LSI)

Line segment intersection problem is defined as follows:

o Aset S =sy,89,...58, of n line segments(see Fig. 4.15)
e Find all pairs (s;, s;) € S? such that ¢ # j and s; N's; # ¢

49

50 CHAPTER 5. APPLIED AREAS

< > .SG\
S8
S2
S7 _33 —
\ ss

l

——

Figure 5.1: A set S of n line segments

There are different algorithms for reporting all intersections between line segments.
Each has different time complexity. Brute force algorithm takes O(n?), simply finds
intersections between all possible groups of two line segments. LSI with plane-sweep
technique [PS85, dBvKOS00| can be solved in O(nlogn).

LSI problem can be applied to find intersections between arcs and a line segment,
because arcs consist of several line segments. One simple method is first sorting all
line segments of arcs then finding intersections. This takes O(nlogn) for sorting (in
case of merge sorting) plus O(logn) for searching intersections.

5.1.2 Hierarchical Structure and LSI

A hierarchical structure can be used for finding intersections between arcs and a
line segment. This takes O(Mlogk) such that M is a number of arcs and £ is a
number of line segments of each arc. Therefore, using a hierarchical structure may
be faster than using LSI algorithm or quite same - it depends on M and k.

Using a hierarchical structure can have benefits(+) and losses(—) against LSI as
follows:

-+ More understandable and more heuristic
+ Each arc, not individual line segment, has topological information - saving space.
— More computationally complicated

— It takes time and needs space to construct a hierarchical structure.

5.2. POLYGONAL APPROXIMATION 51

Figure 5.2: Not big difference between original and simplified maps at small scale

5.2 Polygonal Approximation

5.2.1 Definition of Polygonal Approximation

Polygonal approximation is a process of elimination of points which produce the
least errors. This process is necessary because a size of data can be reduced much
so that data retrieval and management can be faster. Also, it takes less time to show
the map data. At small scale map, not many points are necessary because visual
difference is not noticeable with human bare eyes (See Fig. 5.2). Vector processing
such as point inclusion or polygon intersection can be faster because a simplified
polygon has less boundaries to be checked |Tayl].

Line segment L in 2-dimensional space is represented by ordered point set P which
has N points: P =py,...,pyv = (x1,%1),- .-, (Tn,yn). After polygonal approxima-
tion process, L has a new ordered point set () which is represented by M points:
Q = q1,...,qu. The point set of () is a subset of P and M < N. The end points
of @) are same with the end points of P: ¢; = p1, g = pn [Kol03].

52 CHAPTER 5. APPLIED AREAS

progs O qi (=1,...M)

Figure 5.3: P and @ sets

5.2.2 Algorithms

Heuristic Algorithms

Many algorithms for polygonal approximation are developed with different tech-
niques. Heuristic algorithms are not always optimal but the process is easy to
understand and can be done quite fast. Heuristic algorithms can be grouped by two
strategies, decimation and refinement [KDEOQ5].

Most of algorithms are decimation methods in which removable points by a given er-
ror tolerance are chosen and removed. This process starts with all points describing
a line, and the result is simplified line with less points. On contrast to decimation
algorithms, Douglas-Peucker algorithm(1973) is by a refinement strategy. It starts
with two endpoints of a line, and points are getting inserted according to a given
error criterion.

Polygonal Boundary Reduction is a simple decimation algorithm proposed by Leu
and Chen |GL98|. This algorithm considers boundary arcs of two and three edges.
It calculates the maximum distance between the arc and the directed line of two
endpoints. If the distance is less than a given threshold, then it replaces the arc to
the directed line of two endpoints (See Fig. 5.4).

5.2. POLYGONAL APPROXIMATION 53

I threshold

Figure 5.4: Polygonal boundary reduction

Optimal Approximations
There are two different types by error bounds(Imai and Iri, 1998).

e min-¢ : minimizing the approximation error for a certain number of points

e min-f : minimizing the number of points for a given error bound &

5.2.3 Topologically Consistent Simplification Using Hierar-
chical Structure

Polygonal approximation algorithms do not always guarantee topological consis-
tency. There may be some inconsistencies such as an intersection with neighbor
objects or a self-intersection |[EMO1]. Figure 5.5 and 5.6 shows the examples of
inconsistency of topology.

Self-intersection can occur in an approximation of severely bent curves [HK01]. In
figure 5.5, self-intersection is generated by using Douglas-Peucker algorithm |JSG99).
These intersections make wrong topological information. Therefore, they should be
found before or after approximation and be fixed.

For an efficient process to find intersections, a hierarchical structure of curves de-
scribed in chapter 4 is used. Checking all curves in the map for intersection with
new simplified line segment is not efficient because it is obvious for curves far away
from the corresponding line segment not to intersect each other. Irrelevant curves
are excluded by checking an intersection with a bounding container which bounds

54 CHAPTER 5. APPLIED AREAS

Figure 5.5: Islands disappeared after polygonal approximation

Ithreshold

Figure 5.6: Self-intersection after polygonal approximation by Douglas-Peucker al-
gorithm

5.2. POLYGONAL APPROXIMATION 59

error
threshold

Figure 5.7: Nested curves to which simplification by defining safe sets can not be
applied

the whole curve. Hence, it is computationally faster than without the hierarchical
structure.

There are two methods for fixing errors. First method is fixing errors after approx-
imation process. As an example, Estkowski and Mitchell proposed Simple Detours
(SD) heuristic idea in 2001 [EMO01]. First, a standard polygonal approximation is
applied, then intersections are found. One of intersecting segments is declared as a
detour segment, and detour graph G(s) is constructed. In G(s), two points can be
joined if and only if the corresponding line segment is error-tolerant and does not
intersect with another line segment.

Second method is applying approximation process only when a new simplified line
segment does not make any intersections with neighbor objects, that is, when there
are no topological errors. There is an actual work of preventing topological changes
by defining "safe sets" using a Vornoi diagram |[MS00|. This method is working
better for maintaining an original shape than first method because a simplification
can occur only in a safety zone. However, this safety can be a weak point in some
cases. Figure 5.7 shows the example of nested curved lines and an error bound for
approximation [EMO1]. In this case, approximation may not be applied.

26 CHAPTER 5. APPLIED AREAS

</

Aand B

Figure 5.8: Intersection and union of sets A and B

5.3 Windowing and Clipping

5.3.1 Polygon Overlay

Map overlay operations are often necessary in GIS. For example, when making land
use decision, there can be many layers of geographical data such as environmental or
social factors. Topological map overlay creates new objects and attribute relations
by overlaying objects from many input map layers. A polygon can be thought of
as representing a set. When two sets (polygons) A and B are overlaid, we can have
set concepts intersection and union (see Fig. 5.8). There are 16 possible combina-~
tions of boolean expression, but intersection is of most interest in polygon overlay
operations.

In following sections, we will look through windowing and clipping which are inter-
section between the window rectangle and polygon objects of the map data.

5.3.2 Windowing

There is a given rectangle R, which is the window, and whether a shape S intersects
the rectangle R or not is tested [RSV02|. In a simple method, we can basically
look through all segments of all arcs and find intersections with the rectangle R. If
the arc is intersecting R or inside R, then the arc and the polygon which has the
arc is visualized. This can have many redundant operations, for example, when if
the window rectangle R is very small and the map is big so that there are many
polygons far away from the R. Therefore, if we use hierarchical structure for arcs,
we can reduce these operations. If some arcs are inside the R or intersecting the R,
then polygons related to those arcs intersect the rectangle R. From the information

5.3. WINDOWING AND CLIPPING 57

Figure 5.9: Example of windowing

of left and right polygons of the arc, we know which polygons are related.

In figure 5.9, there are three possible cases. In case A, the bounding box of the arc
is included in the R, so polygons which has this arc are intersecting the R. In case
B, the arc and bounding box of the arc are intersecting the R, so polygons related
with this arc are intersecting. In case C, the arc is not intersecting the R, but the
bounding box of the arc is intersecting the R. In this case, more detailed levels of
the tree structure of the arc are checked and whether the arc is intersecting the R
or not is confirmed.

28 CHAPTER 5. APPLIED AREAS

R -]

|

\&Ri = 2

Figure 5.10: Example of clipping

5.3.3 Clipping

Clipping is similar with windowing, however it needs more complicated operations.
There is a given rectangle R, and we clip the polygons which are inside the rectan-
gle R. After clipping, new objects are created, because the segment of arcs which is
intersecting the rectangle R will be cut by the edge of the R.

The usage of hierarchical structure of arcs is basically same with windowing. If the
bounding container of the arc is inside the R, then the whole arc is included. If
the bounding container and the arc are intersecting the R, then we should find the
intersecting point between the edge of the rectangle R and the arc. By using this
point, the line segment intersecting the edge of R can be cut (See Fig. 5.10).

5.4. POINT INCLUSION 99

Q e\ T

Figure 5.11: Inclusion of the point P in the polygon Q
5.4 Point Inclusion

Point inclusion is one of basic operations in GIS. Hierarchical structure of an arc
also can be useful to check the point inclusion. If we want to know that the point P
is inside the polygon Q, we have to find out how many times a ray from the point
P intersects edges of the polygon Q (See Fig. 5.11). When finding intersections,
hierarchical structure can make it more efficient. If the ray from the point P inter-
sects times of an even number, P is outside Q. If the ray intersects times of an odd
number, P is inside Q.

60

CHAPTER 5. APPLIED AREAS

Chapter 6

Experiments

Smallest Bounding Area Tree which is proposed in this thesis have implemented
and tested with real data for its efficiency and effectiveness. These tests are done
with one 1,400MHz Intel Pentium M processor and 512MB of memory.

Test data are a digital map which has 1,941 points and a map which has 10,925
points (See Fig. 6.1).

Tests are for checking how hierarchical structures make intersection checking effi-
cient. Therefore, map data is tested with hierarchical structures or without, and
how much time was taken in each case is calculated and compared. Figure 6.2 shows
the example of intersections between random line segments and Mapl. The map is
transformed to a map with topological structure - Node, Arc, and Polygon before
the test.

6.1 Comparison 1: With Different Bounding Con-
tainers and Without

First experiment is finding intersections between random line segments and the
map with a hierarchical structure and without. For the test, 1000 line segments for
Mapl and 500 line segments for Map2 are randomly created. Smallest Bounding
Area Tree (SBA Tree) is used as a hierarchical structure and orthogonal box and

61

62 CHAPTER 6. EXPERIMENTS

Figure 6.1: Mapl and Map2 for testing

T P F
g

1 1 1 1
00 900 1000 1100 1200 1300 1400 @ =m0 w1 ® m mm = om

Figure 6.2: Mapl, long and short random line segments, and intersections

6.1. COMPARISON 1: WITH DIFFERENT BOUNDING CONTAINERS AND WITHOUT63

Orthogonal Box i Minimal Bounding Rectangle

ﬁ
i
5

H= 1A

Figure 6.3: Mapl and Map2 with orthogonal boxes and with minimal bounding
rectangles

64 CHAPTER 6. EXPERIMENTS

minimal bounding rectangle (MBR) are used as a bounding container (See Fig. 6.3).

Without hierarchical structures, all segments of all arcs should be checked for each
line segment. If the line segment is far away from some polygons, then it is not
necessary to do a checking process with them, hence, it is not efficient.

Using MBR as a bounding container is slightly faster than using orthogonal boxes in
average time, but there is not big difference between them. Checking intersections
with an orthogonal box is faster than with a MBR. Therefore, even though MBR
approximates more precisely than orthogonal box, using orthogonal boxes can be
faster in some cases (See Table 6.1 and 6.2).

6.2 Comparison 2: Different Hierarchical Structures

Second experiment is comparing efficiency of three different hierarchical structures
- Arc Tree, Strip Tree, and Smallest Bounding Area Tree (SBA tree). Figure 6.5
shows the process of building each tree structure for the map.

You can see that boxes by Arc tree are bigger than Strip and SBA tree. Boxes by
Strip tree look also well-behaving, however, if a line is complicated and distorted,
boxes by SBA tree is more efficient. Figure 6.4 shows an example of a complicated
line and boxes by Strip and SBA trees.

Table 6.3 and 6.4 show how much time is taken to find intersections between random
lines and all objects of the map using Strip, Arc, and SBA trees. SBA tree works
better than Strip and Arc trees, not always but generally according to the tests. Arc
tree works generally worst among three of them, because the area of its bounding
boxes is bigger so that its approximation of objects is not better than others.

We can decide which tree we can use by considering what kind of map is. Also, how
many times the tree is used can be considered. If arcs of the map are simple, and
the tree structure is not used much, then we can use an arc tree because building
time is short. If arcs of the map are complicated, and the tree structure is used
many times again, then strip tree and SBA tree are better than arc tree, though it
takes more time to build them.

6.2. COMPARISON 2: DIFFERENT HIERARCHICAL STRUCTURES 65

Map Without | With SBA Tree | With SBA Tree (DP)

(1,941) Tree | + Orthogonal Box -+ MBR
0.620 0.421 0.430
0.591 0.441 0.341
0.671 0.401 0.311
0.632 0.260 0.351
0.600 0.330 0.371
0.571 0.341 0.350
0.570 0.401 0.340
0.625 0.300 0.391
0.561 0.441 0.370
0.630 0.190 0.400
0.611 0.341 0.421
0.586 0.320 0.300
0.580 0.360 0.271
0.627 0.421 0.330
0.590 0.360 0.231
0.600 0.291 0.360
0.592 0.351 0.391
0.610 0.431 0.361
0.561 0.331 0.351
0.630 0.340 0.351

Average

time 0.6029 0.3536 0.3511

Table 6.1: Running time (seconds) for finding intersections between 1,000 random
line segments and all features of Map1 (1,941 points). Tests are done 20 times and
average time is calculated.

66 CHAPTER 6. EXPERIMENTS
Map Without | With SBA Tree | With SBA Tree (DP)
(10,925) Tree | + Orthogonal Box + MBR

1.552 0.441 0.461
1.563 0.420 0.462
1.532 0.441 0.391
1.532 0.431 0.381
1.532 0.440 0.440
1.543 0.431 0.460
1.532 0.421 0.440
1.512 0.420 0.441
1.512 0.421 0.501
1.512 0.420 0.481
1.502 0.411 0.440
1.513 0.421 0.382
1.502 0.440 0.450
1.522 0.421 0.411
1.512 0.430 0.371
1.512 0.431 0.450
1.502 0.441 0.530
1.533 0.440 0.441
1.512 0.411 0.431
1.502 0.421 0.412
Average
time 1.5217 0.42765 0.4388

Table 6.2: Running time (seconds) for finding intersections between 500 random
line segments and all features of Map2 (10,925 points). Tests are done 20 times and
average time is calculated.

6.2. COMPARISON 2: DIFFERENT HIERARCHICAL STRUCTURES

Map With With With SBA Tree | With SBA Tree

(1,941) Arc Tree | Strip Tree DP Greedy Alg.
0.441 0.390 0.310 0.401
0.451 0.342 0.420 0.330
0.440 0.381 0.410 0.331
0.410 0.400 0.321 0.411
0.350 0.511 0.341 0.380
0.432 0.330 0.401 0.380
0.420 0.331 0.361 0.430
0.360 0.402 0.390 0.390
0.502 0.360 0.390 0.280
0.380 0.341 0.381 0.420
0.431 0.320 0.412 0.380
0.300 0.401 0.390 0.451
0.330 0.420 0.421 0.371
0.340 0.440 0.361 0.401
0.410 0.421 0.310 0.381
0.350 0.421 0.442 0.330
0.420 0.351 0.441 0.320
0.370 0.401 0.451 0.350
0.371 0.420 0.350 0.391
0.380 0.431 0.270 0.452

Average

time 0.3944 0.3907 0.37865 0.379

67

Table 6.3: Running time (seconds) for finding intersections with three different tree
structures between 1,000 random line segments and all features of Mapl (1,941
points). Tests are done 20 times and average time is calculated.

68 CHAPTER 6. EXPERIMENTS

Map With With With SBA Tree | With SBA Tree

(10,925) | Arc Tree | Strip Tree DP Greedy Alg.
0.540 0.471 0.381 0.441
0.380 0.490 0.431 0.531
0.460 0.511 0.412 0.440
0.330 0.442 0.530 0.511
0.440 0.431 0.440 0.521
0.471 0.491 0.481 0.400
0.520 0.472 0.490 0.320
0.430 0.583 0.430 0.390
0.562 0.460 0.420 0.401
0.421 0.450 0.401 0.540
0.450 0.410 0.512 0.441
0.481 0.420 0.380 0.552
0.480 0.451 0.411 0.490
0.441 0.380 0.511 0.521
0.421 0.581 0.380 0.471
0.581 0.511 0.440 0.290
0.431 0.430 0.390 0.572
0.480 0.490 0.361 0.491
0.481 0.542 0.400 0.370
0.440 0.371 0.502 0.500

Average

time 0.4620 0.46935 0.43515 0.45965

Table 6.4: Running time (seconds) for finding intersections with three different
tree structures between 500 random line segments and all features of Map2 (10,925
points). Tests are done 20 times and average time is calculated.

6.2. COMPARISON 2: DIFFERENT HIERARCHICAL STRUCTURES 69

Figure 6.4: Comparing strip tree and SBA tree

Starting and ending points of random lines used for the tests are chosen randomly so
that the length of most lines are long. Hence there are many intersections between
the line and map objects. One more test with short random lines is processed,
because there are also operations for intersections with mostly short lines. For ex-
ample, for polygonal approximation, most of operations may be with short lines.
The part of approximated lines is short, because new approximated line segment is
checked for intersections not with other approximated line segments but with other
original line segments. This means that the approximation is more strict and not
much shape-changed (See Fig.6.6).

Approximated line segment (), is illegal if we find intersections between (), and
other polyline P,, however, (); approximation is possible if we find intersections
between ()1 and ()2, new approximated line segment of the part of P,. Table 6.5 is
the result of finding intersections between 1000 random short lines and Map1.

70 CHAPTER 6. EXPERIMENTS

6.2. COMPARISON 2: DIFFERENT HIERARCHICAL STRUCTURES 71

Map With With With SBA Tree | With SBA Tree

(1,941) Arc Tree | Strip Tree DP Greedy Alg.
0.300 0.380 0.290 0.332
0.330 0.300 0.361 0.310
0.290 0.402 0.320 0.300
0.380 0.311 0.350 0.271
0.350 0.330 0.321 0.310
0.350 0.330 0.351 0.300
0.341 0.320 0.381 0.290
0.320 0.341 0.321 0.330
0.380 0.281 0.350 0.301
0.280 0.371 0.340 0.331
0.271 0.351 0.310 0.350
0.310 0.391 0.350 0.251
0.340 0.340 0.291 0.351
0.271 0.371 0.320 0.360
0.290 0.410 0.311 0.331
0.331 0.320 0.310 0.310
0.351 0.370 0.271 0.320
0.290 0.351 0.310 0.341
0.361 0.350 0.340 0.270
0.320 0.332 0.330 0.340

Average

time 0.3228 0.3476 0.3264 0.31495

Table 6.5: Running time (seconds) for finding intersections with three different tree
structures between 1,000 random short line segments and all features of Map1 (1,941
points). Tests are done 20 times and average time is calculated.

72

CHAPTER 6. EXPERIMENTS

approximated line '
2\approximation

T\

approximated line

P1

approximated line
Q2

P1

Figure 6.6: Illegal and legal approximations

Chapter 7

Conclusion and Future Work

In this paper, data modelling for a vector map is studied. Vector data model can
be divided to non-topological and topological models. Spaghetti model is non-
topological, and it is the simplest vector map type. The map with spaghetti model
is transformed to a topological vector map which has the information of neighbors.
The topological structure built in this paper has node, arc, and polygon objects.
Arc is similar with a line object but it has left and right neighbors’ information.

For more efficient representing arcs, hierarchical structures are in use. First, sev-
eral bounding containers are explained, and minimal bounding rectangle (MBR) is
described in detail and implemented using rotating calipers. With these bounding
containers, strip and arc trees which are widely used are explained and implemented.
Smallest bounding area (SBA) tree is newly suggested in this paper. This tree is
built by the splitting point which is optimized by bounding area. Splitting point
is the point which has the smallest bounding area. This is accomplished by greedy
algorithm and by dynamic programming. The bounding area is optimized in current
level by greedy approach, and the bounding area is optimized in whole levels of the
tree by dynamic programming.

SBA tree makes finding intersections with random lines faster sometimes, but not
always in experiments. Each tree structure has good and bad sides. It is fast to
build an arc tree, because it does not have complicated calculation for deciding the
splitting point. However, bounding area made by arc tree can not approximate the
real object well in some cases. Strip tree works quite good, but if the arc is compli-
cated and distorted much, approximation by strip tree can be not that good. SBA
tree takes more time to be built than other trees, but it approximates the real object

73

74 CHAPTER 7. CONCLUSION AND FUTURE WORK

more tightly. These tree structures can be used in many operations for managing
a vector map. Polygonal approximation is one of important operations for many
reasons such as simpler visualization and faster transmission. When the map is ap-
proximated, topological information can be changed. Hence, we should avoid wrong
topological changes and keep the original one. This can be done by approximating
only if the topology is same, and fixing errors after approximation. For both cases,
the most important and often used operation is finding intersections with other arcs
or line segments. Therefore, hierarchical structures can be used for topologically
consistent simplification. In addition, we can also apply the structures to window-
ing, clipping, and point inclusion test. For windowing and clipping, we can use the
hierarchical structure when we find which arc is intersecting the rectangle R, then
get the polygon information from the arc and find intersection between the rectan-
gle R and the line segment of the arc. For point inclusion, we should find out how
many times the ray from the point is intersecting the polygon. Using hierarchical
structure also can help the process. More applied areas can be studied in the future.

Structures for hierarchical representation are focused on in this paper, so imple-
mentations of some parts are not efficient. For example, the algorithm for finding
intersections between MBRs or between MBR and line segment is not efficient.
Therefore, this can be improved more in the future. More various bounding con-
tainers can be implemented with the SBA tree, so we can decide which bounding
container works better with the SBA tree. Also, if we find not perfectly optimized
splitting point, then time for building the tree can be shorter. It may be achieved
by combining optimal and heuristic algorithms. This issue also can be improved in
the future.

Bibliography

[Apa]

[Bal81|

[Bez74|

[BV02]

[dBvKOS00]

[DeMO5]

[EMOL]

|GLOS]

[GWOO]

[HA03]

Apache software foundation, http://xml.apache.org/xerces-
c¢/index.html. Xerces-C++ Parser, version 2.7.0 edition.

D. H. Ballard. Strip trees, a hierarchical representation for curves.
Communications of the ACM, 24(5):310-321, 1981.

P.E. Bezier. Mathematical and practical possibilities of unisurf.
Computer-Aided Geometric Design, pages 127-152, 1974.

T. Bernardsen and A.A. Viak. Geographic Information Systems: An
Introduction. Wiley, 2002.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzlopf. Com-
putational Geometry: Algorithms and Applications. Springer, 2000.

M.N. DeMers. Fundamentals of Geographic Information Systems. Wi-
ley, 2005.

Regina Estkowski and Joseph S.B. Mitchell. Simplifying a polygonal
subdivision while keeping it simple. Proceedings of the seventeenth
annual symposium on Computational geometry, pages 40-49, 2001.

Leu G. and Chen L. Polygonal approximation of 2-d shapes through
boundary merging. Pattern Recognition Letters, 7(4):231-238, April
1998.

O. Giinther and E. Wong. The arc tree: an approximation scheme to

represent arbitrarily curved shapes. Computer Vision, Graphics, and
Image Processing, 51(3):313-337, 1990.

J.E. Harmon and S.J. Anderson. The design and implementation of
Geographic Information Systems. Wiley, 2003.

I6)

76

[HOC02]

[HKO1]

[HR75]

7G99

[KDEO5]

[KO03]

[Kol03]

[MS00]

[Pir99]

[PS85)

[RSV02)

[SRS03]

[Sunal

BIBLIOGRAPHY

Ian Heywood, Sarah Cornelius, and Steve Carver. An Introduction to
Geographical Information Systems. Prentice Hall, 2002.

Pong-Sik Ho and Min-Hwan Kim. A hierarchical scheme for rep-
resenting curves without self-intersections. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition(CVPR’01),
2:498-503, 2001.

Freeman H. and Shapira R. Determining the minimum-area encasing
rectangle for an arbitrary closed curve. Communications of the ACM,
18(7):409-413, July 1975.

Mark R. Johnston, Christine D. Scott, and Robert G. Gibb. Problems
arising from a simple gis generalisation algorithm, 1999.

Lars Kulik, Matt Duckham, and Max J. Egenhofer. Ontology-driven
map generalization. Jounal of Visual Languages and Computing, 2005.

M.J. Kraak and F. Ormeling. Cartography: Visualization of Geospatial
Data. Prentice Hall, 2003.

Alexander Kolesnikov. Efficient Algorithms for Vectorization and
Polygonal Approximation. PhD thesis, University of Joensuu, 2003.

Andrea Mantler and Jack Snoeyink. Safe sets for line simplification.
Abstracts of the Tenth Annual Fall Workshop on Computational Ge-
ometry, October 2000.

Hormoz Pirzadeh. Computational geometry with the rotating calipers.
Master’s thesis, School of Computer Science, McGill University,
November 1999.

Franco P. Preparata and Michael Ian Shamos. Computational Geom-
etry an introduction. Springer-Verlag, 1985.

P. Regaux, M. Schnoll, and A. Voisard. Spatial Databases with appli-
cations to GIS. Academic Press, 2002.

Biswajit Sarkar, Sanghamitra Roy, and Debranjan Sarkar. Hierarchi-
cal representation of digitized curves through dominant point detec-
tion. Pattern Recognition Letters, 24, 2003.

Dan Sunday. Bounding containers for polygons, polyhedra, and
point sets(2d & 3d). http://geometryalgorithms.com/Archive/
algorithm_0107/algorithm_0107.htm.

BIBLIOGRAPHY 7

[Sunb|

[Tay]

[Tou83]

Dan Sunday. Convex hull of a 2d simple polyline.
http://geometryalgorithms.com/Archive/algorithm_0203/
algorithm_0203.htm.

Dr.George Taylor. Line simplification algorithms. Technical report.

Godfried Toussaint. Solving geometric problems with the rotating
calipers. IEEFE MELECON’83, May 1983.

