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Abstract

In the beginning, two research questions are formulatedctwhet of features are
needed in generic 3D graphics engine library to provideddfasifurther development,
and how the minimal set of features must be implemented ierd provide maxi-
mal reusability in different projects. The history and usafjaccelerated real-time 3D
graphics are presented briefly. The concept of 3D enginefiisatkto be a two-edged
sword: it abstracts and accelerates. Three existing 3Dheagnamely Crystal Space,
Irrlicht, and OGRE, are compared to each other and it is shbatntheir features are
rather similar. The scale of things that a 3D engine must leaisdoresented by ex-
plaining underlying mathematical concepts, operatioms3 rendering pipeline in a
general level. The story is continued by introduction of 3igiee design, which is
based on requirements of a 3D application, where core festuere clearly visible.
From these requirements, the functionality of most crugl@ients is described using
class diagrams and descriptions, covering also three ys#dination methods, and
finally giving a short description of required external 8bes. The research questions
are answered by describing the eight necessary features. gdincluding that the im-
plemented 3D engine library is quite satisfactory, furtlesearch directions pondered,
which include a study of optimization techniques and théfeats in a 3D engine.
Also few future projects are mentioned, which could be danadd new features to
the designed engine.

ACM classes (ACM Computing Classification System, 1998 version): 1,3.5.6
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Foreword

Tremble, ye petrified monoliths of Science;
Let new dawn shine!

| question, forge new,

In a flow - great and sublime!

| fall, and stand again,

Taller than those who stood before,
Let us ascend those giants

That have become the lore.

Keepers of the old,

Wise of the past,

Be warned -

New reign...has come to last.

“May the fate hold the becoming of a storm.”

In Joensuu 2007,
Anssi Grohn / eNtity

1.Quote is from the intro of PC game Return to Castle Wolfénst®y Id Software (2001).
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Glossary

3D

API

CAD
CVE
Direct3D
FPS
GPL

Hack
LGPL

SDK

VR

Three-dimensional

Application Programming Interface.

Computer Aided Design

Collaborative Virtual Environment

A 3D Graphics API for Windows platform.

Frames Per Second; a unit to measure rendering speed.

GNU Public License; a free software license endorsetiéytee Soft-

ware Federation.

A clever programming trick.

Lesser GNU Public License; a non-viral free softwacerise endorsed
by the Free Software Federation.

Software Development Kit; collection of tools and libes that assist
in developing an application.

Virtual reality; artificial worlds inside a computer.



1 Introduction

In this chapter, | present the things that have lead to thistpand give a short rea-
soning why | am writing this thesis. | also show where my thesands on the field
of computer science by formulating research questionseapthining how they are
answered. In the last section of this chapter, | give a bueimary of all chapters in
this thesis.

1.1 The Motivation: An Oasis, A Mirage and The Cruel Hand of
Economy

The driving force for the thesis and the 3D Engine has beeimnthal concept of an
Avatar Mirror for the netWork Oasis project, as | describedny B.Sc thesis (Grohn,
2006). The idea was to create a large wall-sized screen winchd display users’
virtual self in different forms when they pass by. Also thé&ehmet connections were
to be visualized using a planetary view with arcs connedtiegconnection origins to
Oasis.

The netWork Oasis project unfortunately went through aeseosf budget cuts, which
caused the Avatar Mirror to be canceled. However, a progisigned 3D rendering
engine can be used in a variety of applications. The altemaisualization purpose
in this case was a marketing demo representing the Oadisiésciwhere the user was
taken on a tour in the rooms.

The required graphics rendering software provided me a tigpithe thesis. Various
free and open-source 3D engines exist already today, smgvohe from the scratch
might sound laborous. A brief survey of the features on a Edifferent engines is
performed in Section 2.3. Developing everything from stravill gave me a total con-
trol of the engine. The major drawback of this approach whsicusly, the required
time, but the advantages are worth the effort - adding a natuife will be easier than
reading the source of another engine and writing a hack.

The process of developing a 3D engine is interests me algodrmore practical point
of view, since | plan to create a game that utilizes 3D graphfnd since the engine
in this thesis provides a rendering component to be usedaingame, | am hitting



two birds with one stone - my Master’s degree and a future ganmject. But, | argue
that there exists no master solution, an all-purpose 3Dnengvhich would perform
well in every possible game. This is dictated by the factt thare are differences
in the implementation, for instance, for a real-time spanmkator, where rendering
of the star systems is important (Gamasutra, 2002) and &etople model simulator,
where realistic hair animation and rendering might playeagrole (Byoungwon et.al,
2005; Bertails, et.al, 2005). Some features needed in eneameeded in other, and
some features are necessary in order to produce 3D graplgeseral, regardless the
game type. By finding out common features, | can create a satreffunctionality,
which can be used as a basis for various other engines thah@e specialized to
specific situations. Therefore, as my first research questreed to askvhich set
of features are needed in generic 3D graphics engine librarto provide basis for
further development?

Once the minimal set of features is found, one must ponderthewmust be imple-
mented in order to provide maximal reusability in variougiees; which leads to re-
search question number twbew the minimal set of features must be implemented
in order to provide maximal reusability in different projec ts?

The answer to first question is determined by performingadture review on the
subject, and evaluating popular open-source 3D graphigsies by cross-comparing
their feature lists. The second question is answered bgudiesj a 3D graphics library
base for generic 3D applications.

1.2 Summary of Chapters

Chapter 2 explains very generally the concepts of 3D grapdnic! 3D engine. Three
existing engines are presented and their features compgeaast each other.

Chapter 3 goes through the core complex mathematical anguwemgraphics con-
cepts related to 3D graphics and 3D engines, accompaniegbgmations of hardware
rendering pipeline and visibility determination techregu

Chapter 4 describes the requirements for the 3D engine tev®aped, converts them
to features and represents implementation details usass adiagrams and descrip-



tions. Also three optimization techniques are introduedtich accelerate the opera-
tion of a 3D engine.

Chapter 5 goes through what has been done; the good, the bathemgly, and
presents a directions for further research.



2 Soft Real-time 3D Graphics

This chapter gives a soft introduction to real-time 3D grapland 3D engines. Their
usage, and where they came from are covered. A couple exampkxisting 3D
engines are also be inspected, concentrating mainly teetitares they provide.

2.1 Where real-time 3D graphics is used and whence it came?

Three-dimensional (3D) graphics have been used in Virteali® (VR) applications
for quite a time now. Military training simulations and calorative virtual environ-
ments (CVES) use it in order to provide more immersive exqre - one example of
this is the training game Tactical Iraq, which helps Amenisaldiers to speed up the
acquisition of spoken Arabic (Losh, 2006).

The 3D graphics have also been used in many medical applsasuch as visualizing
the measured tomography or magnetic resonance data as arfabes(Lorensen &
Cline, 1987) and demonstrating pre- and post-surgicalajapee of the patient’s face
in order to lessen the anxiety and fear of the operation (&r1398).

A newer idea is the 3D desktop, which, for instance, can “tumactive windows
sideways that only some of their content is visible, leavimgre space to the other
windows. This way the inactive windows are somewhat visdote the changes in
their content is still visible to the user (Sun Microsyster®807). This method has
been adopted also into the recently released Windows Vistaating system from
Microsoft (Microsoft.com, 2007).

Another way to use 3D on desktop was invented by Apple, whashihtegrated 3D ac-
celeration into the desktop manager and windows are draug G® primitives. This
enables the use of impressive effects such as the “genieirsihoFigure 1. Lately,
this has been implemented also in the open-source windovagearBeryl (Beryl-
project.org, 2007).

At the moment, the game industry is probably the most actser of 3D real-time
graphics, and the focus seems to be in providing visuallyealapg games. This is
accomplished by including more detailed game charactexgroements, effects and
weapons into games. An example of this can be seen from teerssinots of pop-



Figure 1: The genie effect in action in MacOS X (Apple, 2007).

ular first-person shooter PC-games in Figure 2. The base iW¢hose games has
remained much the same, but graphics have received moie détaquest for better
(looking) games seems to be endless and new algorithms wigald produce a so-
called “quantum leag’forward in performance would probably be more than desired
in the game industry.

It can be said that the technology behind the modern rea-8@ graphics was pi-
oneered by company called Silicon Graphics (SGI), whicldpoed the world’s first
3D graphics workstation, IRIS 1400. In his article, Baum98pclassifies hardware
into three generations, where generation means the tdrgeteof features for which
the system runs with full performance. In the case of firstkstation, the feature was
flat-shaded polygoris The second generation implemented new accelerated Gburau
shading method and used Phong-lightinghe third generation in 1992 brought tex-
ture mapping and full-scene antialiasing. Baum also stdbed the texture mapping
was considered to be a technological hype and was believieavi® no market. The
success of game industry has proven this otherfviBige consumer-grade systems fall
into the third-generation category - they render texturediantialiased polygons with
high speed. The SGI also developed an API for the handlingniderlying hardware
in more abstract manner. The product was called OpenGL amdstreleased under

2The term expresses a massive technological advancememtawaition.
3The concepts of polygon, shading and lighting are examin&gttion 3.6
4The quote in the article of Baum (1998) “It's a cool featunat, there’s no market” should be framed

and put next to the infamous quote of Bill Gates regardingtheunt of required memory in computers.
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Figure 2: Screenshots from from 3D games from three difftagenerations. First row:
Quake 1 and Doom, Second row: Quake Il and Unreal Tournaribing row: Unreal
Tournament 2007 and Doom Il



open-source license the very same year 1992 when the tbirdrgtion systems were
released (SGI,2007).

2.2 3D Engine: What is this abomination of nature?

Modern applications use the underlying hardware \8ithgraphics APJ which is a
source code interface for computer program to instructware to execute commands
related to 3D drawing. In practice, it means that it absgratk the technical details
into more programmer-friendly form. At the moment, two daating 3D APIs exist:
The OpenGL created by SGI and Direct3D created by Micro3dfé most significant
difference is that OpenGL is platform-independent and &8P is only available for
Microsoft operating systems.

So, 3D graphics can be produced using 3D graphics APIs. The égerate on com-
mands like “put this point here”, “put that point there” tsrawing color to white”,
“draw a line between this and that”, etc. Using the comboratiof those commands,
a programmer is able to generate quite complex scenes aggsna&his, however, is
no different from static 3D graphics. 3D animation movies done by setting points,
defining the colors, drawing lines and surfaces and finadlyirsg the ready image into
a file, repositioning the points and going through a preddfsegjuence of movements
until we have the final animation. But real-time 3D graphios pust this, defining
points and animation, right? Not quite. The usual animatifmvie is as static and
predictable as a single image - there exists no freedom a¢elover what will happen
next. The real-time 3D graphics are needed when user dodsiant (exactly) what
will happen next, for instance in terms of position and shepenge, and there exists
a need to constantly provide a visual representation ofithaten. So the production
of real-time graphics is, in extremely simplified form, this

While( True )

Get current position of points;

Draw things using points, lines, triangles and colors;
Repeat

But the humans tend to think in larger terms than pointsslered colors - so it would
be quite aggravating to work through a view of several hutslé thousands of points
and hundreds of colors. This can be solved by abstractingritierlying 3D graphics



API even further, into a level where programmer is able todfamreater wholes,
objects which represent cars, houses, cities - insteadiofgpdines and colors, which
create a visual representation of those objects. Thisaigin is referred to as tHgD
engine and in this context, objects are called33 models The 3D image drawing
process, is known &D rendering As a stand-alone software, the 3D engine is useless
since it needs something to draw, and it will always be usembmunction with other
software to visualize something.

Probably the most common software which has a 3D engine a®iitgponent is a
game engingwhich is a collection of code used to build a gaming applocafSher-
rod, 2007: p.4). That being said, tl3® enginecan be defined as a reduced game
engine, which only provides the real-time 3D rendering bdpes while excluding
other functionality needed in games. In this light, moreusate term would b&D
rendering engingbut the simpler form is used instead. It should also be ndted 3D
engines are not exclusively for games, they can be used isaitware which requires
three-dimensional visualization.

In addition to drawing commands targeted at larger objeattires, 3D engines must
deliver very large object sets on screen fast, in order totaen the illusion of contin-
uous movement. Performance-wise speaking, there are &@ls:ghigher resolution,
more frames per second, more objects and more detail omns@h&enine-Modller &
Haines, 2002: p.345). The limits of the graphics hardwaeawat very fast by increas-
ing the detail of the objects. For example, if a space shisttteodeled into detail where
every nut and bolt has its own 3D model, the amount of data gtovgreat in order
to render it in real-time. Therefore, the rendering mustdeekerated by reducing the
amount of renderable data, which means that the images camthered faster and the
illusion of movement prevails even in the case of highly detsand numerous objects
on screen. This makes 3D engine as a two-edged sword; iaatssand accelerates.
Some acceleration methods for doing this are listed next.

Visibility culling

Thevisibility culling, or visibility determinations a method which determines the vis-
ibility of renderable objects and reduces invisible olgdobm the herd of renderable
objects, leaving only those that contribute to the final imégengyel, 2004: p.217).
The implementation details of this method are examined ¢ti®@e3.3. There are dif-



ferent variations of this method, which according to AkeaMoller & Haines (2002)
are backface and clustered backface culling, hierarchkieal frustum culling, portal
culling, detail culling and occlusion culling. The most coion of these are backface
and hierarchical view frustum culling, which can be appliedny set of renderable
objects. The rest of them are more useful in special sitnatid he details of these
methods are covered in Chapter 3.

Levels of detalil

Thelevels of details a method which reduces the number of drawn items as thefize
the drawn object on screen diminishes. Since the underBihgendering mechanism
is forced to process all of the data which is sent to it, the mat@r must do (nearly)
the same amount of work when the object covers only a pixeh@fscreen or all of
the pixels. In this situation, using a simplified version lo¢ renderable data lessens
the burden of drawing dramatically and speedup is gaineldoattsacrificing visual
quality (Eberly, 2001: pp.359-360; King, 2000).

Bounding volumes

Bounding volumesre volumes (geometrical objects, such as spheres, bogesl-an
lipsoids) which encapsulate renderable geometry (AkeMi#er & Haines, 2002:
p.347). The process of checking each triangle for visipdiilling is laborous and not
suitable for real-time rendering in larger scale. The baugpdolumes, however, are
much lighter in that sense. For example, if an object comsikt triangles, the num-
ber of comparisons needed to determine visibility of an cfajequires at leasd(n)
steps. But comparing the visibility of a sphere takes @nfy) steps. Testing a sphere
visibility might take more time if the: is very small, but this is very unlikely scenario.

Scene Handling

The models which are to be displayed might have some rekatuath each other, such
as a wheel, which belongs to a car, bolts belonging to the lwbte Keeping track
of these relations and changing them is laborous withoutifamm approachA scene

graphis a data structure designed for this purpose. It arrange®tical and spatial



relationships of the graphical scene in some manner (Sthe2@®7). The scene graph
can be, but is not restricted to be, implemented as-tnee, and is more of a general
data structure. According to Sherrod (2007), scene grapisuslly defined by the

application for which it is used, since the scene graph mayato bounding volumes

or positional data, or simply be a highly abstract structepgresenting only the logical

relationships of objects.

The previous paragraphs have given an overview what 3D esagieed - an underlying
3D graphics API, and acceleration methods for reducingthaumt of renderable data.
The following section brings more tangible matters into eufy taking a look into
existing 3D engines.

2.3 Daddy, Are 3D Engines Real?

The feature list of the existing 3D engines at large is indiating at least from the per-
spective of a person writing his/her own engine. But, in ntases the engines which
have been around longest, have turned into game engineswgport for physics sim-
ulation, sound and scripting required in games. Keepirngdhiersification in mind, |
present three 3D engines with their features and cross-amntpem.

The selected engines are available in the SourceForgehwh free service, dedi-
cated to hosting different open-source projects. At thetohwriting this document,
the SourceForge offers somewhat hefty bunch of 570 difté88nengines. Most of
them are probably put into web in the hope someone else mighb& interested in
them. The three engines listed here have been selectedseeattiheir maturity and
widely adopted user-base - which clearly indicates that &ne doing something right.
There exists, of course, other widely adopted and highlgiefit engines which would
have been as good a choice than these ones. However, thepthiig paper is not to
provide a complete feature-review of all possible engingstivere, but a generic list
which can be used in comparison when a new engine is designed.

Performance of 3D engines is usually measurettames per secon(FPS), which
stands for the number of images displayed in a second angdskabwn as thé&rame
rate (Sweet & Wright, 2000: p.607). Akenine-Mdller & Haines (Z00p.1) also
state that the interactivity (and real-time-ness) staxsf6 FPS, and after 72 FPS
the changes in frame rate are almost indetectable. It shmultbted, that the perfor-
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mance of presented engines is not subject to inspectiornoutdibe viable only in case
of predefined set of features which would have to perform imed specific scenario.

%
2!

Cwétml Space

Crystal Space is a project started by Jorrit Tybergheinradi®97 (Linux.com Article
DB, 2007). The spark which gave birth to it to came from thecédatel 486s and pop-
ular PC games Doom and Quake. The Linux.com interviewed Mbefighein about
the development process of Crystal Space, and accordirg timterview, he was in-
spired by the efficient graphics drawing of the games, whidgéred a six-month
research session towards 3D graphics and finally lead to gpaghics.algorithms
newsgroup, where portal culling algorithm was discussed. féddind this algorithm
to be easy enough for him to implement it, and began devejdmsmown engine with
portal culling. (Linux.com Article DB, 2007)

After two months of development, the Crystal Space was b@morking 3D engine
with six degrees of freedom, lighting, mipmapping, movifgsets, scripting and other
features. When he found that he lacked time to work with higgat, he decided to
open it to the public instead of “letting it rot on hard diskThe community existed
at first on mailing lists. During the last 10 years Crystal @&aas become much
more than a 3D engine - a cross-platform software developkie(SDK) for real-
time 3D graphics. It is distributed under LGPL, which enahbileto be used also in
commercial games as long as the changes to the original cedel@ased if the product
is distributed. (Linux.com Article DB, 2007; GNU ProjecQ@7)

The development of Crystal Space project is split into faotions (Crystal Space,
2007):

1. The Crystal Space SDK: The main rendering engine.

2. Crystal Entity Layer( CEL) : The scene entity managemeérty built on top of
Crystal Space SDK. It completes the framework for createaimes, for instance.

11



3. CEL Start : An environment for self-contained game paekaghich supports
scripting to aid in the game development.

4. Crystal Core : A demo game utilizing the Crystal Space SDK.

The Crystal Space SDK is used in various games and modelotg, ®nd it supports
Linux, Mac OS X and Windows platforms. Its renderer systefouidt using OpenGL

graphics API.

Irrlicht is a german word, meaning “will-o’-the-wisp”. It @ans some kind of fairy-
like creature living in the vicinity of swamps. The projestan open source high
performance real-time 3D engine written for C++ and .NETglsages. It supports
four different renderer APIs; Direct3D, OpenGL, its natsaftware renderer and the
Apfelbaum software renderer. The engine runs on Windows,it,iMac OS X and
Sun Solaris. (Irrlicht Engine, 2007)

The Irrlicht is used in over 30 different projects and it hasaative community. It has
several language bindings, allowing it to be used with JBy#hon, Ruby, Basic, and
so forth - a feature which will certainly increase the adoptiate.

The project is licensed under zlib license, which allowsibe used in commercial
projects, even without mentioning the Irrlicht itself. Althe code itself can be used
as a base of a commercial product, as long as no claims are timaidée original
software was written by the party using the code (ZLib, 2004)

The project was started by Steve Streeting in England, straenaround 1999. He
was developing an object-oriented library for Direct3Dl]exh DIMClass at the time.

12



He realized that the library itself had become abstractedigin from the underlying
graphics APl and began an ambitious planning of OGRE, newocbigriented API-
and platform independent 3D engine. After registering tlugget in the SourceForge
at 25th of February 2000, the passed years have broughtigdgatures and improve-
ments to the OGRE. The latest version at the time of writing plaper is 1.4.0RC1,
which was released in 11th of February 2007.

OGRE stands for Object-oriented Graphics Rendering Engiike the name implies,
the mission of the project is to create a cohesively desidgraadework to be used in
top-notch graphic solutions. It is not designed to be useghmes in particular, but it
has been used to create games as well.

The OGRE project stresses the flexible design and docunmmiater long feature

list. It does not provide physics modeling or collision dgiien, but relies more on
the framework where such features can be integrated udiigghrty modules specif-
ically designed to be used in those tasks. This might makesdeatures a bit harder
to implement because of the need to connect an externahlibbdDGRE, but on the
other hand, it allows programmers to use their own, possitadye efficient algorithms
in special cases. OGRE is released under the LGPL and canedarusommercial

projects as long as the changes to the original code aresegléhthe product is dis-
tributed. The OGRE supports Linux, Mac OS X and Windows platis. (OGRE,
2007; GNU Project, 2007)

Table 1 shows a set of features which are implemented in these projects and how
the features relate to each other. The license under whechriines are released has
effect to the projects themselves. Too restrictive licemgght disallow the usage of
the library in commercial projects, for instance.
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Table 1 lists supported platforms because of applicatiatapdity. If libraries have
already been ported to the desired platform, very littler¢is usually required in order
to port the whole 3D project for that platform. Projects cahgourse, contain other
code which is platform-specific and therefore portabilgyibt only restricted by the
3D engine.

Table 1 also includes a shader support section, which isntapbif special graphics
effects are to be included in the project. In games of highaliguality, this is almost

a necessity. Thémage formats for texturesection is included, because the image
support is necessary for including specific materials to 3idlets. The textures types
are necessary for special effects and it is assumed thatoédoch engines supports at
least the usual texture format, rectangular color imaghk sgime constraints on width
and height. The animation support is essential for 3D enginee without movement
the real-time rendering serves little purpose, which wadaened in Section 2.2.

The acceleration algorithms are also covered in Table Tesihey are needed for
complex scenes to be rendered sufficiently fast, and theasgata structures speed up
the rendering of very large models. One of the most impottangs is the support for
different 3D model files. There exists a plethora of softwalnech produce models and
save it in different formats. In order to support the toolttwas selected, the engine
must have support for the file format it uses, which are caver¢he3D File formats
supportedsection. The special effects can be used to create vistalinigg sceneries.
This feature is also very important to gaming applicatiofise “other” section of the
Table 1 includes features which were hard to classify.

Supported in engine

Feature .

Crystal Space| Irrlicht | OGRE
License
LGPL X - X
ZLIB - X -
Platforms
Windows X X X
MacOS X X X X
Linux X X X
Sun Solaris/SPARC - X -
Graphics API
OpenGL X X X

14



Supported in engine

Feature -

Crystal Space| Irrlicht | OGRE
Direct3D - X X
Software Renderer X X -
Vertex and fragment shader support
low-level assembler X X X
Nvidia Cg X - X
Direct3D HLSL - X X
OpenGL GLSL - X X
Image formats for textures
Adobe Photoshop (.psd) - X -
JPEG File Interchange Format (.jpg) X X X
Portable Network Graphics (.png) X X X
Truevision Targa (.tga) X X X
Windows Bitmap (.bmp) X X X
Graphics Interchange Format (.gif) X - -
Zsoft Paintbrush (.pcx) - X -
DirectDrawSurface (.DDS) X - X
Textures
1D - - X
2D X X X
Compressed textures X - X
Video textures X X X
Animation
Skeletal animation X X X
Keyframe animation X X X
Acceleration algorithms
Mesh LOD X X X
Material LOD - - X
Occlusion culling X X X
Frustum culling X X X
Portal culling X - X
Spatial data structures
Octree X X X
BSP X X X

15




Feature

Supported in engine

Crystal Space

Irrlicht

OGRE

3D File formats supported internally

3D Studio meshes (.3Ds)
B3D files (.b3D)

Alias Wavefront Maya (.obj)
Cartography shop 4 (.csm)
COLLADA (.xml, .dae)
DeleD (.dmf)

FSRad oct (.oct)

Microsoft DirectX (.x)
Milkshape (.ms3D)

Cal3D ( .cal3D)

My3DTools 3 (.my3D)
Pulsar LMTools (.Imts)
Quake 3 levels (.bsp)
Quake 2 models (.md2)
MDL models (.mdl)

ASE format (.ase)

PovRay format (.pov)
OGRE format

Crystal Space format
Converters for popular formats

X

X X X X

X X

X X X X X X X X X

X X X X

Special effects
Particle Systems
Skyboxes
Billboarding

Fog

Bump mapping
Parallax mapping
Cube mapping
Sphere mapping
Dynamic shadows
Light maps
Transparency

X X X X X X X X X X X

X X X X X X X X X X X

X X X X X X X X X X X

16




Supported in engine
Feature -
Crystal Space| Irrlicht | OGRE

Dynamic lights X X X
Other

Scene management X X X
GUI system X X X
Light virtualization X X X

Table 1: The cross-comparison of features in Crystal Space,
Irrlicht and OGRE.

In Table 1, the license section shows that the licenses @b of the engines to be
used in any commercial or non-commercial project. The OGRE @rystal Space,

however, require that the source code of the engine is loliséd with the project. The

Irrlicht bears no such restriction.

It can be seen in the platforms section of Table 1, that thet mm®mon platforms
(Windows, MacOS X, Linux) are supported by all of them. Thaprcs API section
shows that the Crystal Space does not support Direct3Dryibpat it can be used on
Windows platform since the OpenGL library is ported alsd td he software renderer
might be useful in some situations, but usually 3D accdlamat available for any
relatively modern graphics card.

Shaders allow very versatile lighting and shading effextse created. There are very
little differences in the shader support. TV&rtex and fragment shader suppseiction

in Table 1 show that low-level assembler shaders are swggportall of them. Nvidia
Cg library, which can generate low-level assembler codesf@ders, is selected by
Crystal Space and OGRE. Only OGRE supports all four shaderdis (assembler,
Nvidia Cg, HLSL and GLSL).

Image formats support is more than adequate, the most pdpuiaats (png, jpeg, tga,
bmp) are supported by every engine, which can be seen iroséctage formats for
textures Texture support is also quite similar, the standard textarmat and video
textures are supported in each engine. Crystal Space dictitirdo not seem to sup-
port 1D textures, but since 1D textures are only useful ircispeases, the lack of it
causes negligible effects. The is a lack of support for cesged textures in Irrlicht.
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Or if the support exists, | was unable to find any reference. td he sectiorAnima-
tion in Table 1 shows that animation is supported by skeletal ation and the older
keyframe interpolation in all three enginé&keletal animatiomeans that certain parts
of a 3D model are attached to a bone, which can be animatedn e is moved,
the attached part of a 3D model is moved alseyframe interpolatiomeans that there
exists various different 3D models, which represent sanjecoin different postures,
and transitions between postures is interpolated in sonmena Acceleration algo-
rithms exist in each engine, where the most distinctiveuteais Material LOD, which
apparently is only implemented in OGRE. Spatial data stinestare also supported in
every engine.

It might seem that in the section of supported 3D file formhts ltrlicht would be
the sovereign ruler, but the number of supported formats do¢ necessarily mean
superiority. OGRE and Crystal Space have chosen a diffafgach to file formats
by using exporters to convert needed formats into their awmét, although Crystal
Space supports some formats also directly. Irrlicht pusswenpatibility by including
support for all formats in direct manner.

The special effects which were selected for inspectiongwaplemented in all three
engines, no surprises there. All engines contain some Kiad3dJIl rendering system,
an arbitrary number of lights can be added to the scene ahdalscene management
for more complex visualization needs.

The comparison can be concluded by saying that all engirgegidually alike in the
perspective of rendering engine. No drastic differencest axd the basic functionality
is there. The presented table could also be used to compaeeféatures of other
engines, if such need should arise.

So far, the real-time 3D graphics concepts have been handkedery general level.
But in order to know how 3D engines are implemented, moreildédtanformation

about underlying mathematics, and 3D computer graphiespsired. In the following
chapter, focus is shifted to more in-depth workings of 3Dieeg
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3 Hard Real-time 3D Graphics

Following paragraphs introduce detailed information, athis required to understand
the nature of techniques related to real-time renderingDh®dels. The included
topics cover mathematical concepts, different coordisgtems, rendering pipeline
functionality and virtual cameras. Also defining 3D modelajanaterials, textures,
and workings of lighting and shading are explained. Finailsibility determination is
explained by using bounding sphere as an example. Althduglstalso the “dreaded
math chapter”, mathematical concepts are not discussgexeznsively to avoid too
detailed description of the subject - more detailed infdrameand proofs can be found
on any linear algebra textbook.

3.1 The Mathematical Concepts

The most basic tool can be considered to eetor, which in our case is a-tuple of
real numbers and can be written as

V= (v1,V2,...,0,)

where they; are thecomponentsf the vector. A vector witlh components can be used
to represent a coordinate, a direction and velocity-space. In terms of 3D computer
graphics, then is usually 2, 3 or 4 (Lengyel, 2004: p.12). TB® space where
our vectors exist, is a vector space with linearly indepehdemponents forming an
orthonormal basis.

The most used operations on vectors are sum, differenclay soaltiplication, mag-
nitude, component-wise product, dot product and crossymtod hesum(p + q) and
thedifference(p — q) are component-wise operations of two vectors. $tedar mul-
tiplication (p = «) is an operation between a vector and a real number, whete eac
component of a vector is multiplied by a real number. Tegnitudd| p || is defined

as the square root of the sum of the square of each compoherldo referred as the
normor thelengthof a vector (Lengyel, 2004: p.13)

The component-wise produdp o q) produces a new vector, of which components are
retrieved by multiplying each component pfwith corresponding component ot

19



Thedot product(p - q), which is also called ascalar producior inner product gives a
measure of the difference between the directions of twaowectt is calculated by sum
of the products of each component, or by the product of thenmhades and cosine of
the angle between the vectors. Tdéress productalso known as thgector product
produces a vector perpendicular to both of the given vecidrs cross product follows
theright-hand rule which can be interpreted as follows: When the fingers of idjie r
hand point along vectqr and palm of the hand points along vectpithen the thumb
points to the direction of the cross prodpck q. (Lengyel, 2004: pp.14-26)

A matrixis an array of numbers with specific number of columns and réwsatrix is
referred asn x n matrix if it hasn rows andn columns. If the number of columns and
rows are the same, the matrix is said to lsgjaare matrix A vector can be represented
as al x m orn x 1 matrix. The most used operations on matrices are sum, elifer,
multiplication, transposition, determinant and invergéne determinant and inverse
exist only for square matrices. Like with vectors, gwenanddifferenceof matrices
are element-wise operations. Timaltiplicationcan be defined so that the entry ain
row andjth column ofAB is the dot product of théh row of A and thejth column of
B. Thetranspositionis the mirroring of the elements in respect to the matrix dread.
The value in theth row andjth column swaps places with value jth row andith
column. Thedeterminanobf matrixM (detM) can be said to be a scalar value derived
from the elements in the matrix. The elementary definitioistexforn = 2, and is
recursively applied for any xn matrices. (Lengyel, 2004: pp.33-65)

Theinverse(M ') of a matrixM, is such matrix thaM 'M = MM ~! = |. The
inverse does not exist for every matrix, and those matriagdsowt inverse are called
singular matrices

A pointin 3D space is an arbitrary location represented by a veatbraxcomponents.

P = (Pu, Dy, P2)

A line segmenis an one-dimensional finite entity which connects two mint

L= (pstart7 pend)

A line or ray is a infinite entity which travels through a specific point guints into
specific direction. The ray is specified with a point and adios vector.
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R= (ppos’ VdiT)

A planeis defined by a poinp and a direction vectan, where point lies in the plane
and direction vector is perpendicular to the plane. Theorexis referred as theormal
vector. The plane equation is

Ar+ By +Cz+ D =0,

where A, B and C represents the component values of the neeutdr and condition
D = —n - p holds. In the case of 3D real-time graphics, the normal vastasually
normalized to unit length. In this case the equation

d=n-q+ D

gives a signed distanekEfrom plane to poing and can be used in variety of situations,
including visibility culling. (Lengyel, 2004: pp.105,1p7

A polygonis a closed figure with sides. It is defined by points, which in this context
are also called agertices(Wolfram Mathworld, 2003). The order, in which vertices of
the polygon are defined, is called as thieading order The winding order defines the
direction the polygon is facing. There exists two ways toraefi, clockwise meaning
backside or clockwise meaning frontside - both conventayesused.

Basic operations for vertices can be considered to be atims| rotation and scaling,
which are defined below (Eberly, 2001: pp.8-9The combination of these is called
as atransform All of these operations are performed by multiplying thettixaepre-
sentation of vectors with the matrix representation of theration(s).

A translationT represents a move of a spatial location. The operation isrsed
simply by negating the translation values. Translation loamperformed for vertices
and other coordinates, and is done with following matrix:

1 0 0 ¢, 1 00 —t,
01 0 ¢ DL 01 0 —t
T(t) = T(ty, ty,t.) = Y|, with inverseT (1) = Y
00 1 ¢, 00 1 —t,
00 0 1 000 1

SThere exists also shearing, but it has little usage in most3fines.
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A direction vector, however, should not be affected by adiaion. Vectors in 3D
space usually consist of 3 components. The method of sapg@iposition vector
(aq, ag, az) from a direction vector pointing from origo towards pofnt, as, a, ), is to
use a 4-component representation. The fourth componenpasition vector is 1 and
in the case of a direction vector it is 0. In this manner, thastation operation works
correctly for both cases. When 3-vectors are convertedtm$o4-component form,
they are said to be ihomogeneous coordinate& graphical illustration of translation
operation is shown in Figure 3. By multiplying the pognand direction vectod by
translation matrixt, following results are produced.

100 t Px Pr+lex1
o=Ttep= |0 L0 o ]
0 0 1 ¢, Pz p.t+tx1
000 1 1 1
1 00 t, dy dy + 1, %0
010t d d,+t,%0
d =T(t) «d = P ) R R A )
O O 1 tZ dz dz+tz*0
000 1 0 0
y y
A A
T(2,3,0) o]
— I
> X > X

Figure 3: An example of translation operation where quadosed from origin to 2
units along X-axis and 3 units along y-axis

Rotations are always performed left-handed around thenorig, 0, 0). If rotation is
desired to be made around arbitrary palfitthe vertices must be first translated by
— P, rotated, and translated kY. An illustration of rotation operation can be seen
in Figure 4, where an object is rotated 90 degrees enafis pointing up from paper
surface. The inverse of rotation matrix is the transposd.oRbtationsR,, R,, R,
along axesX, Y andZ by angle¢ are performed with following matrices:
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1 0 0 0
|0 cos(¢) —sin(¢) O
Ral?) = 0 sin(¢) cos(¢) 0O
0 0 0 1
cos(¢) 0 sin(¢) O
R | 0 1 0 0
ST —sin(¢) 0 cos(¢) 0
0 0 0 1
cos(¢p) —sin(¢p) 0 0
R.(6) = sm(§¢) coso(¢) (1) 8
0 0 0 1
y y
A A
R(90,0,0,1) j
» X A > X
'//90

Figure 4: An example of rotation operation.

The scaling operation is used to enlarge or shrink an enfygar, y and z axis. If
the scaling factor for each axis is the same, the operatisaits to beuniform and
non-uniformotherwise. If one or three of the scaling factors are negatihe operation
yields amirror matrix, which is also called ageflection matrix The mirror matrix
can reverse the winding order of the vertices, which canteaacorrect resulfs The
mirror matrix must be treated as a special case in order sepre the winding order.
(Akenine-Moller & Haines, 2002: p.30).

6This is true when lighting and/or face culling are enabledreron the subject in Sections 3.6 and
3.7.

23



The scaling matrix i$(s):

1
s 0 00 5 V00
ool . 0 — 0
S(s)= > , with inverseS™! = So
53 0 0 0 — 0
0O 0 0 1 S3
0 0 0 1

By means of linear algebra, it can be proven that the matrittipfication is not always
commutative (Lang, 1986). From this can be concluded, thastation, rotation and
scaling operations are not always commutative either (Eig

Y R@#500,1) Ta10) y
A _ A

l
>» X X : » X

y T(1,1,0) y R(45,0,0,1) y
A — s A — A
1 >
1 1
» X ‘1 >» X » X

Figure 5: An example how order of operations has effect onaibj

Models are transformed by transforming the vertices in tbdeh Since the vertices of
a model are coordinates in three-dimensional space, thepe@ransformed by mul-
tiplying with 3 x 3 or 4 x 4 matrices. Using a 3 x 3 matrix to tréosn vertices is suf-
ficient until we change our coordinate system in 3D spacegusifset vector without
affecting the rotation or the scale of an object. This tramsfcannot be expressed us-
ing a 3 x 3 matrix, but can be done by extending coordinateovetd four-dimensional
homogeneous coordinates and applying transformationg ést 4 matrices.(Lengyel,
2004: p.81)

24



Euler transform is used to orientate an object into desinegttion. It is built on idea
that there exists an initial direction where object is facimAccording to Akenine-
Moller & Haines (2002: p.37), the negative z-axis is usualected as the direction
where object is facing, and head direction is positive ysaxtuler transfornk is
calculated by multiplying three matrices in presented orde

E(h,p, T) - RZ(T)RI(p)Ry(h)

whereh stands for head; for pitch andr for roll and their values represent the clock-
wise rotation angles around in their respective axes. Thaioos are illustrated in
Figure 6. Euler transform suffers frogimbal lock which is a situation where one
degree of freedom is lost in result of concatenated rotatidhis occurs, because axis
rotations in Euler transform are evaluated independentlyiobal scope. (Akenine-
Moller & Haines, 2002: pp.37-38)

Y head
<>
ﬂ x pitch
J

-Z roll

Figure 6: Euler transform axis and rotation directions.

Quaternionsare an extension to complex numbers created by William Rdwamil-
ton (Wolfram Mathworld, 2004). Later it was shown that quatens can be used to
represent rotations and do not suffer from the gimbal lodkictv affects Euler trans-
form (Svarovsky, 2000). A quaternion is represented 4sector, and is marked as

4= (¢, 9, Gk Gw) = ¢ + jq, + kq. + ¢, Where following holds
==k =—1jk=—kj=iki=—ik=j,ij=—ji=k
Quaternion multiplication differs from regular vector riplication and is produced by
using cross and dot product, which yields an quaternioresgmting the concatenation

of rotation operations. Quaternions can also be used tpoitge smoothly between
two rotations. (Lengyel, 2004: p.86)
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3.2 Coordinate Systems and Rendering Pipeline

Models and vertices can be expressed using different auatelsystems. Usually they
are expressed imodel coordinateswhere coordinates are relative to model center
point. This coordinate system is also knowmasdel spaceWhen all desired trans-
forms are applied to a model, meaning the model is in corztion and oriented
properly, it is said to be imorld coordinatesr in world space This means that model
has received the final position and orientation in a virtuatld: From world coordi-
nate system, models can be transformed wi¢ev coordinatesor view spacewhere
their position is relative to the viewer. View coordinates &urther projected tavin-
dow coordinateswhich are two-dimensional coordinates on screen. Theseltate
system conversions are essential in order to produce pixetcreen from given 3D
data, and are done in graphics rendering pipeline. (Akekidker & Haines, 2002:
p.14; Eberly, 2001: p.80).

When looking at the big picture, the main functiongyBphics rendering pipelines

to draw, orrender, a two-dimensional image using specific view to a virtual kvor
The virtual world is constructed from geometry data, andeawto the world is usu-
ally expressed with camera analogy (defined in Section 3\8)en discussing about
rendering virtual worlds, the virtual worlds are often edllasscenes Scenes can
be enhanced using lights, materials, textures and ligimiadels, but these topics are
more carefully examined in later sections. The rest of teien aims to explain the
workings of rendering pipeline - how the image of a sceneaslpced.

The geometry data in a scene is definedltawing primitiveswhich are also called as
rendering primitivesand consist of points, lines and polygons. Those poimtssland
polygons are constructed from vertices, and are positianeldoriented by transform
matrices.

In order to draw specific primitives, the rendering pipelmest be instructed to draw
the desired primitive, and vertices forming the primitiveishbe sent to the pipeline
right after (Wooet.al, 1999: p.43). Rendering pipeline usually converts more-com
plex drawing primitives (polygons) into more traceablengtives, such as triangles.
This process is referred to &sangulation, and it ensures that the data is displayable
and shown correctly - and more efficient, since current 3@\vare is optimized for
triangle drawing. The rendering pipeline can be divided ititree different stages,
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which are known as the application, geometry and rastesiagye. (Akenine-Mdller
& Haines, 2002: pp.22,437-438)

Application stageconsists of defining and transforming 3D models, settingv\pa-
rameters, and setting material properties and additi@malering settings. Program-
mer has the most control over program in this stage. (AkeMi#er & Haines, 2002:
p.22).

Geometry stageonsists of model and view transform, lighting, projectichpping
and screen mapping (Lengyel, 2004: pp.5-6). The procesgs g computing trans-
formations of models. Next phase is to calculate view volusmesenting visible
3D space, followed by conversion of model coordinates im@n\space. The process
is continued by computing the lighting of vertices accogdin defined material and
light source parameters. After lighting, view volume isistormed intaunit cubeor
canonical view volumewhich is used to determine the set of vertices that lie elytir
inside the virtual view. The unit cube has its minimum poin{-4,-1,-1) and maxi-
mum point at (1,1,1). The unit cube transform operation isvkm as theprojection
After projection phase, 3D models are said to benanmalized device coordinates
After this, drawing primitives lying partially outside thanit cube areclipped which
means that new vertices are created at the intersectioh gfaiinawing primitive and
view volume. Those new vertices replace the vertices wheclutside (See Figure
7). The new set of vertices is used to create a new drawingtpraywhich lies com-
pletely inside the view volume. Those drawing primitivégttlie completely outside
the viewing volume, are discarded and those originally detefy inside, are left in-
tact. Screen mapping phase converts 3D coordinatesiimigow coordinateswhich
consists of 2D screen coordinatesgndy) and depth coordinate The depth coor-
dinate represents the position eraxis of the unit cube. (Akenine-Mdller & Haines,
2002: pp.13-19,23;Lengyel, 2004: pp.5-6)

Therasterizer stageonverts drawing primitives and pixel data iftagmentswhich
are basically pixels with relative depth value, and perféests to discard some frag-
ments and keep others, and finally convert fragments intelpizontributing to the
image (Lengyel, 2004: p.7). The color and depth values faagrent can be ob-
tained in three different ways; interpolating the valuesliawing primitive vertices,
using a constant value obtained from a single vertex, ogusime other souréeAc-

’See flat and Gouraud shading in Section 3.6 for details.
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Figure 7: lllustration of the clipping operation.

cording to Lengyel, (2004: pp.8-9), series of operatiomslmaperformed on fragments
in order to select which ones are finally drawn. These opmratare scissor testing,
alpha testing, depth buffer testing and stencil buffeingsScissor testingllows only
fragments inside a specific rectangular part of the screbe tenderedAlpha testing
allows only fragments with alpha value greater, equal tde®s than a reference value
to be renderedDepth testingperforms a test similar to alpha testing, but by using depth
values of fragmentsStencil testings performed with values in stencil buffer. The test
can be used, for instance, in the conjunction of dynamic@lvadAkenine-Mdéller &
Haines, 2002: p.261). After these tests, blending (mixmagrinent values with exist-
ing values in the image), color dithering (using differeakors with adjacent pixels to
achieve intermediate color) and logical operations (bmoleperations between new
and existing fragment color values) are performed, andlyirmapixel is inserted into
image (Lengyel, 2004: p.9).

In older hardware the rendering pipeline was implementefikad-function pipeline
which meant that the process of calculating vertex posstamd parameters or pixel
color could not be changed. In modern hardware, the renglguipeline is pro-
grammable via vertex and fragment shaders.veitex shadercan do arbitrary set
of predefined operations to vertices, drmjment shaderalso known apixel shadey
can change pixel color as it sees fit. Vertex shaders may sgadalfragment shaders
to instruct their operation. Through programmable pipirmore complex lighting
and graphical operations can be performed. (Akenine-Mé&lleaines, 2002: p.182)
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3.3 Virtual Cameras

3D rendering usesamera analogywhich is a human-friendly way to handle setting
up objects and views to them. And as the name implies, theepsas similar to setting
up a normal camera for taking a photograph. Table 2 lists ¢tineesponding concepts
between photographing and rendering an image (@i@d., 1999: pp.96-97).

Phase in taking a photograph How 3D applications act
Setting up camera and pointing it to scengiewing transformation
Position models into a scene Modeling transformation
Choose lens / adjust camera zoom Projection transformatior
Choose size for photograph Viewport transformation
Snap photograph Render scene

Table 2: Camera analogy in 3D application.

The virtual camera is set up by specifying position, hortabfield of view angle
and aspect ratio of the screen. The visible space in a scdmaitied to a specific
view frustumwhich is formed by six planes and is a (deformed) box contgievery
visible object in a 3D space. View frustum is used in geomstage of the rendering
pipeline to determine which vertices are visible beforedgmmthem to rasterizr The
frustum is defined in view space, where origin is the eye (amdera) location ang-
axis points to righty-axis up andz-axis either opposite to the viewing direction or
towards it, depending the implementation of the 3D graphiozary (Lengyel, 2004:
pp.111,112).

As Lengyel (2004: pp.113-116) points out, frustum planeas loa calculated from
the parameters used in the camera analogy. fobal length expressed as in the
diagrams, is distance from camera position to the projeqilane and it depends on
horizontal field of view angle. It is defined by following equation

1
7 tan(a/2)
Vertical field of view angldepends on the aspect ratio of screen and horizontal field of
view:
B =2tan"*(a/e)

8For details, see Section 3.2
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Larger fields of view can be acquired by smaller focal lengthd vice versa. The
zooming in-effect of virtual camera is equivalent to therdese of field of view angle.
The view frustum is also used in conjunction of visibilityllong, where by comparing
bounding volume to frustum planes yields information ab@Dtmodel visibility in
application stage. lllustrations of view frustum and itsiswuction can be seen in
Figures 8 and 9.

Far plane
€
ﬁ/z e Left plane/v Right plane
a/2| a2 N T
| g2

Near plane
\ 7/
°

Origin

Figure 8: The frustum constructed from virtual camera proge Left: Horizontal
field of view. Center: vertical field of view. Right: Frustuntapes, with arrows
representing plane normals.

Figure 9: The viewing volume defined by of view frustum.

After camera has been set up, image is constructed by usimgy @erspective or or-
thographic projection. The used projection maps:th@and y-coordinates to proper
places in the projection plane. The projection is conceetimto4 x 4 matrix do-
ing this. Perspective projectioproduces perspective distortion into the image, which
means that objects further in distance appear to be smahég orthographic projec-
tion or parallel projectiondoes not affect the relative sizes of objects (Woo et al.9199
p.103).
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3.4 Defining 3D Model Data

Polygons and lines can be combined to construct more detaild complex three-
dimensional entities. A set of polygons is referred asesh 3D modelssuch as cars,
are usually stored as meshes. An example of this can be ségguire 10.

Figure 10: The left side shows a 3D model of a car presentdtbwitsurfaces. The
right side shows the same model with surfaces and mateddbksda

In some occasions it is more feasible to present the 3D moitlelparametric curves
and construct surfaces with them. Storing an equation ofaedakes much less space
than full set of vertices and their connectivity data. Irsttése, parametric curves must
be converted into vertices and faces on the fly in order torgage on screen. This
procedure is calledpproximation of surfacesnd is done by using short line segments
or small polygonal regions (Sweet & Wright, 2001: pp.92, 437

More complex 3D models are not constructed by explicithygpamming the polygonal
data into an application, but by using dedicated softwacedate a data file which uses
specific format to represent drawing primitives. These ot are referred to &D
modeling programsr 3D modelergAkenine-Mdller & Haines, 2002: p.438).

Modeling programs have two main categories, namely saskd and surface-based.
Solid-based modelee used mostly in CAD applications. In CAD applications the
3D models are molded with tools that correspond to machipimgesses (such as
drilling or cutting). An object is considered to be a lump o&terial, which is pro-
cessed to resemble something - very much in the same manseulptures are made.
Surface-based modeleiscus on handling the surface of objects and do not consider
objects solid or non solid. They usually allow direct editiof vertices and polygons

of models. Surface-based modelers may also contain obyets appear solid, such

as spheres or boxes, and contain an internal representatittose objects. Both of
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these modelers containfaceter which converts internal model representation into
displayable polygons. (Akenine-Mdller & Haines, 2002:32% In addition to polyg-
onal data editing, 3D modeler programs may have an optiopptyalifferent colors,
materials and textures to objects and even animate the siwisbme degree.

In real-time 3D rendering less detail means faster oparatifolygons can bsubdi-
videdinto any degree, where number of triangles representingfacguare increased.
For example, approximating a sphere with icosahedron regjunore subdivisions
when then viewing distance diminishes (Woo et.al, 19999).8nd more detail is
needed to maintain credible approximation of a sphere. Mieians that model detail
must be as low as possible, while maintaining reasonablealvpuality. This must
be evaluated on a case-by-case basis when 3D model is idt¢ndee rendered in
real-time.

3.5 Materials and Textures

Vertices, lines and polygons can be enhanced by adding, colderials or images to
them in order to obtain more impressive resuMaterialsare defined by diffuse, am-
bient, emission and specular color, and shininess parasndtbese parameters, com-
bined with lighting, eventually yield the final color of a gent or a pixel (Eberly,
2001: p.101). The effect of material properties is more foélgeexplained in Sec-
tion 3.6, since material properties are used with lightimg, logically they should be
grouped with the textures. This is because they affect thiasicolor of a drawing
primitive. To put it briefly,ambient colorcorresponds to the color of material when it
is lit by indirect lighting, diffuse colorcorresponds to the color in direct lighting and
emission colomeans the color emitted by material regardless the light8mecular
color andshininesscontrol the color and brightness of highlights.

By using images, more details can be added to 3D model withotgasing the num-
ber of drawn faces, which can be seenin Figure 11. An imagehwhto be displayed
over faces, is referred to asextureand each pixel on screen, which is calculated from
a texture, is referred to astexel a texture pixel. The process of applying an image
over a surface in a 3D modeler program is callethge-based texturingr simply
texturing The process of actually coloring the fragments in the regestage with
correct values is referred to &sxture mappingUsing texturing can cause great sav-
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ings in modeling (less detail needs to be modeled), memesg @dlata needs to be sent
to pipeline) and speed (less data means faster renderikgnh{#e-Moller & Haines,
2002: p.117). Texturing brings also more complexity to 3Ddelng, and it is worth-
while to remember that realism can suffer from a texturing i§ poorly done. The
texture in Figure 11 is rotated 90 degrees, and althougtpresents a stone wall, it
does not give the desired effect.

Texturing is performed by usinggxture coordinates vertices, and each vertex of a
polygon usually has its unique 2D coordindteEhe coordinate defines which part of
the image is selected into this vertex. In the fragmentgilwasse of rendering pipeline,
surface of a polygon is converted into pixels and texturerdioate values between
vertices are interpolated among them. Color value for eaaHl [ sampled from the
texture map.

In addition to image-based texturing, there exists mudtipiher texturing methods,
such as gloss and bump mapping. Each of these methods coatniore realism to
the final image, if done properly. The details of these speéiects are out of the scope
of this document, but it can be said tlghbss mappinglefines the shininess value and
bump mappinghe direction of a surface normal of a pixel.

Figure 11: By textures much detail can be added to 3D moddisvAis an example
of how texturing brings about more realistic view of a storadlw

9The exists also 1D and 3D texture coordinates, but are nesudlgdn special cases (Woo et.al,
1999: pp.370,372).

33



3.6 Lighting and Shading

Lighting is the interaction between materials and light sources,ismthplemented
using a model, which imitates lighting in real world. There Bght sources which
emit light (photons), that can bounce off from surfaces ¢éots. Those photons reach
to eye of the observer, and are interpreted as colSradingis the process of doing
lighting computations and determining fragments’ (or tsXecolor (Eberly, 2001:
pp.101-102). Light sources can be classified as followsctimnal lights, point lights,
spotlights and ambient lights ( Sweet & Wright, 2000: p.1B6erly, 2001: p.100).

A directional lightis positioned (virtually) infinitely far away and all

the rays casted by light are parallel to each other. An exaropl

/// such a light is the sun. Although in real life the sun is notriidly
g

far away and rays are not casted exactly in parallel, thirgastost
suitable way to simulate daylight in a 3D application.

Point lightsare considered to be positional, since they have a location

\\\tf// in space in contrast to directional light. Point light entight equally
:> O Z: in every direction. The light produced by a light bulb is gusimilar

‘,//AR to point light.

A spotlightis a restricted form of point light - it has a cone which re-

stricts the emitted light inside. The size of the cone is Uguefined
by a cutoff angle. In addition to parameters of point lighspatlight

must have also a direction where it is pointing to. A spotlicgm be
used to simulate a flashlight, for instance.

Ambient lightdoes not have any specific direction where it is coming

,/f\ é/\ from. It can be considered to have entered the scene and étunc
» |\ N “_, | around so that it has become directionless. Every objechilated

1 /f i\ by ambient light is evenly lit on every surface in all directs .
RN

Additionally to type-specific parameters, lights are defifyy intensity and color.
These parameters are used in similar manner regardless tfgh of light. The in-
tensity is divided into three different parts, namely ambi@ color of indirect light-
ing), diffuse (a color of direct lighting) and specular insgty (a color of highlights).
Although this division is not realistic, it is done in order give graphics application

34



more control over the scene appearance (Akenine-Moller aé$a 2002: p.68). Table
3 gives a brief summary of each light type and the paramedéated to them.

Directional light| Specular intensity
Diffuse intensity
Ambient intensity
Direction vector

Pointlight Specular intensity
Diffuse intensity
Ambient intensity
Position vector

Spotlight Specular intensity
Diffuse intensity
Ambient intensity
Position vector
Direction vector
Cutoff angle

Ambient light | Ambient intensity

Table 3: Lights and their parameters in computer graphics.

Shading is done with differerghading modelsof which the most commonly used
are flat (per polygon-shading), Gouraud (per vertex-stigdiand Phong (per pixel-
shading). Irflat shading an entire polygon (usually a triangle) is filled with onearol
In Gouraud shadinglighting is determined for each vertex and values are paiated
across the polygon surfacBhong shadingloes not interpolate the colors of vertices,
but the normal vectors of vertices among fragments, an@ped lighting calculations
for each pixel separately (Eberly, 2001: p.102). Flat shgdind Gouraud shading
are the fastest in the sense of rendering speed, and ardyusaialware-accelerated.
Phong shading is the slowest, since each calculations are fdo each fragment in
a polygon. It can be said, that flat shading is the most codrdeedhree and Phong
shading is the smoothest one. The smoothness of Gourauthgleh be increased
(or decreased) by changing the subdivision rate of the polggsurface. By using
vertex and fragment shaders, the shading model can be spduyfithe programmer.

The lighting model used in most 3D real-time graphics limsuis alocal lighting
mode] where lighting does not take into account light reflectemirother surfaces,
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but only light coming directly from light sources (Akenimdéller & Haines, 2002:
p.81). The intensity values of fragments are determineddyes calculated from
parameters presented in Table 3. The calculation of indalidomponents and total
intensity is done by using equations in Figure 12, whedenotes the intensity//
denotes the material, anddenotes the light and subfix marks the property which is
used. The factod stands for attenuation, and is defined by constant attemutstctor
Aconstant, linear attenuation factat,;,..., and quadratic attenuation factdy,,,qqzic-
The termp is the coordinate where lighting is evaluated. Terstands for the normal
vector of the point on a surfackemeans the direction vector from point to light source
andv means the view vector, in other words the direction wherendes (for instance,

a camera) is facing. Function clanip{[0,1]} forces the component values of vector
V' into range between 0 and 1. (Akenine-Moller & Haines, 20Q274-75,78,80-81,
Eberly, 2001: pp.102-104):

| — Lposition - p

||Lposition - p||
ItV
Y

[ambient :Mambient o Lambient
Laif puse =maz{(n - 1), 0} Myiffuse © Laif fuse
Mo
]speculm‘ :max{(n : h), 0} ShznlnessMspecular o Lspecular
1
d = Aconstant + Alinear”l H + Aquadratic”'”2
1 , otherwise

, If L is positional light

max{—! - Lairection, O}Lewone”t , if L is a spotlight
Cspot — .
1 , otherwise

Itotal :Clamp{Gambient o Mambient + Memission + Cspot(Iambient + d(Idiffuse + Ispecular))a [07 1]}

Figure 12: The lighting equations in real-time 3D graphics.

The ambient intensity,,.,;..: IS determined by the component-wise product of ambi-
ent color of material and ambient intensity of light sourgberly (2001: p.103) stated
that diffuse intensity; s r.se IS calculated usingambert’s Law which means that sur-
faces are ideally matte (without shininess) and the refiielogit is calculated by the
cosine ofn andl. The presented specular equatign..... is theBlinn-Phong lighting
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equation(Akenine-Mdller & Haines, 2002: pp.76,77), which is a fastariation of
Phong lighting equationThe I,,....., describes the effect of photons bouncing off to
the direction of view vector. Lengyel (2004: p.175) pointd that M, iness CONtrols
the sharpness of highlight - small value produces a high¥iginch fades out over large
area, whereas hight value produces a sharp highlight whkigtsible only on a small
area.

Attenuationd can be controlled in three ways, and natural lighting moslelitained
by settingAconstant = 0, Atinear = 0, Aguadratic = 1. Thecgy, IS used in conjunction
of spotlights to determine when evaluated point is outsidedone (Eberly, 2001:
pp.101,103)Global ambienvalue (G upien: © Mampient ), rEPresents amount of ambient
light in the whole scene, and does not depend on light soivdes et.al, 1999: p.212).
According to Lengyel (2004: p.211), the total intensity,; consists of sum of global
ambient,material emission, and attenuated ambient,s#ifand specular intensities.
Total intensity is clamped into suitable range, either bigieg or scaling, depending
on speed and desired result (Akenine-Moller & Haines, 2@024).

The total intensity equation holds for one light only. In ttese of multiple lights,
the intensity values of other lights is added to existingmsity and finally clamped.
And as Akenine-Mdller & Haines (2002: p.83) pointed out, lkeéight source needs
its own calculations, which takes time - hence the rendesfra;m image with multiple
light sources takes more time than rendering with only alsilight source. It should
also be noted, that in some 3D graphics library implememtatithe lighting can be
disabled for back-facing polygons, which speeds up theihghcalculation process
(Woo et.al,1999: p.199).

3.7 \Visibility Culling Revisited

The visibility culling was briefly explained in Section 2&hd it is essentially a way to
speed up rendering process by drawing less. It was also omeatj that two most com-
mon visibility culling techniques are backface and hienaal view frustum culling,
which are covered in detail below. The rest, which are sietédr more special situa-
tions, are left uncovered.

Let us consider drawing of a ball. A viewer looks at the badinfra certain angle.
Despite the direction where ball is viewed, the other haffasvisible. From this can
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be concluded, that there is no need to render the side whiubt igisible - assuming
that we do not handle cases where ball is made of translucatetial. All faces on the
non-visible side have their backs facing the viewer, ansl itiflormation can be used
to determine which faces can be discarded during the drapiogess. Determining
the faces which are back-facing the viewer and not rendehieq, is callecackface
culling (Akenine-Moller & Haines, 2002: p.359).

The underlying graphics library can determine the facectiva by examining the
vertex winding order, and calculating a surface normal fdlatpolygon. Because
of the triangulation, that flat polygon is usually a trianglé surface normal points
towards the observer, a triangle is front-facing and if tadace normal points away
from the observer, triangle is back-facing. Woo et.al (198868) outlines the normal
calculation operation for a flat polygon, which can be usethse where three vertices
form a triangle ¥4, v, andvs). The surface normal calculation operation is defined as

n= (Vo — V) X (V3 —Vy)

and the direction in respect to the view vectaran be determined, for instance, by dot
product
t=vVv-n

where direction can be determined from signed scalar valdegative value denotes
that surface normal points towards observer and triangle is front-facing, @/Ipbsi-
tive value stands for back-facing polygon.

The hierarchical view frustum culling, mentioned in Sextib?2, is performed by using

bounding volumes. There exist several bounding volume$) a8 sphere, axis-aligned
box, oriented box, lozenge, cylinder and ellipsoid. Allleése have different intersec-
tion test algorithms, and some intersection tests take mmeethan others. However,
in some situations the tightness of a bounding volume besanwe critical than the

time consumed in intersection tests. Bounding volume Helecs always a speed-
accuracy tradeoff for an arbitrary 3D model.

For clarity and simplicity, the bounding sphere and itsrisgetion test algorithms was
selected to be inspected more carefully. Bounding spheusesul when speed is
required in intersection test, but construction of an altety optimal bounding sphere
is quite demanding (Lengyel, 2004: p.223). In most caseslagively tight bounding
sphere produces rather optimal results, and is not as tonsdening to solve than an
optimal bounding sphere.
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Listing 1: A pseudo-code algorithm for calculating a looseifding sphere.

Sphere BoundingSphere ( VectorXYZ vertices|[] )
{

VectorXYZ min, max;
Sphere boundingSphere ;
min = max = vertices[0];
for each vector v in vertices
{
if (v[X] < min[X] )
min[X] = v[X];
else if ( v[X] > max[X] )
max[X] = v[X];
if ( v[Y] < min[Y] )
min[Y] = v[Y];
else if ( v[Y] > max[Y] )

max[Y] = v[Y];
if (v[Z] < min[Z] )
min[Z] = v[Z];

else if ( v[Z] > max[Z] )
max[Z] = v[Z];
}
boundingSphere . center = (min + max) / 2;
boundingSphere .radius = ((max min) / 2 )"2;
return boundingSphere ;

Calculating a loose bounding sphere is relatively simpie] B done by determin-
ing maximum and minimum extents of vertices (Eberly, 20026jp An example of

such operation is shown in Listing 1. A more precise boundipigere (although not
optimal) can be found by calculating average center of gpentd a radius which en-
capsulates all the vertices (Eberly, 2001: p.27). A psexatte for this is in Listing

2.

The view frustum culling by bounding spheres assumes tledbdlunding spheres and
frustum planes are in world coordinates. Technically, tt@yld be in any coordinates,
as long as they are in same coordinate system. Let there bendibg sphereS and
view frustumF'. The bounding sphere is outside the view frustum if it is ctatgly
behind any of the frustum planes. The spatial relation betwspheres and planeP

is determined by the distance of the sphere center to the plaollowing equations
yields distancel betweenS,.,..., to P, when plane is in normalized form.

d= Pnormal : Scenter - PD
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Listing 2: A bounding sphere centered at average of points.

Sphere BoundingSphereTighter( VectorXYZ vertices|[] )
{

VectorXYZ sum = {0,0,0};
for each vertex v in vertices
{
sum += v;
}
VectorXYZ center = sum / vertices.size ();
Real radius = 0;
for each vertex v in vertices
{
VectorXYZ diff = v — center;
if ( diff.length() > radius ) radius = diff.length ();
}

return Sphere( center, radius );

Listing 3: A pseudo-code for view frustum culling with boungd spheres.

IntersectionType SpherelntersectsFrustum( Sphere s@heFrustum frustum )

{

for each Plane p in frustum
{
if ( DotProduct( p.normal, sphere.center-) plane.d <—sphere.radius)
return DOES_NOT_INTERSECT;

}
return INTERSECTS;

If d smaller than the negative radius 9f it is completely behind plan® and there-
fore outside the frustum. Using this knowledge, an algari{see Listing 3) can be
constructed to test all frustum planes (Eberly, 2001: p.1&®fortunately, this view
frustum culling method does not always cull objects whioh autside the view vol-
ume. This can be seen from Figure 13, where a sphere on tHeftamrner of the
view frustum is not culled although it is not visible. If sucases are to be eliminated,
there should be another bounding volume surrounding tive fviestum, against which
the sphere would be checked.

Very sophisticated systems, which animate 3D models, \&ifetto constantly update
also the bounding volume transforms for the animated pémsoalels. When hierar-
chical view frustum is used, bounding volumes higher in tieedrchy must reflect the
changes in lower bounding volumes. And since this hierarglgually implemented
by using tree data structures, the changes can be reflecteteigyng the bounding
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Figure 13: The error in view frustum culling.

Listing 4: A pseudo-code for view frustum culling with bound spheres.

Sphere SphereMerge( Sphere sphereOne, Sphere sphereTwo )

{
centerDifference = sphereTwo.center sphereOne.center;
radiusDifference = sphereTwo.radius sphereOne.radius;
radiusDifferenceSqr = radiusDifference radiusDifference;
lengthSqr = centerDifference.Length{renterDifference.Length ();
if ( radiusDifferenceSqr >= lengthSqr )
{

if ( radiusDifference >= 0.0f )
return sphereTwo;
else
return sphereOne;
}
else
{
length = centerDiff.Length ();
t = ( length + sphereTwo.radiussphereOneradius) / ( 2% length );
return Sphere(sphereOne.center +x centerDifference, (length + sphereOne.radius+sphereTvaaius)/2);
}
}

volumes of children to the parent from bottom to up. Eber@Q®2 pp.148-149) pre-
sented an algorithm for merging two spheres into smalldéstigpcontaining the two.
This algorithm is described in Listing 4.

The major difference between view frustum culling and backfculling is stage where
they are performed; view frustum culling is usually done @plecation stage and
backface culling on geometry stage. They also operate ¢ereliit sets of data; view
frustum culling culls entire objects, the backface cullmgrks on polygon-level.

Any view frustum culling technique requires three meth@ds)jethod of constructing
the bounding volume used in that technique, intersectistrbetween view frustum and
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bounding volume, and merging two bounding volumes into ®leen using bounding
volumes, the speed-accuracy tradeoff must be taken intuatc
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4 The Grand Design

This chapter goes through the requirements for a 3D visatadiz application and

pulls together the necessary features needed in a 3D en@ased on those fea-
tures, the core design of a 3D engine is presented with dizgraAlso three opti-

mization techniques, which are needed in the implememiaéice presented. The di-
agrams and explanations are meant to describe the implatitenin more readable
and moreover, understandable, manner. If a compelling fekhowing the tech-

nical details should arise, they can be viewed from sourc® cwhich is available

at ftp://ftp.cs.joensuu.fi/pub/Theses/ 10 Since it is prudent for each
project to have a name, | gave the name GlowScape Engine (833 one.

Section 4.1 covers the requirements for 3D application, @whects them to corre-
sponding features presented in Chapter 3. Section 4.2démhdjher-level design de-
cisions, such as Object Oriented Programming (OOP) paradampliance. Sections
4.3 to 4.9 focus implementation details of core featurescti®e 4.10 describes the
applied optimization techniques, and Section 4.11 listsrexal library dependencies.

4.1 Requirements and Analysis

The requirements set has been divided into two factibasjc requirementswhich
provide a rough outline for the functionality asdpplementary requirementshich
perform a more fine-grained dissection of basic requirement

Basic requirements

The requirements have been compiled using the initial idevatar Mirror for net-
Work Oasis project, which is described in my B.Sc Thesis [@r&®006). To put it
briefly, netWork Oasis was designed to be a place, which wolgdd virtual and real
environments seamlessly. The Avatar Mirror, located iWark Oasis, was supposed
to be a large wall-sized screen, which would display userataas when they pass it
by. Additionally, the Internet connections were to be viggal using a planetary view,
where arcs would show connections related to netWork Oasis.

1°The source code is packed together with the electronic fdrm®thesis.
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Although Avatar Mirror was never built, the requirementgega ground to stand on -
there are no special never-seen-before effects, but thiragsan be done with almost
any 3D engine. Visualization requirements for this appiccawere categorized into
three parts:

1. User visualization
2. User environment visualization

3. Data stream visualization

First of all, it was decided that there would be a support fumated avatars, which
was a way to present users. Also more abstract presentasiacts as sandstorms and
amoeba-like creatures were desired. Additionally, theme swneed for a scene where
Internet connections originating from and leading to Oagese pin-pointed on the
globe. Visualization type needed to be changeable witlewfit backdrops and avatar
sets - namely an aquarium with fish and desert with whirlwitodsing around sand,
were mentioned. It was also decided that support for vawdifterent scenes would be
included. One of these scenes was to be active at a time.

Supplementary Requirements

User visualization was decided to include indication ofra'sgtate, which slides from
availableto do not disturband back again. This could be accomplished by using differ-
ent colors, movement speed/patterns, emblems and conanisaif the previous. An
artist was to be able to change 3D models easily and desigmihih a 3D modeling
tool. 3D models were to be exported into some format, whiehapplication could
read. The format was required to be widely adopted, so mdxdomapatibility could

be achieved and modeling would not be tied into a specific thaving 3D models
were not to overlap each other in a scene in order preserve degree of immersion.

User environment visualization had almost the same setquiinrements as user visu-
alization, but excluding the state indication. Scene bemkgd itself did not need to
be animated.

In data stream visualization, user was to be able to rotatglthbe in some manner to
see where the data stream is coming from and where it is gdimgability of zooming
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User visualization

Support for animated 3D models which can be
created in several modeling applications.

sandstorms and amoebas.
Indicate users’ state between “available” and “d
not disturb”.

3D model avatars must not overlap.

Avatar environment visualizatio

nSupport for widely adopted 3D format.

Support for more abstract visualizations, such as

Data stream visualization

Provide an option for rotating the globe.
Provide a way to display connections on the gla
between two points (expressed as longitude an
latitude and their direction).

be

o

Table 4: The compiled requirements for a visualization @&pgpibn.

the globe in and out to see the location more closely, wasassidered. Locations
were to be expressed with longitude and latitude so globsitipa data (for instance,

given by a GPS device) could be
location. All the previously listed

Analysis of requirements

used. The users themselvegavyarovide their own
requirements are colagin Table 4.

The requirements, which were defined for the visualizatigpliaation, needed to be
converted to suitable requirements for a 3D engine. Theyigea guidelines to engine
design, but there existed other important factors, whichtbdaaken into consideration

- requirements gathered for a single project most likely fawt reflect the require-

ments for variety of other applications. Therefore, it wasew to focus into basic

functionality of the engine and ai

m to provide a working kdsr further 3D rendering

engine development. In order to produce a working solutionctionality had to be

converted to programmable entities, which are covered next

There existed an apparent need for a class, which contaibed8lel vertex data. That
class had to allow access to vertex data, so it could be sehétendering pipeline.
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Vertex data contains only 3D coordinates, so some methocsdribing rendering
primitives was also needed. | took care of this by designialgss that contains vertex
indices, and drawing primitive type. These primitives at@xh from 3D model vertex
data.

Two requirements listed in Table dupport for animated 3D models which can be
created in several modeling applicationsaandsupport for widely adopted 3D for-
mat, were met by including support for two different formats;SBnd Milkshape 3D.
3DS format is supported in many modeling applications, bdbes not include skele-
tal animation support. Skeletal animation is quite efiextvay to animate human-like
models. Milkshape 3D (MS3D) is the internal format of Millegie 3D modeler, which
has various plug-ins that are able to import other formatS3® supports also skele-
tal animation, and other formats can be converted into MS8ibguMilkshape 3D
modeler. GSE needed also an animation subsystem, which take of the correct
transformations of vertices according to data provided 888 format.

Table 4 lists also an iteraupport for more abstract visualizations which was be
fulfilled by including a highly configurable particle systefarticle system was to be
able to provide various particle movement patterns, whiettgcally meant that the
animation movement had to be controllable directly in thpligation which used the
particle system - a predefined set of movement patterns mghtave been suitable
for every occasion. This required that design patterns b carefully examined in
order to find proper solution for a particle system class.

The third requirement in Table #dicate users’ state between “available” and “do
not disturb” , indicates the need for an object management system. Thketabpn-
agement system was to provide a logical way to access angtobjghe scene. This
was accomplished by designing a scene graph class, whidd beuwsed to group
avatar models logically and retrieve them for handling. iliddally, the next require-
ment3D model avatars must not overlap was taken care of by designing a bounding
volume scheme with bounding volume objects connected teresgraph.

The last two requirements in Table grovide an option for rotating the globe and
provide a way to display connections on the globe between twmints was met by
designing a proper transformation manipulation methodasgusperations presented
in Section 3.1, and creating a method for approximatingrpatec curves from a set
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of points, which further on could be rendered as a contigupasl array, where two
adjacent quads were connected by one edge.

3D models saved in 3DS or Milkshape 3D format are represeagedangles. There-
fore, GSE had to support at least rendering of triangle prmes. The hierarchical
frustum culling was required to accelerate rendering iesavusers were connected
to the system. In order to provide frustum culling, camerd fiastum classes were
needed. Also texture/material support with lighting wasa&assity for more visually
appealing graphical output.

4.2 Language Selection and Applied Design Patterns

A large part of GSE is designed according to object-orieqexramming (OOP)

paradigm. Its benefits have been found to be modularizatmae reuse, better mod-
eling of the problem space and readability (Gwinn, 1992;rB8at990). Since the

nature of this project also requires efficient code, | chose &s the implementation
language. It allows to use OOP paradigm, and provides meamste very hardware-

specific code in time-critical sections, if necessary.

Data management is necessary for any program, that hanétesiation. One storage
method is to use a global object, that contains other obmctsimitive data types.
However, OOP guidelines advise against such global obgacabies, and since only
a one object is allowed, this imposes a problem. Esiegleton an object, that has
only one instance at any given time (Bilas, 2000). Singlefaovide full control over
creating and destroying virtually global objects. Singfet can be used in conjunction
with customizedtontainer classesvhich can store other objects with a specific iden-
tifier and retrieve them. They assist also in resource manage- an example of this
is destroying all textures by destroying the texture cor@aobject - provided that all
objects are actually stored into the container. When thigainer scheme is applied
properly, dreadful memory leaks can be reduced.

It is quite easy to determine, that less code equals lessanaimgy of code. The C++
standard contains a high-level feature called templatekil(, 1998: p.372).Tem-

platesprovide a way to create generic functions and classes. Teamthat a pro-
grammer can use one function (or class) with several diftedtata types, without hav-
ing to write a specific implementation for each one explcitihstead, it is done by the
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compiler. Templates can lead to more reusable code, bug tiaae been cases where
they have negatively affected readability and compile sirtiteees & Miller, 1999).
Advantages of utilizing this technique in GSE are explaime8ection 4.10.

4.3 Math Classes and Data Structures

The mathematic operations described in Section 3.1 areessigég when dealing with
3D graphics. They are needed often and in various placess alko meant, that |
had to implement them as efficiently as possible (some opéitigin techniques are
covered in Section 4.10). Matrices are restricted to squateices, and most common
sizes are3 x 3 and4 x 4. Rotations performed with Euler transforms are sufficient
to the point when multiple rotations about each of the axestbhabe made, and a
gimbal lock is encountered. Hence, | implemented an optopdrform rotations
using quaternions, which effectively prevent gimbal loekf occurring. Additionally,

| implemented various utility functions, such as conversiof rotation matrices to
quaternions and back again, calculation of eigenvectaiseagenvalues for matrices
(used in calculation of bounding volumes), and so forth. @regram of the core
classes of mathematics package is in Figure 14.

Math package

GSE_Matrix2x2f e
'SIZE |
GSE_Matrix3x3f | UV
-/ GSE_Matrix
GSE_Matrix4x4f|
'TYPE |
GSE_Vector2 — . | SIZE : size_t |

,,,,,,,,,,,

GSE_Vector
GSE_Vector3

GSE_Quaternion

Figure 14: UML diagram of the core classes in the mathemptckage.
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| used directed graph data structure and graph renderensgiwout the GSEGraphs
contain graph nodes and graph eddgesaph nodesepresent various things, such as a
renderer command, a 3D object or an animation jo@taph edgesonnect different
nodes togetheGraph rendererare classes, which do something with the data in graph
nodes. Graph renderers execute queues of commands, tiiatraesl from connected
graph nodes. The name “renderer” is perhaps misleadinge senderer classes do
not necessarily produce a rendered image, but update tpk gnaicture, change node
values, and so on.

| implemented graph, node and edge classes using C++ teaplB&ach node class
has aRun-Time Type IdentificatigiRTTI) member variable. RTTI variable is used by
graph renderer to determine which type of node is handled:l BTpassed as a tem-
plate parameter, and prevents situations where nodes fiffenedt types of graphs
would be linked by edges (or stored in graph with differemely- and cause unde-
termined actions. Graphs provide a foundation for rendgperation, animating, and
scene representation in GSE. Graph class diagrams areatksin Figure 15.

N
Graph classes

GSE_GraphNode GSE_GraphEdge

Figure 15: UML diagram of the graph classes.

| separated the actual data from graph nodes, and implethantexternal storage with
container classes. | found that name “container class” doekilly reflect the purpose
of the class, and decided to use name “manager class” instéach implies that all
actions concerning the data objects, “employees”, must@ah the “manager”. |
also implemented a restriction, that forces a pointer to aagad object to be stored
into appropriate manager automatically. This restrictiandles the issue of memory
leaks mentioned in Section 4.2.

49



When object pointers are stored into a manager, they cantevesl either by index
(since object pointers are stored into dynamic array) or leynory address (pointer
stores the memory address of an object). Retrieving by insleot very reliable
method (if index would be used thoughout the program exesjtsince objects can
be deleted from any point in the array. This means that thes@sdcan change when
objects are deleted. This leaves only a memory addresshyinibuman terms) is not
very descriptive name for an object. Therefore, managasekneeded to provide a
way to retrieve objects by a name. This name could be, for pl@ra string (character
array) or a symbolic name (an integer).

| implemented this feature by using a mapper class tempfatdapper classreates
type-to-pointer mapping for arbitrary types, where typgiv@n as template parameter.
This means that an arbitrary mappings can be created ascheBuis feature is used,
for instance, in Camera Manager where cameras can be sstrasnd deleted by using
their name (character array).

| wrote an octree data structure class to be used in spatahggy partitioning. An
octreeis a tree data structure, where each node has eight childsretd@maximum
(Ginsburg, 2000). Ginsburg also states, that it is an ideattre for representing
virtual 3D world, enclosed by cubes. | also wrote utility imadls to construct an octree
from geometry data (vertices). The octree class has bees asageneral as possible,
so that different variations of the octree data structurebmimplemented. One such
variation isloose octregUIrich, 2000), which uses objects instead of their geowmetr
and can be used as spatial data structure in a scene graph.isTeserved for the
future use, if ordinary scene graph should prove to be ineffidn some situation.
Octrees can also be used in conjunction of rendering vegg l@rrains. Octrees restrict
the amount of renderable data in efficient manner when cosaldio hierarchial view
frustum culling.

4.4 OpenGL Renderer Class

OpenGL was chosen as the graphics API, since it is robusisibleen available for a
very long time and is available for several platforms. | dasid GSE to be platform-
independent, and also API-independent where possibleotievine initial implemen-
tation for graphics renderer using OpenGL, but it can bergldd to include Direct3D,
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or software renderer, if necessary. The renderer comparsestits own internal com-
mand system to call OpenGL API function calls.

The initial requirement for the renderer to operate, is akimgyy OpenGL context in a
window. This is accomplished by creating a speaficeen entitywhich creates a new
window according to given parameters. The renderer class dot contain method to
create a window where images could be drawn. | did this degdilely to keep engine as
modular as possible - this way OpenGL context to a window escréated by different
means, and renderer system can still be used.

Image rendering is performed by traversing a render graphenéler graphis a di-
rected graph with nodes representing rendering commartihair data. Renderer is
a class which handles these nodes, and converts the grapBeatation into API func-
tion calls. The renderer and graph are paired together wglblzal traveller template
function, which takes a graph and a traveller class as i@npaters. In the function,
nodes are passed to renderer’'s Enter()- and Leave()-nstiadeokre actual logic re-
sides. Class diagram for OpenGL renderer classes is shokigune 16.

N
Screen and OpenGL Renderer classes

«Singleton»

GSE_Screen e — GSE_OglScreenParams

| GSE_OgIRendererFeatures

Q

\
\
\
\

GSE_OgIlRenderer

- GSE_OgIRendererFontset

Figure 16: Diagram of the OpenGL renderer classes.

| designed the renderer to encapsulate as many of the Opesi&ied library calls
as possible, and separate the actual rendering from therelatasentation classes.
This is beneficial in many ways; for instance, a particle erystloes not know how
particles are rendered - which allows different outputsd@enerated from same data,
if required. Encapsulating the OpenGL library calls alsckesait easier to include
support for another 3D graphics API libraries, such as D#@¢ by writing another
renderer class using other API function calls.
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View settings are modified using a camera class. A cameraeamobed, rotated and
its properties can be altered at any time. Each camera atitadhacreates a frustum,
which can be used in frustum culling. Class diagram of thege Figure 17.

S
Camera classes

GSE_CameraNode  GSE_CameraMgr

)
L/

GSE_Frustum GSE_Camera

!

Figure 17: Camera and frustum classes diagram

4.5 Particle System

The particle system should be as flexible as possible in dalerovide variety of
different visualizations, and efficient enough to keep nendf particles high. High
number of particles is essential in simulating large esditonsisting of very small
pieces. An example of these entities is a sandstorm, whishmentioned in Section
4.1. | implemented a particle system using policy-baseskalesign and templates, as
described by Gamedev.net (2003), to meet these requirement

Alexandrescu (2001: p.2) defin@wlicy-based class desigas constructing a class
with complex behavior from many smaller classes, each otlwtakes care of a one
structural or behavioral aspecPoliciesare interfaces, which must be implemented
when individual policies are created. In our case, polisigsement specific actions,
which modify the particle class attributes. Particle sysitself does not know how the
particles are modified as the time passes, but knows how tg pplicies to particles.

The particle system hierarchy is based on design presept@dimmasutra (2002). Parti-
cle system consists of following classes: Particle, Pa®igstem and ParticleSystem-
Mgr. EachParticle belongs to ondParticleSystem ParticleSystemare managed by
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ParticleSystemMgrsindividual particles have position, size, velocity anégey pa-
rameters. These parameters are updated by ParticleSystamg,the policies. There
are two types of policies, initializer policy and action gl Initializer policiesare
used when new patrticles are created. An example of an inéigbolicy is a size pol-
icy, which defines the initial size of a particle at birtAction policiesare used when
particles are updated, an example of this im@ve policy There exists also a Com-
pletePolicy, which can combine size, energy, velocity, eroent and other policies
into a single policy. Some of the commonly needed policiesadready implemented,
and several more can be constructed when needed. The @astgtem class diagram
is shown in Figure 18.

,,,,,,,,,,,,,

ParticleType
' ColorPolicy
GSE_ParticleSystemNode GSE_ParticleSystemMgr ' SizePolicy
- . ' VelocityPolicy
\\ A~ ' EnergyPolicy
S _ ' PositionPolicy
GSE_ParticleSystemBase GSE_CompletePolicy
{ ParticleType
GSE_Particle oo GSE_Sizelnitializer
, SIZE : size_t | A
InitializePolicy | ParticleType |
‘ActionPolicy | [ |
'ParticleType GSE_GravityAction
GSE_PartcheSystemw ParticleType
GSE_MoveAction J

GSE_NullPolicy

Figure 18: UML diagram of the particle system.
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4.6 Animation System

| built the animation system also on a graph data structureémation graph contains
animation nodes, which can be either joint nodes for skiedgtamation, or particle
system nodes for particle system animation (Figure 19). mation renderer class
handles updating of nodes and their data. The animatioersysaindles the correct
timing of animations, but it must be told explicitly how mutime has passed since
last update. This feature can be used to animate objectevnmabtion, for example.
Animation system supports also looping, stopping and ooitg the animation.

Animation subsystem classes

,,,,,,,,,,,,

GSE_ParticleSystemBase

/ P /
() ~
\/ e

GSE_JointNode GSE_ARootNode | GSE_AnimParticleSystemNode

,,,,,,,,,,,,

GSE_Joint

Figure 19: UML diagram of animation graph and nodes.

| designed animation renderer to be responsible for upglatia animation in every
joint. Each joint consists of three pointers; a pointer toegtex array with original
geometry data, a pointer to a vertex array with modified geépntata, and a pointer
to an array of indices, that mark the vertices belonging ¢égadimt. Each joint has also
an array of keyframes, which express a rotation and traasl&r that joint at specific
point in time. Vertices, marked by indices in the array, asmsformed by animation
renderer using interpolated parameters retrieved frorfré&me data, and stored to the
vertex array containing modified data. OpenGL renderesalass the modified vertex
data while rendering animated objects. | automated thieeratomplex process to the
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point, where it is only necessary to design the animaticay i, and update it before
rendering.

4.7 Scene Handling and Visibility Determination

Scene objects must be represented in hierarchical relagi@ach other, if scene is
desired to be managed logically. Just by adding drawablectbjnto a dynamic list
will impose problems when object-level culling is perfomnéf culling is done on each
and every object, it works, but might be slow when the numbebgects increases.

The scene graph is built to include an animation graph andha@eregraph, since in
most cases they would be needed anyway - animation is needéldision of move-
ment, and objects need to be rendered in order to produceageinscene objects are
created via scene graph. This is because each graph noddehusg to a graph, at
least logically. Memory-wise speaking, it can reduce menheaks when every graph
handles all of its nodes, and graphs are able to delete tbdeswhen the graph itself
is deleted. This is also easier for the programmer, sincesiade managed by the
graph, and do not need an external storage.

Scene nodes contain a bounding sphere and an oriented hguwmak for hierarchi-
cal frustum culling. Each node keeps track of its local tfams, as well as world
transform. The matrices representing transforms are wseddate bounding volume
positions and orientations. This way, it is only necessagalculate bounding volume
for vertex data in model coordinates, and later it is trams® using same operations
that were applied to the vertex data. Class diagrams foresgesph are shown in
Figure 20.

4.8 Materials, Textures and Lighting

This section describes the implementation of materialstexwires, transparency and
lighting.
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GSE_SceneGraph
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N

GSE_SceneNode < GSE_SceneCameraNode

_—\ /\ [~
/\ —

GSE_ScenelLightNode GSE_SceneLimbNode

GSE_SceneObjectNode

A/

GSE_SceneParticleSystemNode | GSE_SceneOctreeObjectNode

Figure 20: Class diagram of scene graph system.

Materials and Textures

Materials are represented Material classes, and are managed\bgterialMgr class.
Textures follow this same principle. | designed materialg gextures to be applied to
objects in following manner. Each material (or texture)ssigned to a material node
(or texture node). Geometry objects are assigned as childshof material or texture
nodes in a render graph. Render graph is processed by Opem@érer class, which
interprets nodes one after another, and last material Xarre) applied before geome-
try rendering node, is taken into account. Materials canithesopaque(completely
solid) or (semi)transparenor translucent which means that underlying graphics are
somewhat visible behind the object made of transparentriahte

| also designed configuration file utility class, which iseat® read text files and store
name-value pairs. | included the configuration file utilitass into MaterialMgr and
OglTextureMgr classes, and wrote methods that read a coafign file and create
new material (or texture) object from it. This allows masésiand textures to be de-
fined by configuration files, and read by their respective ganabjects. Material
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configuration files contain color values for material ambigliffuse, emission, shini-

ness and transparency values. Texture configuration fileicoa path to an image
(or video) where texture is generated from, and the texgyre.tFigure 21 shows class
diagrams of material and texture objects, and their massager

%E GSE_MaterialNode

«GSE_Singleton»

L GSE_FrontMaterialNode GSESEaNCyd] 1 GSE_MaterialMgr

T

GSE_BackMaterialNode

GSE_TextureMgrInterface

GSE_Texture

/\
\ / \

GSE_TextureNode T

«GSE_Singleton»
GSE_OgITexture — - GSE_OglTextureMgr

Figure 21: Class diagram of material and texture classes.

About transparency

The transparency effect is an expensive operation if it edwslot, and if a realistic
result is desired. True transparency effect can be achibyadktermining the cor-

rect order of transparent pixels and rendering them fronk badéront. However, this

is very time-consuming process. Transparency can be fakedriety of ways, de-

pending on the level of desired realism. One way is to ren@asparent polygons in
arbitrary order (after opaque polygons have been rendessdy additive pixel blend-

ing, where incoming fragment color values are added toieggines. Disadvantage
of this technique is, that values might become saturatedlfiaal result is white and

not transparent at all. Another way is to sort polygons fraunkoto front, and render
them in that order after opaque polygons.

A pseudo code for rendering sorted transparent polygonsosrs in Listing 5. But
in most cases, this is not applicable, since the drawingipvies are not stored as a
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Listing 5: Pseudo code for rendering transparent polyggrsoting.

void Render( Polygon polygons|[] )
{
Polygon opaque[];
Polygon transparent([];
SortOpaqueAndTransparent ( polygons, opaque, transpargn
SortBackToFront ( opaque );
SortBackToFront ( transparent );
DrawPolygons ( opaque );
DrawPolygons ( transparent );

Listing 6: Pseudo code for rendering transparent polygsigualpha test.

void Render( Polygons polygons|[] ):
{
Enable (DEPTH_TEST);
Enable (DEPTH_WRITE);
Enable (ALPHA_TEST, ALLOW_ALPHA EQUAL TO ONE);
DrawPolygons (polygons);
Disable (DEPTH_WRITE);
Enable (ALPHA_TEST, ALLOW_ALPHA LESS THAN_ONE);
DrawPolygons (polygons);

polygon soup, but they are grouped by objects they belonigtplementing the trans-
parency algorithm using this method would require all draywprimitives of visible

objects to be merged into one array of polygons, which woeldirist sorted to trans-
parent and opaque, then each subset would be sorted b&datmrder and finally
rendered. This yields a working, but very slow solution, ethis not applicable to
more advanced real-time rendering.

Woo et al. (1999: p.441) present an implementation for parency algorithm using
the hardware-accelerated depth and alpha téstifigne algorithm shown in Listing 6
is pixel-perfect, but halves the frame rate from optimalasiton since visible geometry
is sent twice over the pipeline.

Speed-wise speaking, a quite viable solution is to sortad®jby transparency, and
draw them in two batches utilizing depth testing. This aBowearly-optimal speed
and quite realistic results in most cases. It must be nobed résolving back-to-front
order of overlapping arbitrary-shaped objects is nighlypassible without splitting

their intersecting polygons.

11See Section 3.2 for details
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Lighting

Lighting can be categorized as dynamic lighting and stagitting. Dynamic lighting
means that lighting equations are calculated from cuiyedlive light sources, which
contribute to the scene. Light sources in a scene can movelamge brightness,
color, shape, and so forth. This means that the pixel valuk®evupdated to reflect
these changesStatic lightingis a lighting scheme, where lights are stationary and do
not change their parameters.

OpenGL library imposes some restrictions to the lightirigs bpecified that OpenGL
supports at least eight different light sources (Woo, & E99). This means that the
scenes cannot be lit with more than eight lights at a timeesmost implementations
support only the mentioned eight lights. But scenes mighé imaore lights than that -
think street lights, for example - how can eight lights mantwat? Well they cannot.

By using multiple rendering passes and specific blendingatipas, contribution of
each light could be calculated, but this solution is not \effgctive, because

1. lights may be so far away from the object that their contrdn very small.
2. lights have different brightness.

3. each rendering pass consumes time.

Therefore, the solution is to reduce the number of lightshatdost of accuracy in
lighting, which rarely imposes a problem. A pseudo-coddtiaralgorithm is given in
Listing 7, where lights are selected on object-basis.

Let n be the maximum number of lights supported in 3D graphicsatijor The set
of active lights is sorted in descending order by brightnesen observed from the
renderable object. From the sorted set, the firéights are made active during the
rendering of current object. Using this procedure, an etyitnumber of lights can be
inserted into the scene, and implementation uses only tbs with greatest effect on
the object. The algorithm handles all lights as point lightsd will produce incorrect
results if multiple light types are included in the evalubset of lights.

There exist pre-processing techniques, which can emuiateftect of multiple static
lights without actually using them, namdight maps which are a texture-based so-
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Listing 7: Pseudo-code for selecting most contributingtégfor an object.

Lights[] SortLights( Light lights[], VectorXYZ position ,integer NumLights )
{

for each light | in Lights
{
|.brightness := |(|.position— position)|;

}
SortByBrightness (lights ,DESCENDING_ORDER);
Lights lightarr[];
for i=1 to NumLights
{

lightarr[i] = lights[i];
}

return lightarr;

lution for emulating lighting effect. In this technique, ¢op of each texture is put
another texture and their colors are blended. The top-reasiire contains only dif-
ferent shades of gray and the output yields an image withedaakd lighter areas.
(Akenine-Mdller & Haines, 2002: p.150). This technique t&used to speed up ren-
dering, since actual lighting calculations take more tiG8E supports this technique
via textures.

It is easy to picture a situation of a scene, which has martypetay objects, each lit
by same set of lights. Every light might not contribute torgvebject in a scene, if
their distance is large enough. Therefore, it would be uessary to sort every light
for every object. Instead, some lights could be left out tdgether for objects that are
definitely out of range. | implemented this optimization Isyng an illumination set for
each object. Anllumination setcontains an arbitrary subset of lights in a scene. When
object is rendered, only those lights in object’s lightireg are considered. Illustration
of illumination sets is seen in Figure 22.

4.9 Shaders

Shaders were briefly mentioned in Section 3.2, and they carseed to create more
complex lighting effects, for example. There exists selv@nader languages, namely
assembler, Nvidia Cg, HLSL and GLSL. | implemented shadppsett in GSE using
OpenGL Shading Language (GLSL). Shaders are divided inbop@avts, namely ver-
tex shaders and fragment shaders. Fragment shaders allg datedriven by vertex
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[lluminationSet 1

llluminationSet 2/
[luminationSet 3

Set Of All Lights

Figure 22: lllustration of the illumination set scheme.

shaders, but they can be used also individually. Vertex eamgirient shaders can be
combined into ashader programwhich is used to reprogram some parts of the ren-
dering pipeline. Since a program can be constructed by auntseveral different
shaders, it is necessary to manage vertex shaders, fragimeeérs and shader pro-
grams separately.

Each shader can be passed shader parameters, @iifemm parametergsame pa-
rameters for all vertices) arertex parametergifferent parameters for each vertex).
Shader code is loaded to shader object using a separatdeesini rendering prim-
itives are drawn using a shader by assigning primitive digsdommands as child
nodes of a shader node - in the same manner as materials ame$exre used.

The shaders are powerful tools, but they also come with &psbaders must imple-
ment main functionality in the fixed-function pipeline, uas vertex transformation,
lighting and texture mapping, if any shader is used. Thismaghat the mathematical
model for those operations, such as the lighting equatiessribed in Section 3.6,
must be understood. Figure 23 shows class diagrams of arshisloeystem (shader
parameters are excluded to maintain some clarity).
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The shader subsystem
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GSE_Shader
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GSE_OglVertexShader — GSE_VertexShader

B GSE_OglIFragmentShader — | GSE_FragmentShader

Figure 23: Class diagram of the shader subsystem.

4.10 Optimizing the performance

This section explains three optimization techniques ugsettié GSE, namely avoid-
ing use of virtual functions, vertex buffer objects and Cemplate metaproramming.
They have effect on the performance and also to work relateddintaining source
code.

Avoid using virtual functions

When programming in C++, some OOP design patterns must bhdeayan order to
reduce unnecessary function call overhead. An exampledf awcase, is the use of
inheritance interfaces. Inheritance interfaces, whiehcammonly used design pattern
in OOP, are implemented using pure virtual functions in Cftre virtual functions
are base class methods without implementation. This méanshtey must be imple-
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mented in a child class inheriting the base class, in othedsyehrougtdirect special-
ization Virtual method call is determined run-time, using a viftiuaction table, if it

is called from a base class Schildt (1998: p.349). This fedtas been shown to cause
significant overhead (Driesen & Hdlzle, 1996) and should\aeded in time-critical
sections of GSE, which happen to be everything related tdem@mg a single frame;
drawing calls, visibility determination, animation, aralferth. The old truth, OOP is
not a silver bulle¥, is apparently valid also today.

Vertex Buffer Objects

When large amount (tens or hundreds of thousands) of coaséqails to functions de-
scribing the vertex position, color, and texture coordésaire made, frame rate comes
down to a grinding halt. One of the problems is fln@ction call overheadwhich
means the time to enter the function and leave it. Anothdolpro is the state change
required in OpenGL to submit different types of data (Maase2000; Woo & al, 1999:
p.67).

To keep frame rate sufficientf§/high and render highly detailed models, the data must
be optimized before sending it to rendering pipeline. Byety grouping the data,
and sending larger batches using specific array functids,dalmore efficient than
calling individual functions that define vertex positions|or and surface normals.

Vertex arraysare the key to perform this kind of optimization. Data is pathnto

arrays, which are sent to rendering pipeline using a singietfon call. Vertex data
(vertex coordinates, texture coordinates, colors and abu@ctors) may be packed
tightly into a single array, or be split among many arrayse Tdrmer way is referred
to asinterleaved dataand latter astreamed data According to Marselas (2000),
using streamed data is about 30% faster than interleaved datng this information

as basis, | implemented GSE drawing primitives entirehhvgireamed vertex arrays.
This reduces the function call overhead, and provides pé&dormance when large
vertex arrays are used. However, Marselas stated that uemex arrays with array

12The term in this context was first used by Brooks (1987), whtestthat OOP is not a silver bullet

that could kill the werewolf of software engineering prabke
13This depends on application, but subjective view of the @it over 60 FPS=good, less than 30

FPS = bad.
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rendering functions requires 10-50 vertices to be subthitieorder to overcome the
array function call overhead.

Marselas also stated, that when vertex arrays are usedxyartd other) data is copied
into graphics card memory during rendering of each frames f#iikes time, and if the
data does not change, it is more viable to store it into the amgraf graphics card,
where it can be used directly without copying. This proces®ierred to asaching
and in GSE, it is realized by using OpenGL vertex buffer otgjec

Vertex buffer objectévVBOs) allow application to store vertex (and other) datetoan
server-side high-performance memory of the OpenGL arctite (NVidia Corpora-
tion, 2003). The VBO is an extension to the OpenGL, and sineenGL version 2.0,
it is promoted as core functionality. By using VBO, vertegymal, and texture coor-
dinate data is transferred to the memory of the graphics eatican be retrieved from
there when rendering calls are made.

Adding VBOs to current engine architecture required sligdmpromises to isolation
of graphics library code. Each VBO requires an OpenGL-c@nplname(which is
expressed with a specific OpenGL data type). This name iedinto GeometryData
class as a member variable, because it was the only reas@iabé. Since Geometry-
Data objects should not know anything about the underlyidgyBaphics library, this
is a problem. If similar support exists for another 3D gragHibrary, and that library
is included into GSE, its name storing scheme must be addééametryData class.

Controlling the way how VBOs are generated and altered, issmomplicated mat-

ter. GeometryData class itself should not know anythingaraiyout the VBOs than

a name. Actual controlling of VBO functionality is left foné OpenGL renderer. To
solve this problem, | developed a communication method éetwOpenGL renderer
and GeometryData class, which allows renderer to know whengate, regenerate or
delete VBOs. A GeometryData object may hold one of the messkgjed in Table 5

to the renderer at any time.

First item in Table 5 is the initial state. This state is alebiEVBOs are not supported
by underlying hardware, or an error has occurred during €@gneration process.
Second item is the principal item for creating the VBO cachieird item is set when
cache as been created. Fourth item in Table 5 is used to hedr&d8BO cache by
recreating it from vertex data. Last item is obviously usaddeleting the VBO cache.
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NO_CACHE VBOs are not used, data is copied to graphics car
memory for each render call.
REQUEST_VBO_CACHE Next time the OpenGL renderer accesses
GeometryData object, cache is created to graphic
card memory, and message is set to
CACHED_IN_VBO.

CACHED_IN_VBO Data is already cached on graphics card memory,
VBO is used render it.
REGENERATE_VBO_CACHH Data in the vertex array is changed, cache in the

to CACHED_IN_VBO.

DELETE_VBO_CACHE Delete cached data from graphics card memory, a

set message to NO_CACHE.

graphics card memory is updated and message is

[92)

set

nd

Table 5: The VBO messaging scheme between OpenGL rendgest alnd Geome-
tryData object.

C++ Template Metaprogramming

Matrix mathematics is one of the key elements in 3D programymisensee (2000)
stated, that by optimizing the matrix functions using C+mpéates, a 20% increase
in performance was discovered in conjunction with 3 x 3 nsa8i The improvement
was accomplished by unrolling loops in multiplication, igkrwhich can be explained
how loops are implemented using the assembly language. \owe importance
of profiling was also stressed by Isensee: same optimizédicdmique applied to 4
X 4 matrices caused over two-fold performance degrade. Tweitom itself is not

changed when using these methods, so asymptotic time-eaityplemains the same.

Templates have also other advantages than performancg ecaheeduce the amount
of code. For instance, by declaring a matrix template witESAnd TYPE parameter,
arbitrary-sized square matrices can be created on the fiythgtdesired data type just
by typing one line.

template <std::size_t SIZE, typename TYPE>
class Matrix

{

protected:
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TYPE m_aValues[SIZE = SIZE];
public:

And to create 2 x 2, 3 x 3 and 4 x 4 matrices with float, followimgk must be written:

Matrix<2,float> m_2x2fmatrix;
Matrix<3,float> m_3x3fmatrix;
Matrix<4,float> m_4x4fmatrix;

All of the matrices now have similar implementation and tiienctions are optimized
during the compilation phase. The matrix class can now béeimented with double
data type just by replacing the woflbat with double- all data types with one im-

plementation. | implemented matrix classes in this way, smdar no performance
problems have been noticed.

4.11 Libraries utilized
GL and GLU
OpenGL library provides the core 3D graphics drawing comasaiGLU is an utility

library for OpenGL library. It allows, for instance, rendeg of simple geometric
objects with simple function calls.

GLee

GL Easy Extension library handles loading of various Oper&lensions. It provides
run-time mechanisms for checking support for specific esitars in several platforms.

lib3ds

The lib3ds library provides support for loading and saviaggdnto 3DS format. Itis
used to load models, materials and textures from 3DS fildsetengine.
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SDL
The Simple Directmedia Layer is a multimedia library for el platforms. It pro-
vides support for keyboard and mouse event handling, agatindows with OpenGL

context, rendering 2D graphics, playing sounds, etc. Itisarily used for creating
windows with OpenGL context and handling keyboard and meusets.

SDL-image

SDL-image library is an extension to SDL, and allows loadnfiggarious image for-
mats, such as JPEG, PNG, BMP, and GIF. It is used to creata¢sxXrom images.

Ffmpeg
Ffmpeg library is a cross-platform audio and video stregntiiorary, and is used to

provide video textures. It supports various codecs, aligwarious formats to be used
in videos.

Freetype
Freetype library is used to render text on 3D screen withrdésiuetype font. Itis used

only for displaying 2D messages on screen. Fonts are noeciau/to transformable
3D objects, and are used in texture-like manner.
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5 | Have Created a Monster! Time to Flee, But Where?

In earlier chapters, | have told that my motivation for doihig research had risen from
a need to design a 3D engine for netWork Oasis project. | hgvai@ed that real-time
3D graphics are used in various places, such as in militamitrg simulations, collab-
orative virtual environments, medical applications, gan®® window managers, and
so on. | have also briefly covered the history of hardwareslecated 3D rendering.

| defined the 3D engine to be a two-edged sword; it is a higgtlabstraction of 3D

graphics library calls where data is handled on objectlevsd at the same time, it
works as a combination of several techniques which acdeléna rendering process.
| have introduced three different 3D engine projects atégldrom sourceforge web
site, and cross-compared their rendering features - cdimguhat their features are
very equal.

| have explained the concepts involved in real-time 3D gi@plobserving them from
mathematical and computer graphics perspective. | havdieththe design of my
3D engine, starting from requirements, going through inm@etation details and op-
timization techniques, finally reaching the point whereesgsh questions must be an-
swered. In this chapter, the research questions presanteection 1.1 are answered
by providing a list of necessary features and explainingitheore closely. In the final
paragraphs, directions for further work is discussed.

Questions and Answers

Question onewhich set of features is needed in generic 3D graphics engitibrary
to provide basis for further development?

1. Vector and matrix manipulation package. Each of the 3D engines will have
to deal with linear algebra, mainly matrices and vectors.

2. Scene culling Since all objects are not frequently on screen at the same ti
there is no use to draw them all, so a method for determiniag thsibility is
needed. By designing proper bounding volumes, and inteosetest methods,
visibility determination can be made faster.
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. Texturing, materials and lighting support. Various surfaces look more de-
tailed with images and materials are applied over them. Adgding improves
the visual quality in some situations.

. Hierarchical scene representation Usually scenes consist of more than one
object. Managing the relative and absolute positions ohedsgject will be a
nightmare without a logical structure.

. Animation support. Some applications, such as games, use animated 3D mod-
els. Skeletal animation is popular and flexible method ofratt@r animation
and must be supported.

. Spatial sorting of geometry. When dealing with large objects, which have only
a portion of their geometry displayed at a time, there is nedrt® draw them
completely. Therefore, a method which sorts the vertex adtasufficiently
small subsets and allows fast selection of an arbitraryreat them, is needed.

. Shader support Shaders can be used for various effects and techniquesigan
from skeletal animation to physics simulation calculatard lighting effects.
The shader support is essential in order to be able to addugafeatures to the
engine in the future.

. Properly documented API with tutorials and examples This is required for
any developer to be able to utilize the engine.

Question two -how the minimal set of features must be implemented in orderd

provide maximal reusability in different projects?

There exists numerous ways to implement these featureshard features probably

have been implemented in somewhat different ways in evegynen And it is very

hard to say, which ways are best or most efficient. In GSE, jepted my efforts

towards reusability, and implemented the features in valg ways.

Vector and matrix manipulation package

The mathematic operations are needed in more places thamlldnprogrammer is

able to count, and the operations are used frequently winelerimg frames. This leads

to the fact, that the mathematics package must be as effizgepossible to provide
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a high frame rate. The mathematics package can be furtheniaptl by processor
architecture-based optimizations, such as Streaming SBM@nsions (SSE), which
may reduce the practical execution time by factor of thrdes dptimization does not
affect the time complexity itself, but takes advantage ef pipeline provided by the
processor, and enables execution of several commandsvaitia clock cycle. My
current implementation does not use SSE optimizationsatbetnpts optimize mathe-
matics package using C++ templates combined with unrolbogs in multiplication
process. | have designed the mathematics package so,¢hatbe extracted from the
rest of the engine and used independently, if such a needdsaose.

Scene culling

| have implemented camera and frustum classes, which albgvsection tests to
be performed easily. | have also written several boundidgnae implementations,

and intersection test methods. My implementation includes-aligned and oriented
bounding boxes, bounding spheres and cones. | have imptetherersection tests
for frustum-sphere-, frustum-box-, sphere-sphere-, ipbene- and box-cone-pairs.
| have integrated hierarchical view frustum culling into @ese graph, which han-
dles also the updating of bounding volumes when positionaihtation of objects

change. These visibility determination techniques can sed leasily, since | have
encapsulated them into a single package, so those testsoaset in various other
projects as an independent part. The culling methods, henveaty on features of the
mathematics package and therefore require for it to be usacekh |1 have written the

camera and view frustum classes without any bindings to tigeying 3D graphics

API.

Texturing, materials and lighting support

I have designed materials and textures so, that they can@edpo renderable ge-
ometry very easily. Material properties in GSE be definedl@sfiwhich in turn can
be converted into run-time objects my material manager. G3ible to use variety of
image formats in textures. This includes also videos, whiehsupported via ffmpeg
library.
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| designed the lighting to be very configurable, and it works-gbject basis. I've
implemented a light virtualization technique, that inasdnly the lights which con-
tribute the most light to an object. In GSE, lighting worksdsfining illumination sets
(which may include an arbitrary number of lights) that atacted to objects. In this
way, very complex lighting schemes can be created.

Hierarchical scene representation

In my implementation, objects are grouped using a scendngvapch provides a sim-
ple way to handle hierarchical object structures, and aatesposition and orientation
updating. For instance, if there exists object A, which isiponed to a specific loca-
tion on object B, programmer can move both objects simply bying object B, since
position and orientation changes are reflected from paredé mo child nodes. This
removes a great deal of updating burden from a programmeg@rourages to create
complex models constructed from several 3D objects.

Animation support

| designed 3D model animation support using skeletal anamat have written helper
utilities, which assist in converting an MS3D animatioroiain animation graph. Ani-
mation is controlled by defining a passed time for each franmeplemented animation
so, that it is controllable on joint-basis, meaning thatr@ation can be stopped in some
joints while continuing it on others. | designed a featuramamation renderer, which
allows to use only a portion of an animation stored in MS3D. fildis way, several
animations for a single model can be included in one file, el easily. Animation
system supports also animation pausing, continuing anargo

Spatial sorting of geometry

Very large models require much processing power to be reddén GSE, the process
is accelerated by using octrees, which split the data intallempieces. Hierarchical
view frustum culling is used to determine which pieces astlé during run-time.

This feature allows very large terrains to be rendered witBtressing the bandwidth of
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the graphics processing pipeline. | implemented octressdtabe simple and effective,
general-purpose data structure, which can be used in maogsl

Shader support

Shaders can be used for various effects and techniquese imglemented the shader
support for GLSL, which is a part of the OpenGL 2.0 standamthBhader types, ver-

tex and fragment shaders, are supported. In this implementshaders can be read
from source files and inserted as rendering commands liketey rendering nodes -
they do not need any special treatment. The shader supg@&knallows several spe-
cial effects added into the engine, without actually chagghe actual implementation
of GSE. An example of such an effectbfooming where light sources “leak” their

light around them, and generate a glowing effect. Shadersspecially useful feature
in the sense of the engine extendibility.

Properly documented API with tutorials and examples

The importance of documentation in software projects cabhastressed enough. An
API can be used by examining the source code, but it is not wmemtive. Properly
designed examples help in the learning process, and aldpridgrammers to study the
features of the library. For later use, a programming refezes needed when a specific
feature description is required. Tutorials are very harcréate in this particular case,
since there is not exact purpose, where the library shoulgsbd. In the absence of a
better tutorial, | have provided an amply commented refeemplementation for one
project, and documented the entire API using doxygen. DeRrygenerates, among
other formats, an HTML-documentation of API functions fasg viewing.

| Stand on the Shoulders of Giants

| find the overall implementation of the engine to be quiteséattory. Graph data
structure seems to work very well as a basis for nearly elvarygt It is very flexible and
new features can be added using the graph-renderer schémeuipose of GSE was
not to provide a solution for a specific visualization praoblealthough it was ignited
using a specific problem as a basis. Neither it is a generid88ry, which would work
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well out-of-the-box in all possible projects. The resulai8D engine library, which
can be used as a basis to build more sophisticated solutamsualization problems.

From theoretical and technical perspective, the futureareh could focus to find out
how several sections of GSE can be optimized even furthdnwmat implications do

these optimizations have. It would also interesting to knewvat optimizations be
done automatically via compiler, and what must be writtemuadly.

The engine is never actually ready. Future projects mighsisd of implementing
support for other graphics libraries, such as Direct3D ¢ihmight allow better per-
formance on Windows platforms) and adding more effects t& &G8ch as dynamic
shadows, reflective materials, mirrors and so forth. Theseldpment projects could
also put GSE in trial to test its extendibility, and resultsiicl be used to create a better
3D engine base design.
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Appendix 1: Source code of GSE
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