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Abstract

In the beginning, two research questions are formulated; which set of features are

needed in generic 3D graphics engine library to provide basis for further development,

and how the minimal set of features must be implemented in order to provide maxi-

mal reusability in different projects. The history and usage of accelerated real-time 3D

graphics are presented briefly. The concept of 3D engine is defined to be a two-edged

sword: it abstracts and accelerates. Three existing 3D engines, namely Crystal Space,

Irrlicht, and OGRE, are compared to each other and it is shownthat their features are

rather similar. The scale of things that a 3D engine must handle is presented by ex-

plaining underlying mathematical concepts, operations and 3D rendering pipeline in a

general level. The story is continued by introduction of 3D engine design, which is

based on requirements of a 3D application, where core features were clearly visible.

From these requirements, the functionality of most crucialelements is described using

class diagrams and descriptions, covering also three used optimization methods, and

finally giving a short description of required external libraries. The research questions

are answered by describing the eight necessary features. After concluding that the im-

plemented 3D engine library is quite satisfactory, furtherresearch directions pondered,

which include a study of optimization techniques and their effects in a 3D engine.

Also few future projects are mentioned, which could be done to add new features to

the designed engine.

ACM classes (ACM Computing Classification System, 1998 version): I.3.5, I.3.6

Keywords: Three-dimensional graphics, 3D, OpenGL, 3D Engine, Real-time graphics
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Foreword

Tremble, ye petrified monoliths of Science;

Let new dawn shine!

I question, forge new,

In a flow - great and sublime!

I fall, and stand again,

Taller than those who stood before,

Let us ascend those giants

That have become the lore.

Keepers of the old,

Wise of the past,

Be warned -

New reign. . . has come to last.

“May the fate hold the becoming of a storm.”1

In Joensuu 2007,

Anssi Gröhn / eNtity

1-Quote is from the intro of PC game Return to Castle Wolfenstein, by Id Software (2001).
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Glossary

3D Three-dimensional

API Application Programming Interface.

CAD Computer Aided Design

CVE Collaborative Virtual Environment

Direct3D A 3D Graphics API for Windows platform.

FPS Frames Per Second; a unit to measure rendering speed.

GPL GNU Public License; a free software license endorsed by the Free Soft-

ware Federation.

Hack A clever programming trick.

LGPL Lesser GNU Public License; a non-viral free software license endorsed

by the Free Software Federation.

SDK Software Development Kit; collection of tools and libraries that assist

in developing an application.

VR Virtual reality; artificial worlds inside a computer.
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1 Introduction

In this chapter, I present the things that have lead to this point, and give a short rea-

soning why I am writing this thesis. I also show where my thesis stands on the field

of computer science by formulating research questions, andexplaining how they are

answered. In the last section of this chapter, I give a brief summary of all chapters in

this thesis.

1.1 The Motivation: An Oasis, A Mirage and The Cruel Hand of

Economy

The driving force for the thesis and the 3D Engine has been theinitial concept of an

Avatar Mirror for the netWork Oasis project, as I described in my B.Sc thesis (Gröhn,

2006). The idea was to create a large wall-sized screen whichwould display users’

virtual self in different forms when they pass by. Also the Internet connections were

to be visualized using a planetary view with arcs connectingthe connection origins to

Oasis.

The netWork Oasis project unfortunately went through a series of budget cuts, which

caused the Avatar Mirror to be canceled. However, a properlydesigned 3D rendering

engine can be used in a variety of applications. The alternative visualization purpose

in this case was a marketing demo representing the Oasis facilities, where the user was

taken on a tour in the rooms.

The required graphics rendering software provided me a topic for the thesis. Various

free and open-source 3D engines exist already today, so writing one from the scratch

might sound laborous. A brief survey of the features on a set of different engines is

performed in Section 2.3. Developing everything from scratch will gave me a total con-

trol of the engine. The major drawback of this approach was, obviously, the required

time, but the advantages are worth the effort - adding a new feature will be easier than

reading the source of another engine and writing a hack.

The process of developing a 3D engine is interests me also from a more practical point

of view, since I plan to create a game that utilizes 3D graphics. And since the engine

in this thesis provides a rendering component to be used in that game, I am hitting
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two birds with one stone - my Master’s degree and a future gameproject. But, I argue

that there exists no master solution, an all-purpose 3D engine, which would perform

well in every possible game. This is dictated by the fact, that there are differences

in the implementation, for instance, for a real-time space simulator, where rendering

of the star systems is important (Gamasutra, 2002) and a top-female model simulator,

where realistic hair animation and rendering might play a great role (Byoungwon et.al,

2005; Bertails, et.al, 2005). Some features needed in one are not needed in other, and

some features are necessary in order to produce 3D graphics in general, regardless the

game type. By finding out common features, I can create a set ofcore functionality,

which can be used as a basis for various other engines that aremore specialized to

specific situations. Therefore, as my first research question I need to askwhich set

of features are needed in generic 3D graphics engine libraryto provide basis for

further development?

Once the minimal set of features is found, one must ponder howthey must be imple-

mented in order to provide maximal reusability in various engines; which leads to re-

search question number two -how the minimal set of features must be implemented

in order to provide maximal reusability in different projec ts?

The answer to first question is determined by performing a literature review on the

subject, and evaluating popular open-source 3D graphics engines by cross-comparing

their feature lists. The second question is answered by designing a 3D graphics library

base for generic 3D applications.

1.2 Summary of Chapters

Chapter 2 explains very generally the concepts of 3D graphics and 3D engine. Three

existing engines are presented and their features comparedagainst each other.

Chapter 3 goes through the core complex mathematical and computer graphics con-

cepts related to 3D graphics and 3D engines, accompanied by explanations of hardware

rendering pipeline and visibility determination techniques.

Chapter 4 describes the requirements for the 3D engine to be developed, converts them

to features and represents implementation details using class diagrams and descrip-
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tions. Also three optimization techniques are introduced,which accelerate the opera-

tion of a 3D engine.

Chapter 5 goes through what has been done; the good, the bad and the ugly, and

presents a directions for further research.
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2 Soft Real-time 3D Graphics

This chapter gives a soft introduction to real-time 3D graphics and 3D engines. Their

usage, and where they came from are covered. A couple examples of existing 3D

engines are also be inspected, concentrating mainly to the features they provide.

2.1 Where real-time 3D graphics is used and whence it came?

Three-dimensional (3D) graphics have been used in Virtual Reality (VR) applications

for quite a time now. Military training simulations and collaborative virtual environ-

ments (CVEs) use it in order to provide more immersive experience - one example of

this is the training game Tactical Iraq, which helps American soldiers to speed up the

acquisition of spoken Arabic (Losh, 2006).

The 3D graphics have also been used in many medical applications, such as visualizing

the measured tomography or magnetic resonance data as a 3D surface (Lorensen &

Cline, 1987) and demonstrating pre- and post-surgical appearance of the patient’s face

in order to lessen the anxiety and fear of the operation (Gross, 1998).

A newer idea is the 3D desktop, which, for instance, can “turn” inactive windows

sideways that only some of their content is visible, leavingmore space to the other

windows. This way the inactive windows are somewhat visibleand the changes in

their content is still visible to the user (Sun Microsystems, 2007). This method has

been adopted also into the recently released Windows Vista operating system from

Microsoft (Microsoft.com, 2007).

Another way to use 3D on desktop was invented by Apple, which has integrated 3D ac-

celeration into the desktop manager and windows are drawn using 3D primitives. This

enables the use of impressive effects such as the “genie” shown in Figure 1. Lately,

this has been implemented also in the open-source window manager Beryl (Beryl-

project.org, 2007).

At the moment, the game industry is probably the most active user of 3D real-time

graphics, and the focus seems to be in providing visually appealing games. This is

accomplished by including more detailed game characters, environments, effects and

weapons into games. An example of this can be seen from the screenshots of pop-

4



Figure 1: The genie effect in action in MacOS X (Apple, 2007).

ular first-person shooter PC-games in Figure 2. The basic idea in those games has

remained much the same, but graphics have received more detail. The quest for better

(looking) games seems to be endless and new algorithms whichwould produce a so-

called “quantum leap”2 forward in performance would probably be more than desired

in the game industry.

It can be said that the technology behind the modern real-time 3D graphics was pi-

oneered by company called Silicon Graphics (SGI), which produced the world’s first

3D graphics workstation, IRIS 1400. In his article, Baum (1998) classifies hardware

into three generations, where generation means the targeted set of features for which

the system runs with full performance. In the case of first workstation, the feature was

flat-shaded polygons3. The second generation implemented new accelerated Gouraud

shading method and used Phong-lighting2. The third generation in 1992 brought tex-

ture mapping and full-scene antialiasing. Baum also stated, that the texture mapping

was considered to be a technological hype and was believed tohave no market. The

success of game industry has proven this otherwise.4 The consumer-grade systems fall

into the third-generation category - they render textured and antialiased polygons with

high speed. The SGI also developed an API for the handling theunderlying hardware

in more abstract manner. The product was called OpenGL and itwas released under

2The term expresses a massive technological advancement or innovation.
3The concepts of polygon, shading and lighting are examined in Section 3.6
4The quote in the article of Baum (1998) “It’s a cool feature, but there’s no market” should be framed

and put next to the infamous quote of Bill Gates regarding theamount of required memory in computers.
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Figure 2: Screenshots from from 3D games from three different generations. First row:

Quake 1 and Doom, Second row: Quake II and Unreal Tournament,Third row: Unreal

Tournament 2007 and Doom III.
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open-source license the very same year 1992 when the third-generation systems were

released (SGI,2007).

2.2 3D Engine: What is this abomination of nature?

Modern applications use the underlying hardware with3D graphics API, which is a

source code interface for computer program to instruct hardware to execute commands

related to 3D drawing. In practice, it means that it abstracts all the technical details

into more programmer-friendly form. At the moment, two dominating 3D APIs exist:

The OpenGL created by SGI and Direct3D created by Microsoft.The most significant

difference is that OpenGL is platform-independent and Direct3D is only available for

Microsoft operating systems.

So, 3D graphics can be produced using 3D graphics APIs. The APIs operate on com-

mands like “put this point here”, “put that point there”,“set drawing color to white”,

“draw a line between this and that”, etc. Using the combinations of those commands,

a programmer is able to generate quite complex scenes and images. This, however, is

no different from static 3D graphics. 3D animation movies are done by setting points,

defining the colors, drawing lines and surfaces and finally storing the ready image into

a file, repositioning the points and going through a predefined sequence of movements

until we have the final animation. But real-time 3D graphics are just this, defining

points and animation, right? Not quite. The usual animationmovie is as static and

predictable as a single image - there exists no freedom of choice over what will happen

next. The real-time 3D graphics are needed when user does notknow (exactly) what

will happen next, for instance in terms of position and shapechange, and there exists

a need to constantly provide a visual representation of the situation. So the production

of real-time graphics is, in extremely simplified form, this:

While( True )

Get current position of points;

Draw things using points, lines, triangles and colors;

Repeat

But the humans tend to think in larger terms than points, lines and colors - so it would

be quite aggravating to work through a view of several hundreds of thousands of points

and hundreds of colors. This can be solved by abstracting theunderlying 3D graphics
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API even further, into a level where programmer is able to handle greater wholes,

objects which represent cars, houses, cities - instead of points, lines and colors, which

create a visual representation of those objects. This abstraction is referred to as the3D

engine, and in this context, objects are called as3D models. The 3D image drawing

process, is known as3D rendering. As a stand-alone software, the 3D engine is useless

since it needs something to draw, and it will always be used inconjunction with other

software to visualize something.

Probably the most common software which has a 3D engine as itscomponent is a

game engine, which is a collection of code used to build a gaming application (Sher-

rod, 2007: p.4). That being said, the3D enginecan be defined as a reduced game

engine, which only provides the real-time 3D rendering capabilities while excluding

other functionality needed in games. In this light, more accurate term would be3D

rendering engine, but the simpler form is used instead. It should also be noted, that 3D

engines are not exclusively for games, they can be used in anysoftware which requires

three-dimensional visualization.

In addition to drawing commands targeted at larger object structures, 3D engines must

deliver very large object sets on screen fast, in order to maintain the illusion of contin-

uous movement. Performance-wise speaking, there are four goals: higher resolution,

more frames per second, more objects and more detail on screen (Akenine-Möller &

Haines, 2002: p.345). The limits of the graphics hardware are met very fast by increas-

ing the detail of the objects. For example, if a space shuttleis modeled into detail where

every nut and bolt has its own 3D model, the amount of data grows to great in order

to render it in real-time. Therefore, the rendering must be accelerated by reducing the

amount of renderable data, which means that the images can berendered faster and the

illusion of movement prevails even in the case of highly detailed and numerous objects

on screen. This makes 3D engine as a two-edged sword; it abstracts and accelerates.

Some acceleration methods for doing this are listed next.

Visibility culling

Thevisibility culling, or visibility determinationis a method which determines the vis-

ibility of renderable objects and reduces invisible objects from the herd of renderable

objects, leaving only those that contribute to the final image (Lengyel, 2004: p.217).

The implementation details of this method are examined in Section 3.3. There are dif-
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ferent variations of this method, which according to Akenine-Möller & Haines (2002)

are backface and clustered backface culling, hierarchicalview frustum culling, portal

culling, detail culling and occlusion culling. The most common of these are backface

and hierarchical view frustum culling, which can be appliedto any set of renderable

objects. The rest of them are more useful in special situations. The details of these

methods are covered in Chapter 3.

Levels of detail

Thelevels of detailis a method which reduces the number of drawn items as the sizeof

the drawn object on screen diminishes. Since the underlying3D rendering mechanism

is forced to process all of the data which is sent to it, the computer must do (nearly)

the same amount of work when the object covers only a pixel of the screen or all of

the pixels. In this situation, using a simplified version of the renderable data lessens

the burden of drawing dramatically and speedup is gained without sacrificing visual

quality (Eberly, 2001: pp.359-360; King, 2000).

Bounding volumes

Bounding volumesare volumes (geometrical objects, such as spheres, boxes and el-

lipsoids) which encapsulate renderable geometry (Akenine-Möller & Haines, 2002:

p.347). The process of checking each triangle for visibility culling is laborous and not

suitable for real-time rendering in larger scale. The bounding volumes, however, are

much lighter in that sense. For example, if an object consists of n triangles, the num-

ber of comparisons needed to determine visibility of an object requires at leastO(n)

steps. But comparing the visibility of a sphere takes onlyO(1) steps. Testing a sphere

visibility might take more time if then is very small, but this is very unlikely scenario.

Scene Handling

The models which are to be displayed might have some relations with each other, such

as a wheel, which belongs to a car, bolts belonging to the wheel, etc. Keeping track

of these relations and changing them is laborous without a uniform approach.A scene

graph is a data structure designed for this purpose. It arranges the logical and spatial
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relationships of the graphical scene in some manner (Sherrod, 2007). The scene graph

can be, but is not restricted to be, implemented as ann-tree, and is more of a general

data structure. According to Sherrod (2007), scene graph isusually defined by the

application for which it is used, since the scene graph may contain bounding volumes

or positional data, or simply be a highly abstract structurerepresenting only the logical

relationships of objects.

The previous paragraphs have given an overview what 3D engines need - an underlying

3D graphics API, and acceleration methods for reducing the amount of renderable data.

The following section brings more tangible matters into a focus, taking a look into

existing 3D engines.

2.3 Daddy, Are 3D Engines Real?

The feature list of the existing 3D engines at large is intimidating at least from the per-

spective of a person writing his/her own engine. But, in mostcases the engines which

have been around longest, have turned into game engines withsupport for physics sim-

ulation, sound and scripting required in games. Keeping this diversification in mind, I

present three 3D engines with their features and cross-compare them.

The selected engines are available in the SourceForge, which is a free service, dedi-

cated to hosting different open-source projects. At the time of writing this document,

the SourceForge offers somewhat hefty bunch of 570 different 3D engines. Most of

them are probably put into web in the hope someone else might also be interested in

them. The three engines listed here have been selected because of their maturity and

widely adopted user-base - which clearly indicates that they are doing something right.

There exists, of course, other widely adopted and highly efficient engines which would

have been as good a choice than these ones. However, the pointof this paper is not to

provide a complete feature-review of all possible engines out there, but a generic list

which can be used in comparison when a new engine is designed.

Performance of 3D engines is usually measured inframes per second(FPS), which

stands for the number of images displayed in a second and is also known as theframe

rate (Sweet & Wright, 2000: p.607). Akenine-Möller & Haines (2002: p.1) also

state that the interactivity (and real-time-ness) starts from 6 FPS, and after 72 FPS

the changes in frame rate are almost indetectable. It shouldbe noted, that the perfor-
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mance of presented engines is not subject to inspection - it would be viable only in case

of predefined set of features which would have to perform wellin a specific scenario.

Crystal Space is a project started by Jorrit Tyberghein around 1997 (Linux.com Article

DB, 2007). The spark which gave birth to it to came from the eraof Intel 486s and pop-

ular PC games Doom and Quake. The Linux.com interviewed Mr. Tyberghein about

the development process of Crystal Space, and according to the interview, he was in-

spired by the efficient graphics drawing of the games, which triggered a six-month

research session towards 3D graphics and finally lead to comp.graphics.algorithms

newsgroup, where portal culling algorithm was discussed. He found this algorithm

to be easy enough for him to implement it, and began developing his own engine with

portal culling. (Linux.com Article DB, 2007)

After two months of development, the Crystal Space was born;a working 3D engine

with six degrees of freedom, lighting, mipmapping, moving objects, scripting and other

features. When he found that he lacked time to work with his project, he decided to

open it to the public instead of “letting it rot on hard disk”.The community existed

at first on mailing lists. During the last 10 years Crystal Space has become much

more than a 3D engine - a cross-platform software development kit (SDK) for real-

time 3D graphics. It is distributed under LGPL, which enables it to be used also in

commercial games as long as the changes to the original code are released if the product

is distributed. (Linux.com Article DB, 2007; GNU Project, 2007)

The development of Crystal Space project is split into four sections (Crystal Space,

2007):

1. The Crystal Space SDK: The main rendering engine.

2. Crystal Entity Layer( CEL) : The scene entity management library built on top of

Crystal Space SDK. It completes the framework for creating games, for instance.
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3. CEL Start : An environment for self-contained game packages which supports

scripting to aid in the game development.

4. Crystal Core : A demo game utilizing the Crystal Space SDK.

The Crystal Space SDK is used in various games and modeling tools, and it supports

Linux, Mac OS X and Windows platforms. Its renderer system isbuilt using OpenGL

graphics API.

Irrlicht is a german word, meaning “will-o’-the-wisp”. It means some kind of fairy-

like creature living in the vicinity of swamps. The project is an open source high

performance real-time 3D engine written for C++ and .NET languages. It supports

four different renderer APIs; Direct3D, OpenGL, its nativesoftware renderer and the

Apfelbaum software renderer. The engine runs on Windows, Linux, Mac OS X and

Sun Solaris. (Irrlicht Engine, 2007)

The Irrlicht is used in over 30 different projects and it has an active community. It has

several language bindings, allowing it to be used with Java,Python, Ruby, Basic, and

so forth - a feature which will certainly increase the adoption rate.

The project is licensed under zlib license, which allows it to be used in commercial

projects, even without mentioning the Irrlicht itself. Also the code itself can be used

as a base of a commercial product, as long as no claims are madethat the original

software was written by the party using the code (ZLib, 2004).

The project was started by Steve Streeting in England, somewhere around 1999. He

was developing an object-oriented library for Direct3D, called DIMClass at the time.
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He realized that the library itself had become abstracted enough from the underlying

graphics API and began an ambitious planning of OGRE, new object-oriented API-

and platform independent 3D engine. After registering the project in the SourceForge

at 25th of February 2000, the passed years have brought various features and improve-

ments to the OGRE. The latest version at the time of writing this paper is 1.4.0RC1,

which was released in 11th of February 2007.

OGRE stands for Object-oriented Graphics Rendering Engine. Like the name implies,

the mission of the project is to create a cohesively designedframework to be used in

top-notch graphic solutions. It is not designed to be used ingames in particular, but it

has been used to create games as well.

The OGRE project stresses the flexible design and documentation over long feature

list. It does not provide physics modeling or collision detection, but relies more on

the framework where such features can be integrated using third-party modules specif-

ically designed to be used in those tasks. This might make some features a bit harder

to implement because of the need to connect an external library to OGRE, but on the

other hand, it allows programmers to use their own, possiblymore efficient algorithms

in special cases. OGRE is released under the LGPL and can be used in commercial

projects as long as the changes to the original code are released if the product is dis-

tributed. The OGRE supports Linux, Mac OS X and Windows platforms. (OGRE,

2007; GNU Project, 2007)

Table 1 shows a set of features which are implemented in thesethree projects and how

the features relate to each other. The license under which the engines are released has

effect to the projects themselves. Too restrictive licensemight disallow the usage of

the library in commercial projects, for instance.

13



Table 1 lists supported platforms because of application portability. If libraries have

already been ported to the desired platform, very little effort is usually required in order

to port the whole 3D project for that platform. Projects can,of course, contain other

code which is platform-specific and therefore portability is not only restricted by the

3D engine.

Table 1 also includes a shader support section, which is important if special graphics

effects are to be included in the project. In games of high visual quality, this is almost

a necessity. TheImage formats for texturessection is included, because the image

support is necessary for including specific materials to 3D models. The textures types

are necessary for special effects and it is assumed that eachof the engines supports at

least the usual texture format, rectangular color image with some constraints on width

and height. The animation support is essential for 3D engine, since without movement

the real-time rendering serves little purpose, which was explained in Section 2.2.

The acceleration algorithms are also covered in Table 1, since they are needed for

complex scenes to be rendered sufficiently fast, and the spatial data structures speed up

the rendering of very large models. One of the most importantthings is the support for

different 3D model files. There exists a plethora of softwarewhich produce models and

save it in different formats. In order to support the tool that was selected, the engine

must have support for the file format it uses, which are covered in the3D File formats

supportedsection. The special effects can be used to create visually stunning sceneries.

This feature is also very important to gaming applications.The “other” section of the

Table 1 includes features which were hard to classify.

Feature
Supported in engine

Crystal Space Irrlicht OGRE

License

LGPL X - X

ZLIB - X -

Platforms

Windows X X X

MacOS X X X X

Linux X X X

Sun Solaris/SPARC - X -

Graphics API

OpenGL X X X
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Feature
Supported in engine

Crystal Space Irrlicht OGRE

Direct3D - X X

Software Renderer X X -

Vertex and fragment shader support

low-level assembler X X X

Nvidia Cg X - X

Direct3D HLSL - X X

OpenGL GLSL - X X

Image formats for textures

Adobe Photoshop (.psd) - X -

JPEG File Interchange Format (.jpg) X X X

Portable Network Graphics (.png) X X X

Truevision Targa (.tga) X X X

Windows Bitmap (.bmp) X X X

Graphics Interchange Format (.gif) X - -

Zsoft Paintbrush (.pcx) - X -

DirectDrawSurface (.DDS) X - X

Textures

1D - - X

2D X X X

Compressed textures X - X

Video textures X X X

Animation

Skeletal animation X X X

Keyframe animation X X X

Acceleration algorithms

Mesh LOD X X X

Material LOD - - X

Occlusion culling X X X

Frustum culling X X X

Portal culling X - X

Spatial data structures

Octree X X X

BSP X X X
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Feature
Supported in engine

Crystal Space Irrlicht OGRE

3D File formats supported internally

3D Studio meshes (.3Ds) X X -

B3D files (.b3D) - X -

Alias Wavefront Maya (.obj) X X -

Cartography shop 4 (.csm) - X -

COLLADA (.xml, .dae) - X -

DeleD (.dmf) - X -

FSRad oct (.oct) - X -

Microsoft DirectX (.x) - X -

Milkshape (.ms3D) - X -

Cal3D ( .cal3D) - - -

My3DTools 3 (.my3D) - X -

Pulsar LMTools (.lmts) - X -

Quake 3 levels (.bsp) - X -

Quake 2 models (.md2) X X -

MDL models (.mdl) X - -

ASE format (.ase) X - -

PovRay format (.pov) X - -

OGRE format - X X

Crystal Space format X - -

Converters for popular formats X - X

Special effects

Particle Systems X X X

Skyboxes X X X

Billboarding X X X

Fog X X X

Bump mapping X X X

Parallax mapping X X X

Cube mapping X X X

Sphere mapping X X X

Dynamic shadows X X X

Light maps X X X

Transparency X X X
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Feature
Supported in engine

Crystal Space Irrlicht OGRE

Dynamic lights X X X

Other

Scene management X X X

GUI system X X X

Light virtualization X X X

Table 1: The cross-comparison of features in Crystal Space,

Irrlicht and OGRE.

In Table 1, the license section shows that the licenses alloweach of the engines to be

used in any commercial or non-commercial project. The OGRE and Crystal Space,

however, require that the source code of the engine is distributed with the project. The

Irrlicht bears no such restriction.

It can be seen in the platforms section of Table 1, that the most common platforms

(Windows, MacOS X, Linux) are supported by all of them. The graphics API section

shows that the Crystal Space does not support Direct3D library, but it can be used on

Windows platform since the OpenGL library is ported also to it. The software renderer

might be useful in some situations, but usually 3D acceleration is available for any

relatively modern graphics card.

Shaders allow very versatile lighting and shading effects to be created. There are very

little differences in the shader support. TheVertex and fragment shader supportsection

in Table 1 show that low-level assembler shaders are supported in all of them. Nvidia

Cg library, which can generate low-level assembler code forshaders, is selected by

Crystal Space and OGRE. Only OGRE supports all four shader formats (assembler,

Nvidia Cg, HLSL and GLSL).

Image formats support is more than adequate, the most popular formats (png, jpeg, tga,

bmp) are supported by every engine, which can be seen in section Image formats for

textures. Texture support is also quite similar, the standard texture format and video

textures are supported in each engine. Crystal Space and Irrlicht, do not seem to sup-

port 1D textures, but since 1D textures are only useful in special cases, the lack of it

causes negligible effects. The is a lack of support for compressed textures in Irrlicht.
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Or if the support exists, I was unable to find any reference to it. The sectionAnima-

tion in Table 1 shows that animation is supported by skeletal animation and the older

keyframe interpolation in all three engines.Skeletal animationmeans that certain parts

of a 3D model are attached to a bone, which can be animated. When bone is moved,

the attached part of a 3D model is moved also.Keyframe interpolationmeans that there

exists various different 3D models, which represent same object in different postures,

and transitions between postures is interpolated in some manner. Acceleration algo-

rithms exist in each engine, where the most distinctive feature is Material LOD, which

apparently is only implemented in OGRE. Spatial data structures are also supported in

every engine.

It might seem that in the section of supported 3D file formats the Irrlicht would be

the sovereign ruler, but the number of supported formats does not necessarily mean

superiority. OGRE and Crystal Space have chosen a differentapproach to file formats

by using exporters to convert needed formats into their own format, although Crystal

Space supports some formats also directly. Irrlicht pursues compatibility by including

support for all formats in direct manner.

The special effects which were selected for inspection, were implemented in all three

engines, no surprises there. All engines contain some kind of a GUI rendering system,

an arbitrary number of lights can be added to the scene and allhave scene management

for more complex visualization needs.

The comparison can be concluded by saying that all engines are virtually alike in the

perspective of rendering engine. No drastic differences exist and the basic functionality

is there. The presented table could also be used to compare base features of other

engines, if such need should arise.

So far, the real-time 3D graphics concepts have been handledin a very general level.

But in order to know how 3D engines are implemented, more detailed information

about underlying mathematics, and 3D computer graphics is required. In the following

chapter, focus is shifted to more in-depth workings of 3D engines.
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3 Hard Real-time 3D Graphics

Following paragraphs introduce detailed information, which is required to understand

the nature of techniques related to real-time rendering of 3D models. The included

topics cover mathematical concepts, different coordinatesystems, rendering pipeline

functionality and virtual cameras. Also defining 3D model data, materials, textures,

and workings of lighting and shading are explained. Finally, visibility determination is

explained by using bounding sphere as an example. Although this is also the “dreaded

math chapter”, mathematical concepts are not discussed very extensively to avoid too

detailed description of the subject - more detailed information and proofs can be found

on any linear algebra textbook.

3.1 The Mathematical Concepts

The most basic tool can be considered to be avector, which in our case is an-tuple of

real numbers and can be written as

v = (v1, v2, . . . , vn)

where thevi are thecomponentsof the vector. A vector withn components can be used

to represent a coordinate, a direction and velocity inn-space. In terms of 3D computer

graphics, then is usually 2, 3 or 4 (Lengyel, 2004: p.12). The3D space, where

our vectors exist, is a vector space with linearly independent components forming an

orthonormal basis.

The most used operations on vectors are sum, difference, scalar multiplication, mag-

nitude, component-wise product, dot product and cross product. Thesum(p + q) and

thedifference(p − q) are component-wise operations of two vectors. Thescalar mul-

tiplication (p ∗ α) is an operation between a vector and a real number, where each

component of a vector is multiplied by a real number. Themagnitude‖ p ‖ is defined

as the square root of the sum of the square of each component. It is also referred as the

normor thelengthof a vector (Lengyel, 2004: p.13)

Thecomponent-wise product(p ◦ q) produces a new vector, of which components are

retrieved by multiplying each component ofp with corresponding component ofq.

19



Thedot product(p · q), which is also called asscalar productor inner product, gives a

measure of the difference between the directions of two vectors. It is calculated by sum

of the products of each component, or by the product of the magnitudes and cosine of

the angle between the vectors. Thecross product, also known as thevector product,

produces a vector perpendicular to both of the given vectors. The cross product follows

theright-hand rule, which can be interpreted as follows: When the fingers of the right

hand point along vectorp and palm of the hand points along vectorq, then the thumb

points to the direction of the cross productp × q. (Lengyel, 2004: pp.14-26)

A matrix is an array of numbers with specific number of columns and rows. A matrix is

referred asm×n matrix if it hasn rows andm columns. If the number of columns and

rows are the same, the matrix is said to be asquare matrix. A vector can be represented

as a1×m or n× 1 matrix. The most used operations on matrices are sum, difference,

multiplication, transposition, determinant and inverse.The determinant and inverse

exist only for square matrices. Like with vectors, thesumanddifferenceof matrices

are element-wise operations. Themultiplicationcan be defined so that the entry onith

row andjth column ofAB is the dot product of theith row ofA and thejth column of

B. Thetranspositionis the mirroring of the elements in respect to the matrix diagonal.

The value in theith row andjth column swaps places with value injth row andith

column. Thedeterminantof matrixM (detM ) can be said to be a scalar value derived

from the elements in the matrix. The elementary definition exists for n = 2, and is

recursively applied for anyn×n matrices. (Lengyel, 2004: pp.33-65)

The inverse(M−1) of a matrixM , is such matrix thatM−1M = MM −1 = I . The

inverse does not exist for every matrix, and those matrices without inverse are called

singular matrices.

A point in 3D space is an arbitrary location represented by a vector with 3 components.

p = (px, py, pz)

A line segmentis an one-dimensional finite entity which connects two points.

L = (pstart, pend)

A line or ray is a infinite entity which travels through a specific point andpoints into

specific direction. The ray is specified with a point and a direction vector.
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R = (ppos, vdir)

A planeis defined by a pointp and a direction vectorn, where point lies in the plane

and direction vector is perpendicular to the plane. The vectorn is referred as thenormal

vector. The plane equation is

Ax + By + Cz + D = 0,

where A, B and C represents the component values of the normalvector and condition

D = −n · p holds. In the case of 3D real-time graphics, the normal vector is usually

normalized to unit length. In this case the equation

d = n · q + D

gives a signed distanced from plane to pointq and can be used in variety of situations,

including visibility culling. (Lengyel, 2004: pp.105,107)

A polygonis a closed figure withn sides. It is defined byn points, which in this context

are also called asvertices(Wolfram Mathworld, 2003). The order, in which vertices of

the polygon are defined, is called as thewinding order. The winding order defines the

direction the polygon is facing. There exists two ways to define it, clockwise meaning

backside or clockwise meaning frontside - both conventionsare used.

Basic operations for vertices can be considered to be translation, rotation and scaling,

which are defined below (Eberly, 2001: pp.8-9)5. The combination of these is called

as atransform. All of these operations are performed by multiplying the matrix repre-

sentation of vectors with the matrix representation of the operation(s).

A translationT represents a move of a spatial location. The operation is inversed

simply by negating the translation values. Translation canbe performed for vertices

and other coordinates, and is done with following matrix:

T(t) = T(tx, ty, tz) =













1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1













, with inverseT(t)−1 =













1 0 0 −tx

0 1 0 −ty

0 0 1 −tz

0 0 0 1













5There exists also shearing, but it has little usage in most 3Dengines.
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A direction vector, however, should not be affected by a translation. Vectors in 3D

space usually consist of 3 components. The method of separating a position vector

(a1, a2, a2) from a direction vector pointing from origo towards point(a1, a2, a1), is to

use a 4-component representation. The fourth component of aposition vector is 1 and

in the case of a direction vector it is 0. In this manner, the translation operation works

correctly for both cases. When 3-vectors are converted intothis 4-component form,

they are said to be inhomogeneous coordinates. A graphical illustration of translation

operation is shown in Figure 3. By multiplying the pointp and direction vectord by

translation matrixT, following results are produced.

p′ = T(t) ∗ p =













1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1













∗













px

py

pz

1













= . . . =













px + tx ∗ 1

py + ty ∗ 1

pz + tz ∗ 1

1













.

d′ = T(t) ∗ d =













1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1













∗













dx

dy

dz

0













= . . . =













dx + tx ∗ 0

dy + ty ∗ 0

dz + tz ∗ 0

0













= d.

y

x

y

x

T(2,3,0) 2

3

Figure 3: An example of translation operation where quad is moved from origin to 2

units along X-axis and 3 units along y-axis

Rotations are always performed left-handed around the origin, (0, 0, 0). If rotation is

desired to be made around arbitrary pointP , the vertices must be first translated by

−P , rotated, and translated byP . An illustration of rotation operation can be seen

in Figure 4, where an object is rotated 90 degrees overz-axis pointing up from paper

surface. The inverse of rotation matrix is the transpose of it. RotationsRx, Ry, Rz

along axesX, Y andZ by angleφ are performed with following matrices:
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Rx(φ) =













1 0 0 0

0 cos(φ) − sin(φ) 0

0 sin(φ) cos(φ) 0

0 0 0 1













Ry(φ) =













cos(φ) 0 sin(φ) 0

0 1 0 0

− sin(φ) 0 cos(φ) 0

0 0 0 1













Rz(φ) =













cos(φ) − sin(φ) 0 0

sin(φ) cos(φ) 0 0

0 0 1 0

0 0 0 1













y

x

y

x

R(90,0,0,1)

90

Figure 4: An example of rotation operation.

The scaling operation is used to enlarge or shrink an entity along x, y andz axis. If

the scaling factor for each axis is the same, the operation issaid to beuniform and

non-uniformotherwise. If one or three of the scaling factors are negative, the operation

yields amirror matrix, which is also called asreflection matrix. The mirror matrix

can reverse the winding order of the vertices, which can leadto incorrect results6. The

mirror matrix must be treated as a special case in order to preserve the winding order.

(Akenine-Möller & Haines, 2002: p.30).

6This is true when lighting and/or face culling are enabled, more on the subject in Sections 3.6 and

3.7.
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The scaling matrix isS(s):

S(s)=













s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 1













, with inverseS−1 =



















1

s1

0 0 0

0
1

s2

0 0

0 0
1

s3

0

0 0 0 1



















By means of linear algebra, it can be proven that the matrix multiplication is not always

commutative (Lang, 1986). From this can be concluded, that translation, rotation and

scaling operations are not always commutative either (Figure 5).

y

x

y

x

y

x
1

1

45

y

x

y

x

y

x

1

1

R(45,0,0,1)T(1,1,0)

T(1,1,0)R(45,0,0,1)

45

Figure 5: An example how order of operations has effect on object.

Models are transformed by transforming the vertices in the model. Since the vertices of

a model are coordinates in three-dimensional space, they can be transformed by mul-

tiplying with 3 x 3 or 4 x 4 matrices. Using a 3 x 3 matrix to transform vertices is suf-

ficient until we change our coordinate system in 3D space using offset vector without

affecting the rotation or the scale of an object. This transform cannot be expressed us-

ing a 3 x 3 matrix, but can be done by extending coordinate vectors to four-dimensional

homogeneous coordinates and applying transformations using 4 x 4 matrices.(Lengyel,

2004: p.81)
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Euler transform is used to orientate an object into desired direction. It is built on idea

that there exists an initial direction where object is facing. According to Akenine-

Möller & Haines (2002: p.37), the negative z-axis is usuallyselected as the direction

where object is facing, and head direction is positive y-axis. Euler transformE is

calculated by multiplying three matrices in presented order:

E(h, p, r) = Rz(r)Rx(p)Ry(h)

whereh stands for head,p for pitch andr for roll and their values represent the clock-

wise rotation angles around in their respective axes. The rotations are illustrated in

Figure 6. Euler transform suffers fromgimbal lock, which is a situation where one

degree of freedom is lost in result of concatenated rotations. This occurs, because axis

rotations in Euler transform are evaluated independently in global scope. (Akenine-

Möller & Haines, 2002: pp.37-38)

Y

X

-Z

head

pitch

roll

Figure 6: Euler transform axis and rotation directions.

Quaternionsare an extension to complex numbers created by William RowanHamil-

ton (Wolfram Mathworld, 2004). Later it was shown that quaternions can be used to

represent rotations and do not suffer from the gimbal lock, which affects Euler trans-

form (Svarovsky, 2000). A quaternion is represented as a4-vector, and is marked as

q̂ = (qi, qj, qk, qw) = iqx + jqy + kqz + qw, where following holds

i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k

Quaternion multiplication differs from regular vector multiplication and is produced by

using cross and dot product, which yields an quaternion representing the concatenation

of rotation operations. Quaternions can also be used to interpolate smoothly between

two rotations. (Lengyel, 2004: p.86)
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3.2 Coordinate Systems and Rendering Pipeline

Models and vertices can be expressed using different coordinate systems. Usually they

are expressed inmodel coordinates, where coordinates are relative to model center

point. This coordinate system is also known asmodel space. When all desired trans-

forms are applied to a model, meaning the model is in correct location and oriented

properly, it is said to be inworld coordinatesor in world space. This means that model

has received the final position and orientation in a virtual world. From world coordi-

nate system, models can be transformed intoview coordinates, or view space, where

their position is relative to the viewer. View coordinates are further projected towin-

dow coordinates, which are two-dimensional coordinates on screen. These coordinate

system conversions are essential in order to produce pixelson screen from given 3D

data, and are done in graphics rendering pipeline. (Akenine-Möller & Haines, 2002:

p.14; Eberly, 2001: p.80).

When looking at the big picture, the main function ofgraphics rendering pipelineis

to draw, orrender, a two-dimensional image using specific view to a virtual world.

The virtual world is constructed from geometry data, and a view to the world is usu-

ally expressed with camera analogy (defined in Section 3.3).When discussing about

rendering virtual worlds, the virtual worlds are often called asscenes. Scenes can

be enhanced using lights, materials, textures and lightingmodels, but these topics are

more carefully examined in later sections. The rest of this section aims to explain the

workings of rendering pipeline - how the image of a scene is produced.

The geometry data in a scene is defined bydrawing primitives, which are also called as

rendering primitives, and consist of points, lines and polygons. Those points, lines and

polygons are constructed from vertices, and are positionedand oriented by transform

matrices.

In order to draw specific primitives, the rendering pipelinemust be instructed to draw

the desired primitive, and vertices forming the primitive must be sent to the pipeline

right after (Wooet.al, 1999: p.43). Rendering pipeline usually converts more com-

plex drawing primitives (polygons) into more traceable primitives, such as triangles.

This process is referred to astriangulation, and it ensures that the data is displayable

and shown correctly - and more efficient, since current 3D hardware is optimized for

triangle drawing. The rendering pipeline can be divided into three different stages,
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which are known as the application, geometry and rasterizerstage. (Akenine-Möller

& Haines, 2002: pp.22,437-438)

Application stageconsists of defining and transforming 3D models, setting view pa-

rameters, and setting material properties and additional rendering settings. Program-

mer has the most control over program in this stage. (Akenine-Möller & Haines, 2002:

p.22).

Geometry stageconsists of model and view transform, lighting, projection, clipping

and screen mapping (Lengyel, 2004: pp.5-6). The process starts by computing trans-

formations of models. Next phase is to calculate view volumerepresenting visible

3D space, followed by conversion of model coordinates into view space. The process

is continued by computing the lighting of vertices according to defined material and

light source parameters. After lighting, view volume is transformed intounit cubeor

canonical view volume, which is used to determine the set of vertices that lie entirely

inside the virtual view. The unit cube has its minimum point at (-1,-1,-1) and maxi-

mum point at (1,1,1). The unit cube transform operation is known as theprojection.

After projection phase, 3D models are said to be innormalized device coordinates.

After this, drawing primitives lying partially outside theunit cube areclipped, which

means that new vertices are created at the intersection point of drawing primitive and

view volume. Those new vertices replace the vertices which lie outside (See Figure

7). The new set of vertices is used to create a new drawing primitive, which lies com-

pletely inside the view volume. Those drawing primitives, that lie completely outside

the viewing volume, are discarded and those originally completely inside, are left in-

tact. Screen mapping phase converts 3D coordinates intowindow coordinates, which

consists of 2D screen coordinates (x andy) and depth coordinatez. The depth coor-

dinate represents the position onz-axis of the unit cube. (Akenine-Möller & Haines,

2002: pp.13-19,23;Lengyel, 2004: pp.5-6)

The rasterizer stageconverts drawing primitives and pixel data intofragments, which

are basically pixels with relative depth value, and performtests to discard some frag-

ments and keep others, and finally convert fragments into pixels contributing to the

image (Lengyel, 2004: p.7). The color and depth values for a fragment can be ob-

tained in three different ways; interpolating the values ofdrawing primitive vertices,

using a constant value obtained from a single vertex, or using some other source7. Ac-

7See flat and Gouraud shading in Section 3.6 for details.
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Clipping

Figure 7: Illustration of the clipping operation.

cording to Lengyel, (2004: pp.8-9), series of operations can be performed on fragments

in order to select which ones are finally drawn. These operations are scissor testing,

alpha testing, depth buffer testing and stencil buffer testing. Scissor testingallows only

fragments inside a specific rectangular part of the screen tobe rendered.Alpha testing

allows only fragments with alpha value greater, equal to, orless than a reference value

to be rendered.Depth testingperforms a test similar to alpha testing, but by using depth

values of fragments.Stencil testingis performed with values in stencil buffer. The test

can be used, for instance, in the conjunction of dynamic shadows (Akenine-Möller &

Haines, 2002: p.261). After these tests, blending (mixing fragment values with exist-

ing values in the image), color dithering (using different colors with adjacent pixels to

achieve intermediate color) and logical operations (boolean operations between new

and existing fragment color values) are performed, and finally a pixel is inserted into

image (Lengyel, 2004: p.9).

In older hardware the rendering pipeline was implemented asfixed-function pipeline,

which meant that the process of calculating vertex positions and parameters or pixel

color could not be changed. In modern hardware, the rendering pipeline is pro-

grammable via vertex and fragment shaders. Avertex shadercan do arbitrary set

of predefined operations to vertices, andfragment shader, also known aspixel shader,

can change pixel color as it sees fit. Vertex shaders may send data to fragment shaders

to instruct their operation. Through programmable pipelines, more complex lighting

and graphical operations can be performed. (Akenine-Möller & Haines, 2002: p.182)
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3.3 Virtual Cameras

3D rendering usescamera analogy, which is a human-friendly way to handle setting

up objects and views to them. And as the name implies, the process is similar to setting

up a normal camera for taking a photograph. Table 2 lists the corresponding concepts

between photographing and rendering an image (Wooet al., 1999: pp.96-97).

Phase in taking a photograph How 3D applications act

Setting up camera and pointing it to sceneViewing transformation

Position models into a scene Modeling transformation

Choose lens / adjust camera zoom Projection transformation

Choose size for photograph Viewport transformation

Snap photograph Render scene

Table 2: Camera analogy in 3D application.

The virtual camera is set up by specifying position, horizontal field of view angle

and aspect ratio of the screen. The visible space in a scene islimited to a specific

view frustum, which is formed by six planes and is a (deformed) box containing every

visible object in a 3D space. View frustum is used in geometrystage of the rendering

pipeline to determine which vertices are visible before sending them to rasterizer8. The

frustum is defined in view space, where origin is the eye (and camera) location andx-

axis points to right,y-axis up andz-axis either opposite to the viewing direction or

towards it, depending the implementation of the 3D graphicslibrary (Lengyel, 2004:

pp.111,112).

As Lengyel (2004: pp.113-116) points out, frustum planes can be calculated from

the parameters used in the camera analogy. Thefocal length, expressed ase in the

diagrams, is distance from camera position to the projection plane and it depends on

horizontal field of view angleα. It is defined by following equation

e =
1

tan(α/2)

Vertical field of view angledepends on the aspect ratio of screen and horizontal field of

view:

β = 2 tan−1(α/e)

8For details, see Section 3.2
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Larger fields of view can be acquired by smaller focal lengthsand vice versa. The

zooming in-effect of virtual camera is equivalent to the decrease of field of view angle.

The view frustum is also used in conjunction of visibility culling, where by comparing

bounding volume to frustum planes yields information about3D model visibility in

application stage. Illustrations of view frustum and its construction can be seen in

Figures 8 and 9.

Figure 8: The frustum constructed from virtual camera properties. Left: Horizontal

field of view. Center: vertical field of view. Right: Frustum planes, with arrows

representing plane normals.

Figure 9: The viewing volume defined by of view frustum.

After camera has been set up, image is constructed by using either perspective or or-

thographic projection. The used projection maps thex- andy-coordinates to proper

places in the projection plane. The projection is concretized into4 × 4 matrix do-

ing this. Perspective projectionproduces perspective distortion into the image, which

means that objects further in distance appear to be smaller,while orthographic projec-

tion or parallel projectiondoes not affect the relative sizes of objects (Woo et al., 1999:

p.103).
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3.4 Defining 3D Model Data

Polygons and lines can be combined to construct more detailed and complex three-

dimensional entities. A set of polygons is referred as amesh. 3D models, such as cars,

are usually stored as meshes. An example of this can be seen inFigure 10.

Figure 10: The left side shows a 3D model of a car presented without surfaces. The

right side shows the same model with surfaces and materials added.

In some occasions it is more feasible to present the 3D model with parametric curves

and construct surfaces with them. Storing an equation of a curve takes much less space

than full set of vertices and their connectivity data. In this case, parametric curves must

be converted into vertices and faces on the fly in order to get image on screen. This

procedure is calledapproximation of surfacesand is done by using short line segments

or small polygonal regions (Sweet & Wright, 2001: pp.92, 437).

More complex 3D models are not constructed by explicitly programming the polygonal

data into an application, but by using dedicated software tocreate a data file which uses

specific format to represent drawing primitives. These programs are referred to as3D

modeling programsor 3D modelers(Akenine-Möller & Haines, 2002: p.438).

Modeling programs have two main categories, namely solid-based and surface-based.

Solid-based modelersare used mostly in CAD applications. In CAD applications the

3D models are molded with tools that correspond to machiningprocesses (such as

drilling or cutting). An object is considered to be a lump of material, which is pro-

cessed to resemble something - very much in the same manner assculptures are made.

Surface-based modelersfocus on handling the surface of objects and do not consider

objects solid or non solid. They usually allow direct editing of vertices and polygons

of models. Surface-based modelers may also contain objectswhich appear solid, such

as spheres or boxes, and contain an internal representationfor those objects. Both of
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these modelers contain afaceter, which converts internal model representation into

displayable polygons. (Akenine-Möller & Haines, 2002: p.439). In addition to polyg-

onal data editing, 3D modeler programs may have an option to apply different colors,

materials and textures to objects and even animate the models to some degree.

In real-time 3D rendering less detail means faster operation. Polygons can besubdi-

videdinto any degree, where number of triangles representing a surface are increased.

For example, approximating a sphere with icosahedron requires more subdivisions

when then viewing distance diminishes (Woo et.al, 1999: p.89), and more detail is

needed to maintain credible approximation of a sphere. Thismeans that model detail

must be as low as possible, while maintaining reasonable visual quality. This must

be evaluated on a case-by-case basis when 3D model is intended to be rendered in

real-time.

3.5 Materials and Textures

Vertices, lines and polygons can be enhanced by adding color, materials or images to

them in order to obtain more impressive results.Materialsare defined by diffuse, am-

bient, emission and specular color, and shininess parameters. These parameters, com-

bined with lighting, eventually yield the final color of a fragment or a pixel (Eberly,

2001: p.101). The effect of material properties is more carefully explained in Sec-

tion 3.6, since material properties are used with lighting,but logically they should be

grouped with the textures. This is because they affect the surface color of a drawing

primitive. To put it briefly,ambient colorcorresponds to the color of material when it

is lit by indirect lighting,diffuse colorcorresponds to the color in direct lighting and

emission colormeans the color emitted by material regardless the lighting. Specular

color andshininesscontrol the color and brightness of highlights.

By using images, more details can be added to 3D model withoutincreasing the num-

ber of drawn faces, which can be seen in Figure 11. An image, which is to be displayed

over faces, is referred to as atextureand each pixel on screen, which is calculated from

a texture, is referred to as atexel, a texture pixel. The process of applying an image

over a surface in a 3D modeler program is calledimage-based texturingor simply

texturing. The process of actually coloring the fragments in the rasterizer stage with

correct values is referred to astexture mapping. Using texturing can cause great sav-
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ings in modeling (less detail needs to be modeled), memory (less data needs to be sent

to pipeline) and speed (less data means faster rendering) (Akenine-Möller & Haines,

2002: p.117). Texturing brings also more complexity to 3D modeling, and it is worth-

while to remember that realism can suffer from a texturing ifit is poorly done. The

texture in Figure 11 is rotated 90 degrees, and although it represents a stone wall, it

does not give the desired effect.

Texturing is performed by usingtexture coordinatesin vertices, and each vertex of a

polygon usually has its unique 2D coordinates9. The coordinate defines which part of

the image is selected into this vertex. In the fragmentationphase of rendering pipeline,

surface of a polygon is converted into pixels and texture coordinate values between

vertices are interpolated among them. Color value for each pixel is sampled from the

texture map.

In addition to image-based texturing, there exists multiple other texturing methods,

such as gloss and bump mapping. Each of these methods contribute more realism to

the final image, if done properly. The details of these special effects are out of the scope

of this document, but it can be said thatgloss mappingdefines the shininess value and

bump mappingthe direction of a surface normal of a pixel.

Figure 11: By textures much detail can be added to 3D models. Above is an example

of how texturing brings about more realistic view of a stone wall.

9The exists also 1D and 3D texture coordinates, but are neededonly in special cases (Woo et.al,

1999: pp.370,372).
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3.6 Lighting and Shading

Lighting is the interaction between materials and light sources, andis implemented

using a model, which imitates lighting in real world. There are light sources, which

emit light (photons), that can bounce off from surfaces of objects. Those photons reach

to eye of the observer, and are interpreted as colors.Shadingis the process of doing

lighting computations and determining fragments’ (or pixels’) color (Eberly, 2001:

pp.101-102). Light sources can be classified as follows: directional lights, point lights,

spotlights and ambient lights ( Sweet & Wright, 2000: p.186,Eberly, 2001: p.100).

A directional lightis positioned (virtually) infinitely far away and all

the rays casted by light are parallel to each other. An example of

such a light is the sun. Although in real life the sun is not infinitely

far away and rays are not casted exactly in parallel, this is the most

suitable way to simulate daylight in a 3D application.

Point lightsare considered to be positional, since they have a location

in space in contrast to directional light. Point light emitslight equally

in every direction. The light produced by a light bulb is quite similar

to point light.

A spotlightis a restricted form of point light - it has a cone which re-

stricts the emitted light inside. The size of the cone is usually defined

by a cutoff angle. In addition to parameters of point light, aspotlight

must have also a direction where it is pointing to. A spotlight can be

used to simulate a flashlight, for instance.

Ambient lightdoes not have any specific direction where it is coming

from. It can be considered to have entered the scene and bounced

around so that it has become directionless. Every object illuminated

by ambient light is evenly lit on every surface in all directions .

Additionally to type-specific parameters, lights are defined by intensity and color.

These parameters are used in similar manner regardless of the type of light. The in-

tensity is divided into three different parts, namely ambient (a color of indirect light-

ing), diffuse (a color of direct lighting) and specular intensity (a color of highlights).

Although this division is not realistic, it is done in order to give graphics application
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more control over the scene appearance (Akenine-Möller & Haines, 2002: p.68). Table

3 gives a brief summary of each light type and the parameters related to them.

Directional light Specular intensity

Diffuse intensity

Ambient intensity

Direction vector

Pointlight Specular intensity

Diffuse intensity

Ambient intensity

Position vector

Spotlight Specular intensity

Diffuse intensity

Ambient intensity

Position vector

Direction vector

Cutoff angle

Ambient light Ambient intensity

Table 3: Lights and their parameters in computer graphics.

Shading is done with differentshading models, of which the most commonly used

are flat (per polygon-shading), Gouraud (per vertex-shading), and Phong (per pixel-

shading). Inflat shading, an entire polygon (usually a triangle) is filled with one color.

In Gouraud shading, lighting is determined for each vertex and values are interpolated

across the polygon surface.Phong shadingdoes not interpolate the colors of vertices,

but the normal vectors of vertices among fragments, and performs lighting calculations

for each pixel separately (Eberly, 2001: p.102). Flat shading and Gouraud shading

are the fastest in the sense of rendering speed, and are usually hardware-accelerated.

Phong shading is the slowest, since each calculations are done for each fragment in

a polygon. It can be said, that flat shading is the most coarse of the three and Phong

shading is the smoothest one. The smoothness of Gouraud shading can be increased

(or decreased) by changing the subdivision rate of the polygonal surface. By using

vertex and fragment shaders, the shading model can be specified by the programmer.

The lighting model used in most 3D real-time graphics libraries is alocal lighting

model, where lighting does not take into account light reflected from other surfaces,
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but only light coming directly from light sources (Akenine-Möller & Haines, 2002:

p.81). The intensity values of fragments are determined by values calculated from

parameters presented in Table 3. The calculation of individual components and total

intensity is done by using equations in Figure 12, whereI denotes the intensity,M

denotes the material, andL denotes the light and subfix marks the property which is

used. The factord stands for attenuation, and is defined by constant attenuation factor

Aconstant, linear attenuation factorAlinear and quadratic attenuation factorAquadratic.

The termp is the coordinate where lighting is evaluated. Termn stands for the normal

vector of the point on a surface,l means the direction vector from point to light source

andv means the view vector, in other words the direction where observer (for instance,

a camera) is facing. Function clamp{V , [0,1]} forces the component values of vector

V into range between 0 and 1. (Akenine-Möller & Haines, 2002: pp.74-75,78,80-81;

Eberly, 2001: pp.102-104):

l =
Lposition − p

‖Lposition − p‖

h =
l + v

‖l + v‖

Iambient =Mambient ◦ Lambient

Idiffuse =max{(n · l), 0}Mdiffuse ◦ Ldiffuse

Ispecular =max{(n · h), 0}MshininessMspecular ◦ Lspecular

d =











1

Aconstant + Alinear‖l‖ + Aquadratic‖l‖2
, if L is positional light

1 , otherwise

cspot =







max{−l · Ldirection, 0}
Lexponent , if L is a spotlight

1 , otherwise

Itotal =clamp{Gambient ◦ Mambient + Memission + cspot(Iambient + d(Idiffuse + Ispecular)), [0, 1]}

Figure 12: The lighting equations in real-time 3D graphics.

The ambient intensityIambient is determined by the component-wise product of ambi-

ent color of material and ambient intensity of light source.Eberly (2001: p.103) stated

that diffuse intensityIdiffuse is calculated usingLambert’s Law, which means that sur-

faces are ideally matte (without shininess) and the reflected light is calculated by the

cosine ofn andl. The presented specular equationIspecular is theBlinn-Phong lighting
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equation(Akenine-Möller & Haines, 2002: pp.76,77), which is a faster variation of

Phong lighting equation. TheIspecular describes the effect of photons bouncing off to

the direction of view vector. Lengyel (2004: p.175) points out thatMshininess controls

the sharpness of highlight - small value produces a highlight which fades out over large

area, whereas hight value produces a sharp highlight which is visible only on a small

area.

Attenuationd can be controlled in three ways, and natural lighting model is obtained

by settingAconstant = 0, Alinear = 0, Aquadratic = 1. Thecspot is used in conjunction

of spotlights to determine when evaluated point is outside the cone (Eberly, 2001:

pp.101,103).Global ambientvalue (Gambient◦Mambient), represents amount of ambient

light in the whole scene, and does not depend on light sources(Woo et.al, 1999: p.212).

According to Lengyel (2004: p.211), the total intensityItotal consists of sum of global

ambient,material emission, and attenuated ambient, diffuse and specular intensities.

Total intensity is clamped into suitable range, either by cutting or scaling, depending

on speed and desired result (Akenine-Möller & Haines, 2002:p.84).

The total intensity equation holds for one light only. In thecase of multiple lights,

the intensity values of other lights is added to existing intensity and finally clamped.

And as Akenine-Möller & Haines (2002: p.83) pointed out, each light source needs

its own calculations, which takes time - hence the renderingof an image with multiple

light sources takes more time than rendering with only a single light source. It should

also be noted, that in some 3D graphics library implementations, the lighting can be

disabled for back-facing polygons, which speeds up the lighting calculation process

(Woo et.al,1999: p.199).

3.7 Visibility Culling Revisited

The visibility culling was briefly explained in Section 2.2,and it is essentially a way to

speed up rendering process by drawing less. It was also mentioned, that two most com-

mon visibility culling techniques are backface and hierarchical view frustum culling,

which are covered in detail below. The rest, which are suitable for more special situa-

tions, are left uncovered.

Let us consider drawing of a ball. A viewer looks at the ball from a certain angle.

Despite the direction where ball is viewed, the other half isnot visible. From this can
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be concluded, that there is no need to render the side which isnot visible - assuming

that we do not handle cases where ball is made of translucent material. All faces on the

non-visible side have their backs facing the viewer, and this information can be used

to determine which faces can be discarded during the drawingprocess. Determining

the faces which are back-facing the viewer and not renderingthem, is calledbackface

culling (Akenine-Möller & Haines, 2002: p.359).

The underlying graphics library can determine the face direction by examining the

vertex winding order, and calculating a surface normal for aflat polygon. Because

of the triangulation, that flat polygon is usually a triangle. If surface normal points

towards the observer, a triangle is front-facing and if the surface normal points away

from the observer, triangle is back-facing. Woo et.al (1999: p.668) outlines the normal

calculation operation for a flat polygon, which can be used incase where three vertices

form a triangle (v1, v2 andv3). The surface normal calculation operation is defined as

n = (v2 − v1) × (v3 − v1)

and the direction in respect to the view vectorv can be determined, for instance, by dot

product

t = v · n

where direction can be determined from signed scalar valuet. Negative value denotes

that surface normaln points towards observer and triangle is front-facing, while posi-

tive value stands for back-facing polygon.

The hierarchical view frustum culling, mentioned in Section 2.2, is performed by using

bounding volumes. There exist several bounding volumes, such as sphere, axis-aligned

box, oriented box, lozenge, cylinder and ellipsoid. All of these have different intersec-

tion test algorithms, and some intersection tests take moretime than others. However,

in some situations the tightness of a bounding volume becomes more critical than the

time consumed in intersection tests. Bounding volume selection is always a speed-

accuracy tradeoff for an arbitrary 3D model.

For clarity and simplicity, the bounding sphere and its intersection test algorithms was

selected to be inspected more carefully. Bounding sphere isuseful when speed is

required in intersection test, but construction of an absolutely optimal bounding sphere

is quite demanding (Lengyel, 2004: p.223). In most cases, a relatively tight bounding

sphere produces rather optimal results, and is not as time-consuming to solve than an

optimal bounding sphere.
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Listing 1: A pseudo-code algorithm for calculating a loose bounding sphere.
Sphere BoundingSphere ( VectorXYZ v e r t i c e s [ ] )

{

VectorXYZ min , max ;

Sphere bound ingSphere ;

min = max = v e r t i c e s [ 0 ] ;

f o r each v e c t o r v in v e r t i c e s

{

i f ( v [X] < min [X] )

min [X] = v [X ] ;

e l s e i f ( v [X] > max [X] )

max [X] = v [X ] ;

i f ( v [Y] < min [Y] )

min [Y] = v [Y ] ;

e l s e i f ( v [Y] > max [Y] )

max [Y] = v [Y ] ;

i f ( v [Z ] < min [Z ] )

min [Z ] = v [Z ] ;

e l s e i f ( v [Z ] > max [Z ] )

max [Z ] = v [Z ] ;

}

bound ingSphere . c e n t e r = ( min + max ) / 2 ;

bound ingSphere . r a d i u s = ( ( max− min ) / 2 ) ^ 2 ;

re tu rn bound ingSphere ;

}

Calculating a loose bounding sphere is relatively simple, and is done by determin-

ing maximum and minimum extents of vertices (Eberly, 2001: p.26). An example of

such operation is shown in Listing 1. A more precise boundingsphere (although not

optimal) can be found by calculating average center of points, and a radius which en-

capsulates all the vertices (Eberly, 2001: p.27). A pseudo-code for this is in Listing

2.

The view frustum culling by bounding spheres assumes that the bounding spheres and

frustum planes are in world coordinates. Technically, theycould be in any coordinates,

as long as they are in same coordinate system. Let there be a bounding sphereS and

view frustumF . The bounding sphere is outside the view frustum if it is completely

behind any of the frustum planes. The spatial relation between sphereS and planeP

is determined by the distance of the sphere center to the plane. Following equations

yields distanced betweenScenter to P , when plane is in normalized form.

d = Pnormal · Scenter − PD
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Listing 2: A bounding sphere centered at average of points.
Sphere Bound ingSphereT igh te r ( VectorXYZ v e r t i c e s [ ] )

{

VectorXYZ sum = {0 , 0 , 0 } ;

f o r each v e r t e x v in v e r t i c e s

{

sum += v ;

}

VectorXYZ c e n t e r = sum / v e r t i c e s . s i z e ( ) ;

Real r a d i u s = 0 ;

f o r each v e r t e x v in v e r t i c e s

{

VectorXYZ d i f f = v − c e n t e r ;

i f ( d i f f . l e n g t h ( ) > r a d i u s ) r a d i u s = d i f f . l e n g t h ( ) ;

}

re tu rn Sphere ( c e n t e r , r a d i u s ) ;

}

Listing 3: A pseudo-code for view frustum culling with bounding spheres.
I n t e r s e c t i o n T y p e S p h e r e I n t e r s e c t s F r u s t u m ( Sphere sphere , Frustum f rus tum )

{

f o r each P lane p in f rus tum

{

i f ( DotProduct ( p . normal , sphere . c e n t e r )− p lane . d <−sphere . r a d i u s )

re tu rn DOES_NOT_INTERSECT ;

}

re tu rn INTERSECTS ;

}

If d smaller than the negative radius ofS, it is completely behind planeP and there-

fore outside the frustum. Using this knowledge, an algorithm (see Listing 3) can be

constructed to test all frustum planes (Eberly, 2001: p.158). Unfortunately, this view

frustum culling method does not always cull objects which are outside the view vol-

ume. This can be seen from Figure 13, where a sphere on the top-left corner of the

view frustum is not culled although it is not visible. If suchcases are to be eliminated,

there should be another bounding volume surrounding the view frustum, against which

the sphere would be checked.

Very sophisticated systems, which animate 3D models, will have to constantly update

also the bounding volume transforms for the animated parts of models. When hierar-

chical view frustum is used, bounding volumes higher in the hierarchy must reflect the

changes in lower bounding volumes. And since this hierarchyis usually implemented

by using tree data structures, the changes can be reflected bymerging the bounding
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frustum

not culled

culled

Figure 13: The error in view frustum culling.

Listing 4: A pseudo-code for view frustum culling with bounding spheres.
Sphere SphereMerge ( Sphere sphereOne , Sphere sphereTwo )

{

c e n t e r D i f f e r e n c e = sphereTwo . c e n t e r− sphereOne . c e n t e r ;

r a d i u s D i f f e r e n c e = sphereTwo . r a d i u s− sphereOne . r a d i u s ;

r a d i u s D i f f e r e n c e S q r = r a d i u s D i f f e r e n c e∗ r a d i u s D i f f e r e n c e ;

l e n g t h S q r = c e n t e r D i f f e r e n c e . Length ( )∗ c e n t e r D i f f e r e n c e . Length ( ) ;

i f ( r a d i u s D i f f e r e n c e S q r >= l e n g t h S q r )

{

i f ( r a d i u s D i f f e r e n c e >= 0 .0 f )

re tu rn sphereTwo ;

e l s e

re tu rn sphereOne ;

}

e l s e

{

l e n g t h = c e n t e r D i f f . Length ( ) ;

t = ( l e n g t h + sphereTwo . r ad i u s−sphereOne−r a d i u s ) / ( 2 ∗ l e n g t h ) ;

re tu rn Sphere ( sphereOne . c e n t e r + t∗ c e n t e r D i f f e r e n c e , ( l e n g t h + sphereOne . r a d i u s +sphereTwo. r a d i u s ) / 2 ) ;

}

}

volumes of children to the parent from bottom to up. Eberly (2001: pp.148-149) pre-

sented an algorithm for merging two spheres into smallest sphere containing the two.

This algorithm is described in Listing 4.

The major difference between view frustum culling and backface culling is stage where

they are performed; view frustum culling is usually done on application stage and

backface culling on geometry stage. They also operate on different sets of data; view

frustum culling culls entire objects, the backface cullingworks on polygon-level.

Any view frustum culling technique requires three methods;a method of constructing

the bounding volume used in that technique, intersection test between view frustum and
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bounding volume, and merging two bounding volumes into one.When using bounding

volumes, the speed-accuracy tradeoff must be taken into account.
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4 The Grand Design

This chapter goes through the requirements for a 3D visualization application and

pulls together the necessary features needed in a 3D engine.Based on those fea-

tures, the core design of a 3D engine is presented with diagrams. Also three opti-

mization techniques, which are needed in the implementation, are presented. The di-

agrams and explanations are meant to describe the implementation in more readable

and moreover, understandable, manner. If a compelling needfor knowing the tech-

nical details should arise, they can be viewed from source code, which is available

at ftp://ftp.cs.joensuu.fi/pub/Theses/ 10. Since it is prudent for each

project to have a name, I gave the name GlowScape Engine (GSE)to this one.

Section 4.1 covers the requirements for 3D application, andconnects them to corre-

sponding features presented in Chapter 3. Section 4.2 handles higher-level design de-

cisions, such as Object Oriented Programming (OOP) paradigm compliance. Sections

4.3 to 4.9 focus implementation details of core features. Section 4.10 describes the

applied optimization techniques, and Section 4.11 lists external library dependencies.

4.1 Requirements and Analysis

The requirements set has been divided into two factions;basic requirements, which

provide a rough outline for the functionality andsupplementary requirements, which

perform a more fine-grained dissection of basic requirements.

Basic requirements

The requirements have been compiled using the initial idea of Avatar Mirror for net-

Work Oasis project, which is described in my B.Sc Thesis (Gröhn, 2006). To put it

briefly, netWork Oasis was designed to be a place, which wouldblend virtual and real

environments seamlessly. The Avatar Mirror, located in netWork Oasis, was supposed

to be a large wall-sized screen, which would display users’ avatars when they pass it

by. Additionally, the Internet connections were to be visualized using a planetary view,

where arcs would show connections related to netWork Oasis.
10The source code is packed together with the electronic form of this thesis.
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Although Avatar Mirror was never built, the requirements give a ground to stand on -

there are no special never-seen-before effects, but thingsthat can be done with almost

any 3D engine. Visualization requirements for this application were categorized into

three parts:

1. User visualization

2. User environment visualization

3. Data stream visualization

First of all, it was decided that there would be a support for animated avatars, which

was a way to present users. Also more abstract presentations, such as sandstorms and

amoeba-like creatures were desired. Additionally, there was a need for a scene where

Internet connections originating from and leading to Oasiswere pin-pointed on the

globe. Visualization type needed to be changeable with different backdrops and avatar

sets - namely an aquarium with fish and desert with whirlwindstossing around sand,

were mentioned. It was also decided that support for variousdifferent scenes would be

included. One of these scenes was to be active at a time.

Supplementary Requirements

User visualization was decided to include indication of users’ state, which slides from

availableto do not disturband back again. This could be accomplished by using differ-

ent colors, movement speed/patterns, emblems and combinations of the previous. An

artist was to be able to change 3D models easily and design them with a 3D modeling

tool. 3D models were to be exported into some format, which the application could

read. The format was required to be widely adopted, so maximal compatibility could

be achieved and modeling would not be tied into a specific tool. Moving 3D models

were not to overlap each other in a scene in order preserve some degree of immersion.

User environment visualization had almost the same set of requirements as user visu-

alization, but excluding the state indication. Scene background itself did not need to

be animated.

In data stream visualization, user was to be able to rotate the globe in some manner to

see where the data stream is coming from and where it is going.The ability of zooming
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User visualization Support for animated 3D models which can be

created in several modeling applications.

Support for more abstract visualizations, such as

sandstorms and amoebas.

Indicate users’ state between “available” and “do

not disturb”.

3D model avatars must not overlap.

Avatar environment visualizationSupport for widely adopted 3D format.

Data stream visualization Provide an option for rotating the globe.

Provide a way to display connections on the globe

between two points (expressed as longitude and

latitude and their direction).

Table 4: The compiled requirements for a visualization application.

the globe in and out to see the location more closely, was alsoconsidered. Locations

were to be expressed with longitude and latitude so global position data (for instance,

given by a GPS device) could be used. The users themselves were to provide their own

location. All the previously listed requirements are compiled in Table 4.

Analysis of requirements

The requirements, which were defined for the visualization application, needed to be

converted to suitable requirements for a 3D engine. They provided guidelines to engine

design, but there existed other important factors, which had to taken into consideration

- requirements gathered for a single project most likely would not reflect the require-

ments for variety of other applications. Therefore, it was wiser to focus into basic

functionality of the engine and aim to provide a working basis for further 3D rendering

engine development. In order to produce a working solution,functionality had to be

converted to programmable entities, which are covered next.

There existed an apparent need for a class, which contained 3D model vertex data. That

class had to allow access to vertex data, so it could be sent tothe rendering pipeline.
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Vertex data contains only 3D coordinates, so some method of describing rendering

primitives was also needed. I took care of this by designing aclass that contains vertex

indices, and drawing primitive type. These primitives are drawn from 3D model vertex

data.

Two requirements listed in Table 4,support for animated 3D models which can be

created in several modeling applicationsandsupport for widely adopted 3D for-

mat, were met by including support for two different formats; 3DS and Milkshape 3D.

3DS format is supported in many modeling applications, but it does not include skele-

tal animation support. Skeletal animation is quite effective way to animate human-like

models. Milkshape 3D (MS3D) is the internal format of Milkshape 3D modeler, which

has various plug-ins that are able to import other formats. MS3D supports also skele-

tal animation, and other formats can be converted into MS3D using Milkshape 3D

modeler. GSE needed also an animation subsystem, which takes care of the correct

transformations of vertices according to data provided by MS3D format.

Table 4 lists also an itemsupport for more abstract visualizations, which was be

fulfilled by including a highly configurable particle system. Particle system was to be

able to provide various particle movement patterns, which practically meant that the

animation movement had to be controllable directly in the application which used the

particle system - a predefined set of movement patterns mightnot have been suitable

for every occasion. This required that design patterns had to be carefully examined in

order to find proper solution for a particle system class.

The third requirement in Table 4,indicate users’ state between “available” and “do

not disturb” , indicates the need for an object management system. The object man-

agement system was to provide a logical way to access any object in the scene. This

was accomplished by designing a scene graph class, which could be used to group

avatar models logically and retrieve them for handling. Additionally, the next require-

ment3D model avatars must not overlap, was taken care of by designing a bounding

volume scheme with bounding volume objects connected to a scene graph.

The last two requirements in Table 4,provide an option for rotating the globe and

provide a way to display connections on the globe between twopoints was met by

designing a proper transformation manipulation methods using operations presented

in Section 3.1, and creating a method for approximating parametric curves from a set
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of points, which further on could be rendered as a contiguousquad array, where two

adjacent quads were connected by one edge.

3D models saved in 3DS or Milkshape 3D format are representedas triangles. There-

fore, GSE had to support at least rendering of triangle primitives. The hierarchical

frustum culling was required to accelerate rendering if several users were connected

to the system. In order to provide frustum culling, camera and frustum classes were

needed. Also texture/material support with lighting was a necessity for more visually

appealing graphical output.

4.2 Language Selection and Applied Design Patterns

A large part of GSE is designed according to object-orientedprogramming (OOP)

paradigm. Its benefits have been found to be modularization,code reuse, better mod-

eling of the problem space and readability (Gwinn, 1992; Barry, 1990). Since the

nature of this project also requires efficient code, I chose C++ as the implementation

language. It allows to use OOP paradigm, and provides means to write very hardware-

specific code in time-critical sections, if necessary.

Data management is necessary for any program, that handles information. One storage

method is to use a global object, that contains other objectsor primitive data types.

However, OOP guidelines advise against such global object variables, and since only

a one object is allowed, this imposes a problem. Entersingleton, an object, that has

only one instance at any given time (Bilas, 2000). Singletons provide full control over

creating and destroying virtually global objects. Singletons can be used in conjunction

with customizedcontainer classes, which can store other objects with a specific iden-

tifier and retrieve them. They assist also in resource management - an example of this

is destroying all textures by destroying the texture container object - provided that all

objects are actually stored into the container. When this container scheme is applied

properly, dreadful memory leaks can be reduced.

It is quite easy to determine, that less code equals less maintaining of code. The C++

standard contains a high-level feature called templates (Schildt, 1998: p.372).Tem-

platesprovide a way to create generic functions and classes. This means that a pro-

grammer can use one function (or class) with several different data types, without hav-

ing to write a specific implementation for each one explicitly - instead, it is done by the
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compiler. Templates can lead to more reusable code, but there have been cases where

they have negatively affected readability and compile times (Kees & Miller, 1999).

Advantages of utilizing this technique in GSE are explainedin Section 4.10.

4.3 Math Classes and Data Structures

The mathematic operations described in Section 3.1 are a necessity when dealing with

3D graphics. They are needed often and in various places. This also meant, that I

had to implement them as efficiently as possible (some optimization techniques are

covered in Section 4.10). Matrices are restricted to squarematrices, and most common

sizes are3 × 3 and4 × 4. Rotations performed with Euler transforms are sufficient

to the point when multiple rotations about each of the axes has to be made, and a

gimbal lock is encountered. Hence, I implemented an option to perform rotations

using quaternions, which effectively prevent gimbal lock from occurring. Additionally,

I implemented various utility functions, such as conversions of rotation matrices to

quaternions and back again, calculation of eigenvectors and eigenvalues for matrices

(used in calculation of bounding volumes), and so forth. Thediagram of the core

classes of mathematics package is in Figure 14.

GSE_Quaternion

GSE_Matrix4x4fGSE_Matrix3x3f
GSE_Matrix2x2f SIZETYPEGSE_MatrixTYPESIZE:size_tGSE_VectorGSE_Vector2GSE_Vector3

Mathpackage

Figure 14: UML diagram of the core classes in the mathematicspackage.
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I used directed graph data structure and graph renderers throughout the GSE.Graphs

contain graph nodes and graph edges.Graph nodesrepresent various things, such as a

renderer command, a 3D object or an animation joint.Graph edgesconnect different

nodes together.Graph renderersare classes, which do something with the data in graph

nodes. Graph renderers execute queues of commands, that areformed from connected

graph nodes. The name “renderer” is perhaps misleading, since renderer classes do

not necessarily produce a rendered image, but update the graph structure, change node

values, and so on.

I implemented graph, node and edge classes using C++ templates. Each node class

has aRun-Time Type Identification(RTTI) member variable. RTTI variable is used by

graph renderer to determine which type of node is handled. RTTI is passed as a tem-

plate parameter, and prevents situations where nodes from different types of graphs

would be linked by edges (or stored in graph with different type) - and cause unde-

termined actions. Graphs provide a foundation for rendereroperation, animating, and

scene representation in GSE. Graph class diagrams are illustrated in Figure 15.

RTTIGSE_GraphEdge
RTTIGSE_GraphGraphclasses
RTTIGSE_GraphNode

Figure 15: UML diagram of the graph classes.

I separated the actual data from graph nodes, and implemented an external storage with

container classes. I found that name “container class” doesnot fully reflect the purpose

of the class, and decided to use name “manager class” instead, which implies that all

actions concerning the data objects, “employees”, must go trough the “manager”. I

also implemented a restriction, that forces a pointer to a managed object to be stored

into appropriate manager automatically. This restrictionhandles the issue of memory

leaks mentioned in Section 4.2.
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When object pointers are stored into a manager, they can be retrieved either by index

(since object pointers are stored into dynamic array) or by memory address (pointer

stores the memory address of an object). Retrieving by indexis not very reliable

method (if index would be used thoughout the program execution), since objects can

be deleted from any point in the array. This means that the indices can change when

objects are deleted. This leaves only a memory address, which (in human terms) is not

very descriptive name for an object. Therefore, manager classes needed to provide a

way to retrieve objects by a name. This name could be, for example, a string (character

array) or a symbolic name (an integer).

I implemented this feature by using a mapper class template.A Mapper classcreates

type-to-pointer mapping for arbitrary types, where type isgiven as template parameter.

This means that an arbitrary mappings can be created as needed. This feature is used,

for instance, in Camera Manager where cameras can be retrieved and deleted by using

their name (character array).

I wrote an octree data structure class to be used in spatial geometry partitioning. An

octree is a tree data structure, where each node has eight child nodes at maximum

(Ginsburg, 2000). Ginsburg also states, that it is an ideal structure for representing

virtual 3D world, enclosed by cubes. I also wrote utility methods to construct an octree

from geometry data (vertices). The octree class has been made as general as possible,

so that different variations of the octree data structure can be implemented. One such

variation isloose octree(Ulrich, 2000), which uses objects instead of their geometry,

and can be used as spatial data structure in a scene graph. This is reserved for the

future use, if ordinary scene graph should prove to be inefficient in some situation.

Octrees can also be used in conjunction of rendering very large terrains. Octrees restrict

the amount of renderable data in efficient manner when combined to hierarchial view

frustum culling.

4.4 OpenGL Renderer Class

OpenGL was chosen as the graphics API, since it is robust, it has been available for a

very long time and is available for several platforms. I designed GSE to be platform-

independent, and also API-independent where possible. I wrote the initial implemen-

tation for graphics renderer using OpenGL, but it can be extended to include Direct3D,
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or software renderer, if necessary. The renderer componentuses its own internal com-

mand system to call OpenGL API function calls.

The initial requirement for the renderer to operate, is a working OpenGL context in a

window. This is accomplished by creating a specificscreen entity, which creates a new

window according to given parameters. The renderer class does not contain method to

create a window where images could be drawn. I did this deliberately to keep engine as

modular as possible - this way OpenGL context to a window can be created by different

means, and renderer system can still be used.

Image rendering is performed by traversing a render graph. Arender graphis a di-

rected graph with nodes representing rendering commands and their data. Renderer is

a class which handles these nodes, and converts the graph representation into API func-

tion calls. The renderer and graph are paired together with aglobal traveller template

function, which takes a graph and a traveller class as its parameters. In the function,

nodes are passed to renderer’s Enter()- and Leave()-methods, where actual logic re-

sides. Class diagram for OpenGL renderer classes is shown inFigure 16.

GSE_OglRendererGSE_OglRendererFeaturesGSE_OglRendererFontset
«Singleton»GSE_ScreenGSE_OglScreenParams
ScreenandOpenGLRendererclasses

Figure 16: Diagram of the OpenGL renderer classes.

I designed the renderer to encapsulate as many of the OpenGL-related library calls

as possible, and separate the actual rendering from the datarepresentation classes.

This is beneficial in many ways; for instance, a particle system does not know how

particles are rendered - which allows different outputs to be generated from same data,

if required. Encapsulating the OpenGL library calls also makes it easier to include

support for another 3D graphics API libraries, such as Direct3D, by writing another

renderer class using other API function calls.
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View settings are modified using a camera class. A camera can be moved, rotated and

its properties can be altered at any time. Each camera automatically creates a frustum,

which can be used in frustum culling. Class diagram of these is in Figure 17.

GSE_CameraNode
GSE_Frustum
GSE_CameraMgr
GSE_Camera

Cameraclasses

Figure 17: Camera and frustum classes diagram

4.5 Particle System

The particle system should be as flexible as possible in orderto provide variety of

different visualizations, and efficient enough to keep number of particles high. High

number of particles is essential in simulating large entities consisting of very small

pieces. An example of these entities is a sandstorm, which was mentioned in Section

4.1. I implemented a particle system using policy-based class design and templates, as

described by Gamedev.net (2003), to meet these requirements.

Alexandrescu (2001: p.2) definespolicy-based class designas constructing a class

with complex behavior from many smaller classes, each of which takes care of a one

structural or behavioral aspect.Policiesare interfaces, which must be implemented

when individual policies are created. In our case, policiesimplement specific actions,

which modify the particle class attributes. Particle system itself does not know how the

particles are modified as the time passes, but knows how to apply policies to particles.

The particle system hierarchy is based on design presented by Gamasutra (2002). Parti-

cle system consists of following classes: Particle, ParticleSystem and ParticleSystem-

Mgr. EachParticle belongs to oneParticleSystem. ParticleSystemsare managed by
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ParticleSystemMgrs. Individual particles have position, size, velocity and energy pa-

rameters. These parameters are updated by ParticleSystem,using the policies. There

are two types of policies, initializer policy and action policy. Initializer policiesare

used when new particles are created. An example of an initializer policy is a size pol-

icy, which defines the initial size of a particle at birth.Action policiesare used when

particles are updated, an example of this is amove policy. There exists also a Com-

pletePolicy, which can combine size, energy, velocity, movement and other policies

into a single policy. Some of the commonly needed policies are already implemented,

and several more can be constructed when needed. The particle system class diagram

is shown in Figure 18. ParticleTypeColorPolicySizePolicyVelocityPolicyEnergyPolicyPositionPolicyGSE_CompletePolicyGSE_ParticleSystemBase
GSE_Particle

ParticleTypeGSE_MoveActionParticleTypeGSE_NullPolicy
ParticleTypeGSE_GravityAction
ParticleTypeGSE_SizeInitializerSIZE:size_tInitializePolicyActionPolicyParticleTypeGSE_ParticleSystem

GSE_ParticleSystemNodeGSE_ParticleSystemMgr

Figure 18: UML diagram of the particle system.
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4.6 Animation System

I built the animation system also on a graph data structure. Animation graph contains

animation nodes, which can be either joint nodes for skeletal animation, or particle

system nodes for particle system animation (Figure 19). Animation renderer class

handles updating of nodes and their data. The animation system handles the correct

timing of animations, but it must be told explicitly how muchtime has passed since

last update. This feature can be used to animate objects in slow-motion, for example.

Animation system supports also looping, stopping and continuing the animation.

GSE_Joint GSE_ParticleSystemBase

Animationsubsystemclasses

RTTI=Animation::NodeTypeGSE_AnimationNode
GSE_ARootNodeGSE_JointNode GSE_AnimParticleSystemNode

RTTIGSE_GraphNode

Figure 19: UML diagram of animation graph and nodes.

I designed animation renderer to be responsible for updating the animation in every

joint. Each joint consists of three pointers; a pointer to a vertex array with original

geometry data, a pointer to a vertex array with modified geometry data, and a pointer

to an array of indices, that mark the vertices belonging to the joint. Each joint has also

an array of keyframes, which express a rotation and translation for that joint at specific

point in time. Vertices, marked by indices in the array, are transformed by animation

renderer using interpolated parameters retrieved from keyframe data, and stored to the

vertex array containing modified data. OpenGL renderer class uses the modified vertex

data while rendering animated objects. I automated this rather complex process to the
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point, where it is only necessary to design the animation, load it, and update it before

rendering.

4.7 Scene Handling and Visibility Determination

Scene objects must be represented in hierarchical relationto each other, if scene is

desired to be managed logically. Just by adding drawable objects into a dynamic list

will impose problems when object-level culling is performed. If culling is done on each

and every object, it works, but might be slow when the number of objects increases.

The scene graph is built to include an animation graph and a render graph, since in

most cases they would be needed anyway - animation is needed for illusion of move-

ment, and objects need to be rendered in order to produce an image. Scene objects are

created via scene graph. This is because each graph node mustbelong to a graph, at

least logically. Memory-wise speaking, it can reduce memory leaks when every graph

handles all of its nodes, and graphs are able to delete their nodes when the graph itself

is deleted. This is also easier for the programmer, since nodes are managed by the

graph, and do not need an external storage.

Scene nodes contain a bounding sphere and an oriented bounding box for hierarchi-

cal frustum culling. Each node keeps track of its local transform, as well as world

transform. The matrices representing transforms are used to update bounding volume

positions and orientations. This way, it is only necessary to calculate bounding volume

for vertex data in model coordinates, and later it is transformed using same operations

that were applied to the vertex data. Class diagrams for scene graph are shown in

Figure 20.

4.8 Materials, Textures and Lighting

This section describes the implementation of materials andtextures, transparency and

lighting.
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GSE_SceneCameraNode
GSE_SceneLimbNode

GSE_SceneGraph
GSE_SceneNode
GSE_SceneObjectNode

GSE_SceneParticleSystemNodeGSE_SceneOctreeObjectNode
GSE_SceneLightNode

Figure 20: Class diagram of scene graph system.

Materials and Textures

Materials are represented byMaterial classes, and are managed byMaterialMgr class.

Textures follow this same principle. I designed materials and textures to be applied to

objects in following manner. Each material (or texture) is assigned to a material node

(or texture node). Geometry objects are assigned as child nodes of material or texture

nodes in a render graph. Render graph is processed by OpenGL renderer class, which

interprets nodes one after another, and last material (or texture) applied before geome-

try rendering node, is taken into account. Materials can be either opaque(completely

solid) or (semi)transparentor translucent, which means that underlying graphics are

somewhat visible behind the object made of transparent material.

I also designed configuration file utility class, which is able to read text files and store

name-value pairs. I included the configuration file utility class into MaterialMgr and

OglTextureMgr classes, and wrote methods that read a configuration file and create

new material (or texture) object from it. This allows materials and textures to be de-

fined by configuration files, and read by their respective manager objects. Material
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configuration files contain color values for material ambient, diffuse, emission, shini-

ness and transparency values. Texture configuration files contain a path to an image

(or video) where texture is generated from, and the texture type. Figure 21 shows class

diagrams of material and texture objects, and their managers.

«GSE_Singleton»GSE_OglTextureMgr

GSE_FrontMaterialNodeGSE_BackMaterialNode
«GSE_Singleton»GSE_MaterialMgr

GSE_OglTexture

GSE_MaterialNodeGSE_Material

GSE_TextureNode
GSE_TextureMgrInterfaceGSE_Texture

Figure 21: Class diagram of material and texture classes.

About transparency

The transparency effect is an expensive operation if it is used a lot, and if a realistic

result is desired. True transparency effect can be achievedby determining the cor-

rect order of transparent pixels and rendering them from back to front. However, this

is very time-consuming process. Transparency can be faked in variety of ways, de-

pending on the level of desired realism. One way is to render transparent polygons in

arbitrary order (after opaque polygons have been rendered)using additive pixel blend-

ing, where incoming fragment color values are added to existing ones. Disadvantage

of this technique is, that values might become saturated, and final result is white and

not transparent at all. Another way is to sort polygons from back to front, and render

them in that order after opaque polygons.

A pseudo code for rendering sorted transparent polygons is shown in Listing 5. But

in most cases, this is not applicable, since the drawing primitives are not stored as a
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Listing 5: Pseudo code for rendering transparent polygons by sorting.
vo id Render ( Polygon po lygons [ ] )

{

Polygon opaque [ ] ;

Polygon t r a n s p a r e n t [ ] ;

Sor tOpaqueAndTransparen t ( po lygons , opaque , t r a n s p a r e nt ) ;

Sor tBackToFront ( opaque ) ;

Sor tBackToFront ( t r a n s p a r e n t ) ;

DrawPolygons ( opaque ) ;

DrawPolygons ( t r a n s p a r e n t ) ;

}

Listing 6: Pseudo code for rendering transparent polygons using alpha test.
vo id Render ( Po lygons po lygons [ ] ) :

{

Enab le (DEPTH_TEST ) ;

Enab le (DEPTH_WRITE ) ;

Enab le (ALPHA_TEST, ALLOW_ALPHA_EQUAL_TO_ONE ) ;

DrawPolygons ( po lygons ) ;

D i s a b l e (DEPTH_WRITE ) ;

Enab le (ALPHA_TEST, ALLOW_ALPHA_LESS_THAN_ONE ) ;

DrawPolygons ( po lygons ) ;

}

polygon soup, but they are grouped by objects they belong to.Implementing the trans-

parency algorithm using this method would require all drawing primitives of visible

objects to be merged into one array of polygons, which would be first sorted to trans-

parent and opaque, then each subset would be sorted back-to-front order and finally

rendered. This yields a working, but very slow solution, which is not applicable to

more advanced real-time rendering.

Woo et al. (1999: p.441) present an implementation for transparency algorithm using

the hardware-accelerated depth and alpha testing11. The algorithm shown in Listing 6

is pixel-perfect, but halves the frame rate from optimal situation since visible geometry

is sent twice over the pipeline.

Speed-wise speaking, a quite viable solution is to sort objects by transparency, and

draw them in two batches utilizing depth testing. This allows nearly-optimal speed

and quite realistic results in most cases. It must be noted, that resolving back-to-front

order of overlapping arbitrary-shaped objects is nighly impossible without splitting

their intersecting polygons.

11See Section 3.2 for details
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Lighting

Lighting can be categorized as dynamic lighting and static lighting. Dynamic lighting

means that lighting equations are calculated from currently active light sources, which

contribute to the scene. Light sources in a scene can move andchange brightness,

color, shape, and so forth. This means that the pixel values will be updated to reflect

these changes.Static lightingis a lighting scheme, where lights are stationary and do

not change their parameters.

OpenGL library imposes some restrictions to the lighting. It is specified that OpenGL

supports at least eight different light sources (Woo, & al.,1999). This means that the

scenes cannot be lit with more than eight lights at a time, since most implementations

support only the mentioned eight lights. But scenes might have more lights than that -

think street lights, for example - how can eight lights manage that? Well they cannot.

By using multiple rendering passes and specific blending operations, contribution of

each light could be calculated, but this solution is not veryeffective, because

1. lights may be so far away from the object that their contribution very small.

2. lights have different brightness.

3. each rendering pass consumes time.

Therefore, the solution is to reduce the number of lights at the cost of accuracy in

lighting, which rarely imposes a problem. A pseudo-code forthis algorithm is given in

Listing 7, where lights are selected on object-basis.

Let n be the maximum number of lights supported in 3D graphics library. The set

of active lights is sorted in descending order by brightnesswhen observed from the

renderable object. From the sorted set, the firstn lights are made active during the

rendering of current object. Using this procedure, an arbitrary number of lights can be

inserted into the scene, and implementation uses only the ones with greatest effect on

the object. The algorithm handles all lights as point lights, and will produce incorrect

results if multiple light types are included in the evaluated set of lights.

There exist pre-processing techniques, which can emulate the effect of multiple static

lights without actually using them, namelylight maps, which are a texture-based so-
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Listing 7: Pseudo-code for selecting most contributing lights for an object.
L i g h t s [ ] S o r t L i g h t s ( L igh t l i g h t s [ ] , VectorXYZ p o s i t i o n , i n t e g e r NumLights )

{

f o r each l i g h t l i n L i g h t s

{

l . b r i g h t n e s s := | ( l . p o s i t i o n− p o s i t i o n ) | ;

}

S o r t B y B r i g h t n e s s ( l i g h t s ,DESCENDING_ORDER ) ;

L i g h t s l i g h t a r r [ ] ;

f o r i =1 to NumLights

{

l i g h t a r r [ i ] = l i g h t s [ i ] ;

}

re tu rn l i g h t a r r ;

}

lution for emulating lighting effect. In this technique, ontop of each texture is put

another texture and their colors are blended. The top-most texture contains only dif-

ferent shades of gray and the output yields an image with darker and lighter areas.

(Akenine-Möller & Haines, 2002: p.150). This technique canbe used to speed up ren-

dering, since actual lighting calculations take more time.GSE supports this technique

via textures.

It is easy to picture a situation of a scene, which has many stationary objects, each lit

by same set of lights. Every light might not contribute to every object in a scene, if

their distance is large enough. Therefore, it would be unnecessary to sort every light

for every object. Instead, some lights could be left out of altogether for objects that are

definitely out of range. I implemented this optimization by using an illumination set for

each object. Anillumination setcontains an arbitrary subset of lights in a scene. When

object is rendered, only those lights in object’s lighting set are considered. Illustration

of illumination sets is seen in Figure 22.

4.9 Shaders

Shaders were briefly mentioned in Section 3.2, and they can beused to create more

complex lighting effects, for example. There exists several shader languages, namely

assembler, Nvidia Cg, HLSL and GLSL. I implemented shader support in GSE using

OpenGL Shading Language (GLSL). Shaders are divided into two parts, namely ver-

tex shaders and fragment shaders. Fragment shaders are usually data-driven by vertex
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IlluminationSet 3

IlluminationSet 2

IlluminationSet 1

Set Of All  Lights

Figure 22: Illustration of the illumination set scheme.

shaders, but they can be used also individually. Vertex and fragment shaders can be

combined into ashader program, which is used to reprogram some parts of the ren-

dering pipeline. Since a program can be constructed by combining several different

shaders, it is necessary to manage vertex shaders, fragmentshaders and shader pro-

grams separately.

Each shader can be passed shader parameters, eitheruniform parameters(same pa-

rameters for all vertices) orvertex parameters(different parameters for each vertex).

Shader code is loaded to shader object using a separate text file, and rendering prim-

itives are drawn using a shader by assigning primitive drawing commands as child

nodes of a shader node - in the same manner as materials and textures are used.

The shaders are powerful tools, but they also come with a price: shaders must imple-

ment main functionality in the fixed-function pipeline, such as vertex transformation,

lighting and texture mapping, if any shader is used. This means that the mathematical

model for those operations, such as the lighting equations described in Section 3.6,

must be understood. Figure 23 shows class diagrams of a shader subsystem (shader

parameters are excluded to maintain some clarity).
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GSE_OglVertexShaderGSE_FragmentShader

GSE_VertexShaderMgr
GSE_ShaderNodeTheshadersubsystem

GSE_ShaderGSE_VertexShader
GSE_FragmentShaderMgr

GSE_ShaderProgram

GSE_OglFragmentShader

GSE_OglShaderProgram
GSE_OglShaderBase

GSE_ShaderProgramMgr

Figure 23: Class diagram of the shader subsystem.

4.10 Optimizing the performance

This section explains three optimization techniques used in the GSE, namely avoid-

ing use of virtual functions, vertex buffer objects and C++ template metaproramming.

They have effect on the performance and also to work related to maintaining source

code.

Avoid using virtual functions

When programming in C++, some OOP design patterns must be avoided in order to

reduce unnecessary function call overhead. An example of such a case, is the use of

inheritance interfaces. Inheritance interfaces, which are commonly used design pattern

in OOP, are implemented using pure virtual functions in C++.Pure virtual functions

are base class methods without implementation. This means that they must be imple-
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mented in a child class inheriting the base class, in other words, throughdirect special-

ization. Virtual method call is determined run-time, using a virtual function table, if it

is called from a base class Schildt (1998: p.349). This feature has been shown to cause

significant overhead (Driesen & Hölzle, 1996) and should be avoided in time-critical

sections of GSE, which happen to be everything related to rendering a single frame;

drawing calls, visibility determination, animation, and so forth. The old truth, OOP is

not a silver bullet12, is apparently valid also today.

Vertex Buffer Objects

When large amount (tens or hundreds of thousands) of consequent calls to functions de-

scribing the vertex position, color, and texture coordinates are made, frame rate comes

down to a grinding halt. One of the problems is thefunction call overhead, which

means the time to enter the function and leave it. Another problem is the state change

required in OpenGL to submit different types of data (Marselas, 2000; Woo & al, 1999:

p.67).

To keep frame rate sufficiently13 high and render highly detailed models, the data must

be optimized before sending it to rendering pipeline. By cleverly grouping the data,

and sending larger batches using specific array function calls, is more efficient than

calling individual functions that define vertex positions,color and surface normals.

Vertex arraysare the key to perform this kind of optimization. Data is packed into

arrays, which are sent to rendering pipeline using a single function call. Vertex data

(vertex coordinates, texture coordinates, colors and normal vectors) may be packed

tightly into a single array, or be split among many arrays. The former way is referred

to as interleaved dataand latter asstreamed data. According to Marselas (2000),

using streamed data is about 30% faster than interleaved data. Using this information

as basis, I implemented GSE drawing primitives entirely with streamed vertex arrays.

This reduces the function call overhead, and provides better performance when large

vertex arrays are used. However, Marselas stated that usingvertex arrays with array

12The term in this context was first used by Brooks (1987), who stated that OOP is not a silver bullet

that could kill the werewolf of software engineering problems.
13This depends on application, but subjective view of the author is: over 60 FPS=good, less than 30

FPS = bad.
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rendering functions requires 10-50 vertices to be submitted in order to overcome the

array function call overhead.

Marselas also stated, that when vertex arrays are used, vertex (and other) data is copied

into graphics card memory during rendering of each frame. This takes time, and if the

data does not change, it is more viable to store it into the memory of graphics card,

where it can be used directly without copying. This process is referred to ascaching,

and in GSE, it is realized by using OpenGL vertex buffer objects.

Vertex buffer objects(VBOs) allow application to store vertex (and other) data onthe

server-side high-performance memory of the OpenGL architecture (NVidia Corpora-

tion, 2003). The VBO is an extension to the OpenGL, and since OpenGL version 2.0,

it is promoted as core functionality. By using VBO, vertex, normal, and texture coor-

dinate data is transferred to the memory of the graphics card, and can be retrieved from

there when rendering calls are made.

Adding VBOs to current engine architecture required slightcompromises to isolation

of graphics library code. Each VBO requires an OpenGL-compliant name(which is

expressed with a specific OpenGL data type). This name is stored into GeometryData

class as a member variable, because it was the only reasonable place. Since Geometry-

Data objects should not know anything about the underlying 3D graphics library, this

is a problem. If similar support exists for another 3D graphics library, and that library

is included into GSE, its name storing scheme must be added toGeometryData class.

Controlling the way how VBOs are generated and altered, is more complicated mat-

ter. GeometryData class itself should not know anything more about the VBOs than

a name. Actual controlling of VBO functionality is left for the OpenGL renderer. To

solve this problem, I developed a communication method between OpenGL renderer

and GeometryData class, which allows renderer to know when to create, regenerate or

delete VBOs. A GeometryData object may hold one of the messages listed in Table 5

to the renderer at any time.

First item in Table 5 is the initial state. This state is also set if VBOs are not supported

by underlying hardware, or an error has occurred during cache generation process.

Second item is the principal item for creating the VBO cache.Third item is set when

cache as been created. Fourth item in Table 5 is used to refresh a VBO cache by

recreating it from vertex data. Last item is obviously used for deleting the VBO cache.
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NO_CACHE VBOs are not used, data is copied to graphics card

memory for each render call.

REQUEST_VBO_CACHE Next time the OpenGL renderer accesses

GeometryData object, cache is created to graphics

card memory, and message is set to

CACHED_IN_VBO.

CACHED_IN_VBO Data is already cached on graphics card memory,

VBO is used render it.

REGENERATE_VBO_CACHE Data in the vertex array is changed, cache in the

graphics card memory is updated and message is set

to CACHED_IN_VBO.

DELETE_VBO_CACHE Delete cached data from graphics card memory, and

set message to NO_CACHE.

Table 5: The VBO messaging scheme between OpenGL renderer object and Geome-

tryData object.

C++ Template Metaprogramming

Matrix mathematics is one of the key elements in 3D programming. Isensee (2000)

stated, that by optimizing the matrix functions using C++ templates, a 20% increase

in performance was discovered in conjunction with 3 x 3 matrices. The improvement

was accomplished by unrolling loops in multiplication, a trick which can be explained

how loops are implemented using the assembly language. However, the importance

of profiling was also stressed by Isensee: same optimizationtechnique applied to 4

x 4 matrices caused over two-fold performance degrade. The algorithm itself is not

changed when using these methods, so asymptotic time-complexity remains the same.

Templates have also other advantages than performance - they can reduce the amount

of code. For instance, by declaring a matrix template with SIZE and TYPE parameter,

arbitrary-sized square matrices can be created on the fly with the desired data type just

by typing one line.

template <std::size_t SIZE, typename TYPE>

class Matrix

{

protected:

65



TYPE m_aValues[SIZE * SIZE];

public:

...

};

And to create 2 x 2, 3 x 3 and 4 x 4 matrices with float, following lines must be written:

Matrix<2,float> m_2x2fmatrix;

Matrix<3,float> m_3x3fmatrix;

Matrix<4,float> m_4x4fmatrix;

All of the matrices now have similar implementation and their functions are optimized

during the compilation phase. The matrix class can now be implemented with double

data type just by replacing the wordfloat with double- all data types with one im-

plementation. I implemented matrix classes in this way, andso far no performance

problems have been noticed.

4.11 Libraries utilized

GL and GLU

OpenGL library provides the core 3D graphics drawing commands. GLU is an utility

library for OpenGL library. It allows, for instance, rendering of simple geometric

objects with simple function calls.

GLee

GL Easy Extension library handles loading of various OpenGLextensions. It provides

run-time mechanisms for checking support for specific extensions in several platforms.

lib3ds

The lib3ds library provides support for loading and saving data into 3DS format. It is

used to load models, materials and textures from 3DS files to the engine.
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SDL

The Simple Directmedia Layer is a multimedia library for several platforms. It pro-

vides support for keyboard and mouse event handling, creating windows with OpenGL

context, rendering 2D graphics, playing sounds, etc. It is primarily used for creating

windows with OpenGL context and handling keyboard and mouseevents.

SDL-image

SDL-image library is an extension to SDL, and allows loadingof various image for-

mats, such as JPEG, PNG, BMP, and GIF. It is used to create textures from images.

Ffmpeg

Ffmpeg library is a cross-platform audio and video streaming library, and is used to

provide video textures. It supports various codecs, allowing various formats to be used

in videos.

Freetype

Freetype library is used to render text on 3D screen with desired truetype font. It is used

only for displaying 2D messages on screen. Fonts are not converted to transformable

3D objects, and are used in texture-like manner.
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5 I Have Created a Monster! Time to Flee, But Where?

In earlier chapters, I have told that my motivation for doingthis research had risen from

a need to design a 3D engine for netWork Oasis project. I have explained that real-time

3D graphics are used in various places, such as in military training simulations, collab-

orative virtual environments, medical applications, games, 3D window managers, and

so on. I have also briefly covered the history of hardware-accelerated 3D rendering.

I defined the 3D engine to be a two-edged sword; it is a higher-level abstraction of 3D

graphics library calls where data is handled on object-level, and at the same time, it

works as a combination of several techniques which accelerate the rendering process.

I have introduced three different 3D engine projects available from sourceforge web

site, and cross-compared their rendering features - concluding that their features are

very equal.

I have explained the concepts involved in real-time 3D graphics, observing them from

mathematical and computer graphics perspective. I have clarified the design of my

3D engine, starting from requirements, going through implementation details and op-

timization techniques, finally reaching the point where research questions must be an-

swered. In this chapter, the research questions presented in Section 1.1 are answered

by providing a list of necessary features and explaining them more closely. In the final

paragraphs, directions for further work is discussed.

Questions and Answers

Question one -which set of features is needed in generic 3D graphics enginelibrary

to provide basis for further development?

1. Vector and matrix manipulation package. Each of the 3D engines will have

to deal with linear algebra, mainly matrices and vectors.

2. Scene culling. Since all objects are not frequently on screen at the same time,

there is no use to draw them all, so a method for determining their visibility is

needed. By designing proper bounding volumes, and intersection test methods,

visibility determination can be made faster.
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3. Texturing, materials and lighting support. Various surfaces look more de-

tailed with images and materials are applied over them. Alsolighting improves

the visual quality in some situations.

4. Hierarchical scene representation. Usually scenes consist of more than one

object. Managing the relative and absolute positions of each object will be a

nightmare without a logical structure.

5. Animation support . Some applications, such as games, use animated 3D mod-

els. Skeletal animation is popular and flexible method of character animation

and must be supported.

6. Spatial sorting of geometry. When dealing with large objects, which have only

a portion of their geometry displayed at a time, there is no need to draw them

completely. Therefore, a method which sorts the vertex datainto sufficiently

small subsets and allows fast selection of an arbitrary set from them, is needed.

7. Shader support. Shaders can be used for various effects and techniques, ranging

from skeletal animation to physics simulation calculationand lighting effects.

The shader support is essential in order to be able to add various features to the

engine in the future.

8. Properly documented API with tutorials and examples. This is required for

any developer to be able to utilize the engine.

Question two -how the minimal set of features must be implemented in order to

provide maximal reusability in different projects?

There exists numerous ways to implement these features, andthese features probably

have been implemented in somewhat different ways in every engine. And it is very

hard to say, which ways are best or most efficient. In GSE, I projected my efforts

towards reusability, and implemented the features in following ways.

Vector and matrix manipulation package

The mathematic operations are needed in more places than a humble programmer is

able to count, and the operations are used frequently when rendering frames. This leads

to the fact, that the mathematics package must be as efficientas possible to provide
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a high frame rate. The mathematics package can be further optimized by processor

architecture-based optimizations, such as Streaming SIMDExtensions (SSE), which

may reduce the practical execution time by factor of three. This optimization does not

affect the time complexity itself, but takes advantage of the pipeline provided by the

processor, and enables execution of several commands within one clock cycle. My

current implementation does not use SSE optimizations, butattempts optimize mathe-

matics package using C++ templates combined with unrollingloops in multiplication

process. I have designed the mathematics package so, that itcan be extracted from the

rest of the engine and used independently, if such a need should arise.

Scene culling

I have implemented camera and frustum classes, which allow intersection tests to

be performed easily. I have also written several bounding volume implementations,

and intersection test methods. My implementation includesaxis-aligned and oriented

bounding boxes, bounding spheres and cones. I have implemented intersection tests

for frustum-sphere-, frustum-box-, sphere-sphere-, sphere-cone- and box-cone-pairs.

I have integrated hierarchical view frustum culling into a scene graph, which han-

dles also the updating of bounding volumes when position andorientation of objects

change. These visibility determination techniques can be used easily, since I have

encapsulated them into a single package, so those tests can be used in various other

projects as an independent part. The culling methods, however, rely on features of the

mathematics package and therefore require for it to be used as well. I have written the

camera and view frustum classes without any bindings to the underlying 3D graphics

API.

Texturing, materials and lighting support

I have designed materials and textures so, that they can be applied to renderable ge-

ometry very easily. Material properties in GSE be defined in files, which in turn can

be converted into run-time objects my material manager. GSEis able to use variety of

image formats in textures. This includes also videos, whichare supported via ffmpeg

library.
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I designed the lighting to be very configurable, and it works per-object basis. I’ve

implemented a light virtualization technique, that includes only the lights which con-

tribute the most light to an object. In GSE, lighting works bydefining illumination sets

(which may include an arbitrary number of lights) that are attached to objects. In this

way, very complex lighting schemes can be created.

Hierarchical scene representation

In my implementation, objects are grouped using a scene graph, which provides a sim-

ple way to handle hierarchical object structures, and automates position and orientation

updating. For instance, if there exists object A, which is positioned to a specific loca-

tion on object B, programmer can move both objects simply by moving object B, since

position and orientation changes are reflected from parent node to child nodes. This

removes a great deal of updating burden from a programmer, and encourages to create

complex models constructed from several 3D objects.

Animation support

I designed 3D model animation support using skeletal animation. I have written helper

utilities, which assist in converting an MS3D animation into an animation graph. Ani-

mation is controlled by defining a passed time for each frame.I implemented animation

so, that it is controllable on joint-basis, meaning that animation can be stopped in some

joints while continuing it on others. I designed a feature toanimation renderer, which

allows to use only a portion of an animation stored in MS3D file. This way, several

animations for a single model can be included in one file, and used easily. Animation

system supports also animation pausing, continuing and looping.

Spatial sorting of geometry

Very large models require much processing power to be rendered. In GSE, the process

is accelerated by using octrees, which split the data into smaller pieces. Hierarchical

view frustum culling is used to determine which pieces are visible during run-time.

This feature allows very large terrains to be rendered without stressing the bandwidth of
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the graphics processing pipeline. I implemented octree class to be simple and effective,

general-purpose data structure, which can be used in many places.

Shader support

Shaders can be used for various effects and techniques. I have implemented the shader

support for GLSL, which is a part of the OpenGL 2.0 standard. Both shader types, ver-

tex and fragment shaders, are supported. In this implementation, shaders can be read

from source files and inserted as rendering commands like anyother rendering nodes -

they do not need any special treatment. The shader support inGSE allows several spe-

cial effects added into the engine, without actually changing the actual implementation

of GSE. An example of such an effect isblooming, where light sources “leak” their

light around them, and generate a glowing effect. Shaders are especially useful feature

in the sense of the engine extendibility.

Properly documented API with tutorials and examples

The importance of documentation in software projects cannot be stressed enough. An

API can be used by examining the source code, but it is not veryintuitive. Properly

designed examples help in the learning process, and allow the programmers to study the

features of the library. For later use, a programming reference is needed when a specific

feature description is required. Tutorials are very hard tocreate in this particular case,

since there is not exact purpose, where the library should beused. In the absence of a

better tutorial, I have provided an amply commented reference implementation for one

project, and documented the entire API using doxygen. Doxygen generates, among

other formats, an HTML-documentation of API functions for easy viewing.

I Stand on the Shoulders of Giants

I find the overall implementation of the engine to be quite satisfactory. Graph data

structure seems to work very well as a basis for nearly everything. It is very flexible and

new features can be added using the graph-renderer scheme. The purpose of GSE was

not to provide a solution for a specific visualization problem, although it was ignited

using a specific problem as a basis. Neither it is a generic 3D library, which would work
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well out-of-the-box in all possible projects. The result isa 3D engine library, which

can be used as a basis to build more sophisticated solutions to visualization problems.

From theoretical and technical perspective, the future research could focus to find out

how several sections of GSE can be optimized even further, and what implications do

these optimizations have. It would also interesting to know, what optimizations be

done automatically via compiler, and what must be written manually.

The engine is never actually ready. Future projects might consist of implementing

support for other graphics libraries, such as Direct3D (which might allow better per-

formance on Windows platforms) and adding more effects to GSE, such as dynamic

shadows, reflective materials, mirrors and so forth. These development projects could

also put GSE in trial to test its extendibility, and results could be used to create a better

3D engine base design.
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Appendix 1: Source code of GSE
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