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Abstract

In this thesis we analyze spectral images from several points of view. We develop a soft-
ware capable of making some basic editing, croping spectral images, visualizing a specific
range of wavelengths and applying segmentation techniques to the spectral images. In ad-
dition we develop a software capable of drawing figures to spectral images. This software
will be use to create artificial spectral images in order to test the different segmentation
techniques. Finally we develop a software capable of reading the spectral data of a defined
area giving the mean values of the selected area. The output data are the spectral data,
the L*a*b* coordinates and the sRGB values.
We make some testing and analysis of spectral images from paper samples. The paper
samples are printed with three different printing densities lower, target and higher. We
will obtain data from the spectral images and make a comparison of lower and higher
densities respect the target density.
The segmentation results depends on the algorithm used. Our software uses three differ-
ent algorithms for segmentation. The clustering algorithms work with features obtained
from spectral and La data, the results are greyscale images with areas that represent
the clusters. With clustering we can easily distingue parts of the original image with
similar color properties, like the skin, clothes and background. Lab segmentation gives
us a greyscale image with the pixels that are within a defined by the user distance from
the Lab coordinates. It is useful to highlight pixels with similar Lab coordinates. The
last approach is based on distance from spectral that belongs to different pixels. We can
find areas with similar spectra, it does not provide necessarily information about color
differences because distance is not based on the shape of the spectra. It can be used to
find which areas of the image have similar spectra respect the selected area.
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Chapter 1

Introduction

Light is all around us, it floods the world from the powerful sunlight to the small candle.
It is the responsible of the particular view of the nature that we the humans have. But
there are other points of view, the human eye only perceive a limited fraction of the light
and only in one specific and simplified way. With the use of special devices it is possi-
ble to overcome the human limits and explore the different shades the light try to show us.

With the use of spectral images it is possible to study in a more detailed way light proper-
ties. Spectral images have more information about the scene than standard RGB images.
It is possible to study spectral images from different points of view [Pee93] [WEV02].

In the software presented in this thesis we work with spectral images. Spectral images are
a set of pixels with information of different wavelengths for each one. Each pixel contains
a vector of length K, the dimension of the image is NxMxK.
Instead of using a value to determine the luminance of the pixels like in the greyscale
images, or three component representing the three basic colors red, green, blue (RGB)
like in color images, we have information about many spectral wavelengths for each pixel
of the image [WEV02]. Spectral images can be considered as a collection of several mono-
chrome images, each of them referring to different wavelength.

The amount of data of spectral images is bigger than the amount of data used to rep-
resent a RGB image. For a RGB image we simply have three values representing red,
green and blue color. The spectral images use more information, one single value for each
wavelength.

The aim of having such amount of data is that we can use it to study certain properties
that can give us information to make segmentation or compare different spectral images
in order to find similarities and differences. In spectral images it is possible to visualize
only certain part of the wavelengths showing certain properties that could not be viewed
in RGB images.

Segmentation of images can be done using several criterions. In this thesis we use seg-
mentation by color differences, with the use of L*a*b* space and spectral data [Pee93].
In order to study the different algorithms we use artificial spectral images created by our
own software.
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CHAPTER 1. INTRODUCTION 7

Spectral images can be studied also comparing them with other spectral images. This can
be useful to determine differences in spectral images studying spectra or color spaces. In
this thesis we study differences between paper samples printed in with three ink densities
and using different procedures. With this study we can assess the quality of the resulting
printed samples.

The structure of this thesis is arranged as follows: In Chapter 2 we will present some
of the hardware involved in taking the spectral images. In Chapter 3 we will study the
different ways to represent spectral images in the computer, the standard observers 1931
and 1964, the effect of the selected illuminant and the L*a*b* coordinates. In Chapter
4 we will present the different clustering methods that our software make use of. Finally
in Chapter 5 is the software user manual with all the functionalities available and some
results of the segmentation algorithms. Finally in Chapter 6 we show the resulting images
and graphs comparing the data.



Chapter 2

Spectral Image Acquisition

In greyscale images we work with sets of points with certain value for each one. This
value represents how dark or light the point is. In color images the principle is the same
but we work with three different values for each point.

In spectral images we have pixels with information from more channels each one related
to different wavelength. We can define spectral images as groups of greyscale images each
of them referring to a single wavelength. Spectral images are taken with spectral cameras.
These devices can obtain information about the light in different wavelengths [TT99].

A spectrometer is an optical device capable of measure a specific portion of the light. In
comparison with standard RGB cameras, a spectral camera provides much more color in-
formation per pixel. Color resolution is much better and we can easily obtain and modify
information like the illuminant applied.

A spectral camera has a set of sensors sensitive to certain light wavelengths or a single
sensor capable of dividing the light into wavelengths. The spectral camera has a prism
that separates the light into different wavelengths. The light is spread along the sensor.
The sensor is a square with several rows, each row is sensible to a defined wavelength.
It is possible to obtain spectral data with only few sensors, this approach is often called
multichannel camera. In fact a spectral image can be obtained from sensors sensible to
two wavelengths or more. The whole spectral image can be obtained then with the use
of interpolation technique [TT99].

For more detailed analysis it is better to have a spectral camera sensible to as much wave-
lengths as possible.

The spectral camera used to take the spectral images for this thesis have sensors capable
of detect a wide amount of wavelengths. This kind of spectral cameras can measure one
line of an area at the same time and record spectral information about that line.

To take the spectral image some previous steps are needed. The sensors should be cali-
brated establishing a white reference and black reference. Sensors do not have exactly the
same properties, the materials and the circuits inside the camera can give different values
depending on the ambient heat and other factors. The calibration of the camera white

8



CHAPTER 2. SPECTRAL IMAGE ACQUISITION 9

Figure 2.1: CMOS Sensor, courtesy of AXIS Comunications

and black values is useful to correct the obtained data to more accurate values [TT99].

Figure 2.2: CCD Sensor, Courtesy of AXIS Comunications

There are two different types of sensors depending on the technology used. CCD (Charge
Coupled Device) sensors (Fig. 2.2) and CMOS (Complementary Metal Oxide Semicon-
ductor) (Fig. 2.1) [GCKP01]are two different approaches. Both sensors convert light into
electric signals.

The working operation of CCD sensors imply that one sensor or pixel transfer the infor-
mation to a limited number of output nodes and after that the electric signal is converted
to digital with the use of a AD (Analog to Digital) converter [Reg76].

Because the information is passed through the nodes, the final information of a column
is affected by all the nodes in the column. This have the not desired effect that if it exist
a very bright source light in some area or there exist a scene with lot of contrast, it will
affect the whole column and vertical stripes can appear. This effect is called smear.

In a CMOS sensor each pixel has his own AD converter and we can read the information
of one pixel directly from the sensor without taking into account the information of other
nodes. CMOS sensor also has some nice features built in like noise reduction and correc-
tion.
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Figure 2.3: Inside Camera Operation, courtesy of AXIS Comunications

CMOS sensors needs more physical space than the CCD ones due to the need to imple-
ment more elements like the noise reduction and AD converters into the sensor itself.

CCD sensors where invented in the 1960s (Fig. 2.4) and CMOS in the 1970s. The first
ones had better quality because they produce less noise and they produced at the begin-
ning images with better resolution than CMOS technology. But CCDs are very expensive
to produce due to the materials used while CMOS technology use cheap materials and
the production techniques are exactly the same used for any chip.

Right now the need to have very high quality images with high resolution and very low
noise makes the companies to produce spectral cameras with CCD sensors. For the RGB
cameras the CCD surface is made of sensors with certain filters for the red, green and
blue, creating a pattern. Two common patters are the Bayer arrangement and the RGBE
arrangement that includes also filters for cyan color.

In the spectral camera (Fig. 2.3 and Fig. 2.5) the principle is the same, we have a CCD
or CMOS sensor and each line is sensible to a certain wavelength. The method is even
simpler than the used to take RGB images because we do not need to create a specific
complex pattern with red, green and blue filters, just put a filter for certain wavelength
to every row.

After we obtain the line information (Fig. 2.6) we move either the camera or the object to
measure to the next line. The information is recorded to create the whole spectral image
as a set of lines with spectral information.
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Figure 2.4: Willard Boyle (left) and George Smith (right). Courtesy of Lucent Technologies. 1969

Figure 2.5: Spectral Camera Operation, courtesy of Spectral Imaging Ltd. ImSpector

400 nm

800 nm

Row N of the image

Column 1 Column N

Figure 2.6: Line Scanned by the spectral camera



Chapter 3

From Spectral Image To Three

Component Image

In this chapter we will study the methods used to transform a spectral image to RGB
image format in order to represent it as a color image in the computer monitor or printed
paper. We will see the properties of the human vision and some approaches to represent
RGB from spectral data. From spectral data we can also obtain L*a*b* coordinates that
is one of the steps between spectral image and RGB image. L*a*b* coordinates are closer
to the human vision than RGB values.

3.1 Eye Properties

The visible range of wavelengths that the human eye can detect goes from 380 nanome-
ters to about 780 nanometers. This range gives the human eye a lot of information to be
processed [WEV02].

The acquisition of the light information by the eye makes use of certain light sensitive
cells, these elements are known as cones and rods (Fig. 3.1). The cones can be separated
into three classes, each class being sensitive to a different spectral distribution of radiation
(Fig. 3.2).

This trichromacy of colour sensation means that many different spectral distributions can
produce the same perceived colour. Such equivalent stimuli, even though they have physi-
cally different spectral distributions, are called metamers and the phenomena metamerism
[Pee93] [WEV02] [WS82] [otCIdL86]. Metamerism is important to understand how the
colors are perceived by humans and therefore it allow the creation of models for repre-
senting the different wavelengths and colors.

When we try to study how the colors are perceived by the human eye we need to define
which features of the light the eye detects and how they are detected.

Because the light is not composed of a single wavelength, the perceived color is a function
distribution of the whole spectra. The different shapes and curves generated by the dif-
ferent wavelengths are perceived by the human eye as colors or chromacity. The intensity
is given by the height of the distribution of the spectra [Pee93] [WEV02].
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Figure 3.1: Eye Cones And Rods

The different cones in the eye can respond to colors and intensity, different wavelengths
are weighted by rods and cones to produce the effect of color and intensity. All of them
provide information to the brain to reconstruct the image with all his properties.

Different set of wavelengths can produce the perception of the same color. The charac-
teristics of the human eye with the use of the cones makes possible to represent different
wavelengths as the same color and vice versa [WEV02] [WS82] [otCIdL86]. For the par-
ticular case of the human eye, there are about 6 million of receptors (cones and rods).

Rods are responsible of the intensity of the image more sensitive in the peak 498nm. They
are not sensitive to color differences but to different intensities of the light. Most part of
the receptors are rods. The cones are the responsible of the sensation of color or hue and
the rods take care about the luminance or light intensity.

The cones respond to the different colors in the following way:

• yellow-green wavelengths (peak in 564nm), very often called long or L

• blue-green (peak in 534nm) often called medium or M

• blue-violet (peak in 420nm) often called short or S

The visible range of wavelengths can be represented as three component with given in-
tensity [Pee93] [WEV02].
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S-Cones    Rods  M-Cones  L-Cones

Sensitivity

Wavelength

Figure 3.2: Perceived color by cone type. From Foundations of Vision by B. Wandell

3.2 Standard Observer 1931 & 1964

The International Commission on Illumination (CIE) set the 1931 and 1964 color match-
ing functions for colorimetric observer viewer for imaging systems [otCIdL86].

The primary colors are extracted from the spectra with the use of color matching functions.
Because the final results obtained depends on the matching functions selected, there exist
several standards that define the way we obtain color information to the tristimulus values.

In this thesis we use two different approaches called CIE Standard Observers. Both of
them are defined by the ”International Commission of Illumination” to obtain the three
stimulus values by the use of a given color matching function [otCIdL86].

Experiments done in the late 1920s by W. David Wright (Wright 1928) and John Guild
(Guild 1931) derived in a color reconstruction function (Fig. 3.3). Those experiments
were made to create certain matching functions in order to obtain the three components
to represent a image from the spectra.

The experiments were made in a 2 degree visual angle and with the use of three source
lights representing the colors red, blue, and green. In addition Wright and Guild adapted
the matching functions to ensure a good luminosity representation.

R =
∫

∞

0

r̄(λ) dλ; G =
∫

∞

0

ḡ(λ) ḡλ; B =
∫

∞

0

b̄(λ) dλ

This system in often called 2 degree observer or 1931 standard observer.
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Figure 3.3: The CIE 1931 RGB Color matching functions. r̄(λ), ḡ(λ), b̄(λ)

There are two problems derived from the CIE 1931 standard observer. One is that the
color matching functions have both positive and negative values and they have an angle
of field view of only 2 degrees.

The standard observer 1964 (Fig. 3.4) solves these problems, adding a wider angle of
view in the field of 10 degree. Also it was increased the sensitivity of wavelengths below
460nm, which was underestimated in CIE 1931 standard observer.

We will not discuss in deep the changes and properties of the new model because is not the
aim of this thesis. The x(λ), y(λ), z(λ) can be used with both observer to negative values.
The software developed here makes use of both approaches and there were needed only
minor changes between the CIE 1931 model and the CIE 1964, in fact it is only needed
to change the distribution functions for the three primary colors [otCIdL86] [WS82].

3.3 Illuminants

The perception of colors relies on the source of the light [Pee93] [WHD03]. In fact the
light is reflected by objects and they add their color properties to the reflected light. So
the color depends partly on the source light that illuminates the object. Human vision is
affected by cones and rods response to illumination, human eye can cancel partly illumi-
nation effects and detects spectra of surface.

The spectral radiant power of the light source Sλ is multiplied by the spectral reflectance
characteristic of the object surface Rλ [WHD03]. The result is the object color received
by the observer Pλ :
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Figure 3.4: The CIE 1964 Color matching functions. x̄(λ), ȳ(λ), z̄(λ)

Pλdλ = RλSλdλ

In the CIE 1931 and CIE 1964 standard, the Y parameter represents the brightness or
luminance of a color. The chromaticity of a color is obtained from the spectral data
distribution, the light source and the reflectance of the object, being xλ, yλ, zλ spectral
functions [WS82].

X = k

∫

λ

RλSλxλdλ

Y = k

∫

λ

RλSλyλdλ

Z = k

∫

λ

RλSλzλdλ

The CIE commission recommends to restrict the colorimetric measurements to a set of
predefined distributions of radiant power called CIE standard illuminants. The distribu-
tion on CIE illuminants A, C, D50 and D65 are shown in figure (Fig. 3.5).
However in the software developed for this thesis we only use illuminants A, C, D50 and
D65 with both CIE 1931 and CIE 1964 standard observers.
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Figure 3.5: The CIE Illuminants A, B, D50 and D65

3.4 CIE Color Space

With the use of the color matching functions and taking into account the light source Sλ

and reflectance Rλ, it is possible to obtain three values that represents the the perceived
color from a certain spectra [Pee93] [WHD03].

The applied formulas to obtain the tristimulus values are:

X = k
780
∑

λ=380

RλSλxλ

Y = k
780
∑

λ=380

RλSλyλ

Z = k
780
∑

λ=380

RλSλzλ
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x, y, z, are the matching functions. k is a normalizing factor set by taking the white
reference.

k =
Y

S(λ)R(λ)y(λ)

And setting Y = 100 if the object is ideal white.

Chromaticity diagrams are taken with the use of the following parameters:

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z

The difference in the CIE 1931 and CIE 1964 diagrams is small, but the wider field of
view, from 2 degree of the CIE 1931 to 10 degree of CIE 1964.

Figure 3.6: CIE Color Diagram
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RGB values are the common way to represent the images on the computer, they are ob-
tained by linear transformation from the X,Y, Z values.

The transformation from XYZ space to RGB space is achieved by:
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2.3647 −0.8965 −0.4681
−0.5151 1.4264 −0.0887
−0.0052 −0.0144 1.009
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The opposite transformation from RGB to XYZ space is not used in this thesis either the
software, it is made by the use of the following transformation:
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 =







0.4899 0.31 0.2
0.1769 0.8124 0.01

0 0.01 0.99
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3.5 CIE L a* b*

Lab is the abbreviation of CIELAB (CIE 1976 L*a*b*) (or Hunter L, a, b).

Both spaces are based on the CIE 1931 and CIE 1964 XYZ space. The main aim of
both color spaces is to provide a correspondence between the changes in the color and
the perceived color. This relay in the property of perceptual linearity, it means that if we
make changes in the properties of a color, the perceived color should represent the same
amount of changes, it should have the same visual impact or importance. This property
can improve the reproduction of tones [Pee93] [WEV02] [WHD03] [HRV97].

Both spaces are relative to the white-point of the XYZ data they were obtained from. The
LAB values do not represent absolute colors unless we provide the white-point reference.
It is very common that the white-point is assumed to be a standard, often it is relative
to CIE standard illuminant D50 [HRV97] [MG80].

The LAB color model is obtained from the XYZ space with the use of the following trans-
formations:

L∗ = 116f
(

Y
Y0

)

− 16

a∗ = 500
[

f
(

X
X0

)

− f
(

Y
Y0

)]

b∗ = 200
[

f
(

Y
Y0

)

− f
(

Z
Z0

)]

f(x) = x1/3 ifx ≥ 0.008856

Where X0, Y0, Z0 are the tristimulus values of the white reference.

It is easier to work with CIELAB space than with RGB or CMYK, because the chromac-
ity and luminance are separated [JG78] . With CIELAB it is possible to represent colors
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that are not possible in other spaces, which is useful for color manipulation of the pictures.

CIELAB is more similar to real human vision than RGB representation. One of the
analysis that can be made to the spectral images is the segmentation based on L*a*b*
coordinates, it gives fast results and solves the problem of working with the big amount
of data the spectral images.

Figure 3.7: CIE Color Space Sphere, courtesy of [Wik06]

Figure 3.8: CIE Color Space Circle, courtesy of [Wik06]



Chapter 4

Segmentation

We call segmentation in the context of image analysis to the partitioning of the image
into several regions following certain criterions. The pixels that belong to any area need
to have some properties. The properties are defined by a set of features. The aim of the
segmentation is to distinct between parts of the images. Clustering deals with finding a
structure in a set of data with certain properties [MLAB06].

When we try to make a segmentation of a spectral image we need to consider which fea-
tures we want to highlight before our first attempt to solve the problem [AS07].

Clustering is defined as the partitioning of objects into groups based on a given base of
features. The use of those features give us the ability of decide when an object belongs
to a group or not. In our case we have a wide variety of situations to use our software.
Because of that we implemented three different algorithms to make the segmentation
[MLAB06] [OO06].

4.1 Spectral Image Segmentation

Previous works in this area tried to apply different algorithms to the segmentation of color
images or greyscale images. Since this is done in 2D space with a matrix that represents
every point, it is relatively easy to attach the problem.

The segmentation algorithms rely on the detection of features that can make possible to
say that one pixel belong or not belong to a certain group [KVV04] [KM06].

The selection of the features is the most important aspect of the segmentation. The re-
sults depend on the selection of the properties that the pixels should have and therefore
the results can be slightly different depending on the set of features [OO06].

To make a good feature selection we should think about what we want to see in the seg-
mentation. In our case we use three different algorithms that use different features. We
will go more in deep in the next sections, but previously we will present some applications
of the segmentation, particularly with spectral images [KVV04] [KM06] [Cha].

21
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Segmentation usually is used in RGB images or black/white images. This makes every-
thing more easily since we need to work with a two dimensional matrix and we only need
to add some amount of features to distinct between the different groups.

The segmentation is useful to highlight regions on the image with some properties based
on features. The features to be used with the algorithms are based on the image infor-
mation, but sometimes that information can be pre-processed to get some specific set of
features.

In greyscale images it is very common to use algorithms [KVV04] to highlight the shape
of objects and the features to be the pixel position and pixel luminance. It is also possible
to discover regions with some characteristic pattern [ZCH+04] [Cha]. In our case we will
have very powerful information, that is the spectral information of the pixel.

Unlike the greyscale images, with spectral images we have information about different
light wavelengths for each pixel [KVV04], this provides us with more information than
standard RGB color images. We can search in the image for pixels with certain properties.

In the spectral image we have several approaches. Because we have a multi dimensional
matrix with the pixel position and an array of spectral values for different wavelengths,
it looks that it will be much more difficult to apply segmentation algorithms [KM06]
[ZCH+04].

But again everything depends on the approach taken to make the algorithms. The fea-
tures that represent a spectral pixel are based on the different wavelengths that conform
the pixel. We can separate the spectra in different ranges of wavelengths each of them
represented by the mean value of the spectra in the selected wavelength range, this mean
a preprocessing of the spectral data before aplying an algorithm.
In this thesis we will use a different preprocessing of the spectral data. If we use the
wavelengths that conform the spectra as features that represent the pixels, we have a
very high amount of features.

If we have spectral data coming from 400 nanometers to 700 nanometers in 5 nanometer
steps, we have a total of 61 wavelength values. Indeed this wavelength values represent
very well the pixel information and characteristics, but to work with such amount of fea-
tures have drawbacks.

The first drawback is the computational time to apply certain algorithms, for example
the sequential clustering algorithm that we will use later, it is high [KVV04] it can take
from couple of hours to several days depending on the spectral image size.
Second the features do not provide a good way to classify the pixel in all cases. If we
try to determine similarities between pixels according to the color information from the
spectral image we should be careful with the clustering algorithms because they may not
provide good classification [KVV04] [ZCH+04].

We will see in the following example that the classifiers can provide us different results
than we expect.
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Lets have a set of pixels with three features, they represent three different wavelengths
of a specific spectral image. We select three wavelengths because it is easy to represent
graphically in three dimensional space.

Let S to be a set of pixels with three features:

S = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [0.2, 0, 0.2], [0, 0.2, 0], [0.2, 0.2, 0.2]

Lets represent the features as spectral data, we obtain the figure (Fig. 4.1).

Blue Green Red

(0,1,0) (1,0,1)

(0,0,1)

(0.2,0.2,0.2)

(0.2,0,0.2)

(0,0.2,0)
(0,0,0)

(1,0,0)

0

0.2

1

Figure 4.1: Overlap of Spectral Features

And the visual representation in three dimensional cardinal axes is shown in figure (Fig.
4.2), most of the clustering algorithms use Euclidean distance to make the clusters, in
cardinal axes we can see the distance of the pixel features.

Depending on the clustering algorithm we have several groups as result, in the case of a
clustering algorithm based on Euclidean distance the natural results are in general quite
disappointing.

Basically the clustering algorithms try to generate groups based on distance between the
central weight of the groups. We will see more in deep the clustering algorithms in the
next sections. If we apply a clustering algorithm such as IsoData, the algorithm will find
clusters with features that are close to each other. This kind of algorithms are highly
affected by the Euclidean distance from the groups.

The results using clustering algorithm like IsoData are the following groups:

• A = [1, 0, 0]

• B = [0, 1, 0]

• C = [0, 0, 1]

• D = [1, 0, 1]

• E = [0, 0, 0], [0.2, 0, 0.2], [0, 0.2, 0], [0.2, 0.2, 0.2]
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Figure 4.2: Cardinal Axes With Data Points

Isolated features will belong to their own cluster, features that are near other features
will belong to another cluster. Because we are studying color differences and similarities
to make the groups we should obtain the following results (Fig. 4.3):

• A = [1, 0, 0]

• B = [0, 1, 0], [0, 0.2, 0]

• C = [0, 0, 1]

• D = [1, 0, 1], [0.2, 0, 0.2]

• E = [0, 0, 0], [0.2, 0.2, 0.2]

Each group represents certain color. Euclidean distance between pixels is not the main
similarity property we look for, Euclidean distance provide good results to find luminance
differences but for color or spectral shape it is not useful.

This is an example about how the clustering algorithms can provide solutions that may
not be good for our task. The features may need some pre-processing before use them
with the algorithms. In spectral images we have a large amount of wavelengths, not all
of them are good to know which cluster the pixels belong to.
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Figure 4.3: Correct Grouping With Color Differences

4.2 Clustering

The first task to be made before the designing of the clustering algorithm is to make a
good selection of features that fully represent the proper characteristics we want to high-
light. The number of features or the so called curse of dimensionality can be very large,
in the order of hundreds.

Because most of the features do not provide a good information for classification because
of the high mutual correlation existing between them. We need to create a feature vector
good enough to represent clearly the different groups we want to obtain.
In our case we not only need to have a good classification scheme but also good perfor-
mance in the algorithm. Our time is limited and the results should be shown to the user in
few seconds. We need to retain the features that provide more discriminatory information
[ST03].

At this moment we have a spectral image where each point is formed by a large number
of wavelengths. If we use those wavelengths as individual features we will have a total
number of dimensions that is quite large and the computational time for the algorithms
to complete the calculations will take several hours. So it is mandatory to pre-process the
features in order to increase performance. We will see that quality of the clusterization
will be increased also.

Previously to show to the reader the final solution used, we will think about some possi-
bilities that were discarded. It is clear that we can not use all the wavelengths and use
them as features without some filtering or pre-processing.

Not all features are good enough to distinct between different clusters. In the case of
spectral image we need to establish which properties make two points belong to the same
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cluster or not, that is the key to construct the classifier and also it will restrict the differ-
ent solutions [ST03].

The definition of clustering leads directly with the definition of ”cluster”. If the feature
vectors are viewed as points in the l-dimensional space, the clusters are defined as the
areas of that space with high density of points. Clusters defined at this way are often
called ”natural clusters”. To give us what clustering is we will see some formal definitions.
Let have a set of objects X with certain features [ST03].

X = {x1, x2, ..., xN}

We define cluster as a m − clustering the partition of X into m sets C1, ..., Cm so that
the next three conditions are meet:

Ci 6= 0, i = 1, ...,m

Um
i=1Ci = X

Ci ∩ Cj = 0, i 6= j, i, j = 1, ...,m

The vectors that belongs to a cluster Ci are more similar to each vector that belongs to
the same cluster. Notice that one vector can only be part of one cluster Ci. In this thesis
we use proximity measures.

A dissimilarity measure (DM) d on X is a function d : XxX → R where R is the set of
real numbers, such that:

∃d0 ∈ < : −∞ < d0 ≤ d(x, y) < +∞,∀x, y ∈ X

d(x, x) = d0,∀x ∈ X

and

d(x, y) = d(y, x),∀x, y ∈ X

If in addition

d(x, y) = d0

if and only if
x = y

and

d(x, z) ≤ d(x, y) + d(y, z),∀x, y, z ∈ X
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d(x, z) ≥ 0

Finally, the minimum dissimilarity level for two given vectors is achieved when they are
identical.
A similarity measure (SM) s on X is defined as:

s : XxX → R

such that

∃s0 ∈ < : −∞ < s(x, y) ≤ s0 < +∞,∀x, y ∈ X

s(x, x) = s0,∀x ∈ X

and

s(x, y) = s(y, x),∀x, y ∈ X

If in addition

s(x, y) = s0

if and only if
x = y

and

s(x, y)s(y, x) ≤ [s(x, y) + s(y, z)]s(x, z),∀x, y, z ∈ X

s is called a metric SM
In our clustering algorithms we use Euclidean distance d2

d2(x, y) =

√

√

√

√

l
∑

i=1

(xi − yi)2

The Euclidean distance is a metric for dissimilarity distance.
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4.3 Categories of clustering algorithms

The classification that we will use in our software should be based on color differences
rather than individual wavelengths differences. We will implement in the software three
different types of algorithms. In this section we will present the two clustering algorithms
that we use in the software [ST03].

Clustering algorithms provide different ways to set partitions in l − dimensional space.
The results differ depending on the algorithm and criteria used.
Clustering algorithms can be divided into the following categories:

Clustering Algorithms

Sequential alg. Hierarchial alg. Cost function alg. Other alg.

BSAS TTSAS

MBSAS

Agglomerative Divisive Bayesian

Fuzzy

GFASGDSGAS

MUAS GTAS

Probabilistic

Graph

Competitive

GCLS

SOM

Figure 4.4: Clustering Algorithms

Sequential algorithms: produce single clustering. In this approach the vectors are used
several times in the algorithm and the results depends on the order that the vectors are
presented to the algorithm. These algorithms produce compact and round shaped clus-
ters, although the results may vary depending on the distance metric used [ST03].

For that we will use the CIE L*a*b* space in order to find the features. Once the pixel
spectral information is converted to L*a*b* coordinates, we have many information about
the color scheme of the pixel with just three features.

Because the CIE L*a*b* only show information about visible wavelengths we need to
add a fourth feature for the non visible range of wavelengths, the ones higher than 780
nanometers infrared-light. This fourth feature only is used when the software detects in-
frared wavelengths, so that for standard analysis within the visible range the calculations
are much faster. Use of another dimension for infrared values slow the calculations.

The infrared data is preprocessed and we obtain a mean value of wavelengths from 780nm
and above. If the pixel has infrared data and another pixel with the same L*a*b* values
do not have infrared data, one will belong to a different group than the other. Final
grouping depends also on the number of clusters of the final result selected by the user.
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4.4 Hierarchical clustering algorithms

The hierarchical clustering algorithms can be divided in two approaches, agglomerative
and divisive. We use in the software the agglomerative.

Agglomerative clustering algorithms: at the first iteration they produce a sequence of
clusters. From that set of initial clusters they try to merge the clusters that match a
certain criteria, for us the merging criteria is the Euclidean distance.

They can have some parameters to fine-tune the merging, in this thesis we use the type
of distance to be used in the merging (mean, minimum, maximum), and the link type
(single, complete). These algorithms are appropriate to detect elongated clusters.

Clustering algorithms based on cost function optimization. In these algorithms there exist
a quantitated cost function. Usually the number of clusters is fixed to some static value,
the algorithm tries to produce successive clustering and in each step the value of cost
function is recalculated in order to fin the optimum value. They are also called iterative
function optimization schemes [ST03].

4.5 Matrix Updating Algorithmic Scheme

Matrix Updating Algorithmic Scheme (M.U.A.S.) clustering algorithm rely on the hier-
archical algorithms.

The general definition for hierarchical algorithms is [ST03]: Def: A clustering <1 contain-
ing k clusters is said to be nested in the clustering <2 which contains r(< k) clusters, if
each cluster in <1 is a subset of a set of clusters that belongs to <2 and also there exist
at least one clusters from <1 that is a proper subset of <2.

Hierarchical clustering algorithms produce a hierarchy of nested clustering. The hierar-
chical algorithms produce N steps N ≤ (number of vectors) [ST03]. In every step a new
set of clusters are formed based on the previous selection. M.U.A.S. Is an agglomerative
algorithm so that it merges the clusters following a criteria.

The algorithm can be presented as follows:

begin
N = Number of clusters;
C = Void; //set of clusters
for (i=1, i less or equal N, i = i + 1)

//<0 = {C(i) = {x(i)}
C = Select(C(i), x(i));

end; //for
loop
t = t + 1
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//From all possible combination of clusters in pairs (Cr, Cs) in <t−1

// take the pair of clusters that has the following properties:

//

g(Ci, Cj) =

{

minr,s g(Ci, Cj), if g is a dissimilarity function

maxr,s g(Ci, Cj), if g is a similarity function

// Define Cq = Ci ∪ Cj and generate a new clustering
// <t = (<t−1 − {Ci, Cj}) ∪ {Cq}

C = Mix Clusters(C);

//Continue until all vectors lie in a single cluster.
if length(C) == 1

break;
else

continue;
end; //if

The linkage type defines the dissimilarity measure d(Cq, Cs).

• d(Cq, Cs) = min {d(Ci, Cs) , d(Cj, Cs)}

• d(Cq, Cs) = min {d(Ci, Cs) , d(Cj, Cs)}

• Where element (i, j) of P (X) dissimilarity matrix, is the dissimilarity d(Ci, Cj) be-
tween clusters Ci and Cj.

The M.U.A.S. algorithm has some differences respect the general algorithm. We define
X as a vector containing the similarity values s(xi, xj) from each pair of l − dimensional

vectors.

The input is now a N x N dissimilarity matrix, P0 = P (X), derived from X. At each
step the size of the matrix decreases because two clusters are merged into one.
The general algorithm for M.U.A.S. is the following:

//Initialization
//<0 = {xi, i = 1, ..., N}
C = void; //init set of clusters
N = Number of clusters;
Create array (R, N);
//P = P (X)
P = Init vector();
//t = 0
t = 0; //init counter

Loop
t = t + 1 // increase counter
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//From all possible combination of clusters in pairs (Cr, Cs) in <t−1

// take the pair of clusters that has the following properties:
//

g(Ci, Cj) =
{

minr,s g(Ci, Cj), ifg is a dissimilarity function

pair clusters = Take pair clusters(C);

//merge Ci, Cj into a single cluster Cq and create <t = <t − 1 − Ci, Cj ∪ Cq

C = Merge clusters(C,pair clusters);

//Define the next proximity matrix Pt based on Pt − 1 matrix.
P = Define proximity matrix(C,P);

//Finish when <N − 1 have only one cluster (all clusters merged).
if Length(C) == 1

break;
else

continue;
end;

These algorithms have a very high computational cost. At each level t there are N − t

clusters. The number of pairs of clusters that are going to be analyzed for merging at
t + 1 step is:

(

N − t

2

)

≡
(N − t)(N − t − 1)

2

And the total amount of operations neccesary to complete the algorithm is:

N−1
∑

t=0

(

N − t

2

)

=
N
∑

k=1

(

k

2

)

=
(N − 1)N(N + 1)

6

And that represents a total number of 560,000 millions of operations for an image of
190x100 pixels. Because this represents very long time to finish the calculations, the soft-
ware includes a scaler. This scaler merges pixels in the order of n by n creating bigger
squares and therefore reducing the resolution of the spectral image.

4.6 Hard Clustering Algorithm

The hard clustering algorithms are so called because a vector containing a set of features
or properties belong only to a single cluster, unlike some probabilistic approaches. The
membership coefficients uij represents the probability that the vector of features xi be-
longs to the cluster Cj.
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In the hard clustering algorithms the coefficient uij is 1 if the vector xi belongs to the
cluster Cj and 0 for all the other clusters, Ck, k 6= j. It can be viewed as a special case of
fuzzy algorithms. The cost function is no longer differentiable respect to θj:

J(θ, U) =
N
∑

i=1

m
∑

j=1

uijd(xi, θj)

4.7 Isodata Clustering Algorithm

The Isodata or K-Means is a very common clustering algorithm. It is a case of the gen-
eralized hard clustering algorithms using point representatives and setting the distance
between vectors x and clusters θj to squared Euclidean.

J(θ, U) =
N
∑

i=1

m
∑

j=1

uij ‖xi − θj‖
2

For this equation the cluster θj represents the mean vector of the j − cluster. The al-
gorithm converges to a minimum of the cost function. The results of this algorithm are
compact clusters but not always with a absolute minimum cost function.

The general algorithm for the Isodata clustering algorithm is:

begin
//Select a random estimation θj(0), j = 1, ...,m
T = Generate random();

Loop
//For i = 1 to N find the better representative θj, for xj

for i=1;i less or equal N //N size of T; i=i+1
//set b(i) = j

b(i) = j;
end; //for
// For i = 1 to m

for i=1; i less or equal m; i=i+1
// Update parameters: θj = mean of the vectors xi ∈ X, b(i) = j

Update(T)
// end For
end; //for

// Repeat until no change in θj during two iterations
if (Nochange(T) and TwoIterations()

break;
else

continue;
end;
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The advantage of this algorithm relies on the computational simplicity. For our task it
is very important the speed in the calculations and we should give the user fast response
times. This algorithm is suitable for spectral images of all resolutions and will give results
in few seconds.

4.8 Segmentation Based on L*a*b* Space Data

The previous segmentation algorithms were based on clustering algorithms. The segmen-
tation based on L*a*b* space is another segmentation technique used in our software. It
give us information about pixels having similar hue and saturation.

This method creates only one cluster and it is useful to distinct between pixels that have
similar color properties and the ones that have totally different color. The luminance in-
formation is used in order to highlight regions with similar properties to the selected pixel.

For this algorithm the user needs to select one dot of the image. After that the color
coordinates of the dot appears in the L*a*b* diagram. The algorithm is very simple:

begin
// User selects one dot pixel1 from the RGB picture
pixel = getpixel(image);

// Find CIE L*a*b* coordinates
coordinates = calculate lab coordinates(pixel);

// Highlight with a black dot the position of the dot in the CIE L*a*b* coordinates
draw coordinates(coordinates);

// Find pixeli CIE a*b* coordinates
image coordinates = get ab coordinates(image);

// For pixeli all pixels in the image
for i=1;i less or equal to Total number pixels; i = i + 1

// Measure Euclidean distance d between pixel1 and pixeli
distance = Euclidean (pixel(i), pixel);
// If distance d is lower than ”threshold a*b*” t set output pixel as black
if distance les or equal than threshold ab

set black(image(pixel(i))); // total coincidence
// Otherwise create gray pixel with L* data and ”threshold L*”

else
set grey(image(pixel(i)), threshold(L));

end; //if
end; //for

As the reader can see this algorithm detects similarities on colors and the luminance data
is used only in the case that the distance d between the pixels in a*b* coordinates is
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higher than a given threshold.

Because we give more importance to the color information in the detection it is possible
that parts of the image with different luminance but same color belongs to the cluster. It
is very common that dark areas of the image can have the same color properties (spectral
shape) than bright ones.

With the use of the ”threshold L*” and ”threshold a*b*” parameters in the software GUI,
it is possible to fine-tune the detection. The gray levels of the resulting image refers to
pixels that not match the given criterions but are close to them.

4.9 Segmentation Based on Mean Spectral Data

While the clustering algorithms provide a good way to distinct between different color
shades, they are not suitable for detecting other aspects.

Because of the nature of the spectral to L*a*b* space transformation, we loose a lot of
information about the spectra. Indeed the results of the application of the clustering
algorithms work the overall of the color characteristics of the image. In the case that
we need to detect very specific characteristics within the spectral data we should use a
slightly different approach.

In the segmentation based on the mean spectra we try to find areas of the image with
similar spectral data. There are some approaches to achieve this goal. The spectral can
be viewed as a curve with a specific shape.

The similarities of two different spectras could be viewed as similarities in shape or in
absolute values. There are many ways to decide if two spectral shapes are similar or
not. Distance d between two spectra can be viewed as the linear difference between two
spectras or difference between the overall shape.

We decided in this software not to use shape comparison. The reasons are that the shape
represents the color information of the pixel and that can be obtained in a more easy
way from the color space diagrams. So the shape comparison will take long time and the
results may not be as good as the color and hue comparison.

There is a case that the shape comparison could improve the results of other algorithms
used in this thesis. The existence of a narrow peak within the wavelengths of the spectra
may not be detected properly with the other methods. In fact the spectral to CIE L*a*b*
transformation loses data about the spectra, the color matching functions give the same
values in the case that a narrow peak exist in the spectra or not.

In order to detect this case it is needed to apply a totally different method prepared to
detect narrow peaks. In this thesis we use spectral differences by mean. The user selects
a square and the mean of the spectra of all the dots inside the square are compared with
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the dots of all the rest of the image.

The differences in the wavelengths are sum and the final value is compared with the given
threshold to create the segmentation.
The algorithm can be shown as follows:

begin
// User selects one dot pixel1 from the RGB picture
pixel1 = getpixel(image);

// User selects one dot pixel1 from the RGB picture
pixel2 = getpixel(image);

//From the square created by pixel1 to pixel2 obtain the mean value of all spectras
mean spectra

mean spectrum = mean spectrum(pixel1,pixel2)

// For pixeli all pixels in the image
// Find pixeli spectra
for i = 1;i less or equal last pixel; i = i + 1;

//Compare with function f pixeli spectra and
//mean spectra and obtain distance d

distance = distance spectra(mean spectra, spectra image(pixel(i)));

//If distance d is lower than ”threshold spectra” set output pixel as black
if distance is less or equal than threshold1

image(pixel(i)) = black;
// Otherwise create gray pixel with threshold two, three and
//four times ”threshold spectra” as distance
else

image(pixel(i)) = grey level(threshold1, threshold2);
end; // if

end; //for

As we can see in the algorithm we have a 4 level greyscale resulting image. The purpose of
this tolerance is to highlight the pixels that do not match the given criterion but are close.
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Spectral Software manual

For this thesis we developed three different software. The Segmentator, Spectral Painter
and Spectral Data Reader. We will present the features and characteristics of all with
some examples of use.

5.1 Segmentator: Manual

The Segmentator (Fig. 5.1) is a software developed in order to analyse spectral images.
It is done in MATLAB 2006a. It is capable of loading, saving, cropping and some other
features that will be explained in this chapter. The key feature is the segmentation. This
segmentation is done using three different algorithms, each of them capable of highlight
different properties of the image.

The Segmentator can load spectral images in the following formats, ”mat” Matlab files,
”dat” binary files from ImSpector, ”aix” MUSP files and ”spb” Spectral Binary Files.

The saving of the spectral images is done in ”mat” file format. The user interface is
as simple as possible, there are only few parameters for the algorithms and the GUI is
protected so that it is not possible to introduce wrong values that could crash the program.

The software developed for this thesis have two main parts. On the top we can see the
original image aspect in sRGB format. We can find also information about the spectral
of the selected pixel of the image, the L*a*b* coordinates of the selected pixel and the
resulting image from the algorithms application.

At the bottom we can find the controls of the program, we can specify the value of the
parameters of the algorithms and also make use of some basic editing tools. The aim of
this layout is that the visual information is on the top, and the technical information is
on the bottom.

When the original spectral image is loaded, it is converted to sRGB, aplying the correct
color system and the selected iluminant. The RGB value of the pixels of the image are
recalculated if the color system or the iluminant are changed.

At the same time the L*a*b* coordinates are recalculated for all the pixels within the
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Blank Segmentator

Figure 5.1: Blank Segmentator

Edit Options

Figure 5.2: Edit Options

image. This calculation involves a high computational cost in terms of time. It can take
some seconds to make the calculations for all the pixels and update the L*a*b* coor-
dinates and sRGB image in the user interface. This characteristic is included y default
because it is needed to know the actual values of the pixels to apply the segmentation
algorithms.

This software has some basic editing tools built in (Fig. 5.2). In the ”edit” area we can
crop the image. For cropping we need to specify two points that will define the area or
square to be cropped (Fig. 5.3). For this we should simply click with the mouse button
in the sRGB image area to define the two points.

We can crop the image all the times we need recursively, the image will be smaller each
time we crop. The ”uncrop” button will return to the original full sized image.
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Figure 5.3: Cropping Square

The cropping is useful in cases that we are only interested in one area or region, the ”save”
button will save the cropped image. Cropped images have less number of pixels than the
original full sized image. This mean less work for the algorithms and the calculations will
be faster.

Another useful option in the ”edit” menu is the ”view” button. With the ”view” button
we can visualize any range of wavelengths of the spectral image. As we can see in the
example image (Fig. 5.4), we can find very interesting data in some wavelengths like
horizontal bands that can not be viewed using all the wavelengths.

In this example we visualized only the range between 400 nanometers and 405 nanometers.
We can appreciate some horizontal bands that can not be viewed in the full wavelength
image. They are probably caused by the spectral camera while scanning the image.

In the ”Light Properties” menu we can change the light source and color system to be
applied to the spectral image. The sRGB representation and the L*a*b* coordinates
are affected by light properties changes. The results of the segmentation can slightly be
affected by changes in the light properties.

In the central part of the user interface we have the resulting image from the application
of the segmentation algorithms. It is a greyscale image that represents the clusters and
areas highlighted by the algorithms.
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Figure 5.4: Image Visualization from 400nm to 405nm

Figure 5.5: Spectrum from one image dot

In the right part we have the spectrum from the selected dot (Fig. 5.5) and the L*a*b*
coordinates. The spectrum is uptated when the user selects any point from the RGB
image.
The list of features from left to right are:

• Load and Save buttons

• Edit properties, start and end point to define the square (for later cropping or seg-
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mentation), cropping button and uncrop button, and finally the range of wavelength
to visualize.

• Light properties, where the user can select the proper illuminant.

• Feature Segmentation options, mainly this are the options to select the clustering
algorithm with few options for each algorithm.

• Lab Segmentation properties with the coordinates of the reference dot and threshold
for chromacity and luminance.

• Spectral Segmentation, this part only needs one parameter that is the threshold of
similarity for the spectral comparison.

Figure 5.6: Feature Segmentation, L*a*b* Segmentation,Spectral Segmentation

5.2 Segmentator: Segmentation Based On Clustering

The first segmentation technique is based on clustering algorithms. The in the ”Feature
Segmentation” menu we can find some properties to select the clustering algorithm and
other properties. There are two clustering algorithms available, M.U.A.S. and IsoData,
both already explained in Chapter 3.

For both algorithms we have the option to scale the original image. We should give a fac-
tor to scale and the software will internally resize the original image grouping the pixels.
A factor of 2 will merge pixels of squares of 2x2, making a resulting image of half the size
of the original and 4 times less pixels. This is useful in the case of big images. The time
to compute the results can be very long if he amount of pixels is too high.

For the IsoData clustering algorithm we can specify the number of clusters to be used.
The algorithm will try to divide the image in the specified number of clusters. Large
amount of clusters will involve more time to compute. The resulting image is a greyscale
image with the clusters having different gray values.

The M.U.A.S. clustering algorithm, apart from the number of clusters, type of distance
and link type. The type of distance defines if the distance between clusters will be the
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distance between the mean value of the cluster, the minimum distance between the clus-
ters or the maximum distance between the clusters. Single link favours elongated clusters
whereas complete link favours compact clusters.

5.3 Segmentator: L*a*b* Segmentation

For the L*a*b* segmentation the user needs to specify the coordinates. It is possible to
just select the L*a*b* coordinates by clicking on the sRGB image. The software will show
the coordinates in the L*a*b* coordinates area with a black dot.

It is possible to edit these values manually. The algorithm works with the information
about color and luminance. The clustering is made with color information and luminance
taking into account the given thresholds for the color and luminance coordinates. The
results is shown in the central part of the interface as an greyscale image.

This algorithm is pretty basic, the computational time is mainly used to calculate the
L*a*b* coordinates and the distances between the selected coordinates and the rest of
the image points coordinates.

5.4 Segmentator: Segmentation based on spectral data

The user has only one option to set this algorithm. First the user should select two
different points of the image. A black square will appear and the user needs to set the
threshold. The software will calculate the mean value of all the spectras within the black
square. After that the software will calculate the differences between the mean spectra
and the spectra of the rest of the pixels.

In the resulting image dark areas corresponds to areas where the pixels are quite similar
to the mean spectra selected. White areas corresponds to regions where the pixels are
not similar to the mean spectra selected.

Notice that the mean spectra could not match with the spectra of all the pixels inside the
selected square. For example if we have a square where half of the pixels are red and half
of the pixels are blue, the mean spectra will correspond to a purple color. Depending on
the threshold selected the pixels inside the square could not have similar spectra than the
mean spectra of all of them. In this case the pixels inside the selected square will appear
in the resulting image as white or grey.

5.5 Spectral Painter: Software manual

The Spectral Painter is a piece of software developed for this thesis. The aim of this
software is to create spectral images. The spectral images can have different ranges of
wavelengths, but the software limits the range of wavelengths to be draw from 400nm to
700nm, other wavelengths will be discarded.
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With the use of the Spectral Painter it is possible to test different segmentation algorithms
by using artificial spectral images. By using artificial spectral images the user can compare
results of the segmentation algorithms.
The Spectral Painter can draw squares in spectral images. The color used for drawing can
be created with the use of slider. The sliders represent wavelengths from 400nm to 700nm
in 10 nanometer steps, 31 sliders in total. The values are interpolated in order to draw a
spectral image with the range selected by the user. Higher wavelengths than 700nm and
lower than 400nm will be draw with plain black, all wavelength values will be equal to zero.

The spectra can be also read from a given picture, the user can pick up a spectra just
clicking with the mouse over the spectral image, after pushing the ”Read” button on the
”Spectra” panel, the sliders will adquire the spectral from the image.

To draw a square in the Spectral Image, the user should select two pixels of the image to
define the square. The user can select the pixels both with the mouse or specifying them
with a number in the corresponding text box in the ”Edit” panel. When the user push
the ”Draw” button in the ”Edit” panel the squere will be draw in the image. It is possible
to mix the existing data with the new data. By selecting the ”Soft” button in the ”Edit”
panel, the result will be a mix between the previous spectral data in the spectral image
and the new spectral selected by the user.

In the ”Edit” panel the user can select the ”Undo” option. There is only 1 step back
available, so the user can go back to the previous state of the image.

It is possible also to draw L*a*b* coordinates of the image, change the illuminants and
load and save existing images.

5.6 Spectral Data Reader: Software manual

Spectral Data Reader is a software developed for this thesis. The aim of this software is to
study the spectral characteristics of the images. When the user clicks with the mouse over
the image, the software obtain the spectral data of the pixels within the square defined
by the pixel coordinates and the square size. The L*a*b* and sRGB information of the
pixels are also calculated, and the output is stored in an array of values. The user can
select as many areas and he wants, each area will be saved in an array with the following
format:

Results = Array of Result

Result = {mean spectra,
mean L coordinate,
mean a coordinate,
mean b coordinate,
mean R value,
mean G value,
mean B value}
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This software recollects the data from the spectral images in an easy way. For this thesis
it was needed to make a comparison test between different paper sample. Each paper
sample has certain areas that should be compared to other paper images.

Figure 5.7: Spectral Data Reader
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Figure 5.8: Spectral Data Painter
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Results Of The Experiments With

The Software

6.1 Segmentation Results

The Segmentator has three different segmentation algorithms. Two of them use color dif-
ferences in the pixels to make the clusterization and the last one compare spectras from
different pixels.

The M.U.A.S. algorithm gave quite similar results than ISODATA algorithm but the run-
ning time of the process is much longer with M.U.A.S. taking more than 50 minutes with
a 190x100x61 spectral image (height, wide, wavelengths). We used a 4, 6 and 10 clusters
configuration in scale 1 (Fig. 6.1 Fig. 6.2), no resizing of the image. The color of the skin
of the girl is detected and the hands as well.

The dark clothes are detected in all the configurations in a similar way. The hair is the
most problematic area. There are several colors involved from dark ones to bright, and
from brown to yellow and white. The background is detected in a similar way in all the
configurations.

It is interesting that the algorithms did not difference between dark regions and bright
regions as far as they belong to the same hue. This is an important feature because this
way the shades will not affect the segmentation and the final results give clear areas. The
scaling option is only useful to obtain previews of the segmentation results or to use with
M.U.A.S. algorithm (Fig. 6.3 and Fig. 6.4).

In the L*a*b* segmentation we selected two areas. The first one was the dark clothes of
the girl. The aim of this is to find the result of the segmentation algorithm with dark
areas. Because it try to find areas with similar hue, we obtain that the dark clothes are
selected in the resulting images (Fig. 6.5), but also some regions like the dark areas of
the hair. If we increase the distance in L*a*b* coordinates we find that almost all the
image except the skin of the girl is highlighted. This is because the hue of the skin is
quite different in hue than the rest of the image.

If we select the mouth of the girl, we obtain clearly defined the area of the mouth and
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only a some small areas near the hand and head (Fig. 6.7). If we increase the distance
the selected area extends itself and shows the rest of the skin in the hands and in the face
(Fig. 6.8).

For the spectral distance based segmentation we find interesting results. The selected
area was in the mouth of the girl. The algorithm uses the selected by the user square to
find the mean spectra of the area. After that it calculates the distance from the mean
spectra to the spectra of every point. The threeshold distance changes the darkness of
the result. As we can see in figure (Fig. 6.9), if the distance is small we obtain only few
areas highlighted by the algorithm.

The result is a 4 grey level image from white to black (Fig. 6.10). Even in the mouth we
dont obtain totally black areas. That is because we use the mean spectra and that spec-
tra can be different from the single spectra of the pixels in that area. If we increase the
distance we obtain darker results with more black areas. The results are quite different
from the L*a*b* segmentation algorithm.

Figure 6.1: IsoData Clustering Algorithm 4 Clusters - 6 Clusters
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Figure 6.2: IsoData Clustering Algorithm 6 Clusters - 10 Clusters
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Figure 6.3: IsoData Clustering Algorithm 4 Clusters - Resize 3

Figure 6.4: M.U.A.S. Clustering Algorithm Maximum Distance - Resize 5 - Complete Link

6.2 Paper Samples Analysis

The paper samples are sets of printing samples with different quality. The main differ-
encesbetween the samples is the paper where they are printed and the printing density.
We study different paper samples:

• MWC Gloss 65 grams
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Figure 6.5: LAB Segmentation-Dark Clothes Area-Distance 3 and 5

Figure 6.6: LAB Segmentation-Dark Clothes Area-Distance 8 and 10
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Figure 6.7: LAB Segmentation-Mouth Area-Distance 3 and 5

Figure 6.8: LAB Segmentation-Mouth Area-Distance 8 and 10
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Figure 6.9: Mean Spectra-Mouth Area-Distance 0.01 and 0.05

Figure 6.10: Mean Spectra-Mouth Area-Distance 0.5 and 1
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• MWC Gloss 80 grams

• MWC Gloss 2 80 grams

• WFC Gloss 115 grams

• MWC Gloss 115 grams

• MWC Silk 80 grams

• MWC Silk 2 80 grams

• MWC Gloss 3 80 grams

• Hi-Brite LWC 80 grams

• Hi-Brite LWC 60 grams

• Std LWC 60 grams

• Std LWC 48 grams

• Std LWC 54 grams

• Std LWC 39 grams

• MFC 54 grams

• SC 56 grams

• UWF 80 grams

• WFC Matt 80 grams

The acronym means:

• WFC = wood free coated

• MWC = medium weight coated

• LWC = light weight coated

• MFC = machine finished coated

• SC = super calendered

• Std = standard

• Hi-brite = high brightness

• UWF = uncoated woodfree

For each paper there are three printing qualities depending on the density of the printing
ink. We obtained spectral data from lower density printing, target density printing and
higher density printing. The printer device uses four types of ink to generate the images,
black ink, yellow ink, cyan ink and magenta ink [SCB88] [CEY84].

The samples are composed of several parts with different quantities of the inks, using one
ink or mixing them to generate color areas or grey areas. In order to measure the quality



CHAPTER 6. RESULTS OF THE EXPERIMENTS WITH THE SOFTWARE 53

of the different printing densities we will study a specific area composed of different lev-
els of pure ink (Fig. 6.11), they are composed of one single ink without mixing them at all.

The objetives of this study are to compare lower and higher density printings respect te
target density. From this study we can give some hints about the optimal quality for dif-
ferent paper samples and also determine printer calibration factors that can be modified
to increase the quality.

With the use of the software ”Spectral Data Reader” developed for this thesis, we ob-
tained the spectral and L*a*b* values from the paper samples. We have 18 paper samples
with 3 different printing qualities each one and we obtained information from yellow area,
magenta area, cyan area and black area. Each area has 12 parts that represent different
levels of saturation from 10parts measured is 2592.

We created three different graphs in order to present the data. The first one is made by
dots that represents the absolute value of the distance from one area mean spectra to the
analog area in other sample. So the level 100 represents the target density. Blue dots
represents the distance between mean spectra of one area with lower density respect the
analog area in the target density. The same for green dots but they represents distance
from higher density to target density.

The second graph represents Euclidean distance in *a*b coordinates from lower (repre-
sented with blue lines) and higher (represented with red lines) respect the target density.

The last graph represents Euclidean distance in L coordinates from lower (represented
with blue lines) and higher (represented with red lines) respect the target density.

Some interesting conclusions can be read from the results. Looking the the spectral com-
parison we can see that the difference of magenta, cyan and yellow spectra is minimal.
The spectra of all densities are quite similar The difference between densities remains
constant at about 10% respect the target.

There are big differences in the black ink. From 70can see a huge difference in the spectra.
The difference increases linearly from 10different densities while color ink cyan, magenta
and yellow is less affected by the density.

Studying the other two graphs we can appreciate that the distance in a*b* coordinates
for the black is almost zero, while for the other inks the difference is noticeable. For the
*a*b* distance comparison we can say that the yellow density affects more to the final
result than for the rest of the colors. One reason can be the filtering affect of the white
paper for different inks [SCB88] [CEY84].

Looking to the distance in L coordinates, we can compare the brightness of the different
densities. Higher densities are darker than target density and target density is darker
than lower density. But in this study we need to take into account the paper quality,
weight and reflectance. For some paper samples this general increase in brightness is not
so noticeable because the own paper reflectance.
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We obtain some conclusions. There is no need for using target density instead lower for
the following cases:

• Std LWC 54g

• MWC gloss 80g

• Std LWC 48g

• MWC gloss 2 80g

• WFC gloss 115g

There is no need to use higher density instead of target density in the following cases:

• Std LWC 60g

Figure 6.11: Paper Samples Color Areas
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Conclusions

Spectral images can provide much more information than RGB images. The study of
spectral images can be done from different points of view. Segmentation techniques using
spectral images can highlight areas or regions that can not be selected with the use of
RGB images. The use of spectral data for segmentation involves preprocessing in order to
find appropiate features and decrease the time to run the algorithms. IsoData clustering
algorithm provides an efective way to make segmentation and obtain results fast. For
future work it could be good to use different matching functions. The use of dynamic
number of matching functions dividing the spectra in areas can give us a reasonable num-
ber of features for the clustering algorithms. L*a*b* coordinates based segmentation
provides a good way to find areas with similar hue and luminance respect the desired
point. Segmentation based on spectral distance can highlight regions with similar spectra
to the selected one. Using spectra and L*a*b* coordinates it is possible to analyze and
compare quality of paper samples in order to find quality criterions and hints that help in
the printer devices calibration. Different paper affect specially the luminance of the final
results. Ink density affect in the regions composed by black ink. The biggest differences
in hue are in the yellow rather than magenta or cyan. To study more in depth the quality
of the paper samples it is needed to compare mixed inks due to the filtering effects to
the final color and different printed dot location. The use of mixed ink can give us more
information about how different amounts of ink act as a filter of the paper color and other
ink color.
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Appendix A

Paper Samples Comparison Graphs

In this comparison we have three different graphs. The first one is a comparison of the
spectral data from different areas. We measured certain regions of the paper color charts
with black, yellow, magenta and cyan ink.
The amount of ink goes from 10% to 100%. So in the graphs in the x axis the position
0 to 12 represents black ink areas from 10% ink to 100% ink. The same percentages for
yellow ink from 13 to 24, magenta from 25 to 36 and cyan from 37 to 48.
The other two graphs represents the Euclidean distance from lower density and higher
density respect the target density paper samples in Lab space.
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Figure A.1: Spectra Comparison - MFC 54g

56



APPENDIX A. PAPER SAMPLES COMPARISON GRAPHS 57

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

16

Black− Yellow − Magenta − Cyan
MFC_54g

E
uc

lid
ea

n 
D

is
ta

nc
e 

R
es

pe
ct

 T
ar

ge
t

Comparison Of a*b* Coordinates
 Higher And Lower Density Paper Samples

 

 
Higher Density
Lower Density

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

Black− Yellow − Magenta − Cyan
MFC_54g

E
uc

lid
ea

n 
D

is
ta

nc
e 

T
o 

T
ar

ge
t L

*

Comparison Of Luminance
Higher And Lower Density Paper Samples

 

 
Higher Density
Lower Density

Figure A.2: L*a*b* Coordinates Comparison - MFC 54g
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Figure A.3: Spectra Comparison - WFC Matt 80g
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Figure A.4: L*a*b* Coordinates Comparison - WFC Matt 80g
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Figure A.5: Spectra Comparison - WFC Gloss 115g
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Figure A.6: L*a*b* Coordinates Comparison - WFC Gloss 115g
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Figure A.7: Spectra Comparison - Hi-Brite LWC 60g
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Figure A.8: L*a*b* Coordinates Comparison - Hi-Brite LWC 60g



APPENDIX A. PAPER SAMPLES COMPARISON GRAPHS 61

0 5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

110

120

130

140

Black− Yellow − Magenta − Cyan
Hibrite_LWC_80g

%
 D

iff
er

en
ce

 R
es

pe
ct

 T
ar

ge
t

Comparison Of Spectra
 Higher And Lower Density Paper Samples

 

 
Lower Density
Higher Density

Figure A.9: Spectra Comparison - Hi-Brite LWC 80g
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Figure A.10: L*a*b* Coordinates Comparison - Hi-Brite LWC 80g
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Figure A.11: Spectra Comparison - MWC Gloss 65g
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Figure A.12: L*a*b* Coordinates Comparison - MWC Gloss 65g
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Figure A.13: Spectra Comparison - MWC Gloss 2 80g
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Figure A.14: L*a*b* Coordinates Comparison - MWC Gloss 2 80g
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Figure A.15: Spectra Comparison - MWC Gloss 80g
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Figure A.16: L*a*b* Coordinates Comparison - MWC Gloss 80g
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Figure A.17: Spectra Comparison - MWC Silk 80g
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Figure A.18: L*a*b* Coordinates Comparison - MWC Silk 80g
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Figure A.19: Spectra Comparison - Std LWC 39g
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Figure A.20: L*a*b* Coordinates Comparison - Std LWC 39g
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Figure A.21: Spectra Comparison - Std LWC 48g
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Figure A.22: L*a*b* Coordinates Comparison - Std LWC 48g
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Figure A.23: Spectra Comparison - Std LWC 54g
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Figure A.24: L*a*b* Coordinates Comparison - Std LWC 54g
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Figure A.25: Spectra Comparison - MWC Gloss 115g
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Figure A.26: L*a*b* Coordinates Comparison - MWC Gloss 115g
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Figure A.27: Spectra Comparison - MWC Silk 2 80g
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Figure A.28: L*a*b* Coordinates Comparison - MWC Silk 2 80g
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Figure A.29: Spectra Comparison - SC 56g
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Figure A.30: L*a*b* Coordinates Comparison - SC 56g
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Figure A.31: Spectra Comparison - MFC 54g

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

16

Black− Yellow − Magenta − Cyan
MFC_54g

E
uc

lid
ea

n 
D

is
ta

nc
e 

R
es

pe
ct

 T
ar

ge
t

Comparison Of a*b* Coordinates
 Higher And Lower Density Paper Samples

 

 
Higher Density
Lower Density

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

Black− Yellow − Magenta − Cyan
MFC_54g

E
uc

lid
ea

n 
D

is
ta

nc
e 

T
o 

T
ar

ge
t L

*

Comparison Of Luminance
Higher And Lower Density Paper Samples

 

 
Higher Density
Lower Density

Figure A.32: L*a*b* Coordinates Comparison - MFC 54g
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Figure A.33: Spectra Comparison - UWF 80g
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Figure A.34: L*a*b* Coordinates Comparison - UWF 80g
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Figure A.35: Spectra Comparison - Std LWC 60g
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Figure A.36: L*a*b* Coordinates Comparison - Std LWC 60g



Appendix B

Spectral Image Illuminants

Examples

Figure B.1: 1931 Illuminant A Image - CIE Space
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Figure B.2: 1931 Illuminant C Image - CIE Space

Figure B.3: 1931 Illuminant D50 Image - CIE Space
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Figure B.4: 1931 Illuminant D65 Image - CIE Space

Figure B.5: 1964 Illuminant A Image - CIE Space
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Figure B.6: 1964 Illuminant C Image - CIE Space

Figure B.7: 1964 Illuminant D50 Image - CIE Space
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Figure B.8: 1964 Illuminant D65 Image - CIE Space
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