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Abstract

Random access to compressed text can be seen from two points of view. From
the first one it is considered as some part of text compression area, where compres-
sion methods are designed in special way to allow random access to encoded text.
From another one the text is seen as a special data structure (sequence) and the
topic goes to area of succinct data structures.
In the thesis current state of mentioned areas is considered. New method which
might be useful in practice for random access text compression is developed. Also,
adaptation of Fibonacci coding scheme for the random access compression is under
discussion.
The theoretical analysis as well as experimental results for proposed methods are
presented. These results show competitive ability of the methods compared to mod-
ern compression techniques.
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Chapter 1

Introduction

Nowadays, data compression is a widely used area of computer science. Small is
beautiful. It is good when we can present some information using as little space as
possible. Many methods of data compression were discovered and they found their
applications in different fields of science and engineering. However, one compromise
is made in classical data compression. This compromise concludes in decreasing of
accessibility of compressed information.

Usually compression routine involves two opposite to each other procedures.
The first one is called encoding and can be thought as some transformation of
original information into compressed form. If this transformation is reversible the
compression method is lossless, otherwise lossy. For lossless methods as well as
for lossy ones some inverse transformation may be constructed and procedure of
performing this transformation is called decoding. The difference between lossless
and lossy methods lies in fact that for the lossless methods the result of inverse
transformation is exactly the original information. Unlikely, for lossy methods the
result of inverse transformation under compressed information is only close in some
sense to original one.

Accessibility of compressed information in wide sense is meant as an usage of
information without the second procedure, i.e. decoding. If for some application we
have developed compression method which allows us to perform all needed opera-
tions without decoding, we can completely replace the information by its compressed
form. This is extremely useful for the applications when both time and space are of
importance. Compression decreases the space used by application, but processing
time is not increased, because decoding procedure is not involved before usage of
information.

In this thesis the emphasis is made on text compression. This part of data com-
pression deals with the methods for efficient representation of texts. By definition
text is a sequence of symbols taken from some alphabet which is usually assumed
to be finite and fixed. Text compression methods are usually lossless. The reason

1



2 CHAPTER 1. INTRODUCTION

is that even small changes in text may lead to completely another meaning of the
text. For example substituting the first letter in the word ’sun’ by the letter ’f’
we have another word which extremely differs from the original one. Nevertheless
lossy methods also might be useful for text compression. In the thesis for example
I consider the compression method which skips all separators between words in the
text and replaces them just by usual space. For some applications like text indexing
such losses are tolerable.

Accessibility of compressed texts is an ability to perform operations which are
made on usual texts. It may include retrieving particular symbol from the text or
extracting some subtext. Popular operation on text is searching for some patterns or
strings within the text and so on. The task of preserving accessibility of compressed
texts from the text compression’s point of view concludes in study such compres-
sion methods which allow to do that. Many compression methods were developed
but small attention was paid on such properties of compression techniques. If we
have fixed the operations which we want to do on compressed text we can study
existing methods, modify them somehow or invent new ones to accomplish the goal
of preserving accessibility.

Another point of view on the above task is provided us by succinct data struc-
tures field. Succinct data structures is relatively new area of computer science, which
deals with efficient representation of data structures. Efficiency is meant in terms
of operations which can be made on data structures. If a fixed set of operations are
done fast, using small size close to the size of the original data structure or even less
if we compress the data structures somehow, we think about this representation as
efficient one. As it is mentioned above the text is just a sequence of some symbols,
i.e. certain data structure. Hence we can consider our task as belonging to the field
of succinct data structures.

There are several treatments of random access property of compressed text.
Let S = s0s1 . . . sn be original text over alphabet Σ (σ = |Σ|), i.e. si ∈ Σ and
S ′ = s′0s

′
1 . . . s′h be its compressed form produced by some compression algorithm.

S ′ is a bit sequence, i.e. s′i ∈ {0, 1}. The first treatment is that we say that
compression algorithm satisfies random access property if for arbitrary position i∗

in S ′ decoding process can be started in constant time around position i∗. This
property informally tells that the rest of the encoded sequence does not depend on
its prefix. However, we can not answer the question what will be the first decoded
symbol. We say that the compression algorithm satisfies random access property
under second treatment if for any position i∗ within the original text S it is possible
to extract the symbol si∗ ∈ S in constant time, i.e. we can access any symbol of the
sequence S in constant time. In this thesis I mean the second treatment of random
access property.

The thesis is organized as follows. The first chapter devoted to the overview of
modern text compression methods. I start with consideration of general compression
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methods which may be applied not only for texts. There are two main directions:
statistical coding and dictionary-based coding. The first one is based on information
theory founded by Shanon and the second one is presented by different techniques
including the most popular Ziv-Lempel algorithm. Block sorting compression which
is quite new approach in text compression based on Burrows-Wheleer transform is
also presented in this part.

Because we deal with the texts, the case of the texts on natural language is im-
portant. Properties of English texts and compression algorithms for this particular
case are collected in separate section of the first chapter. This part is important
for the further considerations because algorithms developed in the thesis are proved
working well especially on English texts.

I finish the first chapter with the section devoted to encoding of texts of positive
integers. Such kind of inputs occur, i.e. in telecommunication applications and the
main difference is that no probabilities of the input symbols nor even alphabet can
be defined beforehand.

The goal of the second chapter is to present an overview of current results and
trends in succinct data structures area with emphasis on representation of sequences.
Succinct data structures are aimed to find efficient representations for some classical
data structures.

In the first section I list data structures which got the most attention in research.
For majority of data structures the best current solutions are considered. The
second section of the chapter deals with very important particular case of general
sequences which is the case of binary sequences or bit vectors or bit streams. There
are two reasons which proves the importance of this consideration. The first one
is that historically binary sequence was the first data structures for which succinct
representations were under research. The second reason of importance concludes in
fact that for many other data structures succinct representation of binary sequence
are used as internal building blocks.

Then I consider sequences of symbols taken from finite and fixed alphabet which
are natural generalizations of binary sequences. Notice that this part of the second
chapter is most relevant to the topic of the thesis. In fact this section describes
current results on the subject of efficient representations of text from the position
of succinct data structures. As for binary sequence I tried to mention all the best
current solutions, but due to the lack of the space some solutions are missing.

In the third chapter two methods allowing random access sequences or texts are
described. Simple dense coding is extremely easy technique which achieves good
compression ratios for texts on natural language. Theoretical analysis of offered
scheme is presented. Some extensions of the scheme are discussed. The rest of the
chapter is devoted to Fibonacci coding. This method is quite old and the author
of thesis even does not know where this method was firstly described. Notice that
in the first chapter this method was already discussed, however for another task. I
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show that this method can be easily adapted for the random access to compressed
texts and gives competitive compression ratios. I also give theoretical estimations
on the size of encoded sequence for Fibonacci method.

The thesis ends by the chapter with the experiments which were done for the pro-
posed methods from preceding chapter. I have compared the compression ratios for
the simple dense coding and Fibonacci coding with variety of modern compression
methods.

All presented time complexities of algorithms in the thesis are meant in the sense
of uniform RAM model of computation with Θ(log2(n)) word size.

At the end of this introduction I want to express my thanks to people who have
contributed to my work on this thesis. First of all I thank my scientific adviser
Dr Kimmo Fredriksson who has provided ideas for the thesis and has answered
all my questions. I express gratitude to the best IMPIT coordinator Wilhelmiina
Hämäläinen for taking care about all of us and personally for help in choosing topic
for the master thesis. I thank Dr Alexander Kolesnikov for the interest to my work
and for interesting scientific discussions during study. Special thanks to my friends
Denis Komarov and Ilya Mokhov who helped to accommodate me in Joensuu. I
express gratitude to Yury Lakhtin and Maxim Dudochkin for support in any kind
of situations and all IMPIT students. I thank Guy Jacobson for providing his PhD
dissertation and Okanohara Sadakane for sharing paper and C sources.

At last but not least I express thanks to my parents, sister and brother. Thanks
to all staff working at the Department of Computer Science and Statistics in the
University of Joensuu and Finland for pleasant time.



Chapter 2

Text compression

2.1 General text compression methods

2.1.1 Ad hoc methods

We start discussion about the methods used in text compression with so-called ad
hoc methods. Most of these methods are only interesting from historical perspective.
Nevertheless, some of them have applications in current compression standards.

An ad hoc method is some simple technique of compression, which uses natural
redundancy of data to be compressed. In the past a lot of such methods were
invented. These methods do not exploit some theoretical foundations and for them
compression is usually achieved by some simple tricks. In this subsection we deal
with two such methods. They are run-length coding and move to front coding.

To get started suppose that an alphabet Σ of finite size σ is given. We are aimed
to represent the sequence S = s0s1 . . . sn−1 of symbols from the alphabet Σ using
as little space as possible.

In some texts it can occur that there are quite long sequences of the same symbol.
In other words there are presented many consecutive repetitions of the symbol. The
run-length coding utilizes this property. There are many variations of run-length
coding scheme, but the main idea can be expressed as follows. Instead of storing
the sequence of the same symbol, we store the code of this symbol and the number
of times this symbol should be repeated. Every such pair of the symbol and the
number is called a run. The compression is expected to be achieved, if the lengths
of runs are large. Despite of the naivete of this approach, the run-length coding
takes advantage of simplicity and is used, for example, in block sorting compression,
which is an objective of subsections 2.1.4 and 2.2.5.

Move to front coding (MTF) is another technique which exploits the nearness of
the symbols for compression, but not in such strict sense as run-length coding. MTF
uses the dynamic list of symbols. Initially, all symbols in the list are presented in
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6 CHAPTER 2. TEXT COMPRESSION

some predefined order. When new symbol from the input comes, we send the index
of this symbol in the list as an output and swap this symbol with the symbol on the
top. This procedure continues while the end of the input is reached. So, the output
of the move to front coding is the sequence of integers, which are the indices of the
symbols in the list. We can expect that the most frequent symbols are somewhere
in the top of the list during coding procedure and, hence, they will be presented by
small integers in output. On the other hand, the codes of infrequent symbols are
large integers. There are many methods of coding positive integers, which have the
property that small numbers have shorter codes and the large numbers have longer
ones. Some of these methods are under consideration in section 2.3. If after MTF
transformation one of these methods is applied, we can expect that compression is
achieved.

2.1.2 Statistical coding

Statistical coding also sometimes referred as entropy-based coding, is one of the
fundamental approaches in compression area. The notion of the entropy is a basic
idea for all statistical coding schemes. Informally, the entropy shows the average
number of bits needed to represent a symbol within certain message, based on
probability distribution of symbols. Hence, if we multiply this value on the length
of the message measured in symbols, we get the number of bits needed to represent
whole message.

The notion of the entropy comes from fundamental work by Shannon et al.
[SW63]. This work has marked the birth of information theory.Suppose that,
we have the finite set of events E (|E| = n) with probability distribution on it:
P = {p1, p2, . . . , pn}. Shannon introduces the entropy axiomatically as a function
H(p1, p2, . . . , pn), which satisfies:

• H is a continuous function of p1, p2, . . . , pn.

• If p1 = p2 = . . . = pn = 1/n, H is steadily increasing function of n.

• The value of H is zero when one of pi = 1.

• Consider the full system of events on E, i.e. the system Di ⊂ E, i = 1, . . . , k;
Di ∩ Dj = ∅, i 6= j and

⋃
Di = E. On any Di the conditional probability

distribution is defined and hence we can consider the entropy HDj . Then for
these values and H the following holds.

H = p(D1)H
D1 + p(D2)H

D2 + . . . p(Dk)H
Dk ,

where p(Dj) is the probability of the event Dj with the respect to the distri-
bution P on E.
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Shannon showed that there exists unique function which complies with the above
axioms and it is

H(p1, p2, . . . , pn) = −α

n∑
j=1

pj log pj.

The coefficient α and the base of the log function depends on the unit in which the
entropy is measured. In this thesis we measure the information in bit units and
consequently α = 1 and the logarithms are taken with base 2. The entropy becomes

H(p1, p2, . . . , pn) = −
n∑

j=1

pj log2 pj.

So far we have talked about events and defined an entropy for the set of events.
When we deal with text the event for us is the occurrence of certain symbol from
an alphabet in the input text and the probability of this event is the probability of
occurrence.

The fundamental importance of the entropy lies in noiseless source coding the-
orem proven by Shannon. Informally, it states that there is no coding scheme that
produces the average number of bits per symbol less than the entropy. This re-
sult gives us tool for comparison of coding schemes and also defines the meaning
of optimal coding scheme. The optimal coding scheme is such which achieves the
entropy value for the average number of bits per symbol. Much efforts were paid
for inventing coding schemes, which are close to this entropy lower bound. We talk
about them later in this subsection.

Before we have not talked about where the probability distribution comes from.
We thought that it is given beforehand and we used it for the estimation of infor-
mation content of the message. The model is that what supplies this probability
distribution. The process of choosing of appropriate model for given input message
is called modelling and the process which produces encoded sequence of bits is called
coding. The modelling usually is of art and there is no ”best” method.

In order to clarify the modelling process let us consider the simplest model of
English language. The English alphabet contains 27 symbols. We do not care about
the difference between upper-case and lower-case letters and also assume that there
is only one punctuation symbol — space. So, in total we have 28 different letters.
For regular English texts the probabilities of each symbol can be assigned not de-
pending on texts. On other hand we can calculate the number of times each symbol
occurred in the text and divide it to the length of input text. Such assigned prob-
abilities exactly correspond to the input text, however for this modelling method
pass through the text is needed. There are also methods which overcome the last
drawback with preserving ability to fit probability distribution to the input.

The review of modelling schemes is not objective of this thesis and interested
reader can be referred to wide variety of the books and articles devoted to this
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topic. For example, see [BCW90, WMB99]. Nevertheless, we consider context-
based modelling, in order to introduce the notion of kth order entropy, which is in
use later.

The context modelling applied for the texts utilizes the dependencies between
consecutive symbols. For example in English the letter ’u’ is very probable after the
letter ’q’. There are only few contra-examples. One of those is the word ’Iraq’. In
general, context modelling scheme looks like as follows. Let us choose some positive
integer k > 0 as a parameter of the modelling. Any k consecutive letters from the
input text is treated as a context. For any context we can calculate the probability
distribution of letters which follow after this context in the input text. At the end
we have the set of these distributions for all possible contexts. We can say that
there is distinct model of input for each particular context. Suppose that we have
K different contexts Ci, i = 1, 2, . . . , K and we denote by H i, i = 1, 2, . . . , K the
entropy based on the corresponding probability distribution. The kth order entropy
of the input text is given by

Hk =
K∑

i=1

p(Ci)H
i,

where p(Ci) is the probability of context Ci. It is not so hard to derive the meaning
of the last value from its definition. The kth order entropy is a lower bound on
average number of bits, using for encoding symbols under context-based modelling
scheme.

Let us leave the modelling and turn attention to the second part of any statistical
coding routine. While the probabilities are derived using some model we should
encode the input text and try to do it as close to theoretical lower bound as possible.
We consider two coding methods which found wide use in practice.

The first method was invented by Huffman and is described in [Huf52]. The gen-
eral idea of this method is to construct a binary tree with the leaves corresponding
to the symbols in alphabet. The adjacent edges are labeled by 0 and 1. For example
at each node we assign the 0 label for the edge leading to the left child and 1 for
the edge leading to the right child. The code of particular symbol in alphabet is the
concatenation of labels through the path leading from the root to the corresponding
leaf. Suppose that the probability distribution of symbols is given. The method of
construction of this tree in Huffman’s algorithm involves the following rules.

• We start with the writing of the leaves of the tree with assigned probabilities
of symbols.

• We combine two nodes, which were not in use yet in this step with the smallest
values of probabilities into parent node and assign the probability of this node
as a sum of probabilities of its children.
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• We repeat the previous step while the root of tree is constructed.

The Huffman coding does not achieve the entropy lower bound. However, it can be
shown that the redundancy of Huffman code measured as the average code length
less the entropy is bounded by p + log2(2(log2 e)/e) = p + 0.086, where p is the
probability of the most likely symbol [Gal78].

In general description of Huffman’s method we have some freedom in choosing
codewords for the symbols. It follows that the different sets of codewords can be
generated by this approach for the same probability distribution. These sets of
codewords can be thought as an equivalent ones and the freedom of choosing one
particular representative means useless redundancy in the codebook (the array of
entries for each of which the key is symbol and the value is the code for the sym-
bol). The task of avoiding this redundancy was considered by Schwartz and Kallick
[SK64]. The canonical Huffman code is the Huffman code which can be obtained
by some procedure from usual Huffman code, with the property that two equiv-
alent Huffman codes have the same canonical form. In application the codebook
also should be transmitted to decoder and compression of it is often involved. The
canonical Huffman codebook usually can be compressed better than non-canonical
one. The procedure of obtaining of canonical form of Huffman codes is presented
by the following steps.

• Sort the codebook by the length of codes in increasing order.

• The first symbol gets the code 00...0 with the same length as before.

• Each subsequent symbol gets the code as the next binary number.

• When the longer codeword is reached we increment the last codeword of
shorter length and shift by one position to left. Then we continue with all
binary numbers of new length.

The unique coding scheme which is optimal with respect to the entropy is arith-
metic coding. Many researchers contributed to developing of it. But the first C
implementation was published by Witten et al. [WNC87]. In this thesis I briefly
describe the main idea which lies in the basis of this coding scheme and skip the
implementation details. Interested reader can be referred to the book by Moffat
and Turpin [MT02].

Suppose that we have n symbols from fixed alphabet with non-zero probabilities
assigned p1, p2, . . . , pn. The arithmetic coder involves the interval of real numbers
from 0 to 1. We mean that all real numbers within this interval are presented in
binary form. We break this interval into subintervals without intersections. Each
subinterval corresponds to one symbol from the alphabet and its length is equal to
the probability of the symbol. For the first coming symbol we define the subinterval
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which corresponds to it and send the common prefix of its bounds as an output.
For the second symbol in turn we divide the subinterval corresponding to the first
symbol and send again common prefix and so on. The special symbol ’END’ is
added to the alphabet and is encoded at the end of encoding process. This symbol
is needed for decoding purpose, it gives a signal when we should finish decoding
process.

To decode a text we start with the same interval of real numbers from 0 to 1. We
divide this interval according frequencies as above. We read input until we uniquely
define the subinterval, which was used at the encoding procedure. The bounds
of this subinterval should have common prefix equal to the prefix of the encoded
input and there is no subinterval which satisfies the same conditions. When the
subinterval is defined we output symbol corresponding to subinterval and proceed
with this subinterval, i.e. we divide it according frequencies and continue as above.

There are also other statistical coding schemes not presented above. But the
two considered ones are most important and popular. They are applied in many
modern standards.

2.1.3 Dictionary-based coding

Some methods which are widely in use in text compression exploit so-called dictionary-
based approach. The compression in such methods is achieved by replacing some
phrases (sequence of consecutive symbols) in the text by pointers to some dictio-
nary. The phrases which are not in the dictionary remain in the text without
transformation. If dictionary contains many frequent phrases, we can expect good
performance.

The main issue of design of dictionary-based method concludes in choosing ap-
propriate dictionary. For this task three approaches can be considered: static,
semi-adaptive and adaptive. In the simplest static approach the same dictionary is
used for any input text. The adaptive approach involves two stages. The first one is
the passing the input text and constructing the optimal (in the sense of compression
ratio) dictionary. The second stage is coding itself. The semi-adaptive approach
can be thought as adaptive approach, but without two passes over the text. So, it
adapts the dictionary to the input text, however only one pass over the text is made.
The most famous semi-adaptive dictionary-based method is Ziv-Lempel coding. I
talk about it and its variations later in this subsection.

When the dictionary is chosen, there are many different ways to encode the
input text, because we can choose different phrases to be replaced by the indices
in the dictionary. The task of splitting input text into the phrases which should be
represented as indices is called parsing. The task of optimal parsing is proven to be
NP-complete and there are many heuristic used in practice. The most popular of
them is greedy heuristic. It suggests to replace the longest match from the dictionary
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by index.

In the 1977 Jacob Ziv and Abraham Lempel published paper [ZL77] which de-
scribes a semi-adaptive dictionary coder. This work has a great significance, because
nowadays almost all semi-adaptive dictionary coders exploit the idea presented in
that paper. The family of such techniques is called Ziv-Lempel coding, abbreviated
as LZ coding.

The main idea of Ziv-Lempel coding is to replace the next phrase by the pointer
in the previous text, where it already occurred. One possible representation for the
pointer is a pair (m, n), where m is the position in the text and n is the length
of the phrase. The decoding is done in straightforward manner. The decoder just
replaces all pointers by the phrases, which can be found in already decoded text.

Towards the implementation of this approach two main design decisions should
be made. The first one answers the question how far from current position pointer
can be targeted. The number of symbols back for the pointer can be limited or not.
The second decision answers the question how long the targeted substring might
be. The different variations on these decisions offer different coding schemes and,
hence, different compression performance.

There are more than 10 alternatives for practical implementation of idea by Ziv
and Lempel. We shortly consider two of them LZ77,LZ78.

In the LZ77 method the length of targeted substring is bounded by parameter
F . Special sliding window of N symbols is in use. The N − F first symbols of this
window constitutes the symbols which are already encoded and where we search
for the longest match. The last F symbols is the pattern for which we try to find
maximal match in the preceding substring. The pointer in LZ77 method is coded
by triplet. the first value is an offset of the longest match from the current position
back. The second value is the length of the longest match and the last value is
the first symbol in the pattern, which does not match. Using the symbol in the
triplet guarantees us that if there is no match in the preceding substring, we can
still present the next symbol as a pointer.

Another modification of idea by Ziv and Lempel is compression method LZ78.
This method uses a dictionary of phrases. Every new coming phrase to the dic-
tionary is a longest match within dictionary plus one extra symbol. After adding
this phrase to the dictionary the coder outputs the pair of two values. The first
value is the index in the dictionary, which matches the prefix of new phrase and the
second value is the last symbol of the new phrase. If there is no match in dictionary
the encoder outputs pair of zero index and next symbol. Let us demonstrate this
method by example. Let the input be ’aaabbabaabaaabab’, then the output of the
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method is

Input : a aa b ba baa baaa bab
Phrase number : 1 2 3 4 5 6 7

Output : (0, a) (1, a) (0, b) (3, a) (4, a) (5, a) (4, b)

The advantage of the method is that one can use trie data structure for the efficient
search in the dictionary. In practice the size of the dictionary can occur too big and
we should not allow unlimited increase of memory for its use. The simple solution
is just to clear the dictionary, when its size is greater than some predefined constant
and continue the coding as starting on a new text.

2.1.4 Block sorting compression

The block sorting compression originates from the paper by Burrows and Wheeler
[BW94]. The idea of the method is to transform the input text into another, however
reversible form and apply some compression method on it. The compression is
achieved if the transformation has a property that it enlarges the compressibility
property of the text. The decoding process is broken into two steps. Firstly, we
should decode the transformed text and then apply inverse transformation.

The transformation from the paper [BW94], nowadays, is known as Burrows-
Wheeler transform, because of the inventors. For the given input string of length
n the transformed string can be obtained as follows. For any symbol in string we
consider its n preceding symbols, starting from the closest one. We assume that
the string is cyclic. It means that the first preceding symbol of the first character
in string is the last symbol in the string, second preceding symbol of it is the next
to the last one and so on. We write these sequences for any symbol, which we call
contexts from right to left. See example for the word ’mississippi’ below.

ississippi m

ssissippim i

sissippimi s

issippimis s

ssippimiss i

sippimissi s

ippimissis s

ppimississ i

pimississi p

imississip p

mississipp i

sissippimi s

ississippi m

sippimissi s

pimississi p

ssissippim i

imississip p

mississipp i

issippimis s

ippimissis s

ssippimiss i

ppimississ i

s

m∗

s

p

i

p

i

s

s

i

i

After construction of the contexts we sort them lexicographically thinking that the
rightmost symbol is the most significant, the next to the right is the second of
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significance and so on. The column from the right on example above is Burrows-
Wheeler transformed string. The asterisk marks the first symbol in the original
string.

It is obvious that if we can reconstruct the table in the middle in the previous
example, we can get the original string, due to we have the first symbol to be
marked. Thus, it is enough to know how to do it. The key observation for the
table placed in the middle is that all rows as well as all columns have the same
content, i.e. set of symbols. The last column is given by definition. The next to
the last column is just its sorted representation. Further, let us suppose that we
already reconstructed i, i + 1, . . . , n columns of the table. The (i− 1)th column can
be obtained by the following procedure.

• Extract all different strings placed in i, i + 1, . . . , n− 1 columns.

• For any particular string using the columns i+1, i+2, . . . , n define the symbols,
which can precede this string.

• Sort these symbols and place them before rows, where extracted string occurs
beginning from the small index of row.

The above described procedure is able to reconstruct the table and, hence, the
original string. The last proves reversibility of the Burrows-Wheeler transform.

It is obvious that the Burrows-Wheeler transform is just permutation of original
string. So, it leads that this transformation does not change 0th order entropy.
However, due to that for regular texts there is dependency between consecutive
symbols, for the given context some symbols are more likely to be occurred than
other ones. The Burrows-Wheeler transform sorts the contexts lexicographically
and, hence, we can expect that in the transformed string the same symbols are
placed more closely to each other than in the original string. The last property
than can be utilized by applying transformations like run-length coding and move
to front coding, described in the beginning of this section. These transformations
are expected to be achieving of increasing of compressibility of the text.

2.2 Compression of natural language

2.2.1 Model of English language

In this section we deal with compression of natural English texts. It is hard to
define precisely what natural language is and no convenient theoretical model of
language exists. However anyone can intuitively get idea of it and some regularities
in language can be observed and utilized. English language can be broken into the
letters and words. The existence of such pieces as words in languages is one of the



14 CHAPTER 2. TEXT COMPRESSION

most significant features of almost all natural languages. However, contra-examples
exist. In this subsection we examine the statistics of letters and words in English
and also present some empirical law of natural language. The information content
of English from the entropy point of view is also under our consideration. The
statistics gathered for regular English can be useful in design of a coder, which
exploits the simple static modelling. But, one should be warned about correctness
of this statistics for any particular case. For example, despite of ’e’ letter is the
most probable letter in English, there is normal full-length book over 50,000 words,
which does not contain this letter at all [Wri39].

The most frequent symbol in normal English text is space and the most frequent
letter is ’e’. The average length of word is about 4.5 letters. If we do not distinguish
upper-case and lower-case letters than the most frequent symbols are ’ETAOIN-
SRHLD’. Initial letters of words are distributed differently the most frequent ones
are ’TAOSHIWCBPFD’. From this we see that the probability of occurrence of
certain letter depends on the position within the word. In English there is also cor-
relation between consecutive letters. A collection of English texts known as Brown
corpus often is in use for the studying of statistics of English language. The alpha-
bet of this corpus consists of 94 symbols. In Table 2.1 we summarized the statistics
for the first most frequent symbols gathered from Brown corpus. We use special
symbol ’•’ for space character. In the table the statistics for the most frequent
digrams and trigrams is also presented. The digram (trigram) is the group of 2 (3)
consecutive letters.

In order to get the statistics for the words in English, some problems immedi-
ately should be solved. The most important one is how to define the word itself.
The simplest definition is that the word is any sequence of non-space letters. How-
ever under this definition the sequences ’letter’ and ’letter.’ are different. So, the
problem could conclude in the treatment of numbers, punctuation symbols and so
on. Different approaches for resolving such problems give different statistics. But
we can expect that these differences are not too much and we can sketch some aver-
age statistics of words. I present the statistics for the most frequent English words
under the definition that the word is the longest sequence of letters, separated by
spaces and multiple spaces as well as other punctuation symbols are ignored. The
statistics presented in Table 2.2 was gathered from the same Brown corpus.

An American linguist and philologist George Zipf has observed interesting phe-
nomenon of using words in human writing and speaking. In the work [Zip49] he
has published an empirical law, nowadays known as Zipf’s law. Let w(n) be the
number of words which occurs in corpus exactly n times. This value varies with n
as w(n) ∼ 1/nγ, where γ is close to 2. There is also another formulation of this
law. Suppose that the words are ranked according to their frequencies, i.e. the most
frequent word has rank equal 1 (r = 1), for the second most frequent word r = 2
and so on. Then, for large ranks, the number n(r) of occurrences of word with rank
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Table 2.1: Letter statistic for Brown corpus

Letter Prob. (%) Diagram Prob. (%) Triagram Prob. (%)

• 17.41 e• 3.05 •th 1.62
e 9.76 •t 2.40 the 1.36
t 7.01 th 2.03 he• 1.32
a 6.15 he 1.97 •of 0.63
o 5.90 •a 1.75 of• 0.60
i 5.51 s• 1.75 ed• 0.60
n 5.50 d• 1.56 •am 0.59
s 4.97 in 1.44 nd• 0.57
r 4.74 t• 1.38 and 0.55
h 4.15 n• 1.28 •in 0.51
l 3.19 er 1.26 ing 0.50
d 3.05 an 1.18 •to 0.50
c 2.30 •o 1.14 to• 0.46

Table 2.2: Word statistics for Brown corpus

Word Prob. (%) Diagram Prob. (%) Trigram Prob. (%)

the 6.15 of the 0.95 one of the 0.03
of 3.54 in the 0.55 as well as 0.02

and 2.70 to the 0.33 the United States 0.02
to 2.51 on the 0.23 out of the 0.02
a 2.14 and the 0.21 some of the 0.02

in 1.90 for the 0.17 the end of 0.01
that 0.97 to be 0.16 the fact that 0.01

is 0.95 at the 0.15 part of the 0.01
was 0.94 with the 0.14 to be a 0.01
for 0.86 of a 0.14 of the United 0.01

with 0.68 that the 0.13 a number of 0.01
as 0.65 from the 0.13 end of the 0.01
he 0.65 by the 0.13 members of the 0.01
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Table 2.3: The entropy of English by Shannon

0-model 1-model 2-model word model

4.03 3.32 3.1 2.14

r is given by n(r) ∼ 1/rz, where z is about 1.
In his paper [Sha51] Shannon studied the task of estimating the entropy for

regular English. He considered an alphabet of 26 letters plus the space. He got the
results for 0,1 and 2 context-based models and also measured the entropy for the
word model. These results are summarized in Table 2.3.

2.2.2 Tagged and plain Huffman codes

When we deal with the compression of natural language we can follow mainly two
strategies. The first one is to use symbol-based model and to encode the text symbol
by symbol. Another strategy is to utilize the fact that text consists of the words.
In the last approach an alphabet appears as a set of words occurring in the text.

The work [dMNZBY00] presents the adaptation of the Huffman’s method for
the word-based alphabet. As it is mentioned above before applying any word-based
technique we should precisely define what the word is. The simple approach is
to think about the word as a sequence of alphanumeric consecutive symbols. The
groups of other consecutive symbols form so-called separator alphabet. Thus, we
use two distinct vocabularies (synonym of an alphabet for the word-based models)
one for words and another one for separators. Notice that we do not care about
separating the codewords from these vocabularies in an output due to that between
any two words the separator is placed and vice versa. Additionally, we can use one
bit to answer the question is the first codeword for word or separator.

The authors of paper [dMNZBY00] use a different method for dealing with words
and separators. It is called spaceless model. Assume that we store the words and
the separators in one vocabulary and we do not include the simple space there. If
during encoding the next separator is space we output nothing and go on, otherwise
we output the code for separator. A decoder for any next coming codeword checks
whether it corresponds to word or separator. If two consecutive words occur the
decoder inserts the space symbol between them. This practice usually gives better
result due to that the most frequent separator in ordinary text is space symbol and
we use no bits for encoding it.

For presenting the method of [dMNZBY00] we should give some definitions.

• Binary Huffman code is the usual Huffman code, where for each symbol in an
alphabet the sequence of bits is assigned.
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• Byte Huffman code is a Huffman code, where for each symbol the sequence of
bytes is assigned, i.e. the length of codeword should be multiple to 8.

We consider two versions of Binary Huffman code.

• Plain Huffman code is Byte Huffman code, where all bits of each byte are used
for the codewords.

• Tagged Huffman code is Byte Huffman code, where in each byte the most
significant bit is reserved for special use. It is set to 1 in the byte which is the
first byte in the sequence of bytes corresponding to the symbol. Other bytes
have the most significant bit equal to 0.

The authors of [dMNZBY00] present the method, which uses the word alphabet
under spaceless model, canonical Huffman codes of plain and tagged forms and
vocabulary of words and separators is compressed by binary Huffman codes. In the
paper they presented experimental results, which show that using bytes instead of
bits in Huffman codes does not significantly decrease compression ratio. On the
other hand, operations with bytes can be done faster, than with bits. As it is
also shown in [dMNZBY00] these compression schemes allow to search words and
phrases in compressed text without decompression, efficiently.

2.2.3 End-Tagged-Dense code

This compression technique was presented in the work [BINP03]. The End-Tagged-
Dense code takes the advantage of simplicity over Tagged Huffman code with pre-
serving its good properties. The idea is to use the most significant bit as a flag
within byte which shows the end of the codeword instead of that it starts as in
Tagged Huffman code. Namely, the most significant bit in the last byte of the
codeword is set to 1 and the most significant bits of other bytes are set to 0. The
important thing of this approach is that we can be ensured that the compression
scheme satisfies prefix property not depending on what we do with remaining 7 bits
in every byte. The last allow us to use any bit sequences of 7 bits within the byte
for generation of the codewords. In order to achieve compression we are still going
to assign shorter codewords for the most frequent words and longer codewords for
the less frequent words. The last can be done straightforward not involving any tree
data structure as in Huffman routine. The code assignment is done by the following
steps.

• We sort the words in vocabulary by their frequencies in decreasing order.

• For the first 128 words we assign consecutive codes of length 7 and set the
most significant bit within byte equal to 1.
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• When all 7 bit codes are exhausted we continue with 2 bytes codes with the
remaining two most significant bits of 2 bytes for special use as described
above.

• When all 2 byte codes are exhausted we continue with 3 byte codes and so
on.

We see that the phase of code assignment is extremely simple and can be done
really fast, because it does not involve any complicated procedure as for example
in Huffman method. The second advantage of this scheme is that there is no need
to store the frequencies of the words and the codewords. At the compression stage
we need only array of words sorted by frequencies, because the codewords can be
calculated on the fly. On the other hand at the decompression stage we also need
this array, only. Because from the codeword we can easily get the rank of the
compressed word (the position in the array) and by using array obtain the word
itself.

2.2.4 (s, c) - Dense code

The (s, c) - Dense code is a generalization of End-Tagged-Dense code firstly pre-
sented in the paper [RTT02]. In order to understand how the generalization is done
let us take a look on End-Tagged-Dense code from a little another point of view.
Any codeword formed by End-Tagged-Dense method is a sequence of bytes. All
bytes except the last one has a value within range [0, 27 − 1]. The value of the last
byte varies in the range [27, 28−1]. We call the former as a continuer and the latter
as a stopper. The beginning bytes in the codeword can be seen as a sequences of
values for numerical system with base 27 and the last byte as a some value which
exceeds the base of this system or equal to it. The last property allows us to deter-
mine the end of the codeword. Now the generalization is straightforward. Choose
two integer parameters s and c. The (s, c) stop-cont code is coding scheme which
assigns to each word within vocabulary a unique code, which is represented as a
sequence of less than c integers and ending by an integer within range [c, c + s− 1].
We see that the End-Tagged-Dense code is a (s, c) stop-cont code, where s = 27 and
c = 27. Obviously, any (s, c) stop-cont code is a prefix code. The (s, c) - Dense code
is (s, c) stop-cont code which is obtained by the similar procedure in the previous
subsection. First we sort the words in the vocabulary by their frequencies in de-
creasing order. Then, we use all possible stoppers for most frequent words. For the
next words in the vocabulary we should exhaust all possible combinations of one
continuer and stopper, then two continuers and one stopper and so on. The (s, c)
- Dense code has one significant property that the average length of it is minimal
with respect to any other (s, c) stop-cont code [BINP03]. As it is seen the (s, c) -
Dense code is a family of codes, because we are free in choosing parameters s and
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c. The last can be utilized for achieving the minimal compression ratio for certain
text. The algorithm on optimal choosing of these values is presented in [BINP03].

2.2.5 Word-based block sorting compression

The task of adaptation block sorting compression method for word alphabet was
considered by Isal and Moffat [IM01]. They used spaceless model of the word
alphabet. Recall that the block sorting compression involves the following stages.
First we perform the Burrows-Wheeler transformation, then we apply move to front
or run-length coding. Additionally, at the last stage some entropy-based coding
scheme can be applied. Here we consider approach in which at the second stage
move to front coding is used. The first question which should be resolved towards
adaption to the word alphabet is how to deal with the Burrows-Wheeler transform in
the case of word alphabet. The authors of work [IM01] suggest to present the input
text as a sequence of indices in the word alphabet. Then the transform becomes
applicable. The second drawback arises in the stage where move to front coding
is involved. As it was described above this coding scheme uses the dynamic list of
symbols from the alphabet and encodes any input symbol (word in our settings) as
an index of it in the list. The size of word alphabet is usually huge and using linear
search in the list becomes wasteful. The idea presented in [IM01] which allows to
overcome it concludes in using splay trees for storing the list and performing needed
operations on it. The splay tree is a self-balancing binary search tree with additional
splay operation which moves the given node to the root. It was devised by Sleator
and Tarjan [ST85]. It has all advantages of binary search tree. Particularly, the
search of entry can be done efficiently. Additional splay operation allows to use this
data structure in move to front coding. Every node of the tree stores the unique
index which is outputted if the symbol in this node occur in the input. The root
has the index equal 1. We do not go in further details on implementation of the
idea of using splay trees, but just mention that for efficient implementation of it we
care that the most frequent symbols should be closer to the root and has smaller
indices.

2.3 Compression methods for the text of positive

integers

2.3.1 Elias codes

Different methods are usually applied, when we deal with the text of positive inte-
gers. This type of the input appears e.g. in communication and some drawbacks
can happen for the direct applications of the methods described above. One of the
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drawbacks might conclude in absence of probability distribution for the positive
integers. If application works in real time, we can not use semi-adaptive modelling
approach in order to get this distribution. Moreover, in some applications we even
can not construct an alphabet, because we do not know beforehand the range of
positive integers in the input. We have knowledge that the input consists of positive
integers, only. Different techniques were invented for such cases. For these tech-
niques the property that the small numbers have shorter codewords and the large
numbers have longer codewords usually holds. If the input mostly consists of small
numbers, the compression is achieved.

In this subsection we deal with the family of Elias codes [Eli75]. There are three
different coding schemes which are combined under the name Elias codes. They
are Elias delta coding, Elias gamma coding and Elias omega coding. We start with
gamma coding.

The gamma code for the given positive integer can be obtained by the following
steps.

• Write the integer in binary form (it is assumed that the presentation starts
from 1).

• Subtract 1 from the number of bits written in the previous step and write
before that so many zeroes.

It is obvious that the decoding can be done easily. The code of an integer is its
binary form with added zeroes in the beginning. The zeroes are needed for the
accomplishing prefix property of the codewords. The length of the code for some
integer x can be calculated as

2blog2(x)c+ 1.

The delta code for the encoding uses gamma codes. The steps which are needed
to be done to get delta code for positive integer are as follows.

• Write the integer in binary form

• Define the position N ′ of the most significant 1 bit starting with the number
of position equal to 0.

• Encode the number N = N ′ + 1 using gamma codes.

• Append to the right remaining bits with the positions N ′ − 1, N ′ − 2, . . . 0.

For the decoding we do the following.

• Read and count the zeroes from the left to the right, until the first one is
reached. Let this count be L.
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• Read L+1 next bits and calculate the value which this bit stream represents.
Let this value be M .

• Read M − 1 remaining bits to the value S.

• The integer is 2M−1 + S.

The length of the code in bits for the positive integer x is given by

blog2(x)c+ 2blog2(1 + blog2(x)c)c+ 1.

I do not describe the Elias omega code in this thesis. This code exploits the
procedure similar to the above and does not have remarkable advantage. Interested
reader can find the information in corresponding source [Eli75].

2.3.2 Fibonacci coding

The Fibonacci coding is a coding method, which uses well-known Fibonacci numbers.
Recall the definition of those. The Fibonacci numbers {fn}∞n=1 are the positive
integers defined recursively.

• Two first Fibonacci numbers are 1 and 1, i.e. f1 = 1 and f2 = 1.

• The next number is defined by two previous ones using that fn = fn−1 +fn−2.

Thus, the series of Fibonacci numbers begins as 1,1,2,3,5,8,13,21,. . . . The Fibonacci
numbers defined recursively also have a closed-form solution, it is called Binet’s
formula and given by

F (n) =
φn − (1− φ)n

√
5

, (2.1)

where φ is golden ratio and is calculated as

φ =
1 +

√
5

2
≈ 1.61803.

The important fact about Fibonacci numbers concludes in so-called Zeckendorf’s
representation. This representation is provided by Zeckendorf’s theorem which
states that for any positive integer x there exists unique representation as

x =
k∑

i=0

fci
,

where ci ≥ ci−1 + 2, for any i ≥ 1. The last condition means that the sequence
{fci

} does not contain any two consecutive Fibonacci numbers. Moreover, the
Zeckendorf’s representation of integer can be found by greedy heuristic.
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The Fibonacci coding of positive integers uses the Zeckendorf’s representation
of integer. The code for x is a bit stream of length l(x) + 1 with positions indexed
from the left to the right by 1, 2 . . ., where

l(x) = max
i≥1

{i|fi ≤ x}.

The last bit in the position l(x) + 1 is set to 1. The value of ith bit is set to
1 if the Fibonacci number fi occurred in Zeckendorf’s representation and is set
to 0, otherwise. Due to that the Zeckendorf’s representation can be obtained by
greedy algorithm it follows that the bit on l(x)th position is always set to 1. Hence,
at the end of the codeword we have two consecutive ones. On the other hand
two consecutive ones can not appear somewhere else within codeword, because of
the definition of Zeckendorf’s representation. The last allows us to distinguish the
codewords for the separate symbols in the encoded sequence. More precisely, two
consecutive ones at the end of each codeword make the Fibonacci codes having a
prefix property.

Fibonacci dual theorem states even more than Zeckendorf’s one. Namely, it
states that in Zeckendorf’s representation the first Fibonacci number never occurs
in the representation. It follows that we can skip the first bit reserved for the first
Fibonacci number and therefore we can make the codewords shorter. In spite of
Zeckendorf’s representation provides us longer codewords where the first bit always
might be set to 0 it also could be useful for the separating of codewords within bit
stream. By using that we never meet the portion of the bit stream containing more
than two consecutive ones.



Chapter 3

Succinct representations of
sequences

3.1 An overview of succinct data structures

One of the first works where the problem of data structure optimization was con-
sidered is [Jac89b]. The author states the problem of data optimization as follows.
In classical data compression approach we can reduce the space occupied by cer-
tain data structure usually accompanied by reduction of accessibility of this data
structure. We can not use compressed data structure before decompression. The
last can be unacceptable for some applications. The research problem in [Jac89b]
can be referred as the problem of devising algorithms, which achieve optimal trade-
offs between the size of data structure and accessibility of the data structure. The
efficient representations of data structures as a result of the above algorithms are
called succinct data structures. The accessibility of data structure can be thought
in two respects. If the application does not change the data structure then we are
only interested in obtaining the information from this data structure. For such ap-
plications the efficient representation is regarded as static succinct data structure.
In [Jac89b] the author only deals with such. On the other hand, if the application
can change the data structure, we should represent the data structure with allowing
to perform these changes. In that case the efficient representation is called dynamic
succinct data structure.

Jacobson defines two types of data optimization. The first one is concrete data
optimization. We can think about data structure as a data type with certain set
of already implemented operations on it. The idea is to modify the data with
preserving implementations of operations so as to achieve smaller size. The main
point here is that we do not change the scheme of representation for the data
structure. For the clarification of this idea let’s take the example of linked data

23
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structure from [Jac89b]. A linked data structure consists of nodes . Each node
occupies distinct block of memory and has several pointers to other nodes. Let us
assume that some of the blocks of memory have the same content. Then we can
save one copy of these blocks in the memory and update the pointers within data
structure. It is clear that in some cases the reduction of the memory is achieved
and we preserve functionality of the data structure.

The second type of data optimization, presented in [Jac89b] is called abstract
data optimization. In this approach we assume that the specification of abstract
data structure is fixed. The specification is meant as a set of abstract operations
on the data structure which can be performed. We are free in implementations
of these operations and using the last we try to choose optimal (in some sense)
representation of the data structure.

The paper [Jac89b] by Jacobson has initiated a lot of research on succinct data
structures. Many authors offered succinct representations for variety of classical
data structures. In the rest of this section I present modern results which are
achieved in this direction. I concern bit vectors, sequences, balanced parentheses,
trees, planar graphs, permutations, dictionaries and suffix arrays.

Succinct representations of bit vectors and sequences are objectives of two next
sections. The current results for these two data structures are presented there and
here I start with succinct representations of balanced parentheses.

Balanced parentheses data structure is a string of 2n parentheses with the con-
dition that the number of opening parentheses is equal to the number of closing
parentheses and for any opening parenthesis it is possible to find corresponding
opening one within string and vice versa. One of the motivations for the research
of this data structure concludes in usefulness of this data structure for representa-
tion of XML documents. The queries on balanced parentheses, which are usually of
interest, are the following:

• FINDOPEN(x) (FINDCLOSE(x)) returns the index of the opening (clos-
ing) parenthesis for the given closing (opening) parenthesis x.

• ENCLOSE(x) returns the index of the opening parenthesis of the pair, which
is most nearly encloses the given parenthesis x.

Jacobson [Jac89a] offered a constant time solution for the above operations. His
solution uses O(n) bits for the storage. Later, Munro and Raman [MR01] gave
alternative solution which occupies 2n + o(n) bits with the same circumstances.
In the paper [GRRR06] much simpler solution is presented. The authors got the
same space as in [MR01], but the lower order term is O(n log2 log2 n/ log2 n) versus
Θ(n log2 log2 log2 n/ log2 log2 n) in [MR01]. Additionally, they claim that the time
complexity of their construction algorithm is smaller.
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A tree is one of the fundamental data structure in computer science. We consider
unlabeled and labeled trees. The latter is the same as the former with additional
mapping, which assigns for each edge of tree some symbol from alphabet Σ.

In a seminal work [Jac89a] Jacobson observed that simple pointer-based solution
for representation of static trees is wasteful in space and has offered another more
efficient representation. In his paper Jacobson deals with unlabeled type of trees
and considers the following navigational queries:

• PARENT (u): returns the parent node of the node u.

• CHILD(u, i): returns the i-th child of the node u.

For the last query it is assumed that all children of each node are ordered. Jacob-
son has given the solution which uses 2t + o(t) bits for the storage and answers the
first and the second queries in O(1) and O(i) time, respectively. Here, t denotes the
number of nodes in the tree. Later Munro and Raman [MR97] have extended the re-
sult by adding new query answered in constant time. This is SUBTREE SIZE(u)
query, which returns the size of subtree rooted from given node. The main idea of
succinct representation for ordered tree is to use isomorphism between trees and bal-
anced parentheses. This isomorphism allows us to use the methods for the succinct
representations of balanced parentheses for the succinct representations of trees.

A binary tree is a special kind of ordered tree with assumption that each node
has at most two children. From the results on general trees it is easily seen that for
the binary trees queries as PARENT (u), LEFT CHILD(u), RIGHT CHILD(u)
and SUBSTREE SIZE(u) can be done in constant time, using 2t + o(t) bits of
storage.

Succinct data structures for the general case of labeled trees were considered
in the paper [FLMM05]. Using the special xbw transform, inspired by Burrows-
Wheeler transform for the strings, the authors achieved 2t log2 |Σ| + O(t) bits of
space, where t is still the number of the nodes and Σ is the alphabet, where the
labels drawn from. For this data structure the queries PARENT (u), CHILD(u, i)
and CHILD(u, α) can be answered in O(1) time. The last query takes the node u
and the label α and returns the child node having the label α or some special value
if such node does not exist. Additionally, to the above, the authors in [FLMM05]
showed that their data structure can be used for subpath query. This query for the
given sequence p of the labels from Σ and for the given node u returns all nodes
such that there exists the path leading to u and concatenation of the labels of the
nodes according to this path is equal to p. This query can be done in O(|p| log2 |Σ|)
time for any alphabet Σ and in O(|p|) time if |Σ| = O(polylog(t)).

Considered ordered tree is a special type of more general data structure called
planar graph. Before presenting the results on succinct representations of planar
graphs, let me remind some notions.
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For the finite set V of arbitrary objects, the graph is defined as a pair G = (V, E),
where E ⊂ V × V . The element v ∈ V is called vertex of the graph G and
e = (v1, v2) ∈ E is called edge connecting vertices v1 and v2. The degree of the
vertex v ∈ V is the number of edges connected to this vertex. In other words it is
the number of elements in the set

{(v, v′)|v′ ∈ V, (v, v′) ∈ E}

The graph is called planar graph if there is injection I : V → R2, so that it is
possible to find a set of continuous lines {`i(t)}|E|1 , t ∈ [0, 1] in the space R2 without
intersections satisfying:

1. The lines `i(·) and `j(·) do not have common points, except boundaries, i.e.
`i(t) 6= `j(t) ∀t ∈ (0, 1) and i 6= j.

2. If ei = (v1, v2) ∈ E, then `i(0) = I(v1) and `i(1) = I(v2), for any i ∈
{1, . . . , |E|}.

For any finite graph it is possible to construct the mapping I and lines {`i}, which
give the presentation of the graph into the plane. However, the first condition can
be satisfied for planar graphs, only. In the following considerations we are assuming
that we deal with the graphs in the plane.

A k-page book embedding of a graph G = (V, E) is a permutation of points from
V and partition of E into k pages. The permutation defines the order for the vertices
drawn in line on the planes (pages) and i-th element of partition defines edges drawn
on i-th plane (page). It is needed that edges on page must not have intersections.
The page number of the graph G is defined as a minimal number of pages in any
book embedding this graph.

The succinct representations of graphs with bounded number of pages were
considered by Jacobson [Jac89a] and some results were improved by Munro and
Raman in [MR97]. The succinct representation of one-page graphs, i.e. graphs with
page number equal to 1 employs the same idea as for trees. Namely, by setting
an isomorphism between the one-page graph and balanced parentheses, it becomes
possible to use methods used for parentheses. For the graphs with more than one
page generalization is done straightforwardly. Each page of the book is represented
separately.

The paper [MR97] states two results:

1. An one-page graph on n vertices and m edges can be represented using 2n +
2m+o(n+m) bits, in such a way that the adjacency of a pair of vertices, and
the degree of any given vertex can be found in constant time, and neighbours
of a vertex can be produced in time proportional to the degree of the vertex.
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2. A k page graph on n vertices and m edges can represented using 2kn + 2m +
o(nk+m) bits in such a way that adjacency between a pair of vertices and the
degree of a vertex can be found in O(k) time, and the neighbours of a vertex
x can be listed out in O(d(x) + k) time where d(x) is the degree of the vertex
x.

For the planar graphs the last results are directly applied, due to that any planar
graph can be embedded in four pages book in linear time [Yan86].

The permutation π on the set [n] = {0, 1, . . . , n−1} is fundamental in computer
science. Formally, it is defined as bijection on [n]. For two permutations π1 and
π2 on the set [n] the superposition π1 ◦ π2 is defined and also is permutation on
[n]. Particularly, for any k > 0 the power of the permutation π is πk = π ◦ . . . π.
Due to the bijection property we consider the inverse of permutation π and consider
the power of permutation for any integer k. π0 is defined to be identical function.
Basically, when we are talking about efficient representation of permutation π, we
mean a representation such that the permutation πk can be calculated rapidly.

In the work [MRRR03] the authors offered two succinct data structures. The
first one takes (1 + ε)n log2 n + O(1) bits of space and supports calculation of π(i)
in O(1) time and πk(i) in O(1/ε) time, for any ε > 0, any integer k and any
i = {0, . . . , n − 1}. The second data structure occupies dlog2 n!e + o(n) bits and
allows to perform πk(i) query in O(log2 n/ log2 log2 n) time for any integer k and i
from 0 up to n− 1.

The paper [Pag02] by Pagh states the problem of storing static dictionary as
follows. We are given some finite universe U and its subset S ⊂ U . Let the
cardinality numbers of these sets be m and n, respectively. A membership query
on static dictionary is query which for any given element s ∈ U answers on the
question does this element belong to the subset S or not. We are interested to get
response on the last query in constant time.

Due to the number of different subsets with fixed cardinality number n is equal
to the number of complete combinations the value

B =

⌈
log2

(
m
n

)⌉
gives us the number of bits which is needed for representation the subset with
n elements from the universe U . The work [Pag02] presents the data structure,
answering the membership queries in constant time and the space occupied by this
data structure is B + O(log2 log2 m) + o(n).

Succinct representation of the subset of natural numbers S ⊂ {0, 1, . . . ,m− 1}
for some m is under development in [RRR02]. The authors consider the Rank and
Select queries. The Rank query takes natural number i and returns the number of
elements in S which are less than i if x ∈ S and −1 otherwise. The Select query for
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given natural i returns the i-th smallest number in S or −1 if such number does not
exist. This problem is known as succinct representation of indexable dictionaries.
The authors of the paper [RRR02] for this problem achieved the space of B+o(n)+
O(log2 log2 m) bits with Rank and Select queries answered in O(1).

The last result has two applications for tries and multisets. The k-ary trie is
another name for k-ary cardinal tree.The k-ary cardinal tree is a tree each node of
which has k positions with the labels 0, 1, . . . , k − 1. These position can contain
the edges to children. Usually, it is used for storing associative arrays where keys
are strings. The lower bound on the space needed for storing the k-ary trie with n
nodes is given by

C(n, k) =

⌈
log2

(
1

kn + 1

(
kn + 1

n

))⌉
.

The additional term in [RRR02] for supporting parent, i-th child and degree of node
queries in constant time is o(n + log2 k). The problem of succinct representation
of indexable dictionaries also finds application in representation of multisets. A
multiset of the universe U = {0, 1, . . . ,m − 1} is natural generalization of regular
subset. It is the subset S ⊂ U with function f : S → {1, 2, . . .} whose value f(s)
on some element s ∈ S is treated as multiplicity of this element. Let us make
the assumption that

∑
s∈S f(s) = n. Any multiset with the last condition can be

represented with B(m,n + m) bits. The authors of [RRR02] describes the data
structure, which uses B(m, n + m) + o(n) + O(log2 log2 m) bits and support the
following queries.

• Rankm(x): returns −1 if x /∈ S and
∑

s∈S,s<x f(s) otherwise.

• Selectm(x): for x ∈ {1, . . . , n} returns the largest element s ∈ S such that
Rankm(s) ≤ x− 1.

• Rankm+(x): for x ∈ U returns
∑

s∈S,s<x f(s).

All these queries can be done in constant time by using the data structure from
[RRR02].

The last data structure under our consideration in this section is suffix array.
This data structure finds their applications in text indexing and string matching
problems.

We are given a text T = T [1, . . . , n] from an alphabet Σ of fixed size. We attach
the special symbol # to the text, which shows us the end of the text. Let us think
that this symbol is already included in the alphabet and original text. Each suffix of
this text can be represented by the position in the text where it is started. It leads
that there are n suffices for the text. The set of all suffices can be lexicographically
ordered, with the assumption that the ending symbol is the smallest symbol within
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alphabet. The result is called suffix array built on the text T . One of the most
common queries on suffix array is lookup(i) operation, which for given i returns the
pointer in original text T , where the i-th smallest suffix starts. We are interested
in succinct representation of the obtained data structure with allowing to perform
lookup() query, efficiently.

One of most recent results on the above problem is presented in [GV05]. The
authors proposed two alternatives. The first one uses (1+ 1

2
log2 log|Σ| n)n log2 |Σ|+

O(n) bits of storage with O(n log2 |Σ|) preprocessing time and supports lookup(i)
query in O(log2 log|Σ| n) time. The second alternative is a data structure which
occupies (1 + ε−1)n log2 |Σ| + o(n log2 |Σ|) bits and performs lookup(i) query in
O(logε

|Σ| n) time, for any 0 < ε < 1. The creation time is also O(n log2 |Σ|).

3.2 Succint data structures on bit vectors

3.2.1 Queries on bit vectors

In this section I consider bit vectors or bit streams. The bit stream is a sequence of
zeroes and ones of finite length. For the bit vector S = S0S1 . . . Sn−1, Si ∈ {0, 1}
the following queries are of interest.

• Si : returns the bit in the position i.

• Rankb(S, i) : gives the number of b bits up to position i.

• Selectb(S, i): returns the position of ith occurrence of bit b in S.

The useful operations also might be Prevb(S, i) and Nextb(S, i) which return the
positions of the previous and the next bit b near position i, respectively. But due
to that these operations as well as access query Si can be expressed with constant
number of Rank and Select queries, the research of succinct representations of bit
vectors basically only deals with these operations.

3.2.2 Succinct data structures with explicit storage

Study of succinct representations of bit vectors was initiated by Jacobson for the
purposes of succinct representations of trees [Jac89a]. He offered an auxiliary data
structure of o(n) bits, which allows to answer Rank query in constant time. Thus,
the total size of data structure becomes n + o(n) bits. The task of supporting
Select query was also considered by Jacobson, but the result was not so good as for
Rank query. Later, that was improved by Munro [Mun96] and Clark [Cla98]. They
achieved o(n) extra bits of space for supporting Select query in constant time.
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In the rest of this subsection I present two data structures for Rank and Select
queries which are the best current results. The first one supports Rank query
and it is Jacobson’s original solution. The second one was invented by Kim et al.
[KNKP05] and it is more efficient alternative of Clark’s solution for Select query.

To support Rank query let us first divide the input bit vector S into blocks
of length b = blog2(n)/2c. Then we group every dlog2 ne blocks into superblocks.
Thus the length of superblock becomes s = bdlog2 ne. For every superblock we
precalculate values Rs[j] = Rank1(S, js), 0 ≤ j ≤ bn/sc. For storing of these
values we need O(n/ log2 n) bits. For each kth block belonging to jth superblock
we store Rb[k] = Rank1(S, kb) − Rank1(S, js). It requires O(n log2 log2 n/ log2 n)
bits. At last for any bit vector B of length b and for position i within it we calculate
the value Rp[B, i] = Rank1(B, i). The last takes O(

√
n log2 n log2 log2 n) bits of

space. In order to perform Rank1(S, i) query we proceed with the following steps:

1. We define the number of block

k = bi/bc.

2. We calculate the number of superblock

j = bk/dlog2 nec.

3. The answer is

Rs[j] + Rb[k] + Rp[Skb . . . S(k+1)b−1, i mod b]

So far, Rank query for 1 bit can be performed in constant time. For calculation
of Rank query for 0 bit we use the formula Rank0(S, i) = i + 1 − Rank1(S, i).
Obviously we have achieved o(n) extra bits of space and constant time solution for
both values of bit.

To calculate Selectb(S, j) query the simplest solution which comes to mind is
to use binary search in S with the structure for Rank query. Namely, the answer
is such position i that Rankb(S, i) = j and Rankb(S, i − 1) = j − 1. But by this
approach the Select query is calculated in O(log2 n) time. The last algorithm can be
improved using block structures. The idea is to first search within the superblocks,
then in blocks which belong to defined superblock and at last within block.

Due to that there is no clear relation between the Select0(S, i) and Select1(S, i)
queries we should consider them separetely. However, it is obvious that any data
structure suitable for one query can be used for another one. It is sufficient to
consider negation of bit stream and construct the data structure for opposite query
on it.
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The first constant time solution for Select query was presented by Clark [Cla98].
In the paper [KNKP05] the authors analyze the behavior of Clark’s algorithm and
find out drawback of it. The Clark’s algorithm becomes worse when the number
of ones in vector is fewer. They proposed two algorithms which overcome this
drawback. The first algorithm achieves o(n) bits of extra space for supporting
Select query and the second one does the same with using n + o(n) extra bits in
worst case. Let us consider the first one.

First we have to introduce some definitions from [KNKP05]. Let us assume that
the bit stream S of length n is given. We divide S into blocks of non-zero length
b. If the block contains 0 bits only, we call it zero-block, otherwise nonzero-block.
Then, we introduce three new bit streams built from S.

• The contracted bit stream is a bit stream of length dn/be, each position of
which corresponds to the block in S and the value in this position is set to 0
if the corresponding block is zero-block and 1 otherwise.

• The extracted bit stream Se is defined as the result of concatenation of all
nonzero-blocks in S, according to the order in S.

• The delimiter bit stream is a bit stream such that every ith entry is defined
to be equal to 1 if the ith and (i − 1)th 1 bits are in the same block and 0
otherwise. The first entry is equal to 1 by definition.

Let B and C be extracted and contracted bit streams of S, correspondingly obtained
by division original stream into the blocks of length d

√
log2 ne. The idea presented

in [KNKP05] is to construct data structures for supporting Select queries on B and
C, and to find functional relation between these queries and the Select query on S.

The paper [KNKP05] states that this functional relation is

Select1(S, i) = Select1(B, i) + (Select1(C, sb)− sb)d
√

log2 ne,

where

sb =

⌈
Select1(B, i)√

log2 n

⌉
.

Then authors of paper [KNKP05] suggest two data strutures for supporting constant
time Select query on bit vectors B and C. The last leads to that constant time
Select query on original bit vector is also supported.

First of all let us define rank-look-up and select-look-up tables which will in use
later. These look-up tables contain the answers on Rank and Select queries for bit
patterns of length d(log2 n)/ce correspondingly, for some fixed integer c > 1 and
thus enables us to compute these answers in constant time. Actually, we already
used rank-look-up table when we dealt with Rank query above.
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To support Select query on B we arrange two-level directory and both look-
up tables. The first level of the directory contains the position in B of every
(dlog2

2 ne)’th 1 bit. It requires O(n/ log2 n) bits of space. The second level of the
directory stores the position of every (d

√
log2 ne)’th 1 bit in the ranges of the first

level of the directory. Notice that due to the definition of a bit stream B every block
of d

√
log2 ne length contains at least one 1 bit. Hence, the maximal value for the

entry in second level directory is d
√

log2 ne. Thus, the space occupied by this level

of the directory is O
(
n/
√

log2 n× log2(log
2
2 n
√

log2 n )
)

bits.

Now we can perform Select1(B, i) query on B in constant time. First, we define
the values j1 = bi/dlog2

2 nec and j2 = i/d
√

log2 ne. Notice that due to the properties

of B we have to search additionaly the block of
√

log2 n
√

log2 n length at most. But
it can be done by using select-look-up table in constant time. The answer is the
sum of the values from the select-look-up table and the values in the first level and
the second level of the directory with the indices j1 and j2, respectively.

To support Select query on C another approach is applied. First, we divide
C into the blocks of length dlog2 ne and define for C and its division delimiter bit
stream D. The length of it is n/

√
log2 n in worst case. We attach to this bit stream

auxiliary data structure for constant time Rank query. The value of Rank1(D, i) is
the number of non-zero blocks up to the block containing ith 1 bit, including the
last block itself. We define mapping array M . The ith entry of M corresponds to
the number of ith non-zero block in C. The space occupancy of this array is given
by O(n/(log2 n

√
log2 n)×log2(n/(log2 n

√
log2 n)). In order to perform Select1(C, i)

query we first calculate the number of block, which ith 1 bit belongs to by using M
and data structure for Rank query on D and then by using select-look-up table the
relative position of ith 1 bit in block.

3.2.3 Succinct representations within entropy bounds

So far we have talked about creation of data structures of the size o(n), which can
be attached to original bit stream for supporting Rank and Select queries. More
ambitious goal is to achieve the constant time solutions for both queries storing bit
stream in compressed form. In this subsection we deal with data structures, which
answer Rank and Select queries and use in total nH0 + o(n) bits of space, where
H0 is 0-order entropy of bit stream.

Above we already considered the task of succinct representations of indexable
dictionaries with supporting Rank and Select queries. It turns out that the last task
is equal to the task of representations of bit streams. Indeed, let us fix the number
n > 0 and consider all possible subsets of the universe {0, 1, . . . , n− 1}. Every such
subset can be represented as a bit stream, where ith position in it corresponds to
the ith element of the universe. It is set to 0 if the corresponding element does
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not belong subset and otherwise if it is in the subset the bit in the ith position
is set to 1. It is seen that this correspondence is a bijection between all subsets
from the fixed universe {0, 1, . . . , n − 1} and all bit streams of the length n. As it
is described above, the authors in the work [RRR02] defined the Rank and Select
queries on the subsets. These queries due to the bijection can be expressed in the
terms of corresponding to the subset bit stream. Let us assume that the subset
is S ⊂ {0, 1, . . . , n} and it corresponds to the bit vector B′ = B′

0, B
′
1, . . . B

′
r. The

notation here differs a little from the one presented earlier. We use n as a cardinal
number of the universe and r as a number of elements in the subset. We see that
due to the defined bijection between S and B′ the value of Select(S, i) query on
the subset S is equal to the value of Select1(B

′, i) query. Another query on the
bit stream — Select0(B

′, i) can be expressed in the terms of complement subset
S̄ = U\S. Namely, Select0(B

′, i) = Select(S̄, i). Thus, the task of supporting
Select query on the bit stream is reduced to the task of supporting Select query
on the subset and its complement. Similarly, we do with the Rank query. The
Rank1(B

′, i) query is equal to the Rank(S, i) query on the subset if B′
i = 1. If it is

not so, i.e. B′
i = 0 we calculate Rank(S̄, i) and the answer is i − Rank(S̄, i). We

do not need to talk about Rank0(B
′, i) because as it was mentioned above there is

simple relation between Rank1(B
′, i) and Rank0(B

′, i) queries. Thus, we see that
the task of succinct representation of indexable dictionaries and the task of succinct
representation of the bit streams are equal for Rank and Select queries. Now,
we should utilize the results of paper [RRR02] and treat them in the sense of bit
streams. In the work [RRR02] the authors achieved B + o(n) bits of space with
both queries answered in constant time for the subset and its complement. They
called such representation of dictionary as full indexable dictionary. The value B is
given by

B =

⌈
log2

(
n
r

)⌉
It immediately follows that using the same space occupancy we can support the
Rank and Select queries on bit streams and also access query. The value n in the
formula for space is the length of the bit stream and the value r is the number of
ones in this bit stream. Let’s modify expression for the space.

B + o(n) = dlog2

(
n
r

)
e+ o(n) = log2

n!

r!(n− r)!
+ o(n) =

= log2 n!− log2 r!− log2(n− r)! + o(n).

Using the Stirling approximation for the factorial function

n! = n ln n− n + o(n) = n
1

log2 e
log2 n− n + o(n)
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we have

B + o(n) =
1

log2 e
(n log2 n− r log2 r − (n− r) log2(n− r)) + o(n) =

=
1

log2 e
(n log2 n± r log2 n− r log2 r − (n− r) log2(n− r)) + o(n) =

=
1

log2 e

(
−r log2

r

n
− (n− r) log2

n− r

n

)
+ o(n) ≤ nH0(B

′) + o(n).

Thus, the bit stream is represented in compressed form within entropy bounds with
supporting Rank and Select queries in O(1) time.

3.2.4 Succinct representations using gap encoding

The idea of using gap encoding originates from the work [Sad03] by Sadakane. Let
us sketch this idea. Every bit stream can be expressed as a sequence of non-negative
integers. The first number in this sequence is the position of the first 1 bit in the
bit stream. The second number is the distance (the length of the gap) between the
first 1 bit and the second one. The third number is the distance between the second
and third ones and so on. When the sequence of such numbers is created it can be
encoded by some coding method. The Rank and Select queries can be performed
on the sequence of the numbers instead of bit stream, due to that above described
transformation is obviously reversible. Depending on the method which was used
in encoding different estimations can be done on the size of compressed bit stream.
Auxiliary data structures for supporting constant time solutions can be attached to
the sequence of the numbers.

In the work [Sad03] Sadakane provided constant time access query using nH0 +
o(n) bits of the space. That was the first work which uses the idea of gap encoding.
It inspired many other studies on this idea. To name a few of them.

Grossi et al. showed [GGV04] that using their data structure it is possible to
support Rank and Select queries in O(log2 r) time, where r is the number of ones
in the bit stream by using o(nH0) additional bits of space.

The recent result is presented in [MN06]. The authors achieved constant time
solutions for Rank and Select queries. Their data structure occupies in total
αr log2

n
r

+ O(r) + o(n) bits of space. The constant α depends on the coding proce-
dure, which is used for encoding of the sequence of the numbers. As it is stated in
the paper, for Elias δ-encoding this constant can be taken equal to 1.
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3.3 Succinct representations of sequences

3.3.1 Queries on sequences

In this section we turn our attention to general case of sequences. Let Σ be an
alphabet of fixed size σ. We consider the sequence S = S0S1 . . . Sn−1 with the
symbols drawn from the alphabet Σ. The Rank, Select and Sq queries for sequences
are the natural generalizations of the queries on the bit streams, i.e.

• Rankc(S, i) takes the symbol c ∈ Σ and position i in S and returns the number
of times symbol c appears in S up to position i.

• Selectc(S, i) takes the symbol c ∈ Σ and position i in S and returns the
position in S of ith occurrence of the symbol c.

• Sq returns the symbol which occupies the position with index q.

The Substr query is a new query for the general case of sequences and we did not
talk about something similar above.

• Substrb(S, i) takes position i in S and returns substring with the length b
starting at the position i. The value b can be fixed or depending on the length
of S.

In this section we talk about efficient representation of sequences with supporting
above described queries.

3.3.2 Succinct sequences for Rank, Select and Sq queries

An elegant solution for Rank, Select and Sq queries on sequences is presented in the
paper [GGV03]. It is called wavelet tree and it allows to perform all above queries in
O(log2 σ) time, where σ is the size of the alphabet Σ. The wavelet tree is a balanced
binary tree, where each node corresponds to some subalphabet of the alphabet Σ
and each leaf corresponds to one particular symbol from the alphabet. The root
corresponds to the alphabet Σ itself and the subalphabets of the child nodes are
obtained by division of parent’s subalphabet into two halves. Additionally, in the
each node except the leaf ones a bit stream is stored. These bit streams depend upon
the sequence for which the wavelet tree is constructed and upon the subalphabet of
the node. The length of every bit stream is equal to the length of the subsequence of
original sequence which only contains the symbols from the subalphabet of the node.
The bit in the bit stream is set to 0 if the symbol on the corresponding position
in the subsequence is in the subalphabet of left child. If the symbol belongs to the
subalphabet of the right child the bit is set to 1. Let’s take an example. Assume
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Figure 3.1: Wavelet tree

that we the alphabet consists of the symbols ’a’,’b’,’c’,’d’ and ’e’ and the input
sequence is ’accbdeddea’. The Figure 3.1 demonstrates the wavelet tree for this
alphabet and sequence.

Now, let us discover how queries can be done using wavelet tree representation.
First, notice that due to that the wavelet tree is balanced tree the depth of it is
O(log2 σ). To perform Rankc(S, i) we start from the root node and using attached
bit stream firstly define the child node whose subalphabet contains the symbol c.
Then we calculate Rank query for 0 or 1 bit (depending on the node determined
in the previous step) and position i. The result can be treated as a position in the
bit stream of the child node. For this position and for the symbol c we proceed
as for root node. We firstly determine the child then perform corresponding Rank
query and so on. This recursively defined procedure ends when the next child is a
leaf node. If it is so then the result of the last Rank query on the bit stream is
an answer on initial query. Notice that, if we assume that auxiliary bit streams of
the nodes are presented succinctly with supporting Rank and access query in O(1)
time then the above procedure is done in O(log2 σ) time, because the wavelet tree
can be traversed in that time.

The Selectc(S, i) query can be done using the wavelet tree in backward manner.
We start from the leaf node corresponding to the symbol c. On the bit stream
attached to the parent node we define the position which corresponds the position
of the symbol of our interest. If the leaf node is a left child of its parent we define
the position of ith 0 bit in parent bit stream, otherwise the position of ith 1 bit.
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This is done by using Select query on the bit stream. The obtained position is
used then for moving up in the same way. Firstly, we define is the current node left
or right child of parent, then perform Select query for corresponding bit and the
position. We finish when we reach the root node of the tree and the result of Select
query on auxiliary bit stream of the root is an answer on initial query. As above we
see that if Select query can be done on auxiliary bit streams in constant time, then
the time which is needed for obtaining answer on Selectc(S, i) query is O(log2 σ).
At the last we should understand how to perform access query for sequence using
the wavelet tree. Actually, the procedure for it is very similar to one for the Rank
query. We start with the root node and using access query for attached bit stream
determine the value of the bit, then we define how many these bits occur up to
position by binary Rank query and go to the child node. The result of binary Rank
query is the position in the child’s bit stream for which we do similarly as for parent
node. We end when we reach the parent of some leaf, the value of the bit in current
position within bit stream answers on the original question. It is easily seen that
access query on sequence also takes O(log2 σ) time, if we perform all queries on bit
streams in constant time.

So far, we have shown that if all bit streams in the wavelet tree are presented
succinctly with supporting all queries on bit streams in constant time, the Rank,
Select and Sq queries can be done in O(log2 σ) time. Next let’s turn our attention
to the space which is required for storing wavelet tree.

The structure of the wavelet tree only depends on the alphabet. If we assume
the alphabet with the fixed size it leads that the structure does not depend on the
input text. In such conditions for the estimation of the size of the wavelet tree we
should get the size which is needed for storing attached bit streams, because the
structure of the tree as well as the alphabet takes constant space for storing not
depending on the length of the input. Let the frequencies of the symbols of the
alphabet be n1, n2, . . . , nσ, i.e. the first symbol occurs n1 times, the second one
occurs n2 times etc. We use the following notation.(

k
k1, k2, . . . , km

)
=

k!

k1! · k2! · . . . · km!
(m > 1)(

k
n

)
=

n!

k!(n− k)!

Let us show that the number of different wavelet trees with the fixed structure which
vary from each other in content of the bit streams is given by(

n1 + n2 + . . . + nσ

n1, n2, . . . , nσ

)
.

When the depth of the tree is equal to zero we have only one symbol in the alpha-
bet and hence there is only one wavelet tree. We see that the above formula gives us
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also one. Next let the root of the wavelet tree has children. The left child contains
the first bσ/2c symbols with the frequencies n1, n2, . . . nbσ/2c and the right child con-
tains other symbols of the alphabet with the frequencies nbσ/2c+1, nbσ/2c+2, . . . , nσ.
Notice that the number of different wavelet trees in this case can be obtained as
multiplication of three terms. The first term is the number of different trees rooted
from the left child. The second term is the same for the right child and the last
term is the number of bit streams which can appear in the root node. Expressing
this mathematically we have(

n1 + . . . + nbσ/2c
n1, . . . , nbσ/2c

)(
nbσ/2c+1 + . . . + nσ

nbσ/2c+1, . . . , nσ

)(
nbσ/2c+1 + . . . + nσ

n1 + . . . + nσ

)
=

=
(n1 + . . . + nbσ/2c)!

n1! · . . . · nbσ/2c!

(nbσ/2c+1 + . . . + nσ)!

nbσ/2c+1! · . . . · nσ!

(n1 + . . . + nσ)!

(nbσ/2c+1 + . . . + nσ)!(n1 + . . . + nbσ/2c)!

=
(n1 + . . . + nσ)!

n1! · . . . · nσ!
=

(
n1 + . . . + nσ

n1, . . . , nσ

)
.

Thus, we have got the formula for the number of different wavelet trees. The number
of bits which is needed for representation of particular tree is taken as a logarithm
of the last value, i.e. the number of bits is given by

log2

(
n1 + . . . + nσ

n1, . . . , nσ

)
= log2

(
n

n1, . . . , nσ

)
= log2 n−

σ∑
i=1

log2(ni!) =

Using Stirling approximation we proceed

= log2 n−
σ∑

i=1

(ni log2 ni − ni) + o(n) =

= n + log2 n±
σ∑

i=1

ni log2 n−
σ∑

i=1

ni log2 ni + o(n) =

= n + log2 n− n log2 n−
σ∑

i=1

ni log2

ni

n
+ o(n) =

= nH0(S) + n + log2 n− n log2 n + o(n) ≤ nH0(S) + log2 n + o(n) =

= nH0(S) + o(n).

Thus, we see that the wavelet tree allows us to support Rank, Select and access
queries in O(log2 σ) time using the space close to the theoretical lower bound, i.e.
entropy.
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The recent result on the task of supporting queries on general sequences is pre-
sented in [FMMN06]. It improves the results of the wavelet tree. Namely, the
authors achieved nH0(S) + o(n) bits of space with performing Rank, Select and Sq

in constant time for the size of the alphabet σ = O(polylog(n)). For an arbitrary
size of the alphabet the queries can be done in O(log2 σ/ log2 log2 n) time with using
nH0(S) + o(n log2 σ) bits of space.

3.3.3 Succinct sequences for Substr query

The Substr query on general sequences was firstly considered in the paper [SG06].
In this work Sadakane and Grossi showed that the sequence S = S[1, n] can be
expressed using nHk(S)+O( n

logσ n
(k log2 σ +log2 log2 n)) bits of space, where Hk(S)

is kth order empirical entropy of the sequence S. On this data structure retrieving
of any substring of length Θ(logσ n) can be done in constant time. The construction
method of their data structure involves Ziv-Lempel coding. Recently, Gonzalez and
Navarro got simpler solution [GN06] with the same space and time complexities,
using arithmetic coding. In this subsection I shortly sketch this solution.

Let us define b = 1
2
logσ n and b′ = 1

2
log2 n. We divide original sequence S into

the blocks of the length b. The construction procedure uses the following values
depending on the index of the block i = 0, 1, . . . , bn/bc.

• Si = S[bi + 1, b(i + 1)] is the ith block.

• Ci = S[bi − k + 1, bi] is the kth order context of the ith block. For the first
block we use some dummy values.

• Pi is arithmetically encoded ith block using k-order context modelling with
initial context value Ci.

• µi is the length of Pi in bits.

• P̃i =

{
Si, µi > b′

Pi, µi ≤ b′
. Notice that the length of P̃i is at most b′.

• µ̃i is the length of P̃i.

For the representation of the sequence S we store the following information

• Bit vector W [0, bn/bc] defined as

W [i] =

{
0, µi > b′

1, µi ≤ b′

The bit within this vector shows us whether the block is stored explicitly or
not.
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• Array of contexts C[0, rank(W, bn/bc)]. We store the contexts for the encoded
blocks only.

• Bit vector U = P̃0 . . . P̃bn/bc obtained by concatenation of all bit vectors P̃i.

• Array of mappings T [i] : Σk × 2i → 2b, i = 0, . . . , b′. The mapping T [i] for
the context of the size k and for the bit sequence of the length i returns the
first b symbols which is result of decoding of the second argument with initial
context equal to the first argument. If the result of decoding is greater we
truncate it to b symbols. If the length of the result is less than b we pad the
result value with dummy values. Notice that we can not guarantee that any
bit sequence with any initial context can be uniquely decodable. However, for
such values of arguments the mapping is applied and we can skip these values
during construction of the data structure.

• We store two tables Rg[0, bn/(bc)c] and Rl[0, bn/bc] for locating each element
P̃i within U . We group every c = dlog2 ne blocks into superblocks. The first
table answers the question where each superblock in U starts. The second
table stores the relative positions of each block with respect to the superblock
containing it.

To obtain subsequence of length b it is enough to get two blocks which contain
pieces of this subsequence. Thus, we only describe the procedure of getting certain
block. If we want to get the jth block, we firstly define the location and the length
of the corresponding value P̃j in U using tables Rg and Rl. The vector W tells us is
needed block encoded or stored explicitly. If the block is presented in explicit form
we ends. Otherwise, we use the mapping T [i] for the decoding it in constant time.

I should remark that the above presented solution differs a little from the solution
in paper [GN06]. The only difference is in definition of mappings T [i], the authors
use mapping T and I described array of the mappings T [i]. The reason of such
modification concludes in some aspects of implementation of arithmetic coder. In
the chapter devoted to arithmetic coding I described this method in such way that it
becomes impossible to implement exact solution by Gonzalez and Navarro. However,
this modification does not break theoretical space complexity of the method and
preserves the idea of it. The difference is negligible and I do not go in the details.

3.3.4 Rank and Select queries for large alphabets

As we see wavelet tree as well as the solution of paper [FMMN06] for arbitrary size
of an alphabet allows to perform Rank and Select queries in time proportional to
log2 σ, where σ is the size of the alphabet. In the paper [GMR06] the authors got
faster queries with a little worse space occupancy. Namely, they proposed two data
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structures. The first one supports Rank query in O(log2 log2 σ) and Select query
in O(1) time and uses nH0 + O(n) bits of space. The second data structures stores
the sequence in explicit form and uses in total n log2 σ + o(n log2 σ) bits of space
supporting Select query in O(1) time and Rank and access queries in O(log2 log2 σ)
time.

Let us consider the first data structure presented in [GMR06]. The input se-
quence S = S[1, n] can be expressed as a table T of zeroes and ones with σ rows
and n columns. The entry T [i, j] is set to 1 if the j-th element of S is the i-th
symbol in the alphabet Σ, otherwise it is set to 0. We think about the alphabet as
a range of positive integers {1, 2, . . . , σ}. Let A be a bit vector obtained by writing
the table T in row major order. We can establish the relations between Rank and
Select queries on sequence S with the Rank and Select queries on bit vector A.

Rankc(S, i) = Rank1(A, (c− 1)n + i)−Rank1(A, (c− 1)n),

Selectc(S, i) = Select1(A, rank1(A, (c− 1)n) + i)− (c− 1)n.

Thus, we reduce the task of supporting Rank and Select queries on S to the task
of supporting binary queries on A. We talk further about the last task.

We divide the bit sequence A into blocks of length σ and introduce two queries
with respect to this division. The first query Rankb is defined on the integers
multiple to σ and the second one Selectb is defined for all values.

Rankb(iσ) = Rank1(A, iσ),

Selectb(i) =

⌊
Select1(A, i)

σ

⌋
.

Obviously, the value of Rankb(iσ) query tells us the number of ones in the blocks
up to the ith block and the value of Selectb(i) query is the index of the block, where
the ith one occurs.

For each block i we are able to define its cardinality as a value ki = Rankb(iσ)−
Rankb((i − 1)σ) and to construct vector B which is unary encoded sequence of
cardinalities, i.e B starts with k1 ones ended by zero, then k2 ones with zero at
the end and so on. Rankb and Selectb queries can be expressed in terms of binary
Rank and Select queries on B. More precisely the following relations hold.

Rankb(iσ) = Rank1(B, Select0(B, i)),

Selectb(i) = Rank0(B, Select1(B, i)).

Due to that the length of A is equal to σn and it contains exactly n ones, the length
of B is equal to 2n. We can create the data structures on B for supporting constant
time binary Rank and Select queries as described in subsection 3.2.2. Then, in
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total we have 2n + o(n) bits of space for storing B with supporting constant time
queries.

So far, we have created the data structure which is able in constant time perform
Rank query on A for the indices multiple σ and define the number of block, which
contains ith one. To accomplish our goal we next should support local Rank and
Select queries for each block. These local queries for the ith block are defined as

Ranki
1(j) = Rank1(A, j + iσ)−Rank1(A, iσ),

Selecti1(j) = Select1(A, j + Rank1(A, (i− 1)σ)).

Let Ai be the ith block and Ei is a sorted array of positions of ones in Ai. The
operation Selecti1 can be done in constant time using the array Ei. For support-
ing local Rank query special data structure is involved. It is called y-fast trie and
it was introduced by Willard in [Wil83]. Let Fi be a set which contains every
log2 σth element of Ei. Storing the set Fi as y-fast trie we are able to support
Rank query on this set in O(log2 log2 σ) time. Due to that the sets Ei are or-
dered for finding local Ranki

1 query we can use binary search within the range
[log2 σRank(Fi, j), log2 σRank(Fi, j) + log2 σ]. It takes O(log2 log2 σ) time. If the
sets Ei are presented in compressed form as described in [RRR02], the total space
of data structure becomes nH0 + O(n) bits.



Chapter 4

Compression methods for random
access

4.1 Simple dense coding scheme with random ac-

cess

4.1.1 Simple dense coding scheme

Let us assume that an alphabet Σ (σ = |Σ|) consists of symbols s0, s1, . . . , sσ−1.
Then, for each symbol si from the alphabet the probability of appearance of the
symbol in the input text is assigned and is equal to pi. We can also assume that the
alphabet is already ordered by probabilities and the first symbol has highest value
of probability.

A coding scheme which is called simple dense coding scheme [FN07] assigns for
the symbols the binary codes with different lengths in the following way. We assign
’0’ code for s0 and ’1’ for s1. Then we use all binary codes of length 2. In that way
the symbols s2, s3, s4, s5 get the codes ’00’, ’01’, ’10’, ’11’, correspondingly. When
all the codes with length 2 are exhausted we again increase length by 1 and assign
codes of length 3 for the next symbols and so on until all symbols in alphabet get
their codes. The table 4.1 demonstrates the coding scheme.

Lemma 1 For the proposed coding scheme the following holds:

1. The binary code for the symbol sj ∈ Σ is of length blog2(j + 2)c.

2. The code for the symbol sj ∈ Σ is a binary representation of the number
j + 2− 2blog2(j+2)c of blog2(j + 2)c bits.

43
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Table 4.1: Coding scheme

Symbol Probability Code
s0 p0 0
s1 p1 1
s2 p2 00
s3 p3 01
s4 p4 10
s5 p5 11
s6 p6 000
s7 p7 001
s8 p8 010
s9 p9 011
s10 p10 100
s11 p11 101
s12 p12 110
s13 p13 111
s14 p14 0000
. . . . . . . . .

PROOF. Let an and bn be indices of the first and the last symbol, which have the
binary codes of length n. Then a1 = 0 and b1 = 1. The values an and bn for n > 1
can be defined by reccurent formulas

an = bn−1 + 1, bn = an + 2n − 1. (4.1)

In order to get the values an and bn as functions of n, we firstly substitute the first
formula in (4.1) to the second one and have

bn = bn−1 + 2n.

By applying the above formula many times we have a series

bn = bn−2 + 2n−1 + 2n,
bn = bn−3 + 2n−2 + 2n−1 + 2n,
. . .
bn = b1 + 22 + 23 + . . . + 2n.

Finally, the value of bn as a function of n becomes

bn = 1 +
n∑

k=2

2k =
n∑

k=0

2k − 2 = 2n+1 − 3.
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Using (4.1) we get
an = 2n − 3 + 1 = 2n − 2.

If j is given the length of the code for the symbol sj is defined equal to n, satisfying

an ≤ j ≤ bn.

Accordingly to the above explicit formulas for an and bn we have

2n − 2 ≤ j ≤ 2n+1 − 3.

It is equal to
2n ≤ j + 2 ≤ 2n+1 − 1

and finally
n ≤ log2(j + 2) ≤ log2(2

n+1 − 1). (4.2)

In accordance to the definitions of an and bn values there exists unique solution of
(4.2) for each j ∈ {0, . . . , σ − 1}. Therefore, the proposition will be proved if we
show that n∗ = blog2(j + 2)c satisfies (4.2).

The left inequality is obviously true. Let’s consider the right one. A simple
transformations give us

log2(j + 2) ≤ log2(2
n∗+1 − 1),

j + 2 ≤ 2blog2(j+2)c+1 − 1,

log2(j + 3) ≤ blog2(j + 2)c+ 1.

For j = 0 the inequality is true. For j > 0 we are considering two cases. Firstly,
let us assume that log2(j + 3) is integer, i.e. blog2(j + 3)c = log2(j + 3). Due to
| log2(j + 3)− log2(j + 2)| ≤ 1 and log2(j + 2) < log2(j + 3) for any j ≥ 0 we have

log2(j + 3) = blog2(j + 2)c+ 1.

For the second case, when the value log2(j + 3) has a fractional part, we get

blog2(j + 2)c = blog2(j + 3)c

and the inequality becomes

log2(j + 3) ≤ blog2(j + 3)c+ 1,

which is obviously true and the first statement of the proposition is proved. For the
setting the second statement it is sufficient to observe that the code for the symbol
sj ∈ Σ is j − an. By applying simple transformations we have

j − an = j − (2n − 2) = j + 2− 2n = j + 2− 2blog2(j+2)c.

So, the second statement is also proved. �
To encode the input sequence S = s0s1 . . . sn taken from alphabet Σ we proceed

with the following steps.
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• Calculate the frequencies of the symbols in sequence S.

• Sort them in decreasing order according frequencies.

• Assign codewords for every symbol in the alphabet.

• Replace every symbol in S by its codeword and concatenate codewords.

Let S ′ = s′0s
′
1 . . . s′h−1 be an encoded sequence obtained from S, where s′i ∈ {0, 1}.

The length h can be calculated as

h =
σ−1∑
j=0

njblog2(j + 2)c, (4.3)

where nj is the frequency of (j + 1)th most probable symbol in the alphabet Σ.

4.1.2 Random access to compressed sequences

The fatal problem of the described coding scheme is that we can not distinguish
the codewords within the encoded sequence S ′. It can be overcame by attaching
auxiliary bit vector D. This vector has the same length as sequence S ′ and bit in
the ith position is set to 1 if in this position some codeword begins, otherwise the
bit is set to 0.

Besides the ability to separate codewords in S ′ bit vector D also provides us tool
for random access to encoded sequence. Indeed, we can easily extract the codeword
of a certain symbol si from S, because we know that this codeword in S ′ starts at the
same place where ith one in D occurs and the codeword ends before position where
(i+1)th one in D appears. Moreover, if some data structure with supporting Select
function in O(1) time on D is created, above operations can be done in constant
time. More formally, the codeword r of the ith symbol of S is given by

r = S ′[Select1(D, i) . . . Select1(D, i + 1)− 1].

Notice that due to σ ≤ n and the maximal length of the codeword is blog2(σ + 2)c
we have that r = O(log2 n). It follows that under RAM model of computation
extracting any particular symbol from the encoded sequence can be done in constant
time.

It is easily seen that we do not need to store the vector D in explicit form. Only
required functionality is supporting Select function. Hence, we can store this vector
in compressed form with ability to calculate Select function on it.
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4.1.3 Space complexity

In the previous subsection we calculated the size of the sequence S ′. From compres-
sion point of view it is always interesting to get relation between the size of encoded
sequence and theoretical measure of compressibility of sequence, that is entropy.

The zeroth order empirical entropy of the sequence S is given by

H0(S) = −
σ−1∑
j=0

nj

n
log2

(nj

n

)
. (4.4)

The value nH0(S) is theoretical lower bound on the size of encoded sequence. The
following theorem gives upper bound on the value h.

Theorem 1 For the values (4.3) and (4.4) the following inequality holds.

h ≤ nH0(S) + n. (4.5)

PROOF. Before proving the main inequality (4.5) we have to set auxiliary result:

log2 j ≥ blog2(j + 1)c − 1, ∀j > 0. (4.6)

The truth of the last is taken from series

blog2(j + 1)c − 1 = blog2(j + 1)− 1c = blog2(j + 1)− log2 2c =

= blog2(
j

2
+

1

2
)c ≤ blog2(

j

2
+

j

2
)c ≤ log2 j.

Let us return to our main goal. We will follow the method of mathematical
induction, where parameter of the induction will be the size of the alphabet Σ, i.e.
σ. We have to prove that for any σ ≥ 1 and n, n0, n1 . . . , nσ−1 ≥ 1, so that

n0 + n1 + . . . nσ−1 = n,

and
n0 ≥ n1 ≥ . . . ≥ nσ−1,

the following holds

σ−1∑
j=0

njblog2(j + 2)c ≤ −n
∑
j=0

nj

n
log2

(nj

n

)
+ n

or
σ−1∑
j=0

njblog2(j + 2)c ≤ −
σ−1∑
j=0

nj log2

(nj

n

)
+ n. (4.7)
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For the σ = 1 we have n0 = n and it turns

nblog2 2c ≤ n log2 1 + n,

what is clearly true. Next, let’s assume that inequality holds for σ, then we have to
prove it for σ + 1. It becomes

σ∑
j=0

njblog2(j + 2)c ≤ −
σ∑

j=0

nj log2

(nj

n

)
+ n.

We divide both parts of the last by
∑σ−1

k=0 nk and have

σ∑
j=0

nj∑σ−1
k=0 nk

blog2(j + 2)c ≤ −
σ∑

j=0

nj∑σ−1
k=0 nk

log2

(nj

n

)
+

n∑σ−1
k=0 nk

.

By adding and sumaltaneously substracting the value

σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

n∑σ−1
k=0 nk

to the right side, we get

σ∑
j=0

nj∑σ−1
k=0 nk

blog2(j + 2)c ≤ −
σ−1∑
j=0

nj∑σ−1
k=0 nk

(
log2

(nj

n

)
+ log2

n∑σ−1
k=0 nk

)
+

+
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

n∑σ−1
k=0 nk

+
n∑σ−1

k=0 nk

− nσ∑σ−1
k=0 nk

log2

(nσ

n

)
.

The last leads

σ∑
j=0

nj∑σ−1
k=0 nk

blog2(j + 2)c ≤ −
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

(
nj∑σ−1

k=0 nk

)
+

+
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

n∑σ−1
k=0 nk

+
n∑σ−1

k=0 nk

− nσ∑σ−1
k=0 nk

log2

(nσ

n

)
.

Now, we move the first term of the right part of inequality to the left side and at
the same time move the last term of the summation in the left part to the right and
have

σ−1∑
j=0

nj∑σ−1
k=0 nk

blog2(j + 2)c+
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

(
nj∑σ−1

k=0 nk

)
≤



4.1. SIMPLE DENSE CODING SCHEME WITH RANDOM ACCESS 49

≤
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

n∑σ−1
k=0 nk

+
n∑σ−1

k=0 nk

−

− nσ∑σ−1
k=0 nj

blog2(σ + 2)c − nσ∑σ−1
k=0 nk

log2

(nσ

n

)
.

By the assumption of induction we see that the left part of the inequality is not
greater than 1. So, if we prove that the right part is not less than the same value
we complete the proof. For this purpose let’s consider the right side, separately.

σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

n∑σ−1
k=0 nk

+
n∑σ−1

k=0 nk

−

− nσ∑σ−1
k=0 nj

blog2(σ + 2)c − nσ∑σ−1
k=0 nk

log2

(nσ

n

)
.

Using that

n =
σ−1∑
k=0

nk + nσ,

we get
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

(
1 +

nσ∑σ−1
k=0 nk

)
+ 1 +

nσ∑σ−1
k=0 nk

−

− nσ∑σ−1
k=0 nj

blog2(σ + 2)c+
nσ∑σ−1

k=0 nk

log2

(
n

nσ

)
.

It leads to
σ−1∑
j=0

nj∑σ−1
k=0 nk

log2

(
1 +

nσ∑σ−1
k=0 nk

)
+ 1+

+
nσ∑σ−1

k=0 nk

[
1− blog2(σ + 2)c+ log2

(
n

nσ

)]
.

Since nσ is the smallest number among {nj} then minimal value of the fraction
n/nσ is σ+1 and due to (4.6) we have that the last term in brackets is non-negative
and, hence, all expression is not less than 1. �

The bit vector D also has length h and, hence, we have shown

Theorem 2 The sequence S can be encoded by simple dense coding scheme in
2n(H0(S) + 1) bits.

Creating additional data structure for supporting Select query on D in constant
time [Cla98] we have
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Theorem 3 2n(H0(S)+1)+o(n) bits is enough to represent S in compressed form
with random access.

As it was already mentioned we can compress auxiliary bit stream D with preserving
ability to perform Select query. This is possible using h′ = hH0(D) + o(n) +
O(log2 log2 h) bits of space [RRR02]. Note that the entropy of the bit vector D can
be easily calculated as

H0(D) = −n

h
log2

(n

h

)
− h− n

h
log2

(
h− n

h

)
.

Thus,

Theorem 4 The sequence S can be encoded in h + h′ bits and any symbol can be
extracted from compressed sequence in constant time.

4.1.4 Extensions

Above described compression procedure can be generalized in two ways. First,
there is no problem for applying simple dense coding scheme using context based
modelling. The difference is only using several tables with codewords for each
context. So the result of the theorem 2 holds for the kth order entropy Hk(S). But
notice that we can not so easily organize random access for the encoded sequence,
because we have to be able to determine context for every codeword we access.

Let’s describe the second possible way of generalization. Consider that we use
codewords of length divisible by some integer u. Above we assume that u = 1,
because we assign codewords of any integer length. If u = 2 first we use the
codewords of length 2, then 4, 6 and so on. Obviously, that for u > 1 the length of
encoded sequence S ′ may only increase, but the key observation is that every bit in
vector D which is placed in position non-divisible by u is equal to 0. Hence, we do
not need to store bits in such positions. It follows that the length of the vector D
decreases.

All results of the case u = 1 are easily generalized for arbitrary u as follows.

Lemma 2 For the simple dense coding scheme with parameter u > 1 we have

1. The binary code for the symbol sj ∈ Σ is of length blog2((2
u − 1)j + 2u)cu.

2. The code for the symbol sj ∈ Σ is a binary representation of the number
j + 1− (2blog2((2u−1)j+2ucu − 1)/(2u − 1) of blog2((2

u − 1)j + 2u)cu bits.

Here, bxcu = bx/ucu is a nearest integer divisible by u which is not bigger than x.
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The length of the vector S ′ is

h =
σ−1∑
j=0

njblog2((2
u − 1)j + 2u)cu.

Theorem 5 The number of bits required by S ′ is at most n(H0(S) + u).

The space required by D is then at most

n(H0(S) + u)

u

bits. Then

Theorem 6 The sequence S can be encoded in n(H0(S) + u)(1 + 1/u) bits.

We value of u which minimizes the last value in the theorem is given by

u =
√

H0(S).

Special data structures for supporting Select query on D can be created and random
access to compressed text can be organized as it was done above for the case u = 1.

So far, we assume that we deal with the sequence of symbols S taken from
fixed alphabet Σ. Nevertheless, there is no problem to apply our coding scheme for
the coding of sequence of positive integers without known beforehand probability
distribution function. Simple dense coding scheme assigns for any positive integer
p the codeword with the length of blog2(p + 2)c bits like for the case of sequence
of symbols. The codewords within S ′ is separated using auxiliary bit vector D.
For this case we do need to store any tables consisting of the codewords, because
everything can be calculated during coding procedure.

4.2 Fibonacci coding of sequences with random

access

4.2.1 Fibonacci coding applied for sequences of symbols

In the subsection 2.3.2 we discussed the Fibonacci coding as a coding scheme which
is applied for the sequence of arbitrary large positive integers. Before discussion of
applicability of this scheme for the sequence of symbols, let us examine the code
length of particular integer x, obtained by Fibonacci coding procedure. It is assumed
that we use representation provided us by Fibonacci dual theorem. Obviously, the
worst case for the code length is when the value x is Fibonacci number itself. Then
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the code is sequence of l(x) − 2 zeroes ending with two ones. Hence, the length
of the codeword for x is precisely l(x). Thus, we have to estimate the value l(x),
supposing that x is Fibonacci number. Using the Binet’s formula (2.1), we have

x =
φl(x) − (1− φ)l(x)

√
5

.

Taking logarithms from the both sides we get

log2(
√

5x) = log2

(
φl(x) − (1− φ)l(x)

)
,

log2(
√

5x) = log2

[
φl(x)

(
1−

(
1− φ

φ

)l(x)
)]

,

log2(
√

5x) = l(x) log2 φ + log2

(
1 +

(
φ− 1

φ

)l(x)
)

.

Due to that 0 < (φ− 1)/φ < 1, we have

log2(
√

5x) ≥ l(x) log2 φ.

Hence, because of φ > 1

l(x) ≤ log2(
√

5x)

log2 φ
.

We have shown

Lemma 3 The length |c(x)| of the Fibonacci codeword c(x) for the positive integer
x satisfies

|c(x)| ≤ log2(
√

5x)

log2 φ
. (4.8)

So far we considered the Fibonacci coding for the sequence of positive integers,
however any coding scheme suitable for the last task can be used for the coding of
sequence of symbols by the following way.

Let us assume that we have a sequence S = S[1, n] with the symbols from the
alphabet Σ (|Σ| = σ). The statistics of the sequence S is presented as a sequence of
decreasing integers n1, n2, . . . , nσ. The value n1 is the frequency of the most probable
symbol in Σ, n2 is of the second most probable one and so on. We can express the
sequence S as a sequence S ′ of integers in the range [1, σ] by substituting the symbol
with the index of its frequency in the sorted list n1, n2, . . . , nσ. Obviously, we only
need the list of symbols from the alphabet Σ sorted by the frequencies for performing
the inverse transformation S ′ → S. For the sequence S ′ we can apply any coding
scheme for the positive integers. Particularly, it might be Fibonacci coding. The
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important thing is that it is possible to give the estimation of average code length
obtained by the way above based on the entropy of the source H0(S).

The average code length is given by

n̄ =
σ∑

i=1

ni

n
l(i),

where the value l(i) is defined in subsection 2.3.2. Using the estimation (4.8) we
have

n̄ ≤
σ∑

i=1

ni

n

log2(
√

5i)

log2 φ
=

1

log2 φ

σ∑
i=1

ni

n

(
log2 i + log2

√
5
)

. (4.9)

It is not hard to show that for any i = 1, 2, . . . σ the following holds

i ≤ n

ni

. (4.10)

Indeed, due to that n1 ≥ n2 ≥ . . . nσ we have

n1 + n2 + . . . + ni ≤ n ⇒ ini ≤ n ⇒ i ≤ n

ni

.

Applying (4.10) to (4.9) we proceed

n̄ ≤ 1

log2 φ

σ∑
i=1

ni

n

(
log2

n

ni

+ log2

√
5

)
=

H0(S) + log2

√
5

log2 φ
.

Thus, we have proved

Theorem 7 The sequence S using Fibonacci coding can be represented in

n
H0(S) + log2

√
5

log2 φ

bits.

4.2.2 Data structure for random access

As it was mentioned in the subsection 2.3.2 we have one attractive property of
the Fibonacci code. The two consecutive ones can only appear at the end of the
codeword and nowhere else. In this subsection I utilize this property for arranging
random access.

First notice, if we want to start decoding from the ith symbol we should find the
(i− 1)th pair of two ones, supposing that the pairs are not overlapped. When the
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position j of this pair is defined we start decoding from the position j +2. Thus, for
our task it is enough to be able to determine the position of (i − 1)th pair of ones
in constant time. The query which does it we denote as Select11. Notice, that due
to that we do not allow the pairs to be overlapped the last query does not answer
the question where the certain occurrence of substring 11 starts in the bit stream
and it differs from extended Select query presented in [MN06]. The objective of
this subsection is to present data structure which supports new query in constant
time using amount of space asymptotically less than the size of bit stream itself.

The data structure for the Select11 query can be constructed using the same idea
as for classical Select query solution presented in [Cla98]. Thus, the data structure
of this subsection can be seen as an adaptation of Clark’s data structure for the
Select11 query.

Let B = B[1, m] be a result of Fibonacci coding procedure for the original
sequence S = S[1, n] obtained as it was described in the previous subsection. To
support Select11(B, i) query we do the following

• Record the positions of every (log2 m log2 log2 m)th non-overlapping 11 se-
quence in table R1 = R1[0, . . . , bm/ log2 m log2 log2 mc].

• Let r(i) = R1[i]− R1[i− 1], i = 1, 2, . . . bm/ log2 m log2 log2 mc be the length
of range between consecutive 11 sequences in B.

• For the range with r(i) ≥ (log2 m log2 log2 m)2 we explicitly store the positions
of all 11 in the table R2.

• If the ith range has a length r(i) ≤ (log2 m log2 log2 m)2 we store in the ta-
ble R3 the relative positions of every (log2 r(i) log2 log2 m)th occurrence of
sequence 11 in the range.

• Let r′(i) be a length of range between consecutive entries in the table R3. If
r′(i) ≥ log2 r′(i)(log2 log2 n)2 we store all answers explicitly.

• For the range r′(i) < log2 r′(i) log2 log2 n, Clark showed that using rank-look-
up and second-look-up tables with the size of every entry 16(log2 log2 n)4 it is
possible to answer relative Select query.

The important remark which makes the Clark’s approach applicable is that during
construction every sequence 11 of interest is included entirely in range. It allows
us to use look-up tables, because the situation when the sequence 11 belongs two
ranges at the same time impossible.

The space bound m+o(m) directly follows from Clark’s result for Select1 query.
Indeed, let us imagine the transformation of the original bit stream B → B′. This
transformation substitute every pair of our interest by single one ending by zero
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and other ones are substituted by zeroes. The B′ bit stream has a length m and all
data structures remain the same in the sense of occupied space. It proves that we
have organized data structure for supporting Select11 query in o(m) bits.

Due to that m is a linear function of n as shown in Theorem 7 we have proven.

Theorem 8 The sequence S can be encoded in

n
H0(S) + log2

√
5

log2 φ
+ o(n)

bits and for any q > 0 the position in the encoded sequence from which the decoding
of S[q, n] may be started can be defined in constant time.

At the end of this subsection I bring adaption of darray solution for Select
query by Okanohara and Sadakane [OS07]. This practical simple solution will be
used in experiments.

We partition the bit vector B into the blocks with L non-overlapping consecutive
ones. The array P [0, . . . ,m/L− 1] is constructed to answer the query Select11(iL).
If the size P [i]−P [i− 1] is larger than L2 we store all positions of consecutive ones
explicitly. If the length of the block is smaller than L2 we store relative positions of
every L3th pair of ones. To perform Select query we first should define the block,
then check is its size bigger or smaller than L2. If it is bigger we obtain stored value,
otherwise we lookup correspondent L3th value and perform sequential search. If we
choose L = O(log2

2 m), L2 = O(log4
2 m), L3 = O(log2 m) described data structure

will take o(m) extra space. Notice that in fact we did not construct constant time
solution for Select query, because the time of the query is O(log4

2 n/ log2 m). Anyway
in practice this solution is quite fast.
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Chapter 5

Experimental results

5.1 Test files

In this chapter I present the results of experiments, which were done with different
test files. I experimented with simple dense coding and Fibonacci coding. All results
are presented for word based models of the file. It means that we take the words
of the file as symbols of the alphabet. Experiments for letter based alphabets were
also done, but the compression performance were too poor to be competitive with
modern compression techniques.

All experiments were done on Intel Celeron 1.5 MHz, 512 RAM, running Linux.
I used C language and gcc 4.1.1 compiler with full optimization.

I used Silesia1 and Canterbury2 corpuses to obtain files for the experiments. The
properties of the files are summarized in the Table 5.1.

Table 5.1: Test files

Name Content Type Size
dickens Collected works by Charles Dickens English text 10 192 446 B

world192.txt Country information around the world English text 2 473 400 B

samba Source code of Samba C source 6 760 204 B

xml Collected xml files xml source 5 303 867 B

In compression algorithms different ways of dealing with separators and words
are involved. The word is meant as any sequence of alphanumeric characters. Other
sequences are treated as separators. The following tables characterizes the proper-

1http://www-zo.iinf.polsl.gliwice.pl/ sdeor/corpus.htm
2http://corpus.canterbury.ac.nz
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ties of test files from the point of view, how many words and separators the files
contain.

Table 5.2 shows the number of distinct words in the file, total number of words
and entropy of input consisting of the words only.

Table 5.2: Words

Name Size of dictionary Total number Entropy
dickens 34381 1819394 9.92

world192.txt 22917 343139 10.91

samba 29822 924640 10.40

xml 19582 847806 9.10

Table 5.3 shows the number of distinct separators, the total number of separators
in the file and also entropy of the input consisting of separators only.

Table 5.3: Separators

Name Size of dictionary Total number Entropy
dickens 1071 1819395 1.84

world192.txt 498 343140 3.17

samba 15544 924641 5.60

xml 1495 847807 4.13

The spless model involves one dictionary for storing words and separators. The
simple space is not included. Table 5.4 shows the number of distinct entries, total
number of entries in such constructed dictionary and also the entropy of the input
under spless model.

5.2 Compression performance

Table 5.5 presents the sizes of compressed files and compression ratios for different
methods. gzip -9 is an implementation of Ziv-Lempel compression method. bzip
-9 is a compression method based on Burrows-Wheeler transformation. sdc and
fibc are simple dense compression and Fibonacci coding, correspondingly. They are
supposed to compete with other methods. Word Huffman is an usual statistical
Huffman method, where statistics is gathered for words. ETDC is End-Tagged-
Dense-Code presented in [dMNZBY00]. I have already talked about this method
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Table 5.4: Words and separators under spless model

Name Size of dictionary Total number Entropy
dickens 35451 2274883 9.47

world192.txt 23414 504104 9.81

samba 45365 1624292 9.63

xml 21076 1536221 7.90

above in this thesis. (200,56)-DC is (s, c) dense code which was also already con-
sidered. The parameters for the method were chosen empirically. For the last three
methods two distinct dictionaries for words and separators were in use.

Table 5.5: Sizes of compressed files and compression ratios

File gzip -9 bzip2 -9 sdc fibc
dickens 3 851 823 B (37.7%) 2 799 528 B (27.4%) 3 598 358 B (35.3%) 3 213 794 B (31.5%)

world192.txt 721 413 B (29.1%) 489 583 B (19.7%) 879 488 B (35.5%) 783 329 B (31.6%)

samba 1 361 230 B (20.1%) 1 104 954 B (16.3%) 2 444 843 B (36.1%) 2 177 209 B (32.2%)

xml 653 743 B (12.3%) 427 238 B (8.0%) 1 754 626 B (33.0%) 1 624 502 B (30.6%)

File Word Huffman ETDC (200,56)-DC WinRar
dickens 2 889 403 B (28.3%) 3 356 527 B (32.9%) 3 257 899 B (31.9%) 2 395 134 B (23.4%)

world192.txt 718 110 B (29.0%) 850 966 B (34.4%) 828 958 B (33.5%) 398 642 B (16.1%)

samba 2 050 132 B (30.3%) 2 601 754 B (38.4%) 2 522 379 B (37.3%) 929 055 B (13.7%)

xml 1 522 683 B (28.7%) 2 048 357 B (38.6%) 1 960 694 B (36.9%) 406 356 B (7.6%)

Tables 5.6 and 5.7 show the compression performance for the test files, when
the different approaches to deal with the words and separators are in use. The first
approach concludes in maintaining two vocabularies for words and separators, it
is noted as ’ws’. For the second approach marked as ’w’ we ignore the separators
in input file and only store the words assuming that all separators are replaced
by space. This leads that compression methods become lossy. The last approach
involves spaceless model of input and we note it as ’spless’.

The simple dense compression method involves special parameter u. Above the
results for the value u = 1 were presented. Table 5.8 shows the sizes of test files and
compression ratios for the different values of this parameter and I made experiments
when words in the compressed files are only stored.
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Table 5.6: Compression results for sdc method

File ws w spless
dickens 3 598 358 B (35.3%) 2 991 239 B (29.3%) 3 487 314 B (34.2%)

world192.txt 879 488 B (35.5%) 726 852 B (29.3%) 882 586 B (35.6%)

samba 2 444 843 B (36.1%) 1 685 773 B (24.9%) 2 644 135 B (39.1%)

xml 1 754 626 B (33.0%) 1 301 877 B (24.5%) 1 877 722 B (35.4%)

Table 5.7: Compression results for fibc method

File ws w spless
dickens 3 213 794 B (31.5%) 2 591 842 B (25.4%) 3 039 437 B (29.8%)

world192.txt 783 329 B (31.6%) 628 147 B (25.3%) 772 283 B (31.2%)

samba 2 177 209 B (32.2%) 1 451 816 B (21.4%) 2 288 745 B (33.8%)

xml 1 624 502 B (30.6%) 1 150 137 B (21.6%) 1 691 418 B (31.8%)

Table 5.8: Compression results for sdc method with different values of u

File u = 1 u = 2 u = 3 u = 4
dickens 2 991 239 B (29.3%) 2 634 185 B (25.8%) 2 570 931 B (25.2%) 2 597 582 B (25.4%)

world192.txt 726 852 (29.3%) 635 991 B (25.7%) 617 844 B (24.9%) 621 709 B (25.1%)

samba 1 685 7733 B (24.9%) 1 472 842 B (21.7%) 1 428 509 B (21.1%) 1 441 753 B (21.3%)

xml 1 301 877 B (24.5%) 1 163 963 B (21.9%) 1 148 230 B (21.6%) 1 162 046 B (21.9%)

5.3 Performance of random access compression

For random access to compressed files the solution darray for Select query by
Okanohara and Sadakane is used. For sdc coding method this method can be
directly applied on auxiliary bit stream. Unlikely, fibc coding method needs some
modifications. However, this modification is quite easy and straightforward. Tables
5.9, 5.10, show the sizes for darrays and also ratios of these sizes to the sizes of
compressed files.

Tables 5.11 and 5.12 present the sizes and compression ratios for compressed test
files supporting random access to the text with the help of darray data structure.
For ’ws’ column data structures were created on whole bit streams. Unlikely, the
column ’wss’ present the results when the darray is constructed on the part of the
bit stream which corresponds the stream of words. (For wss form we store encoded
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Table 5.9: Darray data structures for sdc method

File ws w spless
dickens 388 440 B (10.7 %) 190 969 B (6.3 %) 243 720 B (6.9 %)

world192.txt 77 068 B (8.7 %) 37 950 B (5.2 %) 56 639 B (6.4 %)

samba 199 555 B (8.1 %) 99 035 B (5.8 %) 173 624 B (6.5 %)

xml 190 037 B (10.8 %) 90 242 B (6.9 %) 170 832 B (9.0 %)

Table 5.10: Darray data structures for fibc method

File ws w spless
dickens 396 875 B (12.3 %) 205 687 B (7.9 %) 258 000 B (8.4 %)

world192.txt 88 000 B (10.9 %) 50 227 B (7.9 %) 68 882 B (8.9 %)

samba 217 832 B (10.0 %) 113 233 B (7.7 %) 193 722 B (8.4 %)

xml 197 160 B (12.1 %) 105 453 B (9.1 %) 179 340 B (10.6 %)

words and separators as two different streams)

Table 5.11: Compression results for sdc with darray data structure

File ws wss
dickens 3 986 798 (39.1%) 3 789 327 (37.1%)

world192.txt 956 556 (38.6%) 917 438 (37.0%)

samba 2 644 398 (39.1%) 2 543 878 (37.6%)

xml 1 94 663 (36.6%) 1 844 868 (34.7%)

Table 5.12: Compression results for fibc with darray data structure

File ws wss
dickens 3 610 669 (35.4%) 3 419 481 (33.5%)

world192.txt 871 329 (35.2%) 833 556 (33.7%)

samba 2 395 041 (35.4%) 2 290 442 (33.8%)

xml 1 821 662 (34.3%) 1 729 955 (32.6%)

The Table 5.13 presents the sizes and compression ratios for compressed files
with attached darray data structures when words are only stored.
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Table 5.13: Sizes of sdc compressed files with darray data structure for different
values of u

File u = 1 u = 2 u = 3 u = 4
dickens 3 182 208 (31.2%) 2 838 080 (27.8%) 2 764 194 (27.1%) 2 796 027 (27.4%)

world192.txt 764 802 (30.9%) 675 043 (27.2%) 660 629 (26.7%) 663 794 (26.8%)

samba 1 784 808 (26.4%) 1 574 520 (23.2%) 1 530 109 (22.6%) 1 546 303 (22.8%)

xml 1 392 119 (26.2%) 1 256 313 (23.6%) 1 244 330 (23.4%) 1 260 798 (23.7%)

5.4 Discussion

From the expremental results it is seen that proposed compression methods are
not best for compression of texts. They work well especially on natural English
texts. For non-English texts like files samba and xml they are much worse than
popular methods like gzip, bzip and WinRar. However, I mentioned that main
goal of these methods is to achieve comparable compression ratios with preserving
accessibility of the texts. From this point of view I can say that goal is met for the
case of regular English texts. We see that the methods give comparable with other
methods results and even attaching auxiliary data structures does not significantly
increase the sizes of compressed files. One of advantages of the methods is their
simplicity. fibc method gives compression ratios a little smaller than sdc one, but
the difference is not so big. Another advantage of proposed methods which I did
not consider in the thesis is that these methods support fast and flexible string
matching on compressed files. The last is described in the paper [FN07].



Chapter 6

Conclusions

Random access to compressed text is a study of compression algorithms which allow
to access the encoded sequence without decompression. We have looked on this topic
from two points of view.

First, I considered algorithms for the text compression which potentially can be
adapted for compression with ability of retrieving symbols from texts. However this
adaptation is not considered, because not so many such results on this topic exist.

Then we turned attention to the succinct data structures and described main
current results with the emphasis on the representation of the sequences. I noted
that the task of efficient representation of the sequences in fact is the task of text
compression with preserving accessibility.

New method was proposed for the random accessed text compression. I de-
scribed coding procedure, gave theoretical analysis of the method and discussed
some generalizations. Also, I showed that Fibonacci coding method is well-suited
technique for retrieving symbols from encoded texts.

I demonstrated competitive ability of offered methods with the experiments
which were done on several files and they showed that these methods give good
results for the texts on natural languages.
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representations of sequences and full-text indexes. ACM Transactions
on Algorithms (TALG), 2006. To appear.

[FN07] K. Fredriksson and F. Nikitin. Simple compression code supporting
random access and fast string matching. Proceedings of WEA’07,
Lecture Notes in Computer Science, 2007. To appear.

65



66 BIBLIOGRAPHY

[Gal78] R. G. Gallager. Variations on a theme by huffman. IEEE Trans. on
Information Theory, 24(6):668–674, 1978.

[GGV03] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. SODA ’03: Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 841–850, 2003.

[GGV04] R. Grossi, A. Gupta, and J. Vitter. When indexing equals compres-
sion: Experiments with compressing suffix arrays and applications.
SODA’04: Proc. 15th Annual ACM-SIAM Syposium on Discrete Al-
gorithms, pages 636–645, 2004.

[GMR06] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations
on large alphabets: a tool for text indexing. SODA ’06: Proceed-
ings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 368–373, 2006.
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