
Tangible User Interfaces and Programming

Ilja Jetsu

February 1, 2008

University of Joensuu

Department of Computer Science and Statistics

Master’s Thesis

Abstract

Tangible user interfaces is a relatively new research field in which computational pro-

cesses are controlled through physical objects. The process of acquiring information

about physical world is relatively difficult and toolkits have been created to allow the

developers to concentrate on the creation of the user interface and computational logic

by leaving the object recognition to the toolkit.

There has been research on tangible programming interfaces since 1976 when Radia

Perlman created the Slot Machine. This thesis describes the design and implemen-

tation of a tangible programming tool prototype called TangibleProgrammer. Tangi-

bleProgrammer is a tangible user interface for programming Java based programs for a

LEGO R© RCX unit based simple robot. TangibleProgrammer is designed to be an easy

to use programming environment for children. The user interface consists of physical

code blocks that can be placed on a table top surface to form a structure to a pro-

gram. The created program can be transferred to a LEGO R© RCX unit based robot for

execution. An early evaluation of TangibleProgrammer was done with a group of 6

years old children. The evaluation shows that the TangibleProgrammer was able to fill

expectations required for this prototype.

ACM-classes (ACM Computing Classification System, 1998 version):

D.2.2, H.5.1, H.5.2, I.4.9

Keywords:

Tangible User Interfaces, Programming Tools, Human Computer Interaction

i

Acknowledgments

I firmly believe that it is necessary to name some persons and projects that have helped

me in accomplishing this task.

The project Technologies for Children with Individual Needs in which I was working

while beginning this thesis. Through the project I got in touch with the group that used

the TangibleProgrammer during the evaluation.

Antony Harfield and Bruce Windram were a real help as I don’t speak English as my

native language. They proof red this thesis and I also got some suggestions considering

the development of thesis from them.

Professor Erkki Sutinen for giving free hands to select research topics that I was inter-

ested in and giving guidance during this process.

My wife Tuija, naturally. Thank you for helping me through this long process of

writing this thesis.

ii

Contents

1 Introduction 1

1.1 Problem Definition . 2

1.2 Methods . 3

2 Tangible User Interface 5

2.1 Why Tangible? . 7

2.2 Programming with Tangible Interfaces 10

3 Interaction Technologies 18

3.1 Input . 19

3.1.1 Electromagnetic Sensing . 20

3.1.2 Computer Vision . 23

3.1.3 Electrical Contacts . 25

3.1.4 Wireless Communication . 27

3.1.5 Toolkits for Tangible Interfaces 27

3.2 Output . 32

3.2.1 Displays . 32

3.2.2 Active Objects . 34

3.2.3 Object Movement . 35

3.3 Summary of Technologies . 36

4 The Development Process of the TangibleProgrammer Prototype 39

4.1 Toolkit Selection . 40

4.2 Software Creation . 41

4.3 Hardware Preparation . 43

4.4 Completed TangibleProgrammer Prototype 46

5 Evaluation 50

5.1 Set up of Evaluation . 51

5.2 Observation . 52

6 Conclusion and future directions 55

References 59

iii

1 Introduction

Tangible user interfaces is a relatively new research area. The background of the term

”Tangible User Interface” (TUI) can be traced to the works of Hiroshi Ishii and Brygg

Ullmer at the Massachusetts Institute of Technology in 1997, when they proposed an

idea of a new type of Human-Computer interaction [IU97]. The main idea behind tan-

gible user interfaces is to augment the physical world by combining the digital informa-

tion with everyday physical objects. Users can interact with the interface by touching,

grasping, moving and modifying real, physical objects. This allows the users to con-

trol the computational processes through familiar, easily graspable objects instead of

mouse and keyboard. This thesis is based on the idea that Tangible User Interfaces

(TUIs) could be used to ease the learning curve of programming environments that are

targeted at children by bringing the user interface to the real, physical world; reducing

the use of textual representations and simplifying the user interface.

One of the major fields of research at the Department of Computer Science and Statis-

tics at University of Joensuu is educational technology [UoJS07]. This research is

done in co-operation with schools and other educational institutions [Tek07]. A project

called Technologies for Children with Individual Needs was started at the University of

Joensuu, Department of Computer Science and Statistics in fall 2005. The goal of this

project was to develop methods, models and tools for overcoming learning challenges

in special education [Tec07]. One topic of interest for the project was educational

robotics. The term educational robotics means using robots as a tool for teaching sub-

jects other than robotics [SE04]. According to research done at the University of Joen-

suu, educational robotics can enhance collaboration, cognitive skills, self-confidence,

perception, and spatial understanding when working with children [KLPBSV07].

Research that was done during the Technologies for Children with Individual Needs

project brought up shortcomings in the programming environments that are meant for

young people. These shortcomings seemed to be related to common problems that

children with individual needs may have, like difficulties either in reading or in log-

ical reasoning. There are graphical programming environments that are marketed as

designed for children, for example LEGO R© Robotics Invention System [LEG07b],

LEGO R© RoboLab [LEG07a], easyC [Int07] and IPPE - Instructive Portable Program-

ming Environment [JZKS07]. Even though these programming environments are rel-

atively simple to use, there are concerns for using these with children. Most of these

1

programming environments are only available in English. That unnecessarily limits

the user group, because not all children are able to read and understand English well

enough and there were children taking part in the project who had problems with read-

ing even with their native language, Finnish. Part of the students taking part in research

were in kindergarten and they could not read, which limited the use of textual messages

even more.

Tangible user interfaces can be used to help children in the learning process as ”TUI is a

natural interface which requires little cognitive effort to learn” [Xu05]. This allows the

children to concentrate more on the task instead of using the computer or programming

environment. Tangible programming interface could therefore be approached more

easily than traditional mouse driven graphical programming environment.

1.1 Problem Definition

The main goal of this thesis is to research the possibilities of tangible user interfaces

for creating a tangible programming environment that is called TangibleProgrammer.

The main subject is divided into four questions whose answers will together form the

results of this thesis.

• Q1: Definition: What does the term Tangible User Interface mean?

Knowledge of relevant terminology and research background is necessary

for understanding the whole concept of tangible user interfaces.

• Q2: Design: What possibilities are there to create a tangible user interface for

programming?

There are different technical design aspects that must be considered when

creating a tangible user interface. What are the options, and what possibilities

and limitations do different selections produce?

• Q3: Implementation: How difficult is it to implement a tangible programming

interface? What problems can be expected while developing one?

2

Implementation is as an important part of development process as the de-

sign phase. The problems in design can be identified during the process of

implementation.

Requirements that the TangibleProgrammer must meet to be a tangible user

interface for programming:

1. The user interface must be able to recognize and keep track of the physical

objects.

2. By using the interface, the user must be able to create programs that will be

compatible with a LEGO R© RCX unit based robot.

3. The system must be able to move the created software to a LEGO R© RCX

unit based robot for execution.

• Q4: Evaluation: How well did the tangible programming interface manage to fill

out the expectations and how should it be modified for continued usage?

1.2 Methods

The research process of this thesis is divided into the following steps:

1. Research problem definition.

2. Literature survey (Q1, Q2)

3. Creating the prototype (Q3)

4. Evaluating the prototype (Q4)

5. Conclusion and future directions

The research questions defined in Section 1.1 give this thesis the basic structure and

define the needs for methodology. Research questions Q1 and Q2 require investigation

of literature in order to gather necessary background theory and information about

previous research. The first part of this thesis concentrates on compiling information

about tangible user interface research and finding out what kind of research has been

done before. Chapter 2 is related to question Q1 and Chapter 3 relates to question Q2.

3

For question Q3 the answer is easiest to be gained through the implementation of a Tan-

gibleProgrammer prototype and evaluating it. Answers to this question are collected

from the notes that are written during the creation process. This begins in Chapter 3

and continues on Chapter 4.

The created TangibleProgrammer prototype must be evaluated to acquire answers to

question Q4. Evaluation is organized so that the results can be gathered through a

method called observation. As Cochen et al. [CMM02], who have authored a book

called Research Methods in Education, explain, observation is a versatile research

method, which allows the researcher to collect information from multiple settings in-

cluding: the physical setting (physical environment and its organization); the human

setting (organization of people, characteristics of groups and individuals being ob-

served); the interaction based setting (interactions that are taking place) and the pro-

gram setting (resources and their organization).

As there are no pre hypotheses about what is going to happen during the evaluation ses-

sion the observation must be done as an unstructured observation [CMM02]. The un-

structured observation method is basically unplanned, informal, watching and record-

ing of behaviors as they occur in a natural environment. Because the author is an active

participant in the evaluation session, the observation cannot be performed by the au-

thor in real time. The observation is therefore recorded with a video camera, which

will record the whole situation while not affecting it substantially. Resulting tapes will

then be analyzed using methods that are developed for unstructured observation. The

main things to observe in this evaluation situation are the relationships between the

users and the machine. Evaluation is discussed in Chapter 5.

The last Chapter of this thesis is Conclusions and future directions. In this Chapter the

research results are gathered together and the final verdict of feasibility of TangiblePro-

grammer prototype as a programming tool is given. The Chapter will also introduce

some options of developing the TangibleProgrammer further.

4

2 Tangible User Interface

This Chapter focuses on literature review about tangible user interfaces. The purpose

of this Chapter is to answer the first research question: What does the term Tangible

User Interface mean?

Radia Perlman is considered to be the first to create a tool that fits the description of

a tangible user interface [MCK06]. She created a system called Slot Machine [Per76]

while working at the Massachusetts Institute of Technology in the 1970s. The Slot Ma-

chine allowed users to create programs for the LOGO language without prior knowl-

edge about computers. Although Perlman never used the term tangible user interface to

describe her research, Slot Machine is also considered to be the first published project

that has used tangible user interface principles in the programming context. There is a

more detailed explanation of Radia Perlman and the Slot Machine in Section 2.2.

The term tangible user interface (TUI) has rooted itself relatively well to the research

community. Other similar terms have surfaced, but none of them has gathered as

widespread consensus as TUI. As O’Malley and Fraser [OF04] state, the history of

the term tangible user interface is often mentioned to start from the works of Hiroshi

Ishii and Brygg Ullmer in theMITMedia Lab. They published a paper: ”Tangible Bits:

Towards Seamless Interfaces between People, Bits and Atoms” in 1997. Another term

that is also used is ”Graspable User Interface” by George Fitzmaurice [Fit96] from the

University of Toronto. The term tangible explains the main difference between tangi-

ble interface and graphical user interface. The Merriam-Webster Dictionary [Mer07]

explains the etymology of the word tangible back to the Latin word “tangere” which

means “to touch”.

In a tangible user interface the interface is developed to give physical form to digital

information [Ull02]. The user can grasp the tangible objects and take control of the

system. In traditional interfaces the user gives the computer information through the

input device and waits for the computer to process the task and display the results on

the output device. The user must then try to understand the output in the context of the

given input. In a tangible user interface the input device is usually designed to work

also as the output device. As it has been mentioned in [CSR03b, FIB95], the input in

a tangible user interfaces is constructed from real physical objects that act as physical

handles to the running software and allow direct control over the desired computational

5

processes. The user can physically select and modify desired controls and by that input

the data through for example moving, replacing and rotating the objects.

Tangible User interfaces and Augmented Reality(AR) are both subclasses ofMixed Re-

ality research. Mixed Reality defines the merge of digital and physical worlds, where

the physical reality is extended and augmented with information that originates in vir-

tual reality. Augmented reality could also have been a good description for tangi-

ble user interface technologies, but nowadays AR means basically head mounted 3D

glasses that augment reality by embedding virtual objects to real environment [SV00].

Tangible User Interfaces on the other hand are expanding the reality in opposite direc-

tion, towards the computer. The physical reality becomes part of the computers user

interface.

The term Object in the tangible context is a difficult subject. The term object can be

used to describe the physical things as well as the objects that exist inside the soft-

ware. This can create even more problems in the area of tangible user interfaces as the

same object can have both the physical and software based meaning at the same time.

Because of this difficulty Ullmer [Ull02] has criticized the usage of the term object in

this context. As most physical objects have no connection with tangible interfaces it is

an ambiguous term. The term ”physical/digital objects” has been used to clarify this

ambiguity, highlighting the dual physical/digital aspect of TUI elements. Another term

”Physical icon” or ”phicon” is used to describe the tangible user interface objects. The

term was introduced by Ishii et al. [IU97] who noticed that the controlling device of a

tangible user interface could be referenced with the “icon” concept borrowed from the

graphical user interfaces. The use of this term has been discussed and later it has been

noticed [UI01, Ull02] that this term also has shortcomings: “strictly speaking, many

so-called “icons” (and “phicons”) are not “iconic,” but rather “symbolic” in form.”

Figure 1 shows an example of a tangible user interface. Reactable is a tangible user

interface that can be used to create music. The system recognizes special objects that

are placed on the tabletop surface. The object that is placed on the center of the in-

terface acts as a microphone, or an audio output device. Other objects on the table

are designed to represent creation or modification of sounds. The user can move the

objects around and rotate them to change the playing sounds. The further away from

the microphone object the sound objects are, the quieter the sound they create. Object

recognition method used by Reactable is visual recognition. The computer generates

graphics that are projected onto the same surface as the objects; the visual output is

6

calibrated so that the graphical output of the objects matches the physical ones. The

user sees the visualization of the sound waves traveling objects and can reorganize the

objects to change the order in which the sound is processed.

Figure 1: Reactable is a tangible musical instrument [Rea07]

2.1 Why Tangible?

Machinery that people used before digital technology tended to be relatively easily

graspable. The user interface of a machine usually had a direct one-to-one mapping

between the switches or levers and the functions that the machine could do. Then

electronics developed and embedded microprocessors were invented which resulted in

changes to the design of user interfaces of everyday objects [McN00]. Control panels

became simpler, there were less buttons to press, but more functions. A good example

of this development is a multi-function digital watch which has many functions, but

only three buttons. This multiple uses for single controller - approach often raises

the learning curve of a user interface as the user must remember the correct usage

patterns; but just giving each available action a dedicated button does not always help.

For example remote controls of home entertainment systems usually have a button

7

assigned for each available function, but the user interface is not necessarily any easier

to learn due to the vast amount of different functions [McN00].

The user interface must therefore be simple, but allow necessary tools for required

functions. A word that is often used in the context of tangible user interfaces to classify

different tools is specialized [FB97]. One control in a tangible user interface cannot

usually be used for more than one function. This specialization helps the user in the

process of grasping the interface. For example a computer mouse cannot be classified

as a specialized tool [KBNR03]. The mouse is a multipurpose tool and can be used

for many different tasks. It has different meanings in the different parts of the user

interface and the user must learn to use the mouse in a different manner in different

programs [Fit96]. Physical objects that people are used to handling rarely have more

than one meaning or function, but they are designed to be the best possible tools for

the task in hand. Accountants, animators, sound engineers and graphic designers, even

though their use of computers differs a lot, all use a similar set up of input devices,

consisting of a mouse and a keyboard [FB97]. This keyboard and mouse combination

seems inefficient for specialized jobs like graphical design or animation.

Another criterion by which the input devices can be classified into different groups is

their input model. There are two main groups of input models. Input devices are space-

multiplexed, time-multiplexed or both space- and time-multiplexed [FIB95]. With

space-multiplexed input each function that needs to be controlled is attached to its

private transducer which occupies physical space of the working environment. Time-

multiplexed controllers are used so that different functions are controlled at different

time points. For example (for devices used for expressing text) time-multiplexed con-

troller could be a button that is used for encoding alpha numeric characters in Morse

code and the space-multiplexed input option could be a QWERTY keyboard which has

one key per character [FB97].

Audio mixing software is a good example of the differences between a specialized con-

troller and a mouse [Fit96]. The time multiplexed control scheme of a mouse requires

that in order to control multiple volume setting sliders the user must perform multiple

tasks. For each slider that the user wants to control, the user must first attach the mouse

to a slider by pressing the mouse button down. The selection of the value is done by

moving the mouse and simultaneously observing the values on the image of the slider.

When the correct value is set the mouse must be detached by freeing the mouse but-

ton. The specialized controller allows the user to control multiple faders at the same

8

time, just by moving them manually with fingers. A mouse gives the user only one

active pointer but humans tend to have 10 individually controllable fingers which can

be used when working with the specialized tool. An example of such audio mixing

program, Digidesign Pro Tools [Dig07], is presented in Figure 2a. Power users can use

shortcuts or fader groups to shorten the time required to make these adjustments, but

compared to the specialized tool, this non-specialized tool is a lot more difficult and

time consuming to use [Fit96].

(a) ProTools Audio Mixing Software (b) ProControl Control Surface

Figure 2: Programs (a) may benefit from the dedicated controller (b). [Dig07]

Due to the advantages of specialized tools, people working in audio production en-

vironments and studios have bought different kinds of controllers that allow them to

handle multiple aspects of the recording process simultaneously. Figure 2b presents

one option for such a device. These specialized devices are not necessarily suitable

for different computing tasks. For example drawing pictures by using an audio mixing

controller would be difficult. This is one side-effect of specialization, and therefore

specialized devices are rarely usable outside their original context [Fit96].

The space multiplexed nature of tangible user interfaces gives it an advantage over the

normal graphical interfaces when working in groups. Graphical user interfaces are not

really well suited for collaborative work when all the participants are located in the

same physical space. A mouse is a tool that can be only held by one person at the

time. The process of doing collaborative designing is not as easy as plugging more

mouse-type pointing devices into the computer, as most graphical user interfaces are

not designed to work with multiple active pointing devices. There has been develop-

ment for the use of multiple mice in one environment [PPGT07], but these technolo-

9

gies are still in the development stage. Technologies that allow people to collaborate

through a network do exist, but that requires that all collaborating users are using their

own computers. That, on the other hand limits the possibilities for communication be-

tween participants in collaboration. Collaboration that is achieved through computers

and networking is also limited compared to methods of collaboration which can be

applied to tasks that are not computer related. In collaboration, the space multiplexed

nature of tangible user interfaces works well. In a tangible user interface all the users

collaborating in the task can get their hands on the objects and use them to modify

things [McN00].

Users of tangible user interfaces can take advantage of the learned motor behaviors

[Fit96]. When people use tangible tools they do not need to focus on the task of

moving the objects around as much as they must with GUI. People know their mo-

tor responses, and have learned to manipulate real life objects in their everyday life

using only muscle memory. Users can often recognize the thing they are holding by

identifying the weight, texture and shape, all without the need of visual help.

2.2 Programming with Tangible Interfaces

When the first computers arrived in classrooms and teachers allowed students to use

them, the term “computer literacy” often meant learning to use the computer by making

programs for it. At that time LOGO was one of the most widely used programming

languages for beginners. LOGO allowed students to use the computer to control the

robotic “turtle” to follow their instructions [Pap80].

Nowadays almost all students are taught the basic skills of computer usage in elemen-

tary school; when moving to work after school computer literacy tends to even be a

requirement. That literacy however often just means that one has the basic skills that

include the use of applications such as text processor and spreadsheet. Programming

computers is not anymore considered to be part of that literacy and is left to highly

trained professionals [WC00].

This does not mean that programming, broadly speaking, would be solely a profes-

sional task [McN00]. Musicians use similar practices in their work while they program

their synthesizers to accompany them in performances. In a similar way accountants

use spreadsheets and create new functions by using the programming language that is

10

available to them inside the application. Also consumer technology nowadays requires

rudimentary programming skills from the general public. Video recorders, microwave

ovens, bread makers and other household devices are at least partially programmable.

LOGO’s spirit of allowing young people to experiment with computers has not faded

during all these years since 1967 when Seymour Papert created the LOGO language

[Log00]. There are schools and other institutions which are still using and teaching

LOGO or other similar, simple programming languages for beginners. The Department

of Computer Science and Statistics at the University of Joensuu has also developed

a programming language for beginners called IPPE [JKS02]. Programming tools are

more easily available and while the robotic turtles used with the LOGOwere expensive

and fragile [McN00], nowadays children can experiment with programming by using

robotic tools like LEGO R© Mindstorms [LEG07b] or VEX [Inn07, Int07] that they

have constructed themselves.

The programs that children create are usually relatively simple and easy to make. This

motivates the children and teaches them structured thinking [WC00]. Programming

environments however are usually not usable enough for children to use alone. The

programming language and the user interface of the program can be simplified by using

a tangible user interface and therefore be made accessible to the hands and minds of

younger children [McN00].

There have been programming related projects that use the idea of tangibility. These

tools try to bring the abstract concepts of programming closer to the real world, to be

more easily graspable [McN04]. The tools introduced in the following Chapter have

been selected to widely represent possibilities and technologies for the creation of a

programming environment in a tangible way.

Perlman’s Slot Machine

One of the first programming environments that can be considered tangible was Ra-

dia Perlman’s Slot Machine [Per76] which was an interface for programming in the

LOGO-language and controlling a turtle. (The turtle was either a real mechanical

robot or a screen based simulation of such a robot). The Slot Machine employed plas-

tic cards that could be inserted into one of three colored slots (red, yellow, and blue).

These cards (namely different “action,” “number,” “variable,” and “conditional” cards)

placed into slots presented the structure of the program. It was also possible to stack

11

Figure 3: An example program for Slot Machine

action and number cards together to form different commands. Stacking number 2 with

Turn Right created program code that made the turtle turn right twice. On the left side

of each slot was a “Do it” button. When that button was pressed, the turtle performed

the actions pictured on each card in the rack, in a sequence from left to right.

Maybe the most unique thing about the Slot Machine was the possibility of coding

subprograms. There were 3 different slots, which were color coded. The system also

had color coded jump-cards, which directed execution to the beginning of a slot which

was the same color as the used card. Using the blue jump card on the end of blue slot

would jump the execution back to the beginning of the blue slot, hence creating never

ending loop. This in conjunction with variable-cards made things like using the turtle

to draw a spiral or rectangle much easier.

An example setup of using the turtle to draw a rectangle with a Slot Machine is pictured

in Figure 3. The red slot has the basic parts needed for the one side of a square. The

turtle is instructed to move forward a determined length, which is the desired length

of the side of the square. The second command on the red slot turns the turtle 90

degrees to the right. The blue slot also has two cards. First card causes the execution

to jump to the subprogram and execute it. As the variable card four attached to the

jump card commands, the contents of the red slot will be executed four times. When

the execution returns from the fourth execution cycle of the red slot, the last card in

blue slot commends the execution to terminate.

Slot machine is an abandoned project as nothing has been done with it since 70’s. The

system was hand built, expensive, bulky and fragile. Perlman mentioned, that it would

be nice to have a smaller cheaper version of the Slot machine, but because of technical

limitations of the era, it was never constructed.

12

AlgoBlock

The AlgoBlock system is a programming environment that is somewhat similar to the

Slot Machine. The AlgoBlock system consists of a set of physical blocks made of

aluminum that connect to one another to form a program. Each block corresponds

to a single command in the LOGO programming language. It is possible to adjust

variables in blocks by turning or touching embedded knobs and levers. The term “tan-

gible programming language” was actually invented by Suzuki and Kato in order to

describe the AlgoBlock collaborative programming environment [SK93]. The system

also facilitates collaboration based aspects by providing simultaneous access and mu-

tual monitoring of each block [FIB95].

Figure 4: AlgoBlocks [SK93] Figure 5: Programming by using tan-

gible cubes [Smi06]

GameBlocks

The Gameblocks system consists of blocks that are placed on trays to form a control

sequence [Smi06, Smi07]. The recognition of an inserted block is done by magnets

that are installed at the bottom of each cube. The rack has reed switches that react to

the magnets in the blocks. The current implementation allows 31 different identities

for each cube. Each identity can be used more than once. The created program is trans-

mitted through infra red signals to a humanoid robot that will execute the commands.

The system is still a prototype and some problems have been noticed. The cubes are

too big or too slippery for small children to handle and the icons on the blocks are not

easily identifiable. The structure of the blocks also requires some work, as the corners

of the objects are sharp and the magnets that identify the objects do not always stay in

the correct position.

13

MouseHaus Table

MouseHaus Table [HDG03] is not a programming environment in the same sense as

the previously introduced environments. It allows participants, who have no previous

experience with computers, to interact and program a pedestrian simulation program.

That is basically programming, but not in the same sense as on the other programming

environments as the language used in the MouseHaus Table is much more limited.

Interaction with the simulation program is done by creating a map of a certain area

through physically cutting out different shapes from sheets of paper and placing them

on the table as Figure 6 shows. The shapes then become buildings, parks and other

types of surroundings that can be simulated depending on the selected color of the

paper. For example green shapes could be parks and grey shapes could be buildings.

Preliminary tests showed much more interaction from children when they were using

the paper-scissors interface compared to the normal mouse driven interface [HDG03].

Figure 6: MouseHaus Table [HDG03] Figure 7: The basic set of C-cards

[Val03]

C-Cards

C-Cards are computational cards for learning programming concepts [Val03]. C-Cards

are tangible in the sense that the system is based on physical cards which are used to

represent the software logic. The cards can be used as a tool for teaching programming

logic. The internet based computer software exists, although there is no direct connec-

tion between the computer software and the structure built with the cards. The user

must transfer the created structure to the computer by hand. Figure 7 shows the basic

set of cards available in the environment.

Tangible Programming Bricks

14

Tangible Programming Bricks [McN00] are computational objects that are based on

the programmable structure type of system. The input of the system is the locations

of the objects within the structure. This location information is gathered through the

connectors on the top and bottom of the blocks. The output is organized through in-

tegrated displays or other output devices that can be connected to the system like any

other block. The system does not require an external computer. Figure 8 shows an ex-

ample set of Tangible Programming Bricks that could be used to program a microwave

oven.

There are also problems with the bricks. They are uniform in shape, which is prob-

lematic as it lowers the chance of differentiating the blocks without visible cues. The

structure of the blocks is organized in a fashion such that it limits the building, the

blocks can be stacked only in one dimension. This disallows, for example, the possi-

bility of creating an if-else program structure as the code path cannot be split. They

are also expensive to manufacture. The cost of a single object, including microproces-

sor and connector system is far too expensive for the creation of programming kits for

consumer and educational use [McN00].

Figure 8: Tangible Programming

Bricks [McN00]

Figure 9: I-Artefacts [Lun07b].

I-Artefacts

I-Artefacts (known also as I-Blocks) are a prototype of a computational objects

based programmable structure. Active parts in I-Artefacts are built inside LEGO R©

DUPLO R© blocks. Each block can connect to other blocks as Figure 9 shows. Inside

all the blocks there are electronic components, so the building of such objects is expen-

sive. The shape of the blocks gives the user guidelines about the direction of building

15

and the method of connecting blocks together [Nie02]. The structure that the bricks

now have is not firm as the connectors are based on the original LEGO R© DUPLO R©

connectors which do not lock together. Some guidance is needed in the building phase

as the objects are only identified by a number tag, and the number must be checked

from paper to gain knowledge about the identity of a block.

Figure 10: Topobo blocks creature

Topobo

Topobo [Raf04] is a three dimensional constructive assembly system embedded with

kinetic memory. This allows recording and playback of physical motion of that con-

structed assembly. Topobo system consists of active and passive blocks which can be

combined together to quickly assemble larger structures, which can then be animated

by moving parts that are connected to active blocks. After the animation has been cre-

ated it can be played back by pressing a button. As the conducted tests show, students

are quickly able to develop various types of walking robots [Raf04]. This suggests that

the interface can assist the students in understanding balance, leverage and gravity.

Summary

Table 1 lists all the programming tools mentioned in this Section. The tools differ on

the aspect of how they implement the programming activity.

Programming interfaces are created for making programming easier. There have been

many different designs which have attempted to create working tangible programming

interfaces. The Slot Machine was the first tool that could actually be called a tangible

programming environment but the creators never did call it such. AlgoBlock creators

did refer to their system with the term tangible programming language. GameBlocks

16

Table 1: Summary of Tangible Tools for Programming

System Type Year

Slot Machine Programming interface 1976

AlgoBlock Programming interface 1993

GameBlocks Programming interface 2006

MouseHaus Table Programming interface 2003

C-Cards Computational card game 2003

Tangible Programming Bricks Computational objects 2000

I-Artefacts Computational objects 2002

Topobo Programmable structure 2004

can be used to program small robot and the MouseHaus Table can be used to pro-

gram pedestrian simulation software, thus they are also programming interfaces. The

C-Cards system is not a programming environment in the same sense as other environ-

ments as it is not able to compile or execute the created program. The program can be

recreated on a computer for execution.

Tangible Programming Bricks and I-Artefacts are both Computational objects. The

object in use is the user interface, it forms the program and also executes that created

program. This is a compact system which can be used also in places where there are no

computers available. The drawback of this sort of systems is the cost per object, which

limits the commercial development of such environments. Topobo is in a way similar

to computational objects; all the necessary processing logic is implemented inside the

objects. However it has limited computational possibilities as the programming is

limited to the movements of the integrated motors.

17

3 Interaction Technologies

In order to create a working tangible user interface, different possibilities for techno-

logical implementation must be researched. This Chapter aims to answer the second

research question: What possibilities are there of creating a tangible user interface for

programming? In Section 2.2 there were some examples of different kinds of tangi-

ble user interfaces that could be used for programming. As the examples show, there

are many physical technologies that can be used for implementing a tangible user in-

terface. The technical characteristics of the needed implementation technology are

largely dependent on the actions that the developed interface must be able to do.

Tangible user interfaces are defined by their input methods, namely physical, tangible

objects. In addition to input, also output is naturally an important part of computing ex-

perience. Therefore it is important to select the correct technology for input and output.

The mind map on Figure 11 sums up the contents of this Chapter. The technologies

mentioned in the mind map are discussed in detail in the following sections.

Figure 11: Mind map about technologies for Tangible User Interfaces

18

3.1 Input

Input, in the context of tangible user interfaces, relates mostly to the acquiring of in-

formation about the physical environment. The reliability of the input is the most

important aspect that affects the usability of the tangible user interface [BKJ05]. The

reliability can be divided into the subcategories precision, speed and latency. Precision

means that the identity of an object must be recognized correctly. The misinterpreta-

tion of an object as some other object may disturb both the user and the developer. The

need for precision depends a lot of the type of the system. It is also usually important

that the location of each object is recognized with the necessary precision.

If it takes a long time for the interface to recognize a new object the user may begin to

question the functionality of the system. Therefore latency and speed of recognition are

both aspects that affect the usability of the system. Latency is the time that the system

needs to react to changes in the objects. If the user moves an object and the system

doesn’t respond to it in a reasonable amount of time, the system cannot be said to be

user friendly [BKJ05]. The latency is a measurement whose limits depend a lot of the

desired interactivity of the interface. For situations where the output is not modified

in real time the latency is not problem, but, for example, programs used in musical

composition or graphical work need almost instant responses from tangible objects in

the system, or the usability suffers. The number of simultaneously active objects has a

large effect on the latency in certain technical implementations, like recognition based

on radio frequency identification (RFID) [HP99]. This technology will be covered in

more detail in the next Section.

A decision that affects the technological choices regarding input is whether the objects

of the tangible user interface should be active or passive. Selecting passive blocks

limits the gathered information to the location of the object and possibly the direction

the object is facing. Active blocks on the other hand allow the designer to add advanced

actions to the objects. Objects can have buttons, dials or other moving parts that can

be interpreted which gives the user the ability to modify aspects of the software. If the

technical implementation supports bidirectional communication, the object may even

have output devices like lamps, displays, motors and speakers inside [Nie02].

Input, in tangible user interfaces, can be achieved through various technologies. The

following sections represent a collection of the most widely used technologies in tan-

gible user interface input. Section 3.1.5 introduces a group of toolkits that can be used

19

to help the development of a tangible user interface by leaving the object recognition

to the toolkit.

3.1.1 Electromagnetic Sensing

Electromagnetic sensing is a group of technologies that use different forms of elec-

tromagnetic recognition to sense the place of the object. These technologies have

been used for various tasks. There are companies like Wacom [Wac07] and Ascen-

sion [Asc07] that have created products that use electromagnetic sensing for object

location. Most touch screen variations also use sensing based on electromagnetic ef-

fects. The problem with these readily available technologies is that they are not very

well suited to tangible user interface creation. The commercial systems are usually

limited by the number of input devices at use it the same time [PIHP01]. Because of

the need of specialized electronics and complex designs these systems are usually also

expensive [HP99].

Electromagnetic sensing as a technology for object recognition is generally consid-

ered to be better than visual recognition in terms of reliability, precision and speed

[HP99]. All of these are important aspects to consider while creating a tangible in-

terface. With electromagnetic sensing the user does not have to deal with changing

lighting conditions, which can cause problems with image recognition based systems.

Electromagnetic technology also allows for the creation of active blocks or blocks that

can be modified (dials, switches etc.).

Electromagnetic sensing can be divided in two different groups; the location of the

sensors being the deciding factor. In the first group the surface recognizes the object

placed on it. In the second group the objects calculate their own location on the surface.

If the object provides the sensing function, it may need external power and a way to

output the gathered data. This usually requires wires to be attached to each of the

sensing objects [HP99]. These wires limit the usage of the sensors; because the wires

limit the movement of the objects; if there is more than one object in use, the wires may

clutter the programming environment. Most electromagnetic systems that use three

dimensional tracking suffer from this aspect, for example the Flock of Birds system

from Ascension [Asc07].

20

Radio frequency identification(RFID) -based recognition of objects is another imple-

mentation of electromagnetic sensing that could be used to create a tangible user inter-

face. A RFID tag is an object that can be identified by using radio waves. RFID tags

usually contain a small silicon chips and an antenna. RFID tags are read with a RFID

reader, which can sense presence and identity of an object. RFID tags are small, which

allows “tagging” arbitrary sized objects by attaching a RFID tag to it. RFID based

systems are relatively easy to develop, because the readers are commercially available

and the cost of a single chip is often just a few cents. RFID systems are also devel-

oped to have a large address space, for example a 128 bit wide address space would

mean approximately 3,4*1038 different objects. Unfortunately most of available RFID

readers are only able to identify the presence of objects, not their locations. Another

difficulty that RFID based systems suffer from is the latency in recognition. The RFID

chips have long response times which means that the detection of each chip can take

anything between 1/100 seconds and 1/10 seconds [HP99]. This delay gets even worse

when the reader must identify multiple objects in the same physical space. There are

devices which are not even capable of working if multiple RFID chips are present.

Other devices try to use different collision protection schemes, which delays already

slow recognition by a large degree [HP99].

Simple magnetically coupled resonancers as presented in Figure 12 are probably the

most efficient solution for implementing tangible user interfaces with electromagnetic

sensing. The basic technology is similar to the theft prevention systems in shops. The

objects resonate in the magnetic field and that resonance can be measured. These

objects are relatively small, relatively cheap and do not need external electricity. This

basically means that the resonator can be placed on any object unless the object is made

of a material that is magnetic, blocks magnetism or is electrically conductive, as the

reader might encounter interference from these materials [HP99]. All tags used must

be tuned to resonating at different frequencies. This allows the system to determine the

presence and location of all objects independently. If the whole system is well built,

this technology can be used to get stable position data which is accurate to within 4mm

[PRI02].

If the object is coupled with two different resonators, the software can use the locations

of the two resonators to calculate, in addition to the location of the object, also the

orientation [PRI02]. Figure 13 shows a cross-section of such an object. The second

resonator (B) is coupled with a button so that the resonator can also be used to transmit

21

Figure 12: Simple resonance object [Fle02]

data about the state of the button by switching the second resonator on and off. The

other resonator in the object (A) is always active, so the system does not lose the

location of the object even when the button is pressed.

Figure 13: Resonator based active object

Systems created with simple resonators can have at least 30 uniquely identifiable ob-

jects [HP99]. Using RFID tags the system could easily have a countless number of

different objects, but as mentioned before the speed of RFID technology is not enough

for tangible user interfaces with small latency requirements. The resonance based sys-

tem developed by a team at the MIT Media Lab [HP99] was able to establish refresh

rates of over 30 reads per second, while recognizing all the objects on the surface on

every refresh.

The problem with the resonator based systems is that such interfaces are not commer-

cially available. Without knowledge about electronics, proper blueprints and facilities

suitable for construction, the process of constructing an interface based on simple res-

onators is difficult if not impossible.

22

3.1.2 Computer Vision

Computer vision is an area which has been widely researched. The first uses of com-

puter vision date all the way back to the work of L. Roberts in 1965 [Ull02]. The first

use of computer vision in the context of tangible user interfaces was the Digital Desk in

1993 [Wel93]. New technologies for shape and object recognition are being developed

actively all around the world.

A lot of the visual recognition research focuses on Mixed Reality research. Mixed

reality requires the locations of objects to be recognized in three dimensions, which

adds additional difficulty in the recognition process. In a tangible user interface envi-

ronment the visual recognition is usually done in only two dimensions and because of

the reduced complexity, the object recognition algorithms have been getting faster and

more reliable [BKJ05].

The most common technology for giving objects a visually identifiable identity is to

embed a sort of visual machine readable graphical marker into them. The term that is

often used when talking about these visual cues is fiducial markers or just fiducials. An

example of one sort of fiducial from the ReacTIVision toolkit [KBBC05] can be found

on Figure 14. ReacTIVision based Reactable is shown on figure 1 on page 7. EAN bar

codes found on products in shops can also be classified as fiducial markers. Fiducials

are designed to be identified purely by observing their internal topological structure.

If the fiducial is designed to be usable as a tangible interface marker, it usually has

graphical structures that allow the computer to recognize, in addition to the location

information, also the orientation of that fiducial.

Figure 14: Example of ReacTIVision markers [BK05]

When an object is tagged with a fiducial, the location of that fiducial must be selected

such that the camera capturing the image for the visual recognition will be able to see

23

it. If the fiducial is added to a side that is visible to the user, it may distract the user by

making it more difficult to differentiate the objects from one another. One way to limit

the visual disturbance and give more freedom to the design of the tangible object is to

place the visual cues at the bottom of the object. This requires placing the object on a

transparent surface, so that the camera used in object tracking can see from the below.

This also prevents the user from blocking the visual recognition by moving their hands

between the camera and the visual cues.

Another approach in visual recognition is to use the object itself as an identifier. Soft-

ware can observe the color and shape of an object and classify and identify it by those

details [DGR04]. That approach works well and is algorithmically pretty fast, but this

technology has limits concerning the number of different objects that can be reliably

recognized. Because of the limits in the visual scope of the recognition camera the

system cannot have very large objects. The differences in color must also be distinct

enough for the system to recognize the changes even in different lighting conditions.

Size and color both limit the number of different objects the system can reliably rec-

ognize.

Benefits of computer vision exceed those of electromagnetic technologies in terms of

the cost of created objects. Fiducials, for example, can basically be printed with a

normal printer and multiple fiducials can be fitted to one sheet of paper, so the real

cost of a single fiducial is nearly zero. If a fiducial gets broken, dirty or otherwise

unreadable it is an easy and cheap process to create a new fiducial just by reprinting it

[CSR03a]. Creation of a new copy of any electronic tag would be much harder, since,

for example the id of an RFID tag cannot, in most cases, be changed; the change of

an object probably demands a change in the software, or at least in the configuration.

Another positive aspect of computer vision systems is that they do not need any special

hardware for doing the recognition work. A basic, standard, off the shelf web camera

is enough for the system to work [CSR03a].

The size of the objects, the resolution of the camera, and the size of the surface all have

an effect on each other. Large objects are easier for the visual recognition software to

recognize, even with a camera that has poor resolution. A large object size limits the

number of object that can fit on an area visible to the camera. If the size of the objects

is smaller, then either the camera must be closer to objects, which limits the active area,

or the camera must have better resolution which requires more computing power.

24

3.1.3 Electrical Contacts

The electrical contacts - type of input works by connecting interface objects to each

other. These connections form a structure, which is the interface for that system. Elec-

trical contacts give the processing logic the necessary data about the presence, locations

and attributes of connected objects. The processing logic may be implemented inside

the objects or it may be located on a computer or another device connected to one of

the objects. Some object designs use connectors that have combined data and power

channel, which keeps the connectors relatively simple as the number of necessary con-

current connections is small. This gives the connectors more robustness compared to

the designs in which the power and data are delivered by different connectors.

Designing the contacts and boundaries for objects is said to be the most difficult part

of the design process of an object set that uses electric contacts [GOI98]. The objects

must be designed so that they only connect at the correct places and at correct orien-

tation in relation to other blocks. Figure 15 shows contacts of an ActiveCube -block

[KIMK00]. ActiveCube blocks can be connected to each other by any of their sides.

The orientation of an object does not matter as the objects only stick together at right-

angle. Another example of a connection method is triangles [GOI98], as shown in

Figure 16. Triangles are triangular objects that can be connected by any of the three

faces. The connection is fixed and held together by strong magnets. Tangible Pro-

gramming Bricks and iArtefacts shown in Chapter 2.2 (Figure 8 and 9 on page 15)

both stick together by standard LEGO R© -connectors. Tangible programming bricks

have dedicated connectors for data transfers between the structural connectors, so the

data and electricity are kept on different areas of connectors which limits the possibility

of misconnections.

The Tobobo system from MIT gives the builder the opportunity to decide which blocks

are connected and in which order. The electric contacts are not connected at the time

of building the actual structure. Builders must attach a cable between every block they

want to connect as Figure 17 shows. This solution is two-fold. On the one hand, it

allows the builder to create more diverse structures as the connectors are not limiting

the size and the form of blocks. On the other hand, the need for external connecting

wires makes the end product less attractive to children and unnecessarily complicates

the process of programming the structure [Raf04].

25

Figure 15: ActiveCube contacts

[KIMK00].

Figure 16: Triangles can connect by

any of their sides [GOI98].

Figure 17: Topobo creature with wires connected

26

Most of the active blocks that work by using electrical connections need a considerable

amount of electronics inside them, which in turn raises the production costs of these

objects [McN00]. In the prototyping phase the cost of the electronics may rise even

higher, since all objects must be hand built. The price of the constructed blocks may be

the main reason why there are not yet commercial products that would use electronic

contacts in the context of building things.

3.1.4 Wireless Communication

Even though electromagnetic sensing and computer vision both are wireless techniques

they are not included as part of the wireless communication class. This group relates to

direct wireless communication from one TUI object to another. Wireless technologies

are not really widely used in TUI development as the technology basically requires the

objects to be active, and thus to have loads of electronics inside. This raises the cost of

a single object and makes them unfeasible to fabricate.

A group of researchers from American University of Sharjah created a wireless system

that uses IEEE 802.15.14 standard compliant wireless radio communication to send

data between the objects and the controller [ZAAM+07]. The system is not able to

tell the locations of objects and thus is not ideal for most of the tangible user inter-

face designs. On the other hand Audiocubes [Sch04] are designed to use infrared to

communicate between the user interface objects. Audiocube objects recognize the dis-

tance and orientation of objects in use. The system is in the prototype phase so the

processing is done in an external box, which is connected to the objects with wires.

The Massachusetts Institute of Technology also created a project in which infrared

communication was used to recognize and locate objects on a table [BBMM02].

Altogether the use of wireless communication is not yet a feasible technology selection

for tangible user interface creation. If the cost of wireless network communication

equipment comes down enough it may change the situation.

3.1.5 Toolkits for Tangible Interfaces

As previous sections have shown, there are different methods such as electromagnetic

sensing, computer vision, electrical contacts and wireless communication for getting

27

data from the physical user interface to the computer. The problem with using these

technologies is that they usually require the tangible user interface developers to “get

down and dirty” with the technology [KLLL04]. That requires knowledge about spe-

cific areas of electronic engineering (for electromagnetic sensing), pattern recognition

(for computer vision) etc. making these UI’s difficult and time consuming to program.

It is also important to remember that the developed input method must be robust and

the latency cannot be too high [CSR03a, BKJ05].

Using ready toolkits for the object recognition in tangible user interface development

enables people who are not experts in, for example, hardware development or visual

image recognition technologies to develop tangible user interfaces, as the GUI-toolkits

have helped programmers who are not graphics hardware experts to write working

GUIs. Similar reductions in development time can be achieved in tangible user in-

terfaces as in graphical user interfaces by using toolkits [KLLL04]. Toolkits help in

reducing the amount of code that programmers need to produce in order to create a

working user interface and enables more rapid prototyping and more iterations in the

design process.

In the previous studies about tangible user interface toolkits there have been discus-

sion about proper evaluation criteria for selection of tangible user interface toolkits

[KLLL04, BKJ05]. The following list shows the main evaluation points that should be

considered while selecting a toolkit:

• How readable are the programs, developed by using the toolkit, for other pro-

grammers?

• How comprehensible are the input mechanisms that the toolkit allows for the end

users?

• How easy is it to learn to use the toolkit?

• How scalable is the developed system in the terms of the number of uniquely

identifiable objects?

• How robust is the toolkit in terms of recognizing and tracking the location, ori-

entation and identity of objects?

Table 2 lists the toolkits that were tested for this thesis. The toolkits will be introduced

in detail in following paragraphs.

28

Table 2: Properties of Tangible User Interface toolkits

Name World Type of input Language OS

Papier-Mâché 2D Obj. Classifier Java Any

ARToolKit 3D Fiducial Rec. C Linux, Mac, Windows

D-Touch 2D Fiducial Rec. C Any

ReacTIVision 2D Fiducial Rec. C Any

Wireless - Wireless - Windows

iStuff - N/A Java Any

Papier-Mâché [KLLL04] is an open-source- licensed, Java based toolkit, which can

be used for visually recognizing objects by classifying them by their visual proper-

ties, or by using RFID tags for object recognition. The possibility of using RFID tags

in addition to visual classification gives programmers the flexibility to easily change

the input method. The programmer then has the option to first quickly prototype the

system with visual object recognition and then build a more robust system with RFID

technologies. The Java programming language makes the generated applications rel-

atively easy to comprehend even without previous knowledge about the toolkit. The

toolkit documentation has good examples of different types of tools it provides for

object recognition, which makes it relatively easy to learn. Visual recognition based

classification limits the use of this toolkit as a basis for a tangible user interface as the

number of reliably recognizable different objects is relatively low. The information

gathered from the recognized objects also contains only the identity and location of

them.

ARToolkit [KBP+00] has been developed, as its name suggests, as a toolkit for Aug-

mented Reality. It tracks fiducials in 3D-space, and gives users locations of those

fiducials. The toolkit is developed for overlaying computer generated information to

places where the fiducials have been calculated to be. That use is not general enough

for use with a wide variety of different tangible user interfaces [KLLL04]. The toolkit

is relatively easy to use with projects and the generated software structure is easily un-

derstandable for people that have programmed before. The system can keep track of

multiple objects at the same time. The toolkit can recognize the identity, location and

orientation of visible objects.

29

D-Touch [CSR03b] toolkit is also a toolkit for visual fiducial recognition. The differ-

ence to ARToolkit is that the recognition is done in only two dimensions. This gives

more speed and reliability to the recognition and the toolkit can recognize smaller ob-

jects. From the developers point of view the connection between the D-Touch toolkit

and new programs are relatively easy to implement. The toolkit can recognize the

identity, location and orientation of visible objects.

ReacTIVision [KBBC05] is a third toolkit that tracks fiducials. Figure 18 shows the

toolkit in action. The toolkit is an external program that aids the work of the pro-

grammer by communicating with the developed software through TUIO protocol. The

TUIO protocol is a result of work in developing a common open protocol for Tangible

User Interfaces, that would be versatile enough for all necessary communication tasks

[KBBC05] and which would simplify the communication between the physical inter-

face and generated software. The website of the toolkit [Rea07] has, at the time of the

writing of this thesis, sample code snippets for TUIO implementation for the following

languages: C++, Java, C#, Processing, Pure Data, Max/MSP, Flash and SuperCollider.

On the Microsoft Windows platform the software can use almost any video input de-

vice that has proper Windows Driver Model compatible drivers. The ReacTIvision

framework is open source software and thus free for use and further development. The

toolkit can recognize the identity, location and orientation of visible objects.

Figure 18: reacTIVision recognizes fiducials from video stream

Table 3 presents a recognition speed comparison of ReacTIVision toolkit and D-Touch

toolkit. The table does not include ARToolkit, as it recognizes the objects in three

30

dimensional space. As the results show the recognition algorithms have advanced. The

results are from tracking 12 fiducials at the same time [BKJ05].

Table 3: Speed comparison of algorithms for recognition of fiducials [BKJ05]

Toolkit Library CPU Usage Frame Rate Year

D-Touch old D-Touch old 100% 10 fps 2003

D-Touch libdtouch 82% 30 fps 2005

ReacTIVision libfidtrack 18% 30 fps 2005

The wireless Toolkit [ZAAM+07] is a toolkit that is designed to use the IEEE

802.15.14 standard based wireless networks for tangible interaction. The object net-

work is star shaped, which means that there is one master node that controls the com-

munication and a number of child nodes. The child nodes are fitted with optical sen-

sors, so they recognize their orientation. The wireless toolkit does not give information

about the spatial locations of objects. The toolkit is flexible in terms of the hardware

used and does not require any physical connections between the sensors. The objects

must be hand built as there is no commercially available equipment for child nodes.

The controlling master node is a standard communication device and can be seen in

Figure 19 with a couple of objects that can be used for executing searches on the Inter-

net.

Figure 19: Wireless toolkit used for searching Barbie dolls [ZAAM+07]

The iStuff [BRSB03] framework is dissimilar to the other frameworks that were in-

troduced. The iStuff framework is meant to act as a hub for connecting multiple dig-

italized everyday objects as an interface for a computer. Communication between the

31

objects and software goes through proxy software which translates all actions received

from the objects into a common format that the software can understand. Any phys-

ical interface can be part of the iStuff hub as the developers of the iStuff framework

explain: "All that is necessary for a physical device to become an iStuff component is

a proxy that encapsulates data into an event" [BRSB03]. This allows programs devel-

oped within the iStuff framework to be independent of the limitations of any particular

technology.

3.2 Output

Input in tangible user interfaces is handled through the physical objects, and in most

cases the objects are also part of the output. However the objects themselves, if not

active, have a hard time representing data or giving feedback to user. A tangible user

interface requires therefore a method for output. The following sections will demon-

strate the most widely used technologies for implementing the output in a tangible user

interface.

3.2.1 Displays

The computer generated graphical output is still a part of the tangible experience.

Graphical feedback in a tangible interfaces is often ambient [UI97] and georeferenced

[KLLL04], which means that physical input and graphical output happen within the

same space. Figure 20 shows an example of georeferenced graphics. This georefer-

enced output reinforces the perceptual link between the physical and virtual objects.

Grasping an object becomes analogous to grasping the corresponding piece of digital

information [CSR03b].

Display techniques can be divided by their physical aspects into four different cate-

gories: external displays, active displays, projection and embedded displays.

The use of completely external displays is not well suited for tangible user interfaces.

Since the display is not directly related to the user interface, the graphical output is not

georeferenced and therefore the mapping between graphics and the physical handles

must be done by the user in his/her mind [RUO01].

32

Figure 20: Graphical output may be georeferenced [GH07]

Large LCD/Plasma screens that are mounted into the table can be called active screens.

Users place the tangible user interface objects directly onto the display surface. This

allows georeferencing, so the graphics can be coupled with the real objects. The surface

of the display limits the choices that can be made when selecting the method for sensing

the locations of the objects. For example the DataTiles system shown in Figure 21 uses

a flat panel display enhanced with sensors to allow the interface to recognize tiles

and their locations on the display [RUO01]. Visual recognition can also work with

this LCD/Plasma screens, if it is possible to place the fiducials on top of the physical

objects.

Figure 21: Data Tiles are placed on a large display [RUO01]

33

Projection based systems are versatile and allow large image sizes, but require more

structural construction than using displays that consist of one physical part. The pro-

jector always needs a surface on which to project the image. That surface must be

firm enough to be stable even while the user interface objects are placed on it. Pro-

jection systems can be built in two different ways. The projector can be mounted

above the system and then project the image down to the screen, or the projector can

be mounted below the system and, with the use of mirrors, the image is projected to

a rear-projection screen which works as the user interface surface. Top projection is

the only available solution in situations where the bottom of the screen does not allow

light to pass through it or the object recognition system is installed below the surface

and would interfere with the picture. Bottom-projection on the other hand allows the

image to be seen all the time. The user cannot block the projected image and there are

no shadows from the objects or the user [Ull02].

An embedded display means that the display is embedded inside the objects of the

interface. This method can be used if the interface is based on active objects. Active

objects also have other options for output, this is discussed in detail on Section 3.2.2.

3.2.2 Active Objects

If the user interface is constructed with active objects, it is possible to use those objects

for information output. The objects can have integrated displays, which can be used to

give information about the status of the system and the results of the actions the user

has done [Ull02].

The output device in this context does not necessarily have to be only a display. Mo-

tor based actuators like meters, wheels and other moving parts can be considered as

output. The system can also have embedded lights or speakers for output. For exam-

ple McNerney’s Tangible Programming Bricks [McN00] use embedded displays and

control other devices, as Figure 22 shows, to output information and thus do not need

external display elements.

Active Blocks [Nie02] have a set of different output options including motor controller

bricks that can be used to drive LEGO R© Technic-series motors, servo bricks that can

be used as actuators, led bricks that can be used to show status information, LCD bricks

34

Figure 22: Tangible Programming Bricks do not need displays [McN00]

that can show values on a 2x8 character LCD display and sound bricks that can be used

to either play a pre programmed tune or a tone at a given frequency.

3.2.3 Object Movement

Physical manipulation of objects for input has a major drawback in the terms that usu-

ally the output is only graphical[PMAI02]. One common form of modifying the input

in computer software is the possibility to undo the previous action. On tangible user

interface without any means for a computer to control the physical world, problems

arise. The locations of the physical objects do not represent the same state as the com-

puters internal representation after undo. There are however possibilities to establish a

connection back from the computer realm to the physical world.

The object itself can move if it’s an active object and has some energy to spare. This

basically means that each of the objects is a small robot like in Planar Manipulation

Display [RZSP04]. Figure 23 shows the Planar Manipulation Display in use. The

communication between the controlling software and the objects is done by sending

infrared commands to the robots.

Another possibility for establishing object movements is to give the surface a method

to be able to move the object by applying some force, for example a magnetic field

[PMAI02]. The surface of the Actuated Workbench on Figure 24 is designed to have

35

the ability to move an object on the surface to other location. The control of the object

is acquired by creating a variable magnetic field over the surface. This method requires

more from the surface, but allows the design of the objects to be simple.

Figure 23: Planar Manipulation Dis-

play uses tiny robots to actuate the user

interface [RZSP04]

Figure 24: Actuated Workbench can

move physical objects on surface

[PMAI02]

3.3 Summary of Technologies

Table 4 presents a comparison of traditional technologies which have been used as

input mechanisms for tangible user interfaces. The values low-moderate-high used in

the table are only meaningful in comparison to the other technologies in each row.

Some of the categories do not apply to the electronic contacts class and have thus

been marked as non applicable. Wireless communication is left out of the list, as

using wireless technologies is still difficult and there are no toolkits that would help

the designer in the implementation of wireless communication. The aspects through

which the items in the table are compared are those which have a large effect on the

creation and operation of a tangible user interface.

Tangible user interfaces need in addition to the input, some method to output data. One

option for output is the traditional way: display graphics or text on a display. Table 5

lists different types of displays with the estimated cost of implementing a tangible

user interface using that technology in one column and a estimate of the lightlihood of

displaying georeferenced graphics in another.

In addition to using displays as output devices if the user interface is designed around

active objects, the objects themselves can be used for output. Depending on the design

36

Table 4: Comparison of Input Technologies

Input method

Visual recognition Electromagnetic Electronic Wire-

Classify Fiducial RFID Resonator contact less

Latency moderate high low low high

Precision moderate low high N/A low

System cost low moderate moderate high high

Object cost low moderate high high

Commercial yes yes no no no

Toolkit avail. yes yes no no no

Object count low moderate high moderate N/A low

Table 5: Display types

Display type Georeferenced Cost

External No Low

Active Yes High

Projection Yes High

Embedded N/A High

37

of the objects, they can include motors, beepers, displays and other actuators and output

devices. Object movement is one of the most interesting output methods as it allows

actions like "undo" on the tangible user interface. Unfortunately the technology that

would allow creation of such devices is expensive and requires a lot of construction to

implement.

38

4 The Development Process of the TangibleProgram-

mer Prototype

In this Chapter the creation process of a tangible user interface prototype called Tan-

gibleProgrammer is described. The results and comments in this Chapter form the an-

swer to research question Q3: How difficult it is to implement a tangible programming

interface? What problems can be expected while developing a tangible programming

interface?

I got the first idea about using tangible user interfaces as a programming tool from pre-

sentation at ICALT2004. The presentation described the use of ARToolkit in a project

that was used to teach molecular physics [FHW+04]. Tangible musical composition

devices [PRI02, KOC04] have also given ideas and a framework to this project.

The requirements for the TangibleProgrammer were set on the Section 1.1: Problem

Definition as follows:

• The user interface must be able to recognize and keep track of the physical ob-

jects.

• By using the interface, the user must be able to create programs that will be

compatible with a LEGO R© RCX unit based robot.

• The system must be able to move the created software to a LEGO R© RCX unit

based robot for execution.

Tangible user interface design is mostly defined by the input technology. As Chapter

3 on Interaction Technologies explained, the recognition of physical objects is easiest

done through the use of a toolkit. In Section 4.1 I will explain the history behind the

toolkit selection for TangibleProgrammer. The next step in the development process is

to begin the development of the actual software for TangibleProgrammer, Section 4.2

concentrates on that process.

In addition to the software, the tangible user interface also requires a physical setup.

TangibleProgrammer cannot be truly tangible without the physical structures and ob-

jects that define the user interface. Details of the development of the physical part

of TangibleProgrammer are explained on Chapter 4.3. In Chapter 4.4 the completed

39

TangibleProgrammer prototype is introduced and it’s physical details and functionality

explained.

4.1 Toolkit Selection

Acquiring information from a physical context is the most important aspect of a tangi-

ble user interface. If the user interface is not physical, it is not a tangible user interface.

In Section 3.1.5 the process of recognition of physical objects was found to be a diffi-

cult task that would be best left to a toolkit. Therefore the first task of a developer is

to select the toolkit that will form the basis of the project. The requirement of using a

toolkit limits the options of possible interface technologies, since there are no toolkits

available for interface technologies based on electrical contacts or electrical sensing

based on resonancers.

For the TangibleProgrammer all the toolkits that were introduced in Section 3.1.5 were

considered as possible tools for the user interface creation. iStuff-toolkit and the Wire-

less toolkit were however left out of further evaluations, as the development of a work-

ing user interface in both toolkits requires hardware that is not commercially available.

The first toolkit that was tested for suitability of user interface creation was Papier-

Mâché [Kle03]. The process of specifying different objects in the Papier-Mâché envi-

ronment was relatively easy. However the limitations of the visual recognition system

(that recognizes objects by their color and proportions) was too limiting for Tangi-

bleProgrammer. Programming environments can require tens of objects in use at the

same time, so that each object is individually distinguishable from the others, as each

object usually converts to no more than one line of programming code. This means that

object recognition system should be able to scale to a large number (at least n>100) of

uniquely identifiable objects in order to keep all the code objects unique. Identification

by classification limits the number of unique objects and therefore the Papier-Mâché is

not the correct toolkit for the creation of the TangibleProgrammer.

The second toolkit that was tested was ARToolkit. It allows a much wider range of

objects as it uses fiducial-type graphics in the recognition process so the object count

is not as limited as the classification based approach. ARToolkit is designed to work

in 3D space and thus the recognition is a bit slower than in D-Touch and reacTIVision

40

which work in 2D space. Therefore either D-touch or reacTIVision toolkit would be a

better option for the TangibleProgrammer.

Both toolkits, D-touch and reacTIVision, are fiducial recognition based, but the reac-

TIVision is remarkably faster than D-touch, as Table 3 on page 31 shows. Therefore

the reacTIvision toolkit was selected as the basis of the TangibleProgrammer. The re-

acTIvision toolkit is a standalone program that does the image recognition through the

use of fiducials, so the number of identifiable objects is high enough for the Tangi-

bleProgrammer project (n>100). The toolkit communicates with the rest of the pro-

gram by using network sockets. This network communication allows installation of

the visual recognition part of the user interface to one computer and the rest of the

software can be installed onto another in case the TangibleProgrammer is running too

slowly.

4.2 Software Creation

One of the requirements for the TangibleProgrammer that were indicated in the re-

search questions was that it must be able to communicate with the LEGO R© RCX unit

based robot and create software that runs in the robot. Software that LEGO R© offers for

programming RCX based robots (LEGO R© Robotics Invention System [LEG07b] and

LEGO R© RoboLab [LEG07a]) are both proprietary tools and thus hard to modify. This

excludes them from consideration as the base of TangibleProgrammer. There are also

open source options for program development and communication with the LEGO R©

RCX unit. Those tools are Not Quite C(NQC) and leJOS. Not Quite C is a limited

subset of the language C that can be compiled to a format that is binary compatible

with LEGO R© RCX firmware [NQC07]. leJOS on the other hand is a tiny open source

Java Virtual Machine that is designed to run inside a LEGO R© RCX unit [leJ07]. It re-

places the original firmware of the brick and allows users to run simple Java programs

in them. Both languages could be used as the basis of communication with Tangi-

bleProgrammer. LeJOS is however a better choice for this project as the Java language

that leJOS uses is easier to implement than NQC.

As I am most familiar with the programming language JAVA and as Section 3.1.5:

Toolkits for Tangible Interfaces mentioned, it is possible to use reacTIVision toolkit

through the pre-made TUIO compatible JAVA classes, the selection of the program-

41

ming language was easy. To establish a connection between the TangibleProgrammer-

software and the reacTIVision toolkit TangibleProgrammer uses TuioClient class by

implementing the TuioListener type through the following methods (JAVA):

pub l i c void addTuioObj (i n t i d)

pub l i c void removeTuioObj (i n t i d)

pub l i c void upda t eTu ioObj (

i n t id , i n t c , f l o a t x , f l o a t y , f l o a t a ,

f l o a t X, f l o a t Y, f l o a t A, f l o a t m, f l o a t r)

Through these methods the program gets information of all the objects entering (add-

TuioObject) and leaving (removeTuioObject) the surface as well as information about

the changes in the object location (updateTuioObj), including the speed of change in

location and angle.

Figure 25 shows the basic internal structure of the TangibleProgrammer. An image

stream coming from the web camera is interpreted by the ReacTIVision framework.

TUIO protocol transfers the interpreted data to the software logic. The toolkit gives

software logic information about the identity and locations of all the objects visible

to the camera. This identity is the identification number of the recognized fiducial.

Software logic includes a mapping table between the fiducial id number and the user

interface object.

Figure 25: Software structure of TangibleProgrammer

There are 2 main types of objects in the TangibleProgrammer user interface, code and

modifier objects. Code objects are used to create new Java code. Modifier objects

cannot be used only alone, but are used in addition to any of the code objects that

have some parameters which can be modified. A full list of implemented objects is

presented on Section 4.4.

42

As the user interface objects have parameters that are not visible in the physical objects,

the user must be able to see the values somehow. The system must therefore be able

to output some simple graphics that are georeferenced to the physical objects and can

be used to augment them. Drawing simple shapes with Java is relatively easy, but the

system must allow rescaling and repositioning of the graphics so that after calibration

the graphics will be in sync with the physical objects throughout the whole surface.

This use of graphics requires some form of display device, but that will be discussed

in the Section 4.3.

Programs created with TangibleProgrammer are saved to a file, run through the Java

compiler which compiles the created program to a Java byte code file, which the

LEGO R© RCX unit can then execute.

4.3 Hardware Preparation

The hardware in TangibleProgrammer was selected so that it would cope with require-

ments set out by the software. The selected toolkit uses image recognition as the input

method. For a basic image recognition using the reacTIVision toolkit any relatively

modern computer is fast enough as Table 3 on page 31 shows. Recognition also re-

quires a device which is used to acquire an image of the objects that must be identified,

which can be done with basically any web camera.

The following ideas come from the developers of ReacTable [Rea07], the camera to be

used with reacTIVision was selected so that it could be modified to capture images in

infrared frequencies. The process of modifying a typical web cam for infrared illumi-

nation is relatively easy [Ins07, Lun07a]. The technology of the web cam allows it to

receive infrared-images, but the manufacturers usually install infrared filters to avoid

interference affecting the visible light. That filter must be removed in order to allow

the camera to capture infrared image.

The display system was selected to use projection. The projecting image allows visual

object recognition and large displays while keeping all the equipment under the surface

of the user interface. This removes the possibility that the user of the interface would

create shadows in front of the image recognition or the image projection. An infrared

filter was installed on a video projector that was chosen to be used in this project.

Infrared filter limits the visibility of the projected image to a camera, so that the image

43

of the projector is clearly visible to users of the interface, but the web camera used with

reacTIVision software is not disturbed by the projected image.

The fiducials on the user interface objects must be lighted evenly for the visual recog-

nition to work well. For the first tests with the reacTIVision toolkit the infrared light

emitter was built from 24 infrared LEDs. Unfortunately the beams of light emitting

from the LEDs were too narrow. The maximum intensity of the light was more than

enough to light the surface, but the narrow beam of the LED meant that there was

brighter and darker spots on the image, which distracted the image recognition sys-

tem. The second option for the infrared light was an incandescent lamp, which outputs

infrared in addition to visible light. The final lighting was selected to be done with

a standard 40W incandescent light bulb, which seemed to work well with the recog-

nition system in the development environment. The selected lamp gave out enough

infrared light for image recognition to work. The only drawback with this approach

was that the lamp also gave out light in the visible spectrum, which washed out part of

the brightness from the projected computer graphics.

The next part of the hardware preparation was the readying of the table surface. As the

image display technology was previously selected to be image projection, the system

needed a surface onto which the projector could project the image. Another necessity

with the surface was that the camera should be able to see the backsides of objects

placed on it. So the surface needed to be semi-transparent. An easy and cheap solution

for that was to use a surface made of glass and cover the surface with a diffuser. This

allowed objects close to the surface to be clearly visible from below, but also allowed

the system to project the image onto the same surface. Because the video projector that

was used in this prototype was meant for classroom use, its optics were not well suited

for distances below two meters. This was fixed by using a mirror so the projector could

be placed further away and the image was then projected via the mirror. Figure 27 on

page 47 explains the structure of the system.

As the design of the tangible programming interface would not be very tangible if the

users would have to use the computer to send the program to the robot, the sending

process was started with a large button that was attached to the display surface. The

button connects to the computer through a keyboard adapter, so it works like a giant

Enter-button on a keyboard.

44

When the user has added the necessary code objects to the program and adjusted the

variables as needed the program is ready to be transferred to the LEGO R© robot. When

the user wants to compile and send the program to their robot, the system first goes

through all the objects in the program and collects corresponding Java code for each

object. This code is then sent to the Java compiler which compiles it to Java byte code.

The compiled byte code is then sent to the robot through the LEGO R© infrared tower

via leJOS.

The design of objects and selection of appropriate physical representations is an im-

portant aspect in tangible interface design[UI01]. Optimal design of an object should

take advantage of humanly graspable concepts like size, balance, texture weight, den-

sity and temperature [DGH03, KOC04]. These might help the user to figure out which

objects he is allowed to place at which point and what is the meaning of each object.

Blocks that seem to fit together easily would be meant to interconnect. In the first plans

the blocks were designed to be made out of wood, but due to time constraints they were

made out of cardboard. The blocks however had a wooden ”core” so they had some

weight and were not so keen on going out of the constraints of the recognizer. Figure

26 shows the structure of an object used in the TangibleProgrammer. Layer A in the

figure is the fiducial that is required for object recognition. Layer B is the wooden core

and layer C is the icon visible to the user. The borders of the area in which the object

can move, are masked, so that the users are not too keen on moving the objects out of

the visible field of the camera [KOC04]. This gives the users of the system haptic and

visual cues about the area in which the object can move.

Figure 26: Physical structure of an object. Left: From top, Right: From front

45

4.4 Completed TangibleProgrammer Prototype

The prototype consists of 2 parts: Computer software, which is driving the system,

and the physical interface. Figure 27 shows the cross Section of the setup and Figure

28 shows the completed machine. The surface on which the objects rest is one of

diffusing glass, which allows the fiducials attached to the bottom of an object (2) to be

visible to a web camera below (7). The same diffusing glass surface works also as a

projection screen for the video projector (5). The projector’s image is projected through

the mirror (6) attached to the structure of the system. The mirror is used because the

data projectors have some minimum distance from which they can project sharp image

and the distance between the projector and the surface would be too short without a

mirror.

Other equipment that is necessary for the TangibleProgrammer to work includes a lamp

(8) that is used for giving the fiducials some light which enables the camera (7) to see

the fiducials even when the projector is showing blank picture. Button (1) is attached

to the surface and is used for starting the compilation and upload process. The upload

process requires a communication method between the LEGO R© RCX unit and the

computer. This communication is done with a LEGO R© infrared tower (4). The tower

uses infrared to transfer the compiled software to the LEGO R© RCX unit (3).

As the TangibleProgrammer is still a prototype, its function set is not computationally

complete. The set of available commands are tuned to work well with simple LEGO R©

RCX unit based robots that have either 2 or 4 wheel drive and in which the turning is

done by controlling the throttle on the wheels on the left or right side independently.

The system cannot yet be used for complicated programs or calculations, but this set

of commands can be expanded in the future.

The command set available in TangibleProgrammer consists of two different classes

of objects. Action blocks are user interface objects that create changes in final Java

code that is transferred to the robot. The action blocks may have parameters that are

changed by using the modification blocks as Figure 29 shows. The modification blocks

are not tied to action blocks, but can be used to change the parameters of any of the

action blocks in use.

In the following list all the developed objects are shown with a simple usage guide:

46

Figure 27: Physical structure of the TangibleProgrammer

Figure 28: Prototype ready to be evaluated

47

Figure 29: Time modification block changes the attribute of connected action block

Moving: Arrow block.

Can be inserted on the surface either pointing up or pointing down. The application

recognizes the direction (up=forward, down=backward) and the program executes as

required.

Adjustable parameters: Time of execution.

Adjusted through: Time modification block.

Turning: 2 Different turning blocks.

One for turning right by rotating the wheels on the left side of the robot forward,

another for turning left by rotating the wheels on the right side of the robot forward.

Turning blocks can be placed on the surface also facing backwards which changes the

turning action to run the wheels backwards.

Adjustable parameters: Time of execution.

Adjusted through: Time modification block.

Delay: Block that can be used to delay execution for a given time.

Adjustable parameters: Time of execution.

Adjusted through: Time modification block.

Sound: Block that can be used to produce different sounds.

At the moment the only adjustable attribute is the length of tone.

Adjustable parameters: Time of execution.

Adjusted through: Time modification block.

Repeat: Pair of objects connected together with a string.

Objects are useless working in isolation. First block is used to mark the beginning

point of the loop, the second to mark the ending point.

Adjustable parameters: Number of repeats.

Adjusted through: Numeral adjustment block.

48

Time modification block: Used together with another, compatible action block to

change the time allocated to the action.

Numeral modification block: Used together with another, compatible action block to

change numeric variable for the block.

Figure 30 shows an example program of the TangibleProgrammer. If the rotation time

is adjusted to perform a 90 degree turn this program commands the robot to drive

around a square. The time required for a 90 degree turn depends on the properties of

the robot in which the program is executed. The background shows the area which

the loop commands will execute. The command are read in order from top to bottom.

Location of the objects in horizontal direction has no effect on the execution order.

Figure 30: Example Program of TangibleProgrammer

49

5 Evaluation

This Chapter describes the evaluation of the TangibleProgrammer. This evaluation

combined with the next Chapter: Conclusion and future directions, forms the answer

to research question Q4: How well did the tangible programming interface manage to

fill out the expectations and how should it be modified for continued usage?

Evaluation of the prototype was performed in a daycare center Pääsky in fall 2006. This

daycare center had been a participant in the ”Technologies for children with individual

needs” project since spring, 2006. Participants from the daycare center were children

who were attending a preschool-class, which had a average age of 6 years. During

the project the children had been taught how to build LEGO R©Mindstorms robots and

how to program very basic programs by using the LEGO R© Robotics Invention System

2.0 [LEG07b] programming language. This allowed the evaluation to concentrate on

the abilities of the user interface of the prototype. If the subjects used in the evaluation

had been new to programming, a large part of the evaluation time would have had to

be used for teaching them about programming and the time evaluating the prototype

would have been shortened.

The task that was assigned to the children during the evaluation was to recreate the

program code they had previously created with Robotics Invention System by using the

Tangible Programmer prototype. Copying already created code instead of creating new

programs was chosen as the task because of the requirements of the research questions.

The question at this point was about the usability aspects of tangible programmer,

not its versatility as a learning tool for programming. Copying the code allowed the

children to concentrate on the usage of the prototype and less on in the process of

developing new code.

The following list defines the planned evaluation process:

• Preparation phase: Modification of the groups robot to an RCX unit that

already had leJOS installed.

The children had built the robots themselves and already had programs in

the embedded RCX units. The loading of the leJOS firmware to the RCX units

would have erased all created programs and that could have created disturbance

50

in the group. The firmware upload process also takes at least five minutes, so by

changing the RCX unit, the children did not have to wait for the upload process

to complete. This could be one development idea for the next generation of

TangibleProgrammer. TangibleProgrammer could check the existence of correct

firmware in the background and if the firmware is missing, the system should

ask the user to select whether the computer may overwrite all data on the RCX

unit or not. The upload process could then be done in the background.

• Introduction phase: A short introduction of the usage of the Tangible Pro-

grammer.

The children had previously programmed their LEGO R© RCX unit based

robots using the LEGO R© Robotics Invention System 2.0, but the process of

creating programs using the prototype differs slightly from the usage of that

environment. Therefore hands-on introduction was performed at the beginning

of each evaluation session. In the introduction, the users were introduced to the

usage of the system, the programming methodology (by placing the objects on

the surface), and the aspects of the time modifier block, which can be used to

change the attributes of the objects.

• Usage phase: Helping children when they need assistance

As the expectation of the system was that it would be easy to use, the

children were supposed to be able to use the prototype with as little explanation

as possible. Because the system was in the prototype stage there was always the

possibility that the system would have bugs and usability problems might come

up, in such cases giving help would be allowed.

5.1 Set up of Evaluation

The equipment was transferred to the daycare center in the morning of the day of the

evaluation. Because of the prototype nature of the equipment some time was required

for putting the equipment together and calibrating it before the evaluation could begin.

During the set up phase an unfortunate problem was noticed in the TangibleProgram-

mer. Images coming from the projector to the active surface were a bit hard to see.

51

That was a hardware based problem, which was caused by the light coming from the

infrared source for the infrared camera (the 40Watt lamp) combined with the ambient

light of a bright day coming through a window. All that excess light was flooding the

image projected on the active surface, making the graphics difficult to be read. The

software was fortunately running on a laptop computer, which had a working display,

which the users could use as a fall back display. If the values on a tangible interface

were too light, they could check the values from the laptop display. This helped the

process and allowed the evaluation to continue. The subjects used the laptop display

to check the details if reading the surface was too difficult. That is not a good example

of a tangible user interface experience, as the display is not in the same space as the

controls, but that problem is relatively easy to fix in future by changing the light source

to one that does not illuminate on the area of spectrum that is visible for humans.

5.2 Observation

Observation was performed on two distinct groups of 2 children. These groups were

similar, two boys in each group, and they all were aged six. Comments from the groups

are presented in this Chapter in the form of (Group.Person) where groups are A&B and

persons in groups are 1&2. The discussion was in finnish and has been translated to

english for this thesis.

In the beginning of the evaluation session the children were worried that their programs

would vanish from the robot during the evaluation. That was addressed in the research

plan, and the prepared RCX unit was changed to the robots that the groups had built.

That however proved to be relatively difficult as the robots were not designed to have

their RCX units easily changed. The robots had to be partly disassembled and that

caused a disturbance on test subjects. The children calmed down when they saw that

their robot was complete again. The change of RCX unit was done in the same room

in which the TangibleProgrammer was set up. The children were interested in the

system and seemed to be eager to begin the evaluation ”Have you done that all by

yourself?(B.1)”.

The first task for the groups was to load the software they had previously created by

using the LEGO R© Robotics Invention System to a computer located near the Tangi-

bleProgrammer. That program was to work as a source for the new program. After that

52

the children got to the programming phase. They were guided with the first blocks.

They seemed surprised when they added the first object to the surface, and the surface

reacted to that action. Even more exciting seemed to be the connection between code

block and modifier block that occurred when they added the time modifier object to the

surface for the first time. Figure 31 shows the connection between the time modifier

object and a ’go forward’ object. ”What?!, How?, What is the idea behind this?!”(A.1)

was the comment when rotating the modifier object changed the value of the other

block. Figure 32 shows group B working with the TangibleProgrammer.

Figure 31: Modifier object connected to another object

Figure 32: Children using the TangibleProgrammer

Both groups were able to distinguish all the icons on the objects and use them in the

correct places. The children did not use all the commands available, as the program

53

they had previously created was a simple program which drove the robot around a

maze. Even though teamwork was not a part of this research, the children exhibited

some teamwork during this short evaluation. While one child was changing the time

on a block another child started to seek for the next block to add to the program.

Evaluation brought out some small problems with TangibleProgrammer prototype. The

boundaries in which the modifier object is recognized as being connected to a com-

mand block were set too strict. It caused problems when the children wanted to change

the values by a large amount. The value is changed by turning the modifier object

and large changes require multiple turns on the modifier. The boundaries required the

children to keep the modifier object within a two centimeters radius from the point

where the connection was made while rotating it to keep the connection. The problem

with the reliability of connection was made even worse by the difficulties in reading

the surface because of the problem in lighting. The children were not always able to

notice when the connection was lost.

When the first group had completed their program, the children were instructed to press

the big send button. The way the children used that button brought out a problem that

was not noticed during the development. If the button was pressed down for some time

it did not send only one request for the compilation and send action, but queued a large

number of commands. Since each compilation and upload took about 20 seconds the

queue took a while to run and the children got irritated during that: ”Again?!(A.2)”.

When the compilation and transfer had ended the children got to test their program.

While running their program the children found out that the execution times for run

forward block and turn block were not the same as in LEGO R© Robotic Invention Sys-

tem. The robot did what it was asked, but turned a little bit less with the program made

with the TangibleProgrammer than with the same amount on LEGO R© Robotic Inven-

tion System. There are many reasons that can cause the difference, but it was probably

because the limited processing power of the RCX unit and the underlying Java virtual

machine, which may be a little bit slower on executing commands than the original

firmware of LEGO R© RCX unit. This was probably the reason why the children in the

first group said that they thought that the LEGO R© Robotics Invention System was bet-

ter than the TangibleProgrammer. The second group liked TangibleProgrammer better:

”Cool machine(B.1)”.

54

6 Conclusion and future directions

In the beginning of this thesis I introduced the research questions for which this thesis

would seek answers for. The questions are reprinted here with summaries of answers.

• Q1: Definition: What does the term Tangible User Interface mean?

The term tangible user interface describes a user interface type, which

connects the computer and the user through physically tangible objects. The

term ”tangible user interface” comes from the research of Hiroshi Ishii and

Brygg Ullmer [IU97]. User interface objects in a tangible user interfaces are

usually specialized. Specialized object have only one meaning and/or function

on the user interface. Specialization and the tangible nature of the user interface

is designed to allow the users to grasp the control of the interface more easily.

• Q2: Design: What possibilities are there to create a tangible user interface for

programming?

There are multiple technical possibilities which allow creation of a physi-

cal interface. The interface technologies can be split into two groups: input and

output. Input of information about the physical world can be acquired through

electromagnetic sensing, computer vision, electronic connections or wireless

communication. This information is however hard to interpret and requires

special knowledge, depending on the selected input method, about the field of

for example pattern recognition, electrical engineering or some similar subject.

There are tangible user interface toolkits which help in the interface creation

process by taking care of the information coming from the physical world. By

selecting an input technology that has toolkits available the developer can save

time in the implementation of the data gathering and use that time for the design

of the user interface and the programming of the real processing logic for the

system.

If the technology allows and the objects are built to be "active objects", the output

can be arranged through the same objects as used for input. Output in tangible

user interfaces is usually graphical. If the selected output technology allows,

the computer generated graphics can be displayed in the same physical location

55

as the user interface objects. This gives more meaning to the physical interface

objects as the graphics can give information about the status and possible actions

for those objects.

• Q3: Implementation: How difficult it is to implement a tangible programming

interface? What problems can one expect while developing one?

Problems that the developer can face depend on the chosen implementa-

tion technology. The implementation phase of this thesis concentrated on

the usage of visual recognition and the reacTIVision toolkit for tangible user

interface creation. The toolkit worked well and the problems faced on the

software side were related to the developed code, not to the toolkit.

The physical part of preparing a tangible user interface is, even with the help of

toolkits, hard. Tangible user interfaces always require some building. Physical

objects for the user interface must be crafted and technology gathered or built

to sense the locations of the objects. In the TangibleProgrammer prototype the

image quality was a problem that affected both, the input and the output of the

system. The web camera selected for the TangibleProgrammer took images at

the resolution of 320 x 240, which required the camera to be very close to the

objects to achieve robust object recognition. That limited the available width and

height for the space inside which the objects were recognized. The image quality

of the projected graphics was also poor because of the excess light coming from

the infrared illumination.

• Q4: Evaluation: How well did the tangible programming interface manage to fill

out the expectations and how should it be modified for continued usage.

Requirements for the implemented prototype from research question Q3:

– The user interface must be able to recognize and keep track of the physical

objects.

– By using the interface, the user must be able to create programs that will be

compatible with a LEGO R© RCX unit based robot.

– System must be able to move the created software to a LEGO R© RCX unit

based robot for execution.

TangibleProgrammer was able to fill the set expectations. ReacTIVision toolkit

handled the connection between the physical objects that were used as the user

56

interface and the TangibleProgrammer. The user interface created LEGO R©RCX

unit compatible Java code that was transferred to a robot with a press of a button.

As the TangibleProgrammer worked relatively well it is easy to think changes which,

when established, would make the TangibleProgrammer usable for even a wider audi-

ence.

Difficulties related to physical aspects of the TangibleProgrammer are all probably easy

to solve. The main problem that was faced during the evaluation was the instability and

limited active area in the recognition of the objects. There were certain places on the

active surface where the objects were not recognized well. The camera that was used

in the TangibleProgrammer was a cheap web camera. It responds to infrared light

with small modifications, but much better results could be achieved through using a bit

more expensive camera, which is using a CMOS-type cell. A CMOS-cell gives sharper

image and is even more responsive to infrared light [Bla01]. Another option could be

a commercial infrared camera that would give even sharper images thus giving more

space for the objects.

The camera was not the only part in the TangibleProgrammer that had problems. The

light source for the infrared camera flooded the image projected from the video projec-

tor, which in turn made the computer generated aspects of the environment difficult to

read. The light source could be changed to a real infrared light source that would evenly

illuminate the surface with infrared light, without any light on the visible spectrum.

Another possibility that could be used to enhance the precision of the object recog-

nition would be the change of the input technology from visual recognition to elec-

tromagnetic. The image based system are still cheaper to develop, since there are no

commercially available devices that would allow precise and fast location tracking by

using electromagnetic objects. Thus the objects and the recognizing equipment would

have to be hand crafted, which would require a lot of work if, in the future there were

a need for more than one TangibleProgrammer.

These changes to the equipment would probably also give a larger active area, as the

size of objects in use is mostly limited by the quality of the picture that the camera

receives. This enhanced space would also give users the possibility to create more

complex programs with more blocks. Another option to allow creation of longer pro-

grams would be giving users the possibility to create ”macros”, or custom blocks.

57

As it is easy to reprogram the code “in“ the objects it could be possible to use one type

of blocks as a placeholders for larger group of objects as De Guzman et al. suggest

[DGH03]. This would also help with the amount of usable objects, as the objects used

in the first batch of code could be reused in the second. This type of use limits the

good aspects of tangible user interfaces. These code blocks are not so easily graspable

anymore. And since the users are mainly beginners, the programs they create are not

really long. For coding long programs with difficult structures this is not the ideal tool.

The amount of different commands coulda be extended. The TangibleProgrammer did

not have any of the basic computational objects such as variables, conditional state-

ments, arithmetical operators or logical operators which would all create useful exten-

sion to the available toolset. These changes would extend the possibile user group to

older and more experienced programmers.

TangibleProgrammer, while being a prototype, showed in the small conducted evalua-

tion possibilities for future development. Hopefully the price of technology continues

to come down so that someday we will see tangible user interfaces outside develop-

ment facilities. Tangible interaction is still the natural way for humans to deal with

physical things.

58

References

[Asc07] Ascension Technology Corporation. Corporate website. nov.

2007. http://www.ascension-tech.com/products/

flockofbirds.php, 2007.

[BBMM02] Aggelos Bletsas, Vimal Bhalodia, Marios Mihalakis, and Ilia Mirkin.

Network beatles: A distributed wireless network platform for tangi-

ble user interfaces. http://web.media.mit.edu/~aggelos/

aggelos_tui2002.pdf, 2002.

[BK05] Ross. Bencina and Martin Kaltenbrunner. The design and evolution of

fiducials for the reactivision system. In Proceedings of the 3rd Interna-

tional Conference on Generative Systems in the Electronic Arts, 2005.

[BKJ05] Ross Bencina, Martin Kaltenbrunner, and Sergi Jordá. Improved topo-

logical fiducial tracking in the reactivision system. In 2nd IEEE Inter-

national Workshop on Projector-Camera Systems, page 99, 2005.

[Bla01] Nicolas Blanc. Ccd vesrsus cmos - has ccd imaging come to an end? In

Photogrammetric Week 01, 2001.

[BRSB03] Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan Borchers.

istuff: A physical user interface toolkit for ubiquitous computing en-

vironments. In Conference on Human Factors in Computing Systems

(CHI 2003), pages 537–544. ACM, 2003.

[CMM02] Louis Cochen, Lawrence Manion, and Keith Morrison. Research Meth-

ods in Education. Routledge Falmer, London, 2002.

[CSR03a] Enrico Costanza, S. B. Shelley, and J Robinson. D-touch: a consumer-

grade tangible interface module and musical applications. In Proceed-

ings of Human-Computer Interaction (HCI03), pages 175 – 178, 2003.

[CSR03b] Enrico Costanza, S. B. Shelley, and J Robinson. Introducing audio

d-touch: A tangible user interface for music composition and perfor-

mance. In Digital Audio Effects (DAFX-03), pages 1–5, 2003.

[DGH03] Edward De Guzman and Gary Hsieh. Function composition in phys-

ical chaining applications. Technical report, Department of Electrical

59

Engineering and Computer Science. University of California, Berkeley,

2003.

[DGR04] Edward S. De Guzman and Ana Ramírez. Objectclassifierviews: Sup-

port for visual programming in papier-mâché. Technical report, De-

partment of Electrical Engineering and Computer Science, University

of California, Berkeley, 2004.

[Dig07] Digidesign. Corporate website. dec. 2007. http://www.

digidesign.com/, 2007.

[FB97] GeorgeW. Fitzmaurice andWilliamBuxton. An empirical evaluation of

graspable user interfaces: towards specialized, space-multiplexed input.

In Human Factors in Computing Systems (CHI 1997), pages 43–50,

1997.

[FHW+04] Morten Fjeld, Daniel Hobi, Lukas Winterthaler, Benedict Voegtli, and

PAtrick Juchli. Teaching electronegativity and dipole movement in tui.

In 4th IEEE International Conference on Advanced Learning Technolo-

gies (ICALT 04), pages 792–794, 2004.

[FIB95] George W. Fitzmaurice, Hiroshi Ishii, and William Buxton. Bricks:

Laying the foundations for graspable user interfaces. In Human Factors

in Computing Systems (CHI 1995), pages 442–449, 1995.

[Fit96] George W. Fitzmaurice. Graspable User Interfaces. PhD thesis, De-

partment of Computer Science, University of Toronto, 1996.

[Fle02] Richard Ribon Fletcher. Low-Cost Electromagnetic Tagging:Design

and Implementation. PhD thesis, Massachusetts Institute of

Technology, 2002. http://www.media.mit.edu/physics/

publications/theses/02.09.fletcher.pdf.

[GH07] Daniel Guse andManuel Hollert. Tangible table - userinterface-research

and -studies. nov. 2007. http://www.tangibletable.de/,

2007.

[GOI98] Matthew G. Gorbet, Maggie Orth, and Hiroshi Ishii. Triangles: Tangi-

ble interface for manipulation and exploration of digital information to-

60

pography. In Human Factors in Computing Systems (CHI 1998), pages

49–56, 1998.

[HDG03] Chen-Je Huang, Ellen Yi-Luen Do, and Mark D Gross. Mousehaus

table, a physical interface for urban design. In 16th Annual ACM Sym-

posium on User Interface Software and Technology, 2003.

[HP99] Kai-Yuh Hsiao and Joseph Paradiso. A new continuous multimodal mu-

sical controller using wireless magnetic tags. In International Computer

Music Conference, 1999.

[Inn07] Innovation First. Vexlabs, corporate website, jul. 2007. http://

www.vexlabs.com/, 2007.

[Ins07] Instructables. Making a night-vision webcam. website.

nov. 2007. http://www.instructables.com/id/

EF7RFPCE2YEP287GZV/?ALLSTEPS, 2007.

[Int07] Intelitek. EasycTM programming environment. corporate website. oct.

2007. http://www.digidesign.com/, 2007.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless inter-

faces between people, bits and atoms. In Human Factors in Computing

Systems (CHI 1997), pages 234–241, 1997.

[JKS02] Ilkka Jormanainen, Osku Kannusmäki, and Erkki Sutinen. Ippe - how

to visualize programming with robots. In Moti Ben-Ari, editor, Second

Program Visualization Workshop, pages 69–73. University of Aarhus,

Department of Computer Science, 2002.

[JZKS07] Ilkka Jormanainen, Yuejun Zhang, Kinshuk, and Erkki Sutinen. Ped-

agogical Agents for Teacher Intervention in Educational Robotics

Classes: Implementation Issues. In the First IEEE International Work-

shop on Digital Game and Intelligent Toy Enhanced Learning (DIGI-

TEL 2007), pages 49–56, Los Alamitos, CA, March 2007. IEEE Com-

puter Society.

[KBBC05] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico

Costanza. Tuio: A protocol for table-top tangible user interfaces. In

61

6th International Workshop on Gesture in Human-Computer Interac-

tion and Simulation, Vannes, 2005.

[KBNR03] Boriana Koleva, Steve Benford, Kher Hui Ng, and Tom Rodden. A

framework for tangible user interfaces. In Physical Interaction (PI

2003), 2003. Ei sivuja.

[KBP+00] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana.

Virtual object manipulation on a table-top ar environment. In Interna-

tional Symposium on Augmented Reality (ISAR 2000), pages 111–119,

2000.

[KIMK00] Yoshifumi Kitamura, Yuichi Itoh, Toshihiro Masaki, and Fumio

Kishino. Activecube: A bi-directional user interface using cubes. In

Fourth International Conference on Knowledge-Based Intelligent Engi-

neering Systems & Allied Technologies, pages 99–102, 2000.

[Kle03] Scott R Klemmer. Papier-mâché: Toolkit support for tangible interac-

tion. In Symposium on User Interface Software and Technology (UIST

2003), 2003. Ei sivuja.

[KLLL04] Scott R. Klemmer, Jack Li, James Lin, and James A. Landay. Papier-

mâché: Toolkit support for tangible input. In Human Factors in Com-

puting Systems (CHI 2004), pages 399–406, 2004.

[KLPBSV07] Eija Kärnä-Lin, Kaisa Pihlainen-Bednarik, Erkki Sutinen, and Marjo

Virnes. Can Robots Teach? Preliminary Results on Educational

Robotics in Special Education, July 2007.

[KOC04] Martin Kaltenbrunner, Sile O’Modhrain, and Enrico Costanza. Ob-

ject design considerations for tangible musical interfaces. In ConGAS

Symposium on Gesture Interfaces for Multimedia Systems (COST287),

2004.

[LEG07a] LEGO. Lego robolab. website. nov. 2007. http://www.lego.

com/eng/education/mindstorms/home.asp?pagename=

robolab, 2007.

62

[LEG07b] LEGO. Lego robotics invention system 2.0. website. nov.

2007. http://mindstorms.lego.com/eng/products/

ris/index.asp, 2007.

[leJ07] leJOS. Java for lego mindstorms. website. nov. 2007. http://

lejos.sourceforge.net/, 2007.

[Log00] Logo Foundation. Website. nov. 2007. http://el.media.mit.

edu/Logo-foundation/logo/index.html, 2000.

[Lun07a] Lunar and Planetary Institution. Life at the limits: Earth, mars and

beyond - an educators workshop and fieldtrip. website. nov. 2007.

http://www.lpi.usra.edu/education/fieldtrips/

2005/activities/ir_spectrum/ir_webcam.html, 2007.

[Lun07b] Henrik Hautop Lund. Adaptronics group. website. dec. 2007. http:

//www.adaptronics.dk/, 2007.

[MCK06] Leonel Morgado, Maria Cruz, and Ken Kahn. Radia perlman - a pio-

neer of young children computer programming. In J.A. Mesa González

Méndez-Vilas, A. Solano Martín and J. Mesa González, editors, Cur-

rent Developments in Technology-Assisted Education, pages 1903–

1908. FORMATEX, Badajoz, Spain, 2006.

[McN00] Timothy Scott McNerney. Tangible programming bricks: An approach

to making programming accessible to everyone. Master’s thesis, Mas-

sachusetts Institute of Technology, 2000. http://xenia.media.

mit.edu/~mcnerney/mcnerney-sm-thesis.pdf.

[McN04] Timothy Scott McNerney. From turtles to tangible programming bricks:

explorations in physical language design. Personal and Ubiquitous

Computing, 5:326–337, 2004.

[Mer07] Merriam-Webster. Merriam-webster dictionary. website. nov. 2007.

http://www.m-w.com/dictionary/tangible, 2007.

[Nie02] Jacob Nielsen. Intelligent bricks. Master’s thesis, University of South-

ern Denmark, Odense, 2002.

[NQC07] NQC. Not quite c programming language. website. nov. 2007. http:

//bricxcc.sourceforge.net/nqc/, 2007.

63

[OF04] Claire O’Malley and Danae Stanton Fraser. REPORT 12: Literature Re-

view in Learning with Tangible Technologies. Futurelab, Bristol, United

Kingdom, 2004.

[Pap80] Seymour Papert. Mindstorms: Children, Computers, and Powerful

Ideas. Basic Books, New York, 1980.

[Per76] Radia Perlman. Using computer technology to provide a creative learn-

ing environment for preschool children. Technical report, MIT Logo

Memo #24, 1976.

[PIHP01] James Patten, Hiroshi Ishii, Jim Hines, and Gian Pangaro. Sensetable: a

wireless object tracking platform for tangible user interfaces. In Human

Factors in Computing Systems (CHI 2001), pages 253–260, 2001.

[PMAI02] Gian Pangaro, Dan Maynes-Aminzade, and Hiroshi Ishii. The actuated

workbench: Computer-controlled actuation in tabletop tangible inter-

faces. In The Proceedings of Symposium on User Interface Software

and Technology (UIST 2002), volume 2003, pages 699–699, 2002.

[PPGT07] Udai Singh Pawar, Joyojeet Pal, Rahul Gupta, and Kentaro Toyama.

Multiple mice for retention tasks in disadvantaged schools. In Proceed-

ings of the SIGCHI conference on Human factors in computing systems,

pages 1581–1590, 2007.

[PRI02] James Patten, Ben Recht, and Hiroshi Ishii. Audiopad: A tag-based

interface for musical performance. In New Interface for Musical Ex-

pression (NIME ’02), pages 1–6, 2002.

[Raf04] Hayes Solos Raffle. Topobo: A 3-d constructive assembly system with

kinetic memory. Master’s thesis, Massachusetts Institute of Technol-

ogy, 2004. http://web.media.mit.edu/~hayes/topobo/

Raffle_MS_Thesis_small.pdf.

[Rea07] ReacTable. Website. nov. 2007. http://www.iua.upf.es/mtg/

reacTable, 2007.

[RUO01] Jun Rekimoto, Brygg Ullmer, and Haruo Oba. Datatiles: A modular

platform for mixed physical and graphical interactions. In Human Fac-

tors in Computing Systems (CHI 2001), pages 269–276, 2001.

64

[RZSP04] Dan Rosenfeld, Michael Zawadzki, Jeremi Sudol, and Ken Per-

lin. Physical objects as bidirectional user interface elements. Com-

puter Graphics and Applications, IEEE, 24(1):44–49, January/February

2004.

[Sch04] Bert Schiettecatte. Interaction design for electronic musical interfaces.

In Human Factors in Computing Systems, page Poster, 2004.

[SE04] Elizabeth Sklar and Amy Eguchi. Learning while teaching robotics. In

AAAI Spring Symposium 2004 on Accessible Hands-on Artificial Intel-

ligence and Robotics Education, 2004.

[SK93] H. Suzuki and H Kato. Algoblock: a tangible programming language,

a tool for collaborative learning. In The Proceedings of 4th European

Logo Conference, pages 297–303, 1993.

[Smi06] A.C. Smith. Tangible cubes as programming objects. In 16th Inter-

national Conference on Artificial Reality and Telexistence–Workshops,

2006. (ICAT ’06), pages 157–161, 2006.

[Smi07] Andrew C Smith. Using magnets in physical blocks that behave as pro-

gramming objects. In Proceedings of the 1st international conference

on Tangible and embedded interaction, pages 147 – 150. ACM. New

York, NY, USA, 2007.

[SV00] Dag Svanæs and William Verplank. In search of metaphors for tangible

user intefaces. In Designing augmented reality environments (DARE

2000), pages 121–129, 2000.

[Tec07] Technologies for Children with Individual Needs. Technologies for

children with individual needs. website. aug. 2007. http://cs.

joensuu.fi/etp/cms/, 2007.

[Tek07] Teknologiakasvatuksen kehittämisprojekti. Project website (finnish).

nov. 2007. http://cs.joensuu.fi/tkp/, 2007.

[UI97] Brygg Ullmer and Hiroshi Ishii. The metadesk: Models and prototypes

for tangible user interfaces. In Symposium on User Interface Software

and Technology (UIST 1997), pages 223–232, 1997.

65

[UI01] Brygg Ullmer and Hiroshi Ishii. Emerging Frameworks for Tangible

User Interfaces, chapter Human-Computer Interaction in the New Mil-

lenium, pages 579–601. Addison-Wesley, 2001.

[Ull02] Brygg Anders Ullmer. Tangible Interfaces for Manipulating Aggre-

gates of Digital Information. PhD thesis, Program in Media Arts and

Sciences, Massachusetts Institute of Technology, 2002.

[UoJS07] Department of Computer Science University of Joensuu and Statis-

tics. Organization website. nov. 2007. http://www.joensuu.fi/

tkt/english/, 2007.

[Val03] Andrea Valente. C-cards: using paper and scissors to understand com-

puter science. In The Proceedings of the Kolin Kolistelut-Koli Calling,

2003, pages 84–92, 2003.

[Wac07] Wacom. Corporate website. nov. 2007. http://www.wacom.com/,

2007.

[WC00] Tim Wright and Andy Cockburn. Writing, reading, watching: A

task-based analysis and review of learners’ programming environments,

2000.

[Wel93] Pierre Wellner. Interacting with paper on the digitaldesk. Communica-

tions of the ACM, 36(7):87–96, July 1993.

[Xu05] Diana Xu. Tangible user interface for children – an overview. Technical

report, UCLAN Department of Computing Conference, 2005.

[ZAAM+07] Imran A Zualkernan, Abdul-Rahman Al-Ali, Hassan A. M. Muhsen,

Mohammadhossein Afrasiabi, and Serop; Babikian. A wireless sensor-

based toolkit for building tangible learning systems. In International

Conference on Advanced Learning Technologies 2007, pages 152 – 156,

2007.

66

