Color image techniquein fish
research

Y evgeniya Shatilova

Master’s thesis
Department of Computer Science
University of Joensuu



Color image techniquein fish research

Yevgeniya Shatilova

Department of Computer Science and Statistics
P.O. Box 111, FI-80101 Joensuu, FINLAND.

Master's thesis
February, 2008

Abstract

The aim of this work is to study and apply colocheique for non-destructive
approximation of the carotenoids amount in fismsKihe object of the study is Arctic
charr Galvelinus alpinus) and its carotenoids-based coloration.

For this purpose an affordable method for assessimgenoids content in fish skin based
on digital imaging reconstructed into spectraleetdance was proposed and examined. A
polynomial regression method was investigated tgrawe the accuracy of the
reconstruction of fish spectra. A polynomial modetl an extended training set enhanced
spectral reconstruction were determined. The caticel between carotenoids
concentration in fish skin and their spectral retfmce was examined; results confirmed
a feasibiliy of the proposed method. The technique allows twdagn expensive and

long chemical analysis required a sacrificing shfspecimens.

The research work was performed in co-operationh wiiology Department of

University of Joensuu for their purposes.

Keywords: spectral reconstruction, spectral imaging, camites) Arctic charr
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1. INTRODUCTION

1.1. Overview

Color as a property may give us the knowledge abhautbject. In biological science, a
variety of colors may convey valuable informatichny color changes in plants or
animals may provide significant information abduit state which then can be studied
and interpreted by scientists. The coloration afmats is produced with different color
pigments. Recently, the evolutionary biologists éawmterested in identifying in
carotenoids-derived nature of fish coloration. Kirenige about the types and content of

color pigment is important in social and sexualtegts [McGraw et al., 2005].

In present day, colors and their digital repredemta are becoming of increasing
importance in every day life. The possibilitiesrteasure color’s characteristics of an
object by using the modern imaging systems fatdlitthe investigation the color
properties of an object and open a wide range pbdpnity to scientists in their research
works. High computational resources and systemsdfgital image processing are

becoming more popular in various industry fieldstsas medicine, biology, forestry etc.

This research focuses on the study of color andhtgacteristics in biological areas,
namely in fish research. Thabject of this study is a species of fish calladctic charr
(Salvelinus alpinus (Fig. 1.1). Arctic charr is considered an endangered species in
Finland and studied by theiology scientists to restore this population ahfi A red
coloration of this fish is carotenoids-based cdiora It is assumed to be a factor
defining the sexual behavior of fish during spawniperiod. The high level of
carotenoids in fish skin may be indicator on méteaativeness, activity and ability to
produce health posterity [Lozano, 1994; Gretherakt 2004]. Knowledge about
carotenoids content is critical in biological res#afor determination health state, social
and sexual contexts of fish. The relationships betwcarotenoids in the integument,
level of immune-system function and sexual attvactess were tested and a positive

correlation has been revealed [Grether et al., R004
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Figure 1.1: Arctic charr as an object of the study

This thesis has been carried out in co-operatidh Biology Department of University of
Joensuu. In this work, obtained knowledge abouwdistufish species were combined and
reinvestigated from two points of view - biologydacolor science — in order to get

effective results in study of this species.

1.2. Study objectives

As described, assessing carotenoids content is riemgofor determination valuable
information about different characteristics of fighdividual. Carotenoids can be

extracted and quantified with complex chemical gsialwhich is expensive.

The main objective of this study was to develop and test affordablethod for

determination of an approximation of carotenoidsoamt of Arctic charr which can
facilitate the conduction of the biological resdmaf this fish. Due to all the limitations
of fish research (see next section), an algorittmows in Fig. 1.2 was proposed to

approximation the carotenoids amount in Acrtic ¢kaskin based on RGB image.



RGB Spectra Amount

Figure 1.2: Algorithm for approximation amount of carotenoiddish skin

To achieve the objective following research goatsenestablished:

* To study spectral reconstruction method based gmatlicamera responses and
adopt to fish images

* To acquire and analyze the spectral images ofskghwith different intensity of
carotenoids-based coloration

« To examine the correlation mechanism between thasured carotenoids
concentration in fish skin and corresponding réflece spectra

« To find out whether the correlation can providengigant prediction of

carotenoids quantity in fish skin based on speofamation

1.3. Scope, limitations, and constraints

Fish research imposes definite constraints anddtions. Let us to outline the main ones.
Ideally, spectral reflectance of fish which prowdaccurate color’s information (see
section 3.3) would probably be the most convenmeetric to estimate the color pigment

amount in fish skin

The major drawback of this study is the acquisitbthe spectral images of fish. First of
all, taking spectra of fish involves the sacrifafefish which should be avoided in light of
conservation of this species. Moreover, the spemtpuisition of fish takes long time
which can have a negative effect in respect to gbswof fish coloration. From another
point of view, spectral imaging devices requiretaier experience and special skills to
use. In addition, such devices are expensive aridpadable. Other limitations are
constant and intense light source which has tofdpdiead directly to the flattened and
size-fixed sample area. This mode creates diffesilvith imaging of flashy parts such as

fish skin.



In an attempt to overcome the difficulties and tations in spectral imaging, the spectral
reconstruction method from digital camera respomges utilized [see section 3.4]. The
taking of RGB images is the most appropriate apgraa case of fish research. But
using RGB values from a digital device for estimatican not guarantee precise
solutions, since the trichromatic technique doespmovide the accurate color quality.
The main limitations of digital color representatioand corresponding spectra
reconstruction are light- and device-dependendiésteover performance of spectra

estimation from camera responses depends on cgBjera

1.4. Thesis organization

This thesis is arranged as follows. Chapter 2 plesia detailed description about the
main object of this study. Readers can obtain comméormation about fish species
such adArctic charrand an introduction to the carotenoids color pigimin this chapter
an uncommon field of study for color experts issgrgged which describes the essential

motivation to research.

Chapter 3 describes an introduction to light antbrcand presents the basic color

imaging technique and methods used to investigatelbject of this study.

Chapter 4 provides a description of the testingspéctral reconstruction based on
polynomial regression method. Testing was donesiyg?® and 3" order of polynomial
and different training set. As a result of the deapthe best type of polynomial function

and extended selected training set has been chosen.

Chapter 5 presents the results obtained duringtrgppeneasurements of fish skin. The
Chapter contains the processing the outcomes ofedaenination of the correlation

between carotenoids amount in skin and their spectr

All work summarized in Chapter 6. Discussion anchatasions of this study are

presented with possible suggestion of improvement.



2. ARCTIC CHARR AND COLOR

2.1. Overview

The object of this study is a fish species narertic charr. Let us take a close look at

this mysterious fish which has triggered our rdterdion.

Generally, Arctic charrSalvelinus alpinusis related to the Salmonidae family, native to
Arctic, sub-Arctic and alpine lakes and coastalersat This species can be regarded as

the northernmost freshwater fish in the world.

Arctic charr is possibly the oldest and the mostutiéul freshwater fish living in Finland

[Arctic Centre, Karttaikkuna Oy]. Northern Laplamithe main part of charr’s location
especially in the municipalities of Utsjoki, Inamnd Enonteki6. In Lapland, Arctic charr
is often called “Rautu”, the small one is calledaftBarautu” and “Nierid” in North

Karelia [Arctic Centre].

The tasty meat of the Arctic charr attracts peaplbreed this species. That is why many
attempts have been made to breed and introduce suitable conditions. This fish
species is very sensitive to environmental chaagedshis makes breeding quite difficult.
Additionally, breeding meet other problems like fighing and competition since Arctic
charr is a week competitor and the population canifjured by other species
[Karttaikkuna Oy].

The coloration of the charr is wonderful in autuduring the spawning season. In this
period the males commonly develop a deep red daldheir abdomen [Karttaikkuna
Oy]. Their carotenoids-based coloration becomeghker with a dark back and bright red
and orange underbelly (Fig. 2.1).



Figure 2.1: Arctic charr [Arctic Centre]

In Finland the Arctic charr is considered at riskdsappearing species. This fish can be
alarmingly endangered because of the influencareft factors such as the regulation of
watercourses, excessive fishing and the eutropbicaif waters.For instance, if to

compare catches of Arctic charr nowadays with 198€fere regularization started, they

are declining regularly [Karttaikkuna Oy].

Biology scientists are studying how to protect aestore the Arctic charr population.
The crucial point to consider in increasing fistpplation is to enhance the amount of
posterity. As such in the spawning season thislgdhmovide qualitative and quantitative
descendants. There is a number of scientific wark&hich fish sexual selection has
been discussed and the red coloration has beendeced important in mate choice
[Masvaer et al.,, 2004; Saks et al.,, 2003]. Maswaeral concluded that females
evaluating male abdominal coloration may obtairomfation about differences between
males in fertilization potenti&l[Masvaer et al., 2004]. The rembloration of fish can be
considered as a factor defining behavior duringimgaperiod and its activity and ability to
produce healthy posterity. Thus, fish redness @amelgarded as an indicator of successful

individuals.

From a biological point of view, the color pigmaesponsible for many of red, orange
and yellow colors in nature is carotenoids pigméHtemphries et al., 2004; von Schantz
et al.,, 1999]. Arctic charr isah excellent example of the species developingoagst

carotenoid based coloration adjoining the spawnpegiod’ [Martinkauppi et al., 2007].



2.2. Carotenoids as signals

Recently carotenoids pigments have become popultre study of sexual selection in
animals. Biological scientists argue that carotdagilay a major role in the mechanism
of selection. The amount of carotenoids as a cotdi@a skin, scales is limited because
animals can not produce carotenoids but acquimna tfinem foods. The main assumption
of most science studies is that carotenoids-baskxt accurately reflects the amount of

carotenoids within pigment patch [Saks et al., 2003

Color pigments such as carotenoids and melaning plgortant role in animal’s

coloration. Carotenoid pigments are responsibleddr orange and yellow colors, while
melanin pigments produce colors from an achromialack to brown. Thank to these
color pigments different animals such as birdsh,fiszards, frogs, penguins and etc

obtain various coloration depending on season fiioémann et al., 2007].

In biological terms, the pigment cells of multicdédlr organisms are called as
chromatophores. Fish chromatophores can be charateby different types of cells.
Coloration is the most important function in chraopnores of aquatic animals such as
fish. Besides their role in coloration of fish, tbleromatophores play significant roles in
temperature regulation and protection from harnrAdiation [Sugimoto & Oshima,
2002].

According to Chatzifoti®t al. [Chatzifotis et al., 2005] color of fish skin deywks on the
presence of chromatophores which can be classifitml six types (melanophores,
xanthophores, erythrophores, iridophores, leucagshoand cyanophores). These
chromatophores contain pigments such as melaniastenoids (e.g. astaxanthin,
canthaxanthin, lutein and zeaxanthin), pteridines urines. Color depends on the types
and concentrations of carotenoid pigments pregemhixture of pigments provides the
continuous variation from red to yellow distinguisty by the ratio of red to yellow

carotenoids [Hofmann et al., 2006].

There are a number of works studied the relatigndiétween coloration and color
pigment. Sak®t al. [Saks et al., 2003] considered the relationshigveen hue, chroma
and brightness and caroteniod pigment content athé of birds and found positive

correlation. Earlier studies have shown the cotigain living plants; for example,



between spectra reflectance and vitality of cucusilfgucumis Sativys[Aario et al.,
2001], assessing carotenoids content in plant teawtl spectral reflectance [Gitelson et
al., 2002]. Humphriest al. have found the strong positive correlation betwedaLAB

b* and carotene concentration [Humphries et al0420

This research focused on astraxanthin since tH@ pagment was found as a defining
red-color of Arctic charr skin [Scalia et al., 1989he goal this study is to examine the
strength and direction of the correlation betwearotenoids (astaxanthin) concentration

in fish skin and their spectral reflectance.



3. COLOR AND IMAGING

3.1. Color as phenomenon

The enigma of color has caught the attention ofyradrihe most talented scientists. The
guestion about the nature of color has been attgabiumans since antiquity and it has
resulted in diverse definitions. Intellectuals sashAristotle, Grimaldi, Newton, Young,

Maxwell and others have contributed to the knowesgigrround of this topic.

First of all, the phenomenon of color exists orilyough human vision i.e. the human
ability to perceive color. We can see things arouscvery day due to light, which can
be natural or artificial. Sun light is the most ionfant natural source for human and all
living beings. Theoretically, light is a part oeetromagnetic radiation that is visible to
the average human eye [Field, 2004]. Visible colare in the range between
approximately 380 and 780 nanometers (nm) on thetrelmagnetic spectrum, as shown
in Fig. 3.1.

Wavelength {jpm)
0% 105 400 107 107 100 100 197 107 107 10f 0% 108 407

uammaltnrr[ ¥ Ray ] Ul avlalet Infrared Microwaves | Radio Waves

The Vizible Spectium
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Figure 3.1: The visible spectrum as a part of electromagnatication (adopted from

http://www.daviddarling.info/encyclopedia/V/visiblikght.html)

The various colors of objects are derived fromititeraction between three participants:
a light source, an object, and a detection sysiém. detection system can be artificial,
human (observer) and another biological form. Imhn vision, color events occur as a

sensations in the observer, originated by the spmodf the light source and modified by



the colored object [Fraset al., 2003] (Fig. 3.2). Colored surfaces transanid reflect
different amounts of wavelengths. If any compongmnges from this interaction, the

color event may be different.

Light Detection
source system

Figure 3.2: Color event as interaction between three partitgpa

The CIE (Commission Internationale de I'Eclairage)International Commission has
specified a number of CIE Standard llluminants. Tdwn illuminant refers to “a light

source that has been measured or specified fornmatgrms of spectral energy” [Fraser
et al., 2003]. All the illuminants differ in thetolor temperature and spectral power
distribution, i.e. power of light at each waveldngtolor temperature of the illuminant is
the temperature at which a heated theoretical Kobaxly” source produces light of the
same visual color as the illuminant. There are anlmer of the most popular CIE

illuminants [Fraseet al., 2003]:

e llluminant A represents a tungsten light sourcehvablor temperature of
2856 K.

e llluminant D is used to represent various modeldaflight. The most
commonly used are D50 and D65 (Fig. 3.3) with datesl color
temperature of 5000K and 6504K, respectively.

e llluminants F is a set of various types of fluomsclight source named F2,

F3, and so on, up to F12.

10
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In this study, all the spectral measurements agilatimaging were done with D65 CIE

Standard Illluminant.

The modified signal of light reflected from an atfjes perceived by an observer. The
standard person can distinguish color based on lergth of reflected or emitted light

due to the structure of trichromatic human colasion proposed by Thomas Young
(1802). According to this model, the human peraaptf color is achieved through three
types of color receptors (cone) which are maximsdlgsitive to short, medium and long

wavelengths of lights (S-, M- and L-cones), respety (Fig. 3.4).
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Figure 3.4: Cones absorption of light (adopted from

http://en.wikipedia.org/wiki/Color_vision)

11



3.2. RGB and HSV as digital representation of color

Many ways have been suggested atdifferent color models usefbr modeling and
representing colors. The RGB color space is widelgd in digital devicefor capturing
images and displaying thesach as Charge-Coupled Devices (CCD cameras) iapkhyb
The RGB model can be represented as a 3D-coloesphich describes emitted colors

by using thre@rimary colors [Maroto et al., 2006]:

— Red of 700.0 nm (R);

— Green of 546.1 nm (G);

— Blue of 435.8 nm (B).
The RGB model is called aadditive model because all spectral colors from 380 nm to
780 nm can be formed by mixing of three primaryocslin different proportions (Fig.
3.5).

Figure 3.5: Representation of additive color mixing

The RGB space can be illustrated as a cube witte€§lan coordinates (Fig. 3.6). This
color representation allows us to calculate theimam number of digital colors of the
RGB color space. This model thus has the capahifityepresenting 256 16 777 216

colors.

According to the RGB model definition, color is debed with three components: R, G
and B. The value of these components is the sutheofespective sensitivity functions

and the incoming light [Tkalcic & Jurij]:
R= IS(/])R()I)d)I G= IS(/])G()I)d)I B= _[S()I)B(/l)d/] (3.1)

where

1) is the light spectrum,

12



R(1), G(A) andB(A) are the sensitivity functions for tii¢ G andB
sensors respectively.
Despite the fact that the RGB color model is simgléas shortcoming in its practical
application; since the RGB values depend on thsitbéty function of the capturing
device the RGB model is device- and illuminant-awejsnt.

Other different color spaces can be obtained froenRGB spac¢hrough linear or non-
linear transformations. Review of the most widelged RGB color spaces and
transformations can be found in [Pascal, 2003jhis work, mainly the RGB space and HSV

color spaces were applied.

The HSV color space (Fig. 3.6) is a transformatibthe RGB color space and defines colors
in terms ofhue saturationandvalue The hue of a color is in actual fact its name. (ied,
blue, pink or some combination such as greenis), €he saturation of a color is its purity
property that represents its position on a scalmfichromatic white to the pure hue. The
value describes how light or dark the color isc@h also be called brightness) [Field,
2004]. The benefit of the HSV model is that hue satliration components are similar to

the way humans perceive colors. Thus some artistsmto use this model.

G Value

B Magenia R Saturation

Figure 3.6: The RGB and HSV color models
A digital image is composed of pixels. To store dgital image, it is required to divide

it into a grid of pixels. Each pixel represents todor at a single point in the image. It is

defined by the amount of red, green and blue cadlorthe RGB space, for instance.

13



Hence the whole image results in an array of piselsietimes called hitmap The

density of pixels of a digital image is known asrésolution

As pointed out before, color occurs as an evenhm&e participants — a light source, an
object and observer — but color also takes platginrhuman mind. We can measure the
stimulus, i.e. light incoming to eyes and derive tkesponse produced by the stimulus.
For this purpose different types of measurementcdsvare used. All of them measure
the light reflected or transmitted through a sweféy using detectors. There are three
main instruments namely densitometers, colorimetespectrophotometers. The

differences between the three instruments are ayygenumbers of filters they use and

their detectors sensitivity [Fraser et al., 2003].

Densitometers measure the degree to which surfalossrb light (density). They are

sufficient to measure darkness or lightness.

Colorimeters are devices used in colorimetry whiokasure colorimetric values in
numbers that model the responses of the cone irhtinean eye. Colorimetry is the
science that describes color in numeric modelspeadicts color match as human eyes
perceive it. Modern colorimetry is based on theodaletric system of the CIE. The CIE
is a body of international color scientists. Thigyamization provides a number of

standard references and color spaces for defimtgg|[Fraser et al., 2003].

Spectrophotometry uses spectral imaging systemetmsare spectral reflectance which is
the ratio between the intensity of light falling an object and the reflected light [Fraser
et al., 2003]. Nowadays the spectral reflectanogiges the most accurate data regarding

a color's characteristics.

3.3. Spectral imaging

The interest in spectral imaging has grown during kast few years. Nowadays, the
applications of spectral imaging can be found inous fields of science and industry.
The main benefit of spectral imaging is accuracyhef image acquisition. Imaging by
spectral systems allows reproduction of the preniders (exact spectral reflectance) and

compensates for changes in illumination. Such tufeds useful for many applications

14



such as remote sensing, astronomy, food inspecpdnting, study of illumination

changes in natural scene, agrobiology and biocligmis

Basically, the spectral imaging systems allow tbguésition of spectral images with high
number of spectral channels. The main advantagspettral imaging over digital
imaging is that the reflected light from the objectaptured in a great number of narrow
spectral bands through the ultraviolet, visible amigared part of the electromagnetic
spectrum.Thus, thespectral image can be represented as a set of mamehmages
referring to the different wavelength which leadsatgreater amount of data, useful for
detailed study of objects.

Of all the various spectral imaging systems, tme Iscanning based spectral camera
ImSpector V10E (Fig. 3.7) was used for the measargrof spectral reflectance of fish
skin samples in this study. This was to facilitdte analysis of the spectral reflectance of
carotenoids-based colors.

f

Figure 3.7: ImSpector V10E spectral camera

Since the color of an object depends on its spectfeectancer(A) and the spectral
radiance of the illuminant can be represented dsnationl(A), we can define the

radiance of reflected light (1) as the following equation [Hardeberg, 1999]:
f(A)=r(A) 1) (3.2)

Schematically model is illustrated in Fig. 3.8.

15
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Figure 3.8: A simple spectral model for the interaction betwéght and the object

In spite of all the benefits of spectral imaginigere are also several disadvantages. A
large volume of data, expensiveness of spectratdewand duration of image acquisition
are significant limitations. In special applicatooand due to these limitations, a spectral
reconstruction is needed which can be based onetyaf methods.

3.4. Spectra reconstruction

The color research of fish is such a case wherespleetral image acquisition of living
fish is highly problematic, especially for procegstime and living animals’ constraints
(movements, limited time outside of water). Thus,ome of the solutions the spectra

reconstruction from CCD camera responses is applied

There are numbers of methods for enhancing reaantigin’s performance such as kernel
methods, Wiener estimation, Principal Componentlygis, radiance basis functions,
neural networks, Self Organizing Map, numerical hods, look-up table methods.
Review of the most popular estimation methods aamolinded in literature [Heikkinen

et al., 2007; Hardeberg, 1999; Baronti et al., 1®&hko et al., 2007].

In this work the polynomial transformation methoadr fspectra reconstruction was

applied. In different literature this method canrberred to as least squares polynomial

16



regression methofHeikkinen et al., 2007] or the method using mudipegression
analysis [Bochko et al., 2007]. The polynomial mlod a popular method used in color
science for color calibration problems. In our cése color calibration of the digital

camera can be determined by the following approtiongroblem [Jetsu et al., 2006]:

XIW=Y (3.3)
where X — matrix containing RGB values of the caan@t 00" *);

Y — matrix containing spectra reflectance value&l(d'*");
| - number of samples;
n- number of components in the spectrum;

W — transformation matrix mapping matrix X to matv.

In this model, unknown coefficients can be caltadafrom least-squares approximation
based on pseudo-inverse method [Jetsu et al., 2D00gneral, simple first order model
are not be adequate to characterize the spectaa [ast-order sets of linear equations
can be extended to higher order polynomial by agldimd combining cross-products and
higher-order terms to matrix X, suchR6&, GB, RB, R G, B... to establish the best-fit

transformation.

To perform this reconstruction procedure of polyranransformation, a training set and
test set are used. The training set is used to statpe transformation matrix W from
RGB values to reflectance spectra. The trainirtigise set of matrix X and Y with

known RGB values and reflectance spectra. Usu#dlythe training set the standard
color checker charts are used such as Gretag Ma€hmbrChecker and Munsell Book

which provideknown reference colors.
With the matrix of spectral reflectance and a matvith corresponding RGB values we
can find matrix X by multiplying both sides of tkquation by the inverse of the matrix X

(i.e. X™). This is possible only for a square matrix. Hoeethe approximation method
can be used to compute the pseudo-inverse of asauere matrix. In Matlab, the

functionpinvis applied [Westland & Ripamonti, 2004].

W = pinv(X) [Y (3.4)
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The main limitations of the polynomial transfornestimodel are illuminant and camera-
dependency. Thus, for each combination of lightre®uand type of digital camera,
different transformation matrices needed to be adeth

3.5. Spectral reconstruction accuracy

In order to define the best order of the polynomsdme measurement of errors
dependant on the particular solution needs to Hmetk Ideally, the model should
predict color with minimal errors. The process pkdral reconstruction (estimation)
includes the statistical analysis of reconstructgkctra, estimation of error and
minimization of error. To evaluate estimation aeay; i.e. the difference between
original (measured by spectral device) and estichgpectra from camera responses two

types of spectral metrics were used in this work:

* CIELAB AE error for colorimetric color difference [Kohon&2Q02]

AE =/(L* -[*)2 +(a* -3%) 2 + (b* -b*)? (3.5)

where

L*, a*, b* are CIELAB values calculated from original spectra

L* % b* are CIELAB values calculated from estimated Spgectr

Table 3.1: Practical interpretation of CIELABE is represented by Hardeberg
[Hardeberg, 1999]

AE Effect

<3 Hardly perceptible

3<6 Perceptible, but acceptable
>6 Not acceptable
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* Root Mean Squared Error (RMSE) for spectral colffeence [Jetsu et al.,
2006]

3 (s(i) - 3())°
RMSE= |2 (3.6)

where
n is number of wavelength component in spectra
s is the original spectrum
S is reconstructed spectra
The main purpose of this study is accuracy of specéconstruction rather than
good colorimetric results. Thus, optimal model $pectral estimation should be chosen

in respect of average value of RMSE error.
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4. SPECTRAL RECONSTRUCTION TESTING AND SELECTION
OF THE BEST MODEL FOR POLYNOMIAL REGRESSION

As mentioned before, the main goal of this studg wafind a way to approximate the
carotenoids amount of Arctic charr species basefishnskin spectra. In this work the

correlation was examined and numerical expresdidimeocorrelation was established.

A way for acquisition of a spectral image of fislitheut taking long time with spectral
camera is to reconstruct it from regular digital BR@nages. For this purpose the
polynomial regression methadas suggested (see section 3.4). The crucial poirthis
method are defining the training set (what and sizeet) and choosing the order of the
approximation function for obtaining a smooth swint The choice of polynomial
function should base on statistical analysis ofiltesand minimization of errors. The
spectral reconstruction process of fish has bestedaout in several stages (Fig. 4.1). In
this chapter the different polynomial regressiordels were tested with various sets for

training and testing purpose.

4.1. Spectral reconstruction of Macbeth chart

For testing the polynomial transformation modelfirst used the standard Macbeth
ColorChecker with 24 patches as a training andgesstAccording to the algorithm (see
Fig. 4.1) the matrices X and Y have to be deterthiteefind the transformation matrix
W. Spectral reflectance values of the Macbeth chare taken for matrix Y. spectral
measurements of the Macbeth chart have been dotte Rérkin-Elmer lambda 9
UV/VIS/NIR spectrometer in 380 - 780 nm range wawgths (Fig. 4.2). Thus, matrix Y

of size 24x81 with 5 nm step in visible range whtamed.

For matrix X, RGB values should be taken. A setligital images of Arctic charr with
Macbeth ColorChecker (Fig. 4.3) was used to obR®B values of Macbeth chart from
corresponding patches. For this, the mean valueth@fRGB for each patch were

calculated by using the digital images and matriaf$ize 24 x 3 was obtained.
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Figure4.1: Algorithm for the least squares polynomial regi@ssnethod for

reconstructing fish spectra

21
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Figure 4.2: Spectral reflectance of the Macbeth chart

Figure 4.3: RGB image of Arctic charr with Macbeth ColorChecker

The shapes of different polynomials can be varied #ested for their accuracy
performance. A chain of polynomials containing éhte twenty terms for transformation
matrix calculations was determined.

For calculating the transformation matrix W, firgecond and third order degree
polynomials are used with 3, 10 and 20 terms, &spmdy. Moreover, second and third

order polynomials include a constant term, 1 (Tdblg.
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Table4.1: Three types of polynomials used for fish speat@nstruction

#terms Polynomial
1Y order
3 [RGB
2" order
10 [RGBRGPBRGRBGB1
3" order
20 |RGBR2GZBZRGRBGBlRGBRGGRBBGRRGBBBRRBGGR?’GgB3

Thus, matrix dimensions for solving the approximatproblems for the Macbeth chart
(24 patches, 81 channels) are illustrated in Talfle

Table 4.2: Matrix dimension for different polynomials

M atrix

Order of Spectra RGB values transfor mation
polynomial <l x n> <l x k> <k x n>

Y = X * W
15t <24x81> <24x3> <3x81>
2nd <24x81> <24x10> <10x81>
3 <24x81> <24x20> <20x81>
where

| — number of samples,
n— number of wavelength components in spectra,
k — number of terms in polynomial.

The equations used for calculating matrix W witle #acbeth chart (24 samples) as
training set shown below:

Linear model (3 terms):

Y]=[R & BJdw]

Yu o Y X X X3 Wip o oo Wigy
. . = . W2Vl
Yoap o Yam Xoax Xoap Koz | [War - Wag

2" order polynomial (10 terms):

[¥]z[|R ¢ B R* G> B2 RG GB RB 1|{w]
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The 3% order polynomial equation is formed in the samemes; by adding cross-
product RGB, RGG, RBB, GRR, GBB, BRR, BQ@nd higher-order terms {RG®, B).

Computing these in Matlab resulted in the transtirom matrices W for each

polynomial case. Then, the estimated spectra wWetared by applying matrixes W to
RGB values of the Macbeth chart by using the psemderse method. Fig. 4.4 illustrates

the results obtained with 20 term&”(olynomial order).
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Evaluation the spectral accuracy was done withcileulation ofAE and RMSE errors

(3.5, 3.6). The results of th8%and 3 order polynomials are shown in Fig. 4.5.

{5
.

File

Matrix transformation

*  ariginal CIELAB estimation
O estimated

delta E in spectral estimation
: : A .. H - 2ndd 3rd
R ] fvy 2ETETS 190648
[P - i St 1 58776 0848605
Max 476324 3TMTTE
Min 0433634 0.077931

. H “*\‘ ‘“‘«_3 RMSE in spectral esumauon
+5.0 i R
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o j;c? PRt I Avy 00368504 00256109
e ' Eh *0y el e H Std 0.0234309 0.0186005
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hfin 0.0124631 000608532

b -40 20 " Caloulate

Figure 4.5: Spectral reconstruction accuracy calculation fochéh chartA E, RMSE

for 2" and & order polynomials and CIELAB estimation

Based on the analysis of error measures, it casobeluded that the least values of both
types of errors have been obtained in the casieeathird order polynomialThe mean of
CIELAB AE error is equal to 1.9 which according to Hardglseinterpretation (Table
3.1) is “hardly perceptible” (less than 3). The mef RMSE is equal to 0.025 which is

less than value in"2order.

This illustrates the result of polynomial regressigpectra reconstruction from RGB
values with the Macbeth chart as a training antddes In this case we got an optimal

result.
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4.2. Fish spectra reconstruction with the Macbeth ¢ hart as a training set

Next, the polynomial transformation method wasee@sfor reconstruction of thésh
spectra To test the method accuracy the Macbeth charts@fples) was used as a
training set and the spectral image of fish assh $et. The testing was done in the
following manner: the spectra of the Macbeth claartl fish were converted to SRGB
with ‘D65’ light source and CIE 1931 system parasngt The obtained RGB values
produced matrices X. then™2and & order polynomials were formed (as in section 4.1).
In training stage the transformation matrix W wasnputed based on training set.
Calculated matrix W was applied to SRGB image & tish and sRGB image of the
Macbeth chart with 10 and 20 terms of polynomials.

Fig. 4.6 demonstrates three images of the sameTishupper one is the original spectral
image converted into sRGB color space; below, om lgft and on the right are

reconstructed spectral images withf and 3 order polynomial and transformed into
SRGB color space, respectively.

Reconstructed: 2nd order Reconstructed: 3rd order

Figure 4.6: Original and reconstructed spectral images of fish

Next step in testing model is model evaluation. Tiyoees of errors CIELABA E and
RMSE errors were calculated to check the accurdcgpectral reconstruction. As
mentioned in section 3.5, the selection approprieselts were obtained in respect of the

values of RMSE since we interested in accuratetepestimation. The errors between
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the original and reconstructed images in casesbfifnage and the Macbeth chart image

are displayed in Table 4.3 and Table 4.4.

Table4.3: TheAE error in spectra reconstruction of the fish imagd Macbeth chart

AE
Avg. Std. M ax. Min.

I mage of fish
2" order (10terms) 9.1862 6.9114 31.1366 0.1041
3% order (20 terms) 2.8097 2.8057 27.2516 0.003

Training set
2" order (10terms) 0.7511 0.5437 1.9430 0.1354
3% order (20 terms) 0.0551 | 0.0576 0.2244 0.0021

Table4.4: The RMSE error in spectra reconstruction of tsh fmage and Macbeth chart

RMSE

Avg. Std. M ax. Min.

Training set
2" order (10 terms) 0.0354 0.0250 0.1229 0.0094
3" order (20 terms) 0.0262 0.0225 0.0916 0.0026

I mage of fish
2" order (10 terms) 1.6078 2.2106 11.3326 0.1819
3% order (20 terms) 3.186 3.5024 16.2798 0.2319

In summary: the color difference CIELABE inthe 3% order polynomiais less than the
2" order polynomial and value 2.8097 is “hardly petit#e”; RMSE error in the2™

orderis equal to 1.6078 which is less than in tffe 3

This shows that thé®order polynomial with lower value of CIELAB coldifference is

better in case of the quality of color reproductidhis is shown in Fig. 4.6. As we are
interested in accuracy of spectra reconstructibe, golynomial with lower value of
RMSE should be used as a criterion for choice gpeapriate polynomial model. Based

on this the # order polynomial gave the most accurate result.

Fig. 4.7 and 4.8 demonstrate the difference befm@ after spectra estimation of the
Macbeth chart and the fish image, respectivelys important to note that the original
spectra reflectance of fish shown by blue line (Bi@) has a peak in the range between

350-400nm which can be explained by measurememnt. err
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4.3. Fish spectra reconstruction with the Macbeth ¢ hart and part of the

Munsell book as a training set

The next step to improve results and decreaserapeotor difference within the spectral
reconstruction was to increase the size of thaitrgiset. The samples from the Munsell
book were chosen to be included to the training Bet this purpose yellow and red
specimens were chosen as carotenoids-based cdionally, the training set was
extended from 24 to 428 samples by consecutivalynadyellow (YY), yellow-red (YR)
and red (RR) patches from the Munsell book. Masri¥eand Y in the training set and
test set were built similarly as before, i.e. thedral image were transformed to SRGB
(‘D65’, CIE 1931). Reconstruction was done in aiklmway with 10 and 20 term
polynomials. RGB images of reconstructed fish imdge the 2 and ¥ order
polynomials are illustrated in Fig. 4.9, comparediast the RGB image calculated from
the original spectra.

COriginal spectral image

—

i Reconstructed: 2nd order Reconstructed: 3rd order

Figure 4.9: Original and reconstructed spectral images ofdisihg extended training set

Colorimetric and spectral color difference errorsrevcalculated to evaluate result and

compare with previous results (Tables 4.5 and 4.6).

Table4.5: Colorimetric color difference after reconstruction

AE
Avg. Std. M ax. Min.
I mage of fish
2" order (10 terms) Macb 9.1862 6.9114] 31.1366 0.1041
Mac+XYY 7.7407 6.0777| 28.2561 0.1058
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AE
Avg. Std. M ax. Min.

Mac+XYY+XYR | 8.3574 6.4532| 28.2481 0.0260
Mac+YYRR(404) | 8.2703 7.1867 31.8375 0.036(

3% order (20 terms) Mach 2.8097 2.8057| 27.2516 0.003
Mac+XYY 3.0271 3.5854| 26.9802 0.0147
Mac+XYY+XYR [ 3.2334 3.1669| 27.0605 | 0.0054
Mac+YYRR(404) | 1.8174 2.9300 27.1408 0.003

Training set

2" order (10 terms) Mach 0.7511 0.5437] 1.9430 0.1354
Mac+XYY 1.3823 1.8873| 17.8670 0.0617
Mac+XYY+XYR | 1.0955 1.6314| 18.0721 0.0821
Mac+YYRR(404) | 0.4700 0.5994 8.3434 0.0134

3% order (20 terms) Machb 0.0551 0.0576] 0.2244 0.0021
Mac+XYY 0.6849 1.3344| 13.2440 0.0233
Mac+XYY+XYR 0.5458 1.0999| 13.9019 0.0116
Mac+YYRR(404) | 0.0571 0.118§ 2.2247 0.0016

Table 4.6: Spectral color difference after reconstruction
RM SE
Avg. | Std. M ax. Min.
Training set

2" order (10 terms) Mach 0.0354| 0.0250| 0.1229 | 0.0094
Mac+XYY 0.0254| 0.0168| 0.1408 | 0.0032
Mac+XYY+XYR 0.0276| 0.0193| 0.1554 | 0.004¢
Mac+YYRR(404 patch) 0.0188| 0.0156| 0.1620 | 0.003(

3% order (20 terms) Mach 0.0262| 0.0225| 0.0916 | 0.0026
Mac+XYY 0.0222| 0.0159| 0.1007 | 0.0023
Mac+XYY+XYR 0.0240| 0.0184| 0.1456 | 0.002(
Mac+YYRR(404 patch) 0.0138| 0.0139| 0.1637 | 0.0014

I mage of fish

2"%order (10 terms) Macb 1.6078| 2.2106| 11.3326| 0.1819
Mac+XYY 1.5047| 2.2076| 11.0383| 0.2475
Mac+XYY+XYR 1.4981| 2.1945| 11.0646| 0.2938
Mac+YYRR(404 patch) 1.4041 | 1.9767| 9.8274 | 0.1737

3%order (20 terms) Machb 3.186 | 3.5024 16.2798| 0.2319
Mac+XYY 1.5418| 2.3626| 10.9252| 0.1089
Mac+XYY+XYR 1.4258 | 2.3840| 10.9380 | 0.1255
Mac+YYRR(404 patch) 1.5349| 2.1575| 9.8115 | 0.094(Q

Fig. 4.10 and Fig. 4.11 show the original speaeflectance curves of the fish image and

reconstructed spectra fot*zand 3 order polynomials for chosen pixel.
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Figure4.11: Original (red line) and reconstructed spectrasif vith 10 (green line) and
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Analysis of the fish spectra reconstruction revedlee following: CIELAB AE error
decreased from 2.8097 to 1.8174 in tffeddder which is still less than in th&%drder

polynomial; RMSE has the least value of errortive 2 order polynomial which
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decreased from 1.6078 to 1.40%\ith regard to the decreasing of RMSE values, sakctr
curves of the reconstructed spectra look smoothchs#r to original.

Also, polynomial regression method was tested wiet of spectral images of fish skin

samples measured by the spectral line camera IMmi@p&OE. A description of all

conducted measurements is considered in Chaptére&ting of the reconstruction

method was performed with the training set congisthe Macbeth chart and part of the
Munsell book for the % and & order polynomials.

Tables 4.7 — 4.12 show the colorimetidE=( and spectral color difference (RMSE) errors

between the original and estimated spectra of r@iffefish skin samples.

Table 4.7: Spectral estimation accuracy for skin sample # 11

AE
Avg. Std. M ax. Min.
2"% order (10 terms) Mach 10.6588 5.3871 22.804 1.0054
Mac+YYRR 7.2169 4.4481 18.762 0.2563
3% order (20 terms) Macbh 2.255 1.877 10.833 0.0826
Mac+YYRR 1.2367 0.9662 7.8765 0.3212
RM SE
2 order (10terms) Mach 0.5179 0.3244 2.0126 0.1044
Mac+YYRR 0.3159 0.1464 0.7605 0.0947
3%order (20terms) | Macb 1.9526 1.5631 7.8154 0.1032
Mac+YYRR 0.3341 0.171 0.7227 0.0621
Table 4.8: Spectral estimation accuracy for skin sample # 14
AE
Avg. Std. M ax. Min.
2" order (10 terms) Mach 9.1913 4.6515 20.6443 0.7431
Mac+YYRR 6.0646 3.6474 16.4245 0.3555
3% order (20 terms) Mach 1.6734 1.2929 9.792 0.1663
Mac+YYRR 0.9056 0.4854 6.0003 0.2114
RM SE
2" order (10 terms) Macb 0.5208 0.3355 1.9847 0.0854
Mac+YYRR 0.2989 0.1353 0.7741 0.092
3% order (20 terms) Mach 1.7189 1.293 5.9625 0.0944
Mac+YYRR 0.3254 0.1781 0.7619 0.0612
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Table 4.9: Spectral estimation accuracy for skin sample # 10

AE
Avg. Std. Max. Min.
2" order (10 terms) Macb 2.2833 2.2596 14.0901 0.0905
Mac+YYRR 1.4028 1.2312 9.9955 0.42
3% order (20 terms) Mach 0.3441 0.3428 4.1933 0.0023
Mac+YYRR 0.445 0.2606 2.7709 0.0184
RM SE
2" order (10 terms) Macb 0.3835 0.3063 1.6232| 0.0738
Mac+YYRR 0.2246 0.1044 0.5408 | 0.0629
3% order (20 terms) Macb 0.7983 0.6225 2.1389| 0.0518
Mac+YYRR 0.296 0.1587 0.6033| 0.0528
Table 4.10: Spectral estimation accuracy for skin sample # 2
AE
Avg. Std. Max. Min.
2" order (10 terms) Macb 0.5867 0.3341 1.7043 0.0928
Mac+YYRR 0.2449 0.1011 0.9747 0.0149
3% order (20terms) Mach 0.2009 0.0978 0.3766 0.0014
Mac+YYRR 0.1534 0.0692 0.3573 0.0067,
RM SE
2" order (10 terms) Mach 0.3135 0.1812 0.7583 | 0.0636
Mac+YYRR 0.469 0.3878 1.1527| 0.0584
3 order (20 terms) Macb 0.4224 0.5151 2.8739| 0.063
Mac+YYRR 0.4886 0.417 1.2334| 0.0584
Table 4.11: Spectral estimation accuracy for skin sample # 23
AE
Avg. Std. M ax. Min.
2" order (10 terms) Mach 2.3862 1.6275 15.7696 0.3347
Mac+YYRR 1.1018 1.0402 11.3691 0.2654
3% order (20 terms) Macb 0.3407 0.2272 4.2915 0.0619
Mac+YYRR 0.5297 0.1093 1.5705 0.1132
RM SE
2" order (10 terms) Macb 0.5329 0.4997 2.5974| 0.1046
Mac+YYRR 0.2506 0.1142 0.4594 | 0.0834
3 order (20 terms) Macb 0.7191 0.4987 2.2754| 0.0733
Mac+YYRR 0.3262 0.1892 0.7001| 0.0678
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Table 4.12: Spectral estimation accuracy for skin sample # 22

AE
Avg. Std. M ax. Min.
2" order (10 terms) Macb 1.2567 0.9872 9.6891 0.0798
Mac+YYRR 0.9561 0.4298 6.0255 0.2339
3% order (20terms) Macb 0.1872 0.1214 1.5369 0.0011
Mac+YYRR 0.3448 0.1451 1.8923 0.0154
RM SE
2" order (10terms) Macb 0.3836 0.34 1.7442 0.0723
Mac+YYRR 0.2355 0.1191 0.6111 | 0.0586
3% order (20 terms) Macb 0.6686 0.4745 1.5025 0.0578
Mac+YYRR 0.3452 0.2059 0.7032| 0.0558

Fig. 4.12 compares results of spectra estimatienfpned with different training sets:
in the first case, the training set is the Machatart with 24 samples (on the left) and in
second case is extended training set (the Maclietht end the Red-Yellow part of the

Munsell book). It can be concluded that the recoiestd spectra with extended training

set (on the right) looks closer to the originalrtithe one on the left. The reconstructed

spectrum of the™ order polynomial is smoother than witll 8rder polynomial.
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4.2. Summary

In this chapter we considered polynomial regressipectra reconstruction from RGB
values. This method was tested with tf @hd 3 order polynomials with 10 and 20
terms, respectively. In the training phase, the bé#it chart color checker (24 samples)
and Red-Yellow specimens of Munsell book (404 sasiplvere used to improve the
reconstruction. As a testing set, SRGB values efMlacbeth chart and sRGB images of

fish and measured skin samples of Arctic charr wélzed.

Analysis of the results for different training sesmonstrated that by increasing the size
of the training sethe spectral reconstruction accuracy was improvidte testing process
showed that the"3 order polynomial model with extended training petduces the most
accurate reconstruction of the tested method. Tthis,model was chosen as the most
accurate model for spectra estimation of the Arcliarr from RGB values. The digital
images of fish and of the training set must be meduunder the same condition,
however. Calculation of corresponding transfornratiatrix W must be conducted for
only certain conditions, i.e. the light source &ypke of camera. To estimate spectra from
RGB images of fish taken under various conditioosfresponding transformation
matrices must be computed.
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5. EXAMINATION OF CORRELATION BETWEEN CAROTENOIDS
AMOUNT IN FISH SKIN AND THEIR SPECTRA

5.1. Measurements and pre-processing of spectral im  ages

As described in Chapter 2, the carotenoids of Arctiarr are important pigments which
are responsible for specific fish coloration. Oéh@ aims this study is to examine the
correlation mechanism between carotenoids amouriisin skin and their reflectance

spectra.

For this purpose the spectral measurements of tbécAcharr’'s skin were made in order
to obtain spectral information of the skin colosatwhich varied in hue. Spectral images
of fish skin were acquired by the spectral camien&pector V10E with D65 illumination

in the visible range of wavelengths 400 — 800 ntihai5 nm step. The specimens of fish
skin selected were of various colors to encompasswch hue of fish skin coloration as
possible (Fig. 5.1). The size of each sample wawoxgmately 10x10 mm (a size

required in pigment analysis). All the measuremerdse conducted with skin samples of

frozen and fresh fish. Fig. 5.2 shows the speatrage of a fish skin sample converted to

SRGB and a spectra curve of a chosen pixel.

Figure5.1: A color variety of measured fish skin

36



0.35

03}

025+

0.2F

spectral reflectance

01F

fish skin

0.05¢ .

AP~

D e 1 1 1 1 1 1 A
400 450 500 550 600 650 700 750 800
wavelength, nm

Figure5.2: Skin sample of fish and spectral reflectance osehixel

Moreover, to conduct spectral reconstruction witthasen in Chapter 4 the polynomial
model with training set, RGB images of skin samplese taken by a digital camera
(Canon) under D65 illumination. Since selectedniray set contains Macbeth chart (24
patches) and Munsell book pages (YY, YR and RR)BR@ages of them were acquired

under the same with fish skin conditions.

All the spectral images of skin samples were subgeto further processing. Average
values of spectral reflectance were calculatecefmh fish skin sample to match them to
carotenoids amount of corresponding skin sampletarekamine their correlation. As a
result, matrix of spectral reflectance was computedere the number of rows
corresponds to the number of samples. Example @ffigh skin samples and their
corresponding average spectral reflectance is shawrg. 5.3 and Fig. 5.4. All the
measured skin samples of fish and the computed sreaectral reflectance for each one
are shown in Appendix 1.
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Figure5.3: Spectral images of skin samples (humbers: 13-iBppen fish

converted to sRGB

frasen fish samples:13-14-15-16-17-15
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Figure5.4: Average spectral reflectance for skin samples @ars1 13-18)
The analysis of the mean reflectance demonstratgdtie skin samples with brighter red

coloration have lower values of spectral reflectkamather than samples with dull

coloration (Fig. 5.5).
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Figure5.5: Spectral reflectance and corresponding colorsbf §kin (on the right);

saturation of skin color is increasing from up towh

After the measurement session and digital imagiihg, fish samples were exposed to
chemical analysis for extraction of the carotenoidse pigment analysis was conducted
by the Department of Biology of University of Joans Carotenoid pigment was
extracted by an established method described blfaSetaal [Scalia et al., 1989]. The
process was performed in several steps. The samplesplaced into test-tubes and each
fish skin sample was weighted (Fig. 5.6). Carotdsoio be more precise — astraxanthin,
were dissolved from fish skin with acetone and wetered under reduced pressure (Fig.
5.7). A special formula was used to calculate tlomcentration of the extracted
astraxanthin. As a result a data set with the amsooinastraxanthin for each skin sample

was obtained.
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Figure 5.6: Measuring the weight of skin samples

Figure5.7: Dissolving carotenoids with acetone (on the left)l filtering the pure

carotenoids under reduced pressure (on the right)

5.2. Correlation in frozen and fresh sets of fish s kin samples

As input we had two data sets to analyze — data thé average spectral reflectance and
data with measured carotenoids concentration oh ekin sample. To examine the
relationship between them, ratio analysis of réflece spectrum [Chappelle et al., 1992]
was used to estimate bands sensitive to the pigniatkburn [Blackburn, 1998]
suggested that the optimal individual wavebandckmotenoids estimation is located at
470 nm. Thus, a carotenoids-specific index R800(RWas derived for this purpose,
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where R800 and R470 are the reflectance (R) atctireesponding wavelengths,
respectively, as a quantitative measure of caradeno

As mentioned before two types of fish were usedz@n and fresh fish) for
measurements and pigment analysis. The sampletizezen fish was 30. It must be
noted that the sample size was altered for thé fiise sample because of the presence of
noise. The sample size of fresh fish set was ds mduced from 42 to 32. The noise can
be explained by the errors introduced by spectedsurement and pigment analysis. In
addition, a glossiness of fresh fish skin causedl gdpectral reflectance to increase to
values greater than 1 which created problems irspgeetral measurements and digital

imaging process.

Thus, the relationships between the reflectancetspand carotenoids amount, were
verified separately with frozen and fresh fish dsgts and are plotted in Fig. 5.8 and Fig.
5.9.

Frosen fish

20 1
18 A
16 A
14 4 * *
12 A

10

Carotenoid-index, R800/R470

0 50 100 150 200 250 300
Measured carotenoid concentration, pg/g

Figure5.8: Carotenoids-index reflectance R800/R470 is contpareneasured
carotenoid concentration in frozen fish
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Figure5.9: Carotenoids-index reflectance R800/R470 is contpareneasured

carotenoid concentration in fresh fish

To evaluate the strength of the correlation betwtbenreflectance ratio and amount of
carotenoids quantitatively, the correlation coédiits’ and coefficient of determinatién
were calculated for frozen and fresh fish sets i@ &hbl). Positive values of correlation

coefficients indicate a positive direction of céaten; which means that when one

variable (i.e. amount of carotenoids) tends toease, the other variable (Carotenoids
index, R800/R470) also tends to increase. Valugbetorrelation coefficient show the
significant correlation between two variables. Aretation coefficient of 0.7280 for a
sample size of 30 frozen fish gave a 95% confidentaval of ranging from 0.50 to
0.86. Similarly, for fresh fish a correlation caefént of 0.5925 was obtained for a
sample size of 32, with a 95% confidence interaalging from 0.31 to 0.79. The values

of the coefficients signify that for frozen fish3% of the variance in the carotenoids-

! Correlation coefficient (r) measures the strermtd direction of the relationship between two oreno
variables [Statsoft Electronic Textbook].

2 Coefficient of determinationrgives the proportion of the variance of one Malgahat is predictable
from the other variable [Statistic 2, Correlation]
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index R800/R470 is "explained" by the amount obtamoids in fish skin; for the fresh

fish itis 31.1%.

Table5.1: Correlation and determination coefficients for sdgtffozen and fresh fish

Fish Correlation coefficient, r Coefficient of deter mination, r?
Frozen 0.7280 0.5300
Fresh 0.5925 0.3510

After analyzing the sets separately, the two séfsoaen and fresh fish were combined
(Fig. 5.10). The relationship between the carotswoatio and measured carotenoids
concentration was plotted and a linear regressouation was found (Fig. 5.11). The
calculated correlation coefficient equaled 0.678veihg a significant correlation between
the two variables in combined set of frozen andHrish. The 95% Confidence Interval
on the population with a sample size of 62 rangednf0.52 to 0.80. The calculated
determination coefficient equaled 46.12%, implythgt 46.12% of the variability in the

carotenoids-ratio can be explained by the varighili carotenoids concentration.

20
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% Ax A A Frosen fish
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carotenoid-index, R800/R470

0 50 100 150 200 250 300

measured carotenid/astraxantin concentration, pg/g

Figure5.10: Carotenoids-index reflectance R800/R470 is contpreneasured

carotenoid concentration for combined set of frozed fresh fish
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Figure5.11: Linear regression found between carotenoids-irashekmeasured

carotenoids concentration for combined set of fncened fresh fish

5.3. Summary

In this chapter the correlation between amount abtenoids in fish skin and their
spectral reflectance was examined. As a metricpettsal reflectance for carotenoids,
reflectance indices R800/R470 sensitive to theteamds were chosen. Frozen and fresh
fish sets were investigated separately and togethealyses of the results showed a
positive correlation between the amount of caratésan fish skin and their spectral
reflectance. Calculated correlation coefficiendidgated a significant correlation (r>0.5).
In addition, the correlation in the frozen fish gets higher than in fresh fish. It should be
noted that the measurements and pigment analysiesi fish turned out to be more
complicated than frozen fish. Glossiness of thelfriesh skin, errors of the measurements

and analysis led to the elimination of some samples

A combined set of frozen and fresh fish with sangite of 62 was studied by regression
analysis. A linear regression line was plotted withe following equation:
y=0.0454x+2.8636 Using this, the amount of carotenoids can be ipred from the
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spectral ratio of spectral reflectance of fish skithout an expensive or long pigment
analysis process. Thus, a nondestructive techniquehe assessment of carotenoids

content from spectral reflectance in the Arcticrchreas developed.
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5. DISCUSSION AND CONCLUSION

In this work we tried to apply known color imagitechnique for particular issue from
real life. The main aim of this work was to fa@t® work of biology scientists in the
investigation of the Arctic charr species. The kmjint in studying is assessment of
carotenoids amount which conveys valuable inforomatbout fish vitality and health
conditions in evolutionary biological research, tigalarly. To avoid an expensive and
long chemical analysis required a sacrificing shfspecimens, an affordable methods to
approximate amount of carotenoids in fish skin kmg spectral information was
proposed. The method involves a reconstructiontsde®flectance from RGB images
and allows conducting anon-destructive process for approximation amount of

carotenoids based on spectral carotenoids-ratio.

During this research a polynomial regression methas$ investigated to improve
accuracy of the reconstruction of fish spectra.odypomial model and extended training
set enhanced spectral reconstruction were detedmiRelationships between carotenoids
amount and spectral reflectance were investigatedrozen and fresh skin sets,
separately. The significant positive correlationwsen carotenoids concentration and
spectral reflectance of samples being measuredfowasl. The examination showed
higher correlation in set of frozen. We faced vatiallenges with fresh fish processing. A
glossiness of fresh fish skin was an obstacle mecb measurements. A preparation of
the samples of fresh fish (to cut and separaténddkier of skin from a body) according
to required parameters for pigment analysis wablpnaatically. A weight of skin sample
(with a required size) exceeded the maximum alldevakeight. All these led to errors
and noise in evaluation. Unlike the fresh fish, i@ measurements and pigment
analysis of the frozen fish samples was performétont any difficulties. Taking into
account this aspect and higher correlation coeffigiit can be assumed that frozen fish is
preferable for utilizing for carotenoids investigat But, from another hand, a process of
freezing and defreezing can affect to carotenoigment content. Since this area is now

well-studied, it is difficult to make a conclusiabout frozen fish.

The conducted examination of correlation betweaonteaoids amount in fish skin and

their spectra confirmed f@asibility of the proposed method for quantify of carotenoids
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by using spectral information. But the future depehents of this method are needed. To
see if there are any significant changes in the RM®&ors, testing of other spectral
reconstruction methods are required. A re-exanonaif the relationship between
carotenoid amount in fish skin and their spectrthvarger number of samples would
improve the results of correlation. Moreover, sindyof the fresh fish and investigation
new way to enhance the spectral measurements gmiepi analysis process would
recommend for improving results. Probably, any desnin the spectral reconstruction
method and type of regression in prediction of tsaroid amount based on spectral

information may produce better results in the fetur
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APPENDIX 1: Spectral measurements results

FROSEN FISH SAMPLES
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Figure 1: skin samples # 1-6
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Figure2: The means of spectral reflectance (on the left)amoesponding color
converted in SRGB (on the right)
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Figure 3: skin samples # 7 — 12
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Figure4: The means of spectral reflectance (on the left)@mdesponding color
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Figure5: skin samples# 13-18
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converted in SRGB (on the right)
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‘spm.mat’ is matrix with mean of 18 samples
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Figure7: The means of spectral reflectance (samples # 1-18)
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Figure7: skin samples # 19 — 24

=101 x| =loix|

File Edit View Insert Tools Desktop Window Help Fle Edt View Insert Tools Desktop Window Help

D& |ea®s @ 0B =8O D& Kaame|E DB 5O

19-20-21-22-23-24
o7 T T T

e | o |
0.5+ -

19 21 20
Figure8: The means of spectral reflectance (on the left)@mtesponding color converted in SRGB
(on the right)

03-

02-

0.1

| ! L I L I L L
400 450 500 550 600 B50 700 7a0 600

56



Figure9: skin samples # 25 — 30
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FRESH FISH SAMPLES

Figure12: skin samples# 1 -6
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Figure 15: The means of spectral reflectance (on the left)a@mesponding color converted in SRGB
(on the right)
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Figure17: skin samples # 13 — 18
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Figure 19: skin samples # 19 — 24
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Figure20: The means of spectral reflectance (on the left)@mesponding color converted in SRGB
(on the right)
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Figure 22: The means of spectral reflectance (on the left)a@mdesponding color converted in SRGB
(on the right)

64



o~ *-*-A.-‘. - -

Figure 23: skin samples # 31 — 36
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Figure24: The means of spectral reflectance (on the left)@mesponding color converted in SRGB
(on the right)
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Figure 5
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Figure25: The means of spectral reflectance for samples & af&esh fish
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Figure 26: skin samples # 31 — 36



APPENDIX 2: Carotenoid-indices and astraxanthin
concentration measured in the skin of Arctic charr

Table 1: Frozen fish Table 2: Fresh fish
carotenoid- astaxanthin carotenoid- astaxanthin
# index Hg/g index Hg/g
sample | R800/R470 # sample R800/R470
2 3.09 34.47 35 1.01 0.84
5 2.96 40.48 36 1.03 2.88
3 3.65 43.74 2 2.84 18.10
29 7.24 63.17 1 2.84 22.42
6 3.44 65.22 29 6.06 29.26
4 3.36 72.88 8 3.40 33.50
1 4.19 80.14 11 5.10 36.26
25 4.18 85.06 34 8.10 40.35
28 4.20 87.40 9 3.78 42.39
18 9.18 100.96 31 6.07 43.51
14 16.66 103.81 7 3.84 44.56
24 6.24 110.04 37 12.06 48.60
19 8.56 110.49 33 6.90 53.40
30 5.64 115.07 32 7.06 57.69
17 13.97 119.47 42 9.80 74.35
26 4.08 127.09 41 8.62 76.34
20 6.38 133.71 14 10.25 77.72
16 6.43 137.56 18 7.37 79.52
9 11.31 141.62 12 3.81 81.92
27 411 144.92 10 3.34 84.66
15 9.71 148.95 3 5.48 88.85
10 9.60 152.31 13 9.27 97.71
7 10.50 156.23 26 11.84 102.05
22 9.76 170.98 6 3.70 104.60
21 9.27 195.86 30 6.54 105.85
23 11.57 199.80 39 8.24 107.62
13 13.20 208.32 4 3.84 113.65
12 13.87 231.87 27 12.24 122.71
11 17.42 242.87 38 9.14 124.84
8 12.57 246.16 16 8.42 131.94
19 7.69 135.34
23 12.60 141.28
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