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Abstract 
 
The aim of this work is to study and apply color technique for non-destructive 

approximation of the carotenoids amount in fish skin. The object of the study is Arctic 

charr (Salvelinus alpinus) and its carotenoids-based coloration.  

For this purpose an affordable method for assessing carotenoids content in fish skin based 

on digital imaging reconstructed into spectral reflectance was proposed and examined. A 

polynomial regression method was investigated to improve the accuracy of the 

reconstruction of fish spectra. A polynomial model and an extended training set enhanced 

spectral reconstruction were determined. The correlation between carotenoids 

concentration in fish skin and their spectral reflectance was examined; results confirmed 

a feasibility of the proposed method. The technique allows to avoid an expensive and 

long chemical analysis required a sacrificing of fish specimens. 

 

The research work was performed in co-operation with Biology Department of 

University of Joensuu for their purposes. 
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1. INTRODUCTION 

 

1.1. Overview  

Color as a property may give us the knowledge about an object. In biological science, a 

variety of colors may convey valuable information. Any color changes in plants or 

animals may provide significant information about their state which then can be studied 

and interpreted by scientists. The coloration of animals is produced with different color 

pigments. Recently, the evolutionary biologists have interested in identifying in 

carotenoids-derived nature of fish coloration. Knowledge about the types and content of 

color pigment is important in social and sexual contexts [McGraw et al., 2005].  

In present day, colors and their digital representations are becoming of increasing 

importance in every day life. The possibilities to measure color’s characteristics of an 

object by using the modern imaging systems facilitate the investigation the color 

properties of an object and open a wide range of opportunity to scientists in their research 

works. High computational resources and systems for digital image processing are 

becoming more popular in various industry fields such as medicine, biology, forestry etc. 

This research focuses on the study of color and its characteristics in biological areas, 

namely in fish research. The object of this study is a species of fish called Arctic charr 

(Salvelinus alpinus) (Fig. 1.1). Arctic charr is considered an endangered species in 

Finland and studied by the biology scientists to restore this population of fish. A red 

coloration of this fish is carotenoids-based coloration. It is assumed to be a factor 

defining the sexual behavior of fish during spawning period. The high level of 

carotenoids in fish skin may be indicator on male attractiveness, activity and ability to 

produce health posterity [Lozano, 1994; Grether et al., 2004].  Knowledge about 

carotenoids content is critical in biological research for determination health state, social 

and sexual contexts of fish. The relationships between carotenoids in the integument, 

level of immune-system function and sexual attractiveness were tested and a positive 

correlation has been revealed [Grether et al., 2004]. 
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Figure 1.1: Arctic charr as an object of the study  

This thesis has been carried out in co-operation with Biology Department of University of 

Joensuu. In this work, obtained knowledge about studied fish species were combined and 

reinvestigated from two points of view - biology and color science – in order to get 

effective results in study of this species. 

  

1.2. Study objectives  

As described, assessing carotenoids content is important for determination valuable 

information about different characteristics of fish individual. Carotenoids can be 

extracted and quantified with complex chemical analysis which is expensive.  

The main objective of this study was to develop and test affordable method for 

determination of an approximation of carotenoids amount of Arctic charr which can 

facilitate the conduction of the biological research of this fish. Due to all the limitations 

of fish research (see next section), an algorithm shown in Fig. 1.2 was proposed to 

approximation the carotenoids amount in Acrtic charr’s skin based on RGB image.  
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Figure 1.2:  Algorithm for approximation amount of carotenoids in fish skin 

To achieve the objective following research goals were established: 

• To study spectral reconstruction method based on digital camera responses and 

adopt to fish images 

• To acquire and analyze the spectral images of fish skin with different intensity of 

carotenoids-based coloration 

• To examine the correlation mechanism between the measured carotenoids 

concentration in fish skin and corresponding reflectance spectra  

• To find out whether the correlation can provide significant prediction of 

carotenoids quantity in fish skin based on spectra information 

 

 1.3. Scope, limitations, and constraints 

Fish research imposes definite constraints and limitations. Let us to outline the main ones. 

Ideally, spectral reflectance of fish which provides accurate color’s information (see 

section 3.3) would probably be the most convenient metric to estimate the color pigment 

amount in fish skin.  

The major drawback of this study is the acquisition of the spectral images of fish. First of 

all, taking spectra of fish involves the sacrifice of fish which should be avoided in light of 

conservation of this species. Moreover, the spectra acquisition of fish takes long time 

which can have a negative effect in respect to changes of fish coloration. From another 

point of view, spectral imaging devices require certain experience and special skills to 

use. In addition, such devices are expensive and not portable. Other limitations are 

constant and intense light source which has to be applied directly to the flattened and 

size-fixed sample area. This mode creates difficulties with imaging of flashy parts such as 

fish skin.  

RGB  
image 

Spectra  
reconstruction 

Amount  
of  carotenoids 
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In an attempt to overcome the difficulties and limitations in spectral imaging, the spectral 

reconstruction method from digital camera responses was utilized [see section 3.4]. The 

taking of RGB images is the most appropriate approach in case of fish research. But 

using RGB values from a digital device for estimation can not guarantee precise 

solutions, since the trichromatic technique does not provide the accurate color quality. 

The main limitations of digital color representation and corresponding spectra 

reconstruction are light- and device-dependencies. Moreover performance of spectra 

estimation from camera responses depends on camera [8].  

1.4. Thesis organization 

This thesis is arranged as follows. Chapter 2 provides a detailed description about the 

main object of this study. Readers can obtain common information about fish species 

such as Arctic charr and an introduction to the carotenoids color pigment. In this chapter 

an uncommon field of study for color experts is presented which describes the essential 

motivation to research. 

Chapter 3 describes an introduction to light and color and presents the basic color 

imaging technique and methods used to investigate the object of this study. 

Chapter 4 provides a description of the testing of spectral reconstruction based on 

polynomial regression method. Testing was done by using 2nd and 3rd order of polynomial 

and different training set. As a result of the chapter, the best type of polynomial function 

and extended selected training set has been chosen.  

Chapter 5 presents the results obtained during spectral measurements of fish skin. The 

Chapter contains the processing the outcomes of the examination of the correlation 

between carotenoids amount in skin and their spectra. 

All work summarized in Chapter 6. Discussion and conclusions of this study are 

presented with possible suggestion of improvement.  
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2. ARCTIC CHARR AND COLOR 

 

2.1. Overview  

The object of this study is a fish species named Arctic charr. Let us take a close look at 

this mysterious fish which has triggered our rapt attention.  

Generally, Arctic charr (Salvelinus alpinus) is related to the Salmonidae family, native to 

Arctic, sub-Arctic and alpine lakes and coastal waters. This species can be regarded as 

the northernmost freshwater fish in the world.  

Arctic charr is possibly the oldest and the most beautiful freshwater fish living in Finland 

[Arctic Centre, Karttaikkuna Oy]. Northern Lapland is the main part of charr’s location 

especially in the municipalities of Utsjoki, Inari and Enontekiö. In Lapland, Arctic charr 

is often called “Rautu”, the small one is called “Paltsarautu” and “Nieriä” in North 

Karelia [Arctic Centre].  

The tasty meat of the Arctic charr attracts people to breed this species. That is why many 

attempts have been made to breed and introduce it to suitable conditions. This fish 

species is very sensitive to environmental changes and this makes breeding quite difficult. 

Additionally, breeding meet other problems like net fishing and competition since Arctic 

charr is a week competitor and the population can be injured by other species 

[Karttaikkuna Oy]. 

The coloration of the charr is wonderful in autumn during the spawning season. In this 

period the males commonly develop a deep red color in their abdomen [Karttaikkuna 

Oy]. Their carotenoids-based coloration becomes brighter with a dark back and bright red 

and orange underbelly (Fig. 2.1).  
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Figure 2.1: Arctic charr [Arctic Centre] 

 

In Finland the Arctic charr is considered at risk of disappearing species. This fish can be 

alarmingly endangered because of the influence of threat factors such as the regulation of 

watercourses, excessive fishing and the eutrophication of waters. For instance, if to 

compare catches of Arctic charr nowadays with 1930s before regularization started, they 

are declining regularly [Karttaikkuna Oy]. 

Biology scientists are studying how to protect and restore the Arctic charr population. 

The crucial point to consider in increasing fish population is to enhance the amount of 

posterity. As such in the spawning season this should provide qualitative and quantitative 

descendants. There is a number of scientific works in which fish sexual selection has 

been discussed and the red coloration has been considered important in mate choice 

[Masvaer et al., 2004; Saks et al., 2003]. Masvaer et al concluded that “females 

evaluating male abdominal coloration may obtain information about differences between 

males in fertilization potential” [Masvaer et al., 2004]. The red coloration of fish can be 

considered as a factor defining behavior during mating period and its activity and ability to 

produce healthy posterity. Thus, fish redness can be regarded as an indicator of successful 

individuals. 

From a biological point of view, the color pigment responsible for many of red, orange 

and yellow colors in nature is carotenoids pigments [Humphries et al., 2004; von Schantz 

et al., 1999]. Arctic charr is “an excellent example of the species developing a strong 

carotenoid based coloration adjoining the spawning period” [Martinkauppi et al., 2007]. 
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2.2. Carotenoids as signals 

Recently carotenoids pigments have become popular in the study of sexual selection in 

animals. Biological scientists argue that carotenoids play a major role in the mechanism 

of selection. The amount of carotenoids as a colorant for skin, scales is limited because 

animals can not produce carotenoids but acquire them from foods. The main assumption 

of most science studies is that carotenoids-based color accurately reflects the amount of 

carotenoids within pigment patch [Saks et al., 2003].  

Color pigments such as carotenoids and melanins play important role in animal’s 

coloration. Carotenoid pigments are responsible for red, orange and yellow colors, while 

melanin pigments produce colors from an achromatic black to brown. Thank to these 

color pigments different animals such as birds, fish, lizards, frogs, penguins and etc 

obtain various coloration depending on season time [Hofmann et al., 2007]. 

In biological terms, the pigment cells of multicellular organisms are called as 

chromatophores. Fish chromatophores can be characterized by different types of cells. 

Coloration is the most important function in chromatophores of aquatic animals such as 

fish. Besides their role in coloration of fish, the chromatophores play significant roles in 

temperature regulation and protection from harmful radiation [Sugimoto & Oshima, 

2002]. 

According to Chatzifotis et al. [Chatzifotis et al., 2005] color of fish skin depends on the 

presence of chromatophores which can be classified into six types (melanophores, 

xanthophores, erythrophores, iridophores, leucophores and cyanophores). These 

chromatophores contain pigments such as melanins, carotenoids (e.g. astaxanthin, 

canthaxanthin, lutein and zeaxanthin), pteridines and purines. Color depends on the types 

and concentrations of carotenoid pigments present. A mixture of pigments provides the 

continuous variation from red to yellow distinguishing by the ratio of red to yellow 

carotenoids [Hofmann et al., 2006].  

There are a number of works studied the relationship between coloration and color 

pigment. Saks et al. [Saks et al., 2003] considered the relationship between hue, chroma 

and brightness and caroteniod pigment content in feather of birds and found positive 

correlation. Earlier studies have shown the correlation in living plants; for example, 
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between spectra reflectance and vitality of cucumbers (Cucumis Sativus) [Aario et al., 

2001], assessing carotenoids content in plant leaves with spectral reflectance [Gitelson et 

al., 2002]. Humphries et al. have found the strong positive correlation between CIELAB 

b* and carotene concentration [Humphries et al., 2004].  

This research focused on astraxanthin since this color pigment was found as a defining 

red-color of Arctic charr skin [Scalia et al., 1989].  The goal this study is to examine the 

strength and direction of the correlation between carotenoids (astaxanthin) concentration 

in fish skin and their spectral reflectance.  
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3. COLOR AND IMAGING 

3.1. Color as phenomenon  

The enigma of color has caught the attention of many of the most talented scientists. The 

question about the nature of color has been attracting humans since antiquity and it has 

resulted in diverse definitions. Intellectuals such as Aristotle, Grimaldi, Newton, Young, 

Maxwell and others have contributed to the knowledge surround of this topic.  

First of all, the phenomenon of color exists only through human vision i.e. the human 

ability to perceive color. We can see things around us every day due to light, which can 

be natural or artificial. Sun light is the most important natural source for human and all 

living beings. Theoretically, light is a part of electromagnetic radiation that is visible to 

the average human eye [Field, 2004]. Visible colors are in the range between 

approximately 380 and 780 nanometers (nm) on the electromagnetic spectrum, as shown 

in Fig. 3.1. 

 

Figure 3.1:  The visible spectrum as a part of electromagnetic radiation (adopted from 

http://www.daviddarling.info/encyclopedia/V/visible_light.html) 

The various colors of objects are derived from the interaction between three participants: 

a light source, an object, and a detection system. The detection system can be artificial, 

human (observer) and another biological form. In human vision, color events occur as a 

sensations in the observer, originated by the spectrum of the light source and modified by 
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the colored object [Fraser et al., 2003] (Fig. 3.2). Colored surfaces transmit and reflect 

different amounts of wavelengths. If any component changes from this interaction, the 

color event may be different. 

 

Figure 3.2: Color event as interaction between three participants 

The CIE (Commission Internationale de l’Eclairage) or International Commission has 

specified a number of CIE Standard Illuminants. The term illuminant refers to “a light 

source that has been measured or specified formally in terms of spectral energy” [Fraser 

et al., 2003]. All the illuminants differ in their color temperature and spectral power 

distribution, i.e. power of light at each wavelength. Color temperature of the illuminant is 

the temperature at which a heated theoretical “black body” source produces light of the 

same visual color as the illuminant. There are a number of the most popular CIE 

illuminants [Fraser et al., 2003]: 

• Illuminant A represents a tungsten light source with color temperature of 

2856 K.   

• Illuminant D is used to represent various model of daylight. The most 

commonly used are D50 and D65 (Fig. 3.3) with correlated color 

temperature of 5000K and 6504K, respectively. 

• Illuminants F is a set of various types of fluorescent light source named F2, 

F3, and so on, up to F12. 
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Figure 3.3: CIE Standard Illuminants D50 (blue) and D65 (red) 

In this study, all the spectral measurements and digital imaging were done with D65 CIE 

Standard Illuminant. 

The modified signal of light reflected from an object is perceived by an observer. The 

standard person can distinguish color based on wavelength of reflected or emitted light 

due to the structure of trichromatic human color vision proposed by Thomas Young 

(1802). According to this model, the human perception of color is achieved through three 

types of color receptors (cone) which are maximally sensitive to short, medium and long 

wavelengths of lights (S-, M- and L-cones), respectively (Fig. 3.4). 

 

Figure 3.4: Cones absorption of light (adopted from 

http://en.wikipedia.org/wiki/Color_vision) 
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3.2. RGB and HSV as digital representation of color   

Many ways have been suggested and different color models used for modeling and 

representing colors. The RGB color space is widely used in digital devices for capturing 

images and displaying them such as Charge-Coupled Devices (CCD cameras) and displays. 

The RGB model can be represented as a 3D-color space which describes emitted colors 

by using three primary colors [Maroto et al., 2006]: 

− Red of 700.0 nm (R); 

− Green of 546.1 nm (G);  

− Blue of 435.8 nm (B).  

The RGB model is called an additive model because all spectral colors from 380 nm to 

780 nm can be formed by mixing of three primary colors in different proportions (Fig. 

3.5).  

 

Figure 3.5: Representation of additive color mixing 

The RGB space can be illustrated as a cube with Cartesian coordinates (Fig. 3.6). This 

color representation allows us to calculate the maximum number of digital colors of the 

RGB color space. This model thus has the capability of representing 2563= 16 777 216 

colors. 

According to the RGB model definition, color is described with three components: R, G 

and B. The value of these components is the sum of the respective sensitivity functions 

and the incoming light [Tkalcic & Jurij]: 

∫=
λ

λλλ dRSR )()(     ∫=
λ

λλλ dGSG )()(     ∫=
λ

λλλ dBSB )()(  (3.1) 

where 

S(λ) is the light spectrum, 
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 R(λ), G(λ) and B(λ) are the sensitivity functions for the R, G and B 

sensors respectively. 

Despite the fact that the RGB color model is simple, it has shortcoming in its practical 

application; since the RGB values depend on the sensitivity function of the capturing 

device the RGB model is device- and illuminant-dependent.  

Other different color spaces can be obtained from the RGB space through linear or non-

linear transformations. Review of the most widely used RGB color spaces and 

transformations can be found in [Pascal, 2003]. In this work, mainly the RGB space and HSV 

color spaces were applied. 

The HSV color space (Fig. 3.6) is a transformation of the RGB color space and defines colors 

in terms of hue, saturation and value. The hue of a color is in actual fact its name (i.e. red, 

blue, pink or some combination such as greenish, etc). The saturation of a color is its purity 

property that represents its position on a scale from achromatic white to the pure hue. The 

value describes how light or dark the color is (it can also be called brightness) [Field, 

2004]. The benefit of the HSV model is that hue and saturation components are similar to 

the way humans perceive colors. Thus some artists prefer to use this model. 

 

 

Figure 3.6: The RGB and HSV color models 

    

A digital image is composed of pixels. To store the digital image, it is required to divide 

it into a grid of pixels. Each pixel represents the color at a single point in the image. It is 

defined by the amount of red, green and blue colors in the RGB space, for instance. 
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Hence the whole image results in an array of pixels sometimes called a bitmap. The 

density of pixels of a digital image is known as its resolution.  

As pointed out before, color occurs as an event of three participants – a light source, an 

object and observer – but color also takes place only in human mind. We can measure the 

stimulus, i.e. light incoming to eyes and derive the response produced by the stimulus. 

For this purpose different types of measurement devices are used. All of them measure 

the light reflected or transmitted through a surface by using detectors. There are three 

main instruments namely densitometers, colorimeters, spectrophotometers. The 

differences between the three instruments are type and numbers of filters they use and 

their detectors sensitivity [Fraser et al., 2003].  

Densitometers measure the degree to which surfaces absorb light (density). They are 

sufficient to measure darkness or lightness. 

Colorimeters are devices used in colorimetry which measure colorimetric values in 

numbers that model the responses of the cone in the human eye. Colorimetry is the 

science that describes color in numeric models and predicts color match as human eyes 

perceive it. Modern colorimetry is based on the colorimetric system of the CIE. The CIE 

is a body of international color scientists. This organization provides a number of 

standard references and color spaces for defining colors [Fraser et al., 2003]. 

Spectrophotometry uses spectral imaging system to measure spectral reflectance which is 

the ratio between the intensity of light falling on an object and the reflected light [Fraser 

et al., 2003]. Nowadays the spectral reflectance provides the most accurate data regarding 

a color's characteristics.  

3.3. Spectral imaging  

The interest in spectral imaging has grown during the last few years. Nowadays, the 

applications of spectral imaging can be found in various fields of science and industry. 

The main benefit of spectral imaging is accuracy of the image acquisition. Imaging by 

spectral systems allows reproduction of the precise colors (exact spectral reflectance) and 

compensates for changes in illumination. Such a feature is useful for many applications 
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such as remote sensing, astronomy, food inspection, printing, study of illumination 

changes in natural scene, agrobiology and biochemistry. 

Basically, the spectral imaging systems allow the acquisition of spectral images with high 

number of spectral channels. The main advantage of spectral imaging over digital 

imaging is that the reflected light from the object is captured in a great number of narrow 

spectral bands through the ultraviolet, visible and infrared part of the electromagnetic 

spectrum. Thus, the spectral image can be represented as a set of monochrome images 

referring to the different wavelength which leads to a greater amount of data, useful for 

detailed study of objects.  

Of all the various spectral imaging systems, the line scanning based spectral camera 

ImSpector V10E (Fig. 3.7) was used for the measurement of spectral reflectance of fish 

skin samples in this study. This was to facilitate the analysis of the spectral reflectance of 

carotenoids-based colors. 

 

Figure 3.7: ImSpector V10E spectral camera 

Since the color of an object depends on its spectral reflectance )(λr  and the spectral 

radiance of the illuminant can be represented as a function )(λl , we can define the 

radiance of reflected light )(λf  as the following equation [Hardeberg, 1999]: 

)()()( λλλ lrf ⋅=      (3.2) 

Schematically model is illustrated in Fig. 3.8. 
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Figure 3.8: A simple spectral model for the interaction between light and the object 

In spite of all the benefits of spectral imaging, there are also several disadvantages. A 

large volume of data, expensiveness of spectral devices and duration of image acquisition 

are significant limitations. In special applications and due to these limitations, a spectral 

reconstruction is needed which can be based on a variety of methods.  

3.4. Spectra reconstruction 

The color research of fish is such a case where the spectral image acquisition of living 

fish is highly problematic, especially for processing time and living animals’ constraints 

(movements, limited time outside of water). Thus, as one of the solutions the spectra 

reconstruction from CCD camera responses is applied.  

There are numbers of methods for enhancing reconstruction’s performance such as kernel 

methods, Wiener estimation, Principal Component Analysis, radiance basis functions, 

neural networks, Self Organizing Map, numerical methods, look-up table methods. 

Review of the most popular estimation methods can be founded in literature [Heikkinen 

et al., 2007; Hardeberg, 1999; Baronti et al., 1998; Bochko  et al., 2007]. 

In this work the polynomial transformation method for spectra reconstruction was 

applied. In different literature this method can be referred to as least squares polynomial 
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regression method [Heikkinen et al., 2007] or the method using multiple regression 

analysis [Bochko et al., 2007].  The polynomial model is a popular method used in color 

science for color calibration problems. In our case the color calibration of the digital 

camera can be determined by the following approximation problem [Jetsu et al., 2006]: 

YWX ≈⋅       (3.3) 

where X – matrix containing RGB values of the camera ( 3xl
X ℜ∈ ); 

Y – matrix containing  spectra reflectance values ( nxl
Y ℜ∈ ); 

l  - number of samples; 

n - number of components in the spectrum; 

W – transformation matrix mapping matrix X to matrix Y. 

 In this model, unknown coefficients can be calculated from least-squares approximation 

based on pseudo-inverse method [Jetsu et al., 2006]. In general, simple first order model 

are not be adequate to characterize the spectra data. First-order sets of linear equations 

can be extended to higher order polynomial by adding and combining cross-products and 

higher-order terms to matrix X, such as RG, GB, RB, R2, G2, B2… to establish the best-fit 

transformation.  

To perform this reconstruction procedure of polynomial transformation, a training set and 

test set are used. The training set is used to compute the transformation matrix W from 

RGB values to reflectance spectra.  The training set is a set of matrix X and Y with 

known RGB values and reflectance spectra. Usually, for the training set the standard 

color checker charts are used such as Gretag Macbeth ColorChecker and Munsell Book 

which provide known reference colors. 

With the matrix of spectral reflectance and a matrix with corresponding RGB values we 

can find matrix X by multiplying both sides of the equation by the inverse of the matrix X 

(i.e. 1−X ). This is possible only for a square matrix. However, the approximation method 

can be used to compute the pseudo-inverse of a non-square matrix. In Matlab, the 

function pinv is applied [Westland & Ripamonti, 2004]. 

YXpinvW ⋅= )(       (3.4) 
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The main limitations of the polynomial transformation model are illuminant and camera-

dependency. Thus, for each combination of light source and type of digital camera, 

different transformation matrices needed to be computed.  

3.5. Spectral reconstruction accuracy 

In order to define the best order of the polynomial, some measurement of errors 

dependant on the particular solution needs to be defined. Ideally, the model should 

predict color with minimal errors. The process of spectral reconstruction (estimation) 

includes the statistical analysis of reconstructed spectra, estimation of error and 

minimization of error. To evaluate estimation accuracy, i.e. the difference between 

original (measured by spectral device) and estimated spectra from camera responses two 

types of spectral metrics were used in this work: 

 

• CIELAB ∆E error for colorimetric color difference [Kohonen, 2002] 

222 *)
~

*(*)~*(*)
~

*( bbaaLLE −+−+−=∆     (3.5) 
 
where   

**,*, baL  are CIELAB values calculated from original spectra; 

*
~

*,~*,
~

baL  are CIELAB values calculated from estimated spectra. 

 

Table 3.1: Practical interpretation of CIELAB ∆E is represented by Hardeberg  

[Hardeberg, 1999] 

∆E Effect 
<3 Hardly perceptible 

3<6 Perceptible, but acceptable 

>6 Not acceptable 
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• Root Mean Squared Error (RMSE) for spectral color difference [Jetsu et al., 

2006] 

n

isis

RMSE

n

i
∑

=

−
= 1

2))(~)((
     (3.6) 

where 

 n is number of wavelength component in spectra 

 s is the original spectrum 

s~ is reconstructed spectra  

The main purpose of this study is accuracy of spectral reconstruction rather than 

good colorimetric results. Thus, optimal model for spectral estimation should be chosen 

in respect of average value of RMSE error.  
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4. SPECTRAL RECONSTRUCTION TESTING AND SELECTION 

OF THE BEST MODEL FOR POLYNOMIAL REGRESSION  

 

As mentioned before, the main goal of this study was to find a way to approximate the 

carotenoids amount of Arctic charr species based on fish skin spectra. In this work the 

correlation was examined and numerical expression of the correlation was established.  

A way for acquisition of a spectral image of fish without taking long time with spectral 

camera is to reconstruct it from regular digital RGB images. For this purpose the 

polynomial regression method was suggested (see section 3.4). The crucial points in this 

method are defining the training set (what and size of set) and choosing the order of the 

approximation function for obtaining a smooth solution. The choice of polynomial 

function should base on statistical analysis of results and minimization of errors. The 

spectral reconstruction process of fish has been carried out in several stages (Fig. 4.1). In 

this chapter the different polynomial regression models were tested with various sets for 

training and testing purpose. 

4.1. Spectral reconstruction of Macbeth chart 

For testing the polynomial transformation model, I first used the standard Macbeth 

ColorChecker with 24 patches as a training and test set. According to the algorithm (see 

Fig. 4.1) the matrices X and Y have to be determined to find the transformation matrix 

W. Spectral reflectance values of the Macbeth chart were taken for matrix Y. spectral 

measurements of the Macbeth chart have been done with Perkin-Elmer lambda 9 

UV/VIS/NIR spectrometer in 380 - 780 nm range wavelengths (Fig. 4.2). Thus, matrix Y 

of size 24x81 with 5 nm step in visible range was obtained.   

For matrix X, RGB values should be taken. A set of digital images of Arctic charr with 

Macbeth ColorChecker (Fig. 4.3) was used to obtain RGB values of Macbeth chart from 

corresponding patches. For this, the mean values of the RGB for each patch were 

calculated by using the digital images and matrix X of size 24 x 3 was obtained.  
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Figure 4.1: Algorithm for the least squares polynomial regression method for 

reconstructing fish spectra 
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Figure 4.2: Spectral reflectance of the Macbeth chart 

 

 

Figure 4.3: RGB image of Arctic charr with Macbeth ColorChecker 

The shapes of different polynomials can be varied and tested for their accuracy 

performance. A chain of polynomials containing three to twenty terms for transformation 

matrix calculations was determined.  

For calculating the transformation matrix W, first, second and third order degree 

polynomials are used with 3, 10 and 20 terms, respectively. Moreover, second and third 

order polynomials include a constant term, 1 (Table 4.1).  
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Table 4.1: Three types of polynomials used for fish spectra reconstruction 

# terms Polynomial 

1st order 
3 R G B 

2nd order 
10 R G B R2 G2 B2 RG RB GB 1 

3rd order 
20 R G B R2 G2 B2 RG RB GB 1 RGB RGG RBB GRR GBB BRR BGG R3 G3 B3 
 

Thus, matrix dimensions for solving the approximation problems for the Macbeth chart 

(24 patches, 81 channels) are illustrated in Table 4.2.  

 

Table 4.2: Matrix dimension for different polynomials 

Spectra RGB values Matrix 
transformation Order of 

polynomial <l x n> <l x k> <k x n> 

   Y      =         X         *         W 

1st <24x81> <24x3> <3x81> 

2nd <24x81> <24x10> <10x81> 

3rd <24x81> <24x20> <20x81> 

where  
l  – number of samples,  
n – number of wavelength components in spectra,  
k  – number of terms in polynomial. 

 

The equations used for calculating matrix W with the Macbeth chart (24 samples) as 

training set shown below:  

Linear model (3 terms): 
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2nd order polynomial (10 terms): 

[ ] [ ] [ ]WRBGBRGBGRBGRY ⋅= 1222  
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The 3rd order polynomial equation is formed in the same manner; by adding cross-

product (RGB, RGG, RBB, GRR, GBB, BRR, BGG) and higher-order terms (R3, G3,  B3). 

Computing these in Matlab resulted in the transformation matrices W for each 

polynomial case. Then, the estimated spectra were obtained by applying matrixes W to 

RGB values of the Macbeth chart by using the pseudo-inverse method. Fig. 4.4 illustrates 

the results obtained with 20 terms (3rd polynomial order).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.4: The Macbeth chart – spectral estimation with 20 terms: solid line: original 

spectra, dashed line: estimated spectra 
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Evaluation the spectral accuracy was done with the calculation of ∆E and RMSE errors 

(3.5, 3.6). The results of the 2nd and 3rd order polynomials are shown in Fig. 4.5.  

 

 

Figure 4.5: Spectral reconstruction accuracy calculation for Macbeth chart: ∆ E, RMSE 

for 2nd and 3rd order polynomials and CIELAB estimation 

Based on the analysis of error measures, it can be concluded that the least values of both 

types of errors have been obtained in the case of the third order polynomial. The mean of 

CIELAB ∆E error is equal to 1.9 which according to Hardeberg’s interpretation (Table 

3.1) is “hardly perceptible” (less than 3). The mean of RMSE is equal to 0.025 which is 

less than value in 2nd order. 

This illustrates the result of polynomial regression spectra reconstruction from RGB 

values with the Macbeth chart as a training and test set. In this case we got an optimal 

result.  
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4.2. Fish spectra reconstruction with the Macbeth c hart as a training set 

Next, the polynomial transformation method was tested for reconstruction of the fish 

spectra. To test the method accuracy the Macbeth chart (24 samples) was used as a 

training set and the spectral image of fish as a test set. The testing was done in the 

following manner: the spectra of the Macbeth chart and fish were converted to sRGB 

with ‘D65’ light source and CIE 1931 system parameters. The obtained RGB values 

produced matrices X. then, 2nd and 3rd order polynomials were formed (as in section 4.1). 

In training stage the transformation matrix W was computed based on training set. 

Calculated matrix W was applied to sRGB image of the fish and sRGB image of the 

Macbeth chart with 10 and 20 terms of polynomials.  

Fig. 4.6 demonstrates three images of the same fish. The upper one is the original spectral 

image converted into sRGB color space; below, on the left and on the right are 

reconstructed spectral images with 2nd and 3rd order polynomial and transformed into 

sRGB color space, respectively.  

 

Figure 4.6: Original and reconstructed spectral images of fish  

 

Next step in testing model is model evaluation. Two types of errors CIELAB ∆ E and 

RMSE errors were calculated to check the accuracy of spectral reconstruction. As 

mentioned in section 3.5, the selection appropriate results were obtained in respect of the 

values of RMSE since we interested in accurate spectra estimation. The errors between 
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the original and reconstructed images in case of fish image and the Macbeth chart image 

are displayed in Table 4.3 and Table 4.4. 

Table 4.3: The ∆E error in spectra reconstruction of the fish image and Macbeth chart 

∆E 
 Avg. Std. Max. Min. 

 Image of fish 
2nd order (10 terms) 9.1862 6.9114 31.1366 0.1041 
3rd order (20 terms) 2.8097 2.8057 27.2516 0.003 
 Training set 
2nd order (10 terms) 0.7511  0.5437 1.9430 0.1354 
3rd order (20 terms) 0.0551 0.0576 0.2244 0.0021 

 

Table 4.4: The RMSE error in spectra reconstruction of the fish image and Macbeth chart 

RMSE 
 Avg. Std. Max. Min. 

 Training set 
2nd order (10 terms) 0.0354  0.0250 0.1229 0.0094 
3rd order (20 terms) 0.0262 0.0225 0.0916 0.0026 
 Image of fish 
2nd order (10 terms) 1.6078 2.2106 11.3326 0.1819 
3rd order (20 terms) 3.186 3.5024 16.2798 0.2319 

 

In summary: the color difference CIELAB ∆E in the 3rd order polynomial is less than the 

2nd order polynomial and value 2.8097 is “hardly perceptible”; RMSE error in the 2nd 

order is equal to 1.6078 which is less than in the 3rd. 

This  shows that the 3rd order polynomial with lower value of CIELAB color difference is 

better in case of the quality of color reproduction. This is shown in Fig. 4.6. As we are 

interested in accuracy of spectra reconstruction, the polynomial with lower value of 

RMSE should be used as a criterion for choice the appropriate polynomial model. Based 

on this the 2nd order polynomial gave the most accurate result.   

Fig. 4.7 and 4.8 demonstrate the difference before and after spectra estimation of the 

Macbeth chart and the fish image, respectively. It is important to note that the original 

spectra reflectance of fish shown by blue line (Fig. 4.8) has a peak in the range between 

350-400nm which can be explained by measurement error.  
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Figure 4.7: Macbeth chart: original spectra (solid line) and reconstructed spectra           

(dash line) 

 

Figure 4.8: Fish image: original spectra (blue line), reconstructed with 2nd order (green 

line) and reconstructed with 3rd order (red line) 
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4.3. Fish spectra reconstruction with the Macbeth c hart and part of the 

Munsell book as a training set 

The next step to improve results and decrease spectral color difference within the spectral 

reconstruction was to increase the size of the training set. The samples from the Munsell 

book were chosen to be included to the training set. For this purpose yellow and red 

specimens were chosen as carotenoids-based colors. Finally, the training set was 

extended from 24 to 428 samples by consecutively adding yellow (YY), yellow-red (YR) 

and red (RR) patches from the Munsell book. Matrices X and Y in the training set and 

test set were built similarly as before, i.e. the spectral image were transformed to sRGB 

(‘D65’, CIE 1931). Reconstruction was done in a similar way with 10 and 20 term 

polynomials. RGB images of reconstructed fish image for the 2nd and 3rd order 

polynomials are illustrated in Fig. 4.9, compared against the RGB image calculated from 

the original spectra.  

 

Figure 4.9: Original and reconstructed spectral images of fish using extended training set 

 

Colorimetric and spectral color difference errors were calculated to evaluate result and 

compare with previous results (Tables 4.5 and 4.6). 

Table 4.5: Colorimetric color difference after reconstruction 

∆E 
 Avg. Std. Max. Min. 

  Image of fish 
2nd order (10 terms) Macb 9.1862 6.9114 31.1366 0.1041 
 Mac+XYY 7.7407 6.0777  28.2561 0.1058 
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∆E 
 Avg. Std. Max. Min. 

 Mac+XYY+XYR 8.3574 6.4532 28.2481 0.0260 
 Mac+YYRR(404) 8.2703  7.1867 31.8375 0.0360 

3rd order (20 terms) Macb 2.8097 2.8057 27.2516 0.003 
 Mac+XYY 3.0271  3.5854  26.9802 0.0147 
 Mac+XYY+XYR 3.2334 3.1669 27.0605 0.0054 
 Mac+YYRR(404) 1.8174  2.9300 27.1408 0.0030 
  Training set  
2nd order (10 terms) Macb 0.7511  0.5437 1.9430 0.1354 
 Mac+XYY 1.3823  1.8873 17.8670 0.0617 
 Mac+XYY+XYR 1.0955  1.6314 18.0721 0.0821 
 Mac+YYRR(404) 0.4700  0.5994 8.3434 0.0139 

3rd order (20 terms) Macb 0.0551 0.0576 0.2244 0.0021 
 Mac+XYY 0.6849  1.3344  13.2440 0.0233 
 Mac+XYY+XYR 0.5458  1.0999 13.9019 0.0116 
 Mac+YYRR(404) 0.0571  0.1188 2.2247 0.0016 

 

Table 4.6: Spectral color difference after reconstruction 

RMSE 
    Avg. Std. Max. Min. 

  Training set  
2nd order (10 terms) Macb 0.0354  0.0250 0.1229 0.0094 
 Mac+XYY 0.0254 0.0168 0.1408 0.0032 
 Mac+XYY+XYR 0.0276  0.0193 0.1554 0.0049 
 Mac+YYRR(404 patch) 0.0188  0.0156 0.1620 0.0030 
3rd order (20 terms) Macb 0.0262 0.0225 0.0916 0.0026 
 Mac+XYY 0.0222 0.0159 0.1007 0.0023 
 Mac+XYY+XYR 0.0240  0.0184 0.1456 0.0020 
 Mac+YYRR(404 patch) 0.0138 0.0139 0.1637 0.0016 
  Image of fish 
2nd order (10 terms) Macb 1.6078 2.2106 11.3326 0.1819 
 Mac+XYY 1.5047  2.2076  11.0383 0.2475 
 Mac+XYY+XYR 1.4981  2.1945  11.0646 0.2938 
 Mac+YYRR(404 patch) 1.4041 1.9767 9.8274 0.1737 
3rd order (20 terms) Macb 3.186 3.5024 16.2798 0.2319 
 Mac+XYY 1.5418  2.3626  10.9252 0.1089 
 Mac+XYY+XYR 1.4258  2.3840 10.9380 0.1255 
 Mac+YYRR(404 patch) 1.5349 2.1575 9.8115 0.0940 

 

Fig. 4.10 and Fig. 4.11 show the original spectral reflectance curves of the fish image and 

reconstructed spectra for 2nd and 3rd order polynomials for chosen pixel.  
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Figure 4.10: Original (red line) and reconstructed spectra of fish with 10 (green line) and 

20 (blue line) terms, respectively.  On the left, the training set is the Macbeth + YY; on 

the right is the Macbeth chart +YY+YR patches 

 

 

Figure 4.11: Original (red line) and reconstructed spectra of fish with 10 (green line) and 

20 (blue line) terms, respectively, for different pixels. The training set is the Macbeth + 

YY + YR + RR. Below the graphs are colors of the pixels  

 
Analysis of the fish spectra reconstruction revealed the following: CIELAB ∆E error 

decreased from 2.8097 to 1.8174 in the 3rd order which is still less than in the 2nd order 

polynomial; RMSE has the least value of error in the 2nd order polynomial, which 
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decreased from 1.6078 to 1.4041. With regard to the decreasing of RMSE values, spectral 

curves of the reconstructed spectra look smooth and closer to original. 

Also, polynomial regression method was tested with a set of spectral images of fish skin 

samples measured by the spectral line camera ImSpector 10E. A description of all 

conducted measurements is considered in Chapter 5. Testing of the reconstruction 

method was performed with the training set consisting the Macbeth chart and part of the 

Munsell book for the 2nd and 3rd order polynomials.  

Tables 4.7 – 4.12 show the colorimetric (∆E) and spectral color difference (RMSE) errors 

between the original and estimated spectra of different fish skin samples.  

Table 4.7: Spectral estimation accuracy for skin sample # 11   

∆E 
 Avg. Std. Max. Min. 

2nd order (10 terms) Macb 10.6588 5.3871 22.804 1.0054 
 Mac+YYRR 7.2169 4.4481 18.762 0.2563 

3rd order (20 terms) Macb 2.255 1.877 10.833 0.0826 
 Mac+YYRR 1.2367 0.9662 7.8765 0.3212 
 

 

Table 4.8: Spectral estimation accuracy for skin sample # 14 

∆E 
 Avg. Std. Max. Min. 

2nd order (10 terms) Macb 9.1913 4.6515 20.6443 0.7431 
 Mac+YYRR 6.0646 3.6474 16.4245 0.3555 

3rd order (20 terms) Macb 1.6734 1.2929 9.792 0.1663 
 Mac+YYRR 0.9056 0.4854 6.0003 0.2114 
 

RMSE 
2nd order (10 terms) Macb 0.5179 0.3244 2.0126 0.1044 

 Mac+YYRR 0.3159 0.1464 0.7605 0.0947 

3rd order (20 terms) Macb 1.9526 1.5631 7.8154 0.1032 

 Mac+YYRR 0.3341 0.171 0.7227 0.0621 

RMSE 
2nd order (10 terms) Macb 0.5208 0.3355 1.9847 0.0854 

 Mac+YYRR 0.2989 0.1353 0.7741 0.092 

3rd order (20 terms) Macb 1.7189 1.293 5.9625 0.0944 

 Mac+YYRR 0.3254 0.1781 0.7619 0.0612 
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Table 4.9: Spectral estimation accuracy for skin sample # 10 

∆E 
 Avg. Std. Max. Min. 

2nd order (10 terms) Macb 2.2833 2.2596 14.0901 0.0905 
 Mac+YYRR 1.4028 1.2312 9.9955 0.42 

3rd order (20 terms) Macb 0.3441 0.3428 4.1933 0.0023 
 Mac+YYRR 0.445 0.2606 2.7709 0.0184 
 

 

Table 4.10: Spectral estimation accuracy for skin sample # 2 

∆E 
 Avg. Std. Max. Min. 

2nd order (10 terms) Macb 0.5867 0.3341 1.7043 0.0928 
 Mac+YYRR 0.2449 0.1011 0.9747 0.0149 

3rd order (20 terms) Macb 0.2009 0.0978 0.3766 0.0014 
 Mac+YYRR 0.1534 0.0692 0.3573 0.0067 
 

 

Table 4.11: Spectral estimation accuracy for skin sample # 23 

∆E 
 Avg. Std. Max. Min. 

2nd order (10 terms) Macb 2.3862 1.6275 15.7696 0.3347 
 Mac+YYRR 1.1018 1.0402 11.3691 0.2654 

3rd order (20 terms) Macb 0.3407 0.2272 4.2915 0.0619 
 Mac+YYRR 0.5297 0.1093 1.5705 0.1132 
 

 

RMSE 
2nd order (10 terms) Macb 0.3835 0.3063 1.6232 0.0738 

 Mac+YYRR 0.2246 0.1044 0.5408 0.0629 

3rd order (20 terms) Macb 0.7983 0.6225 2.1389 0.0518 

 Mac+YYRR 0.296 0.1587 0.6033 0.0528 

RMSE 
2nd order (10 terms) Macb 0.3135 0.1812 0.7583 0.0636 

 Mac+YYRR 0.469 0.3878 1.1527 0.0584 

3rd order (20 terms) Macb 0.4224 0.5151 2.8739 0.063 

 Mac+YYRR 0.4886 0.417 1.2334 0.0584 

RMSE 
2nd order (10 terms) Macb 0.5329 0.4997 2.5974 0.1046 

 Mac+YYRR 0.2506 0.1142 0.4594 0.0834 

3rd order (20 terms) Macb 0.7191 0.4987 2.2754 0.0733 

 Mac+YYRR 0.3262 0.1892 0.7001 0.0678 
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Table 4.12: Spectral estimation accuracy for skin sample # 22 

∆E 
 Avg. Std. Max. Min. 

2nd order (10 terms) Macb 1.2567 0.9872 9.6891 0.0798 
 Mac+YYRR 0.9561 0.4298 6.0255 0.2339 

3rd order (20 terms) Macb 0.1872 0.1214 1.5369 0.0011 
 Mac+YYRR 0.3448 0.1451 1.8923 0.0154 

 
 

Fig. 4.12 compares results of spectra estimations performed with different training sets: 

in the first case, the training set is the Macbeth chart with 24 samples (on the left) and in 

second case is extended training set (the Macbeth chart and the Red-Yellow part of the 

Munsell book). It can be concluded that the reconstructed spectra with extended training 

set (on the right) looks closer to the original than the one on the left. The reconstructed 

spectrum of the 2nd order polynomial is smoother than with 3rd order polynomial.   

 

Figure 4.12: Comparison between the original (red line) and estimated fish spectra of the 

2nd (green line) and the 3rd order polynomial (blue line) with different training sets 

 

RMSE 
2nd order (10 terms) Macb 0.3836 0.34 1.7442 0.0723 

 Mac+YYRR 0.2355 0.1191 0.6111 0.0586 

3rd order (20 terms) Macb 0.6686 0.4745 1.5025 0.0578 

 Mac+YYRR 0.3452 0.2059 0.7032 0.0558 
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4.2. Summary 

In this chapter we considered polynomial regression spectra reconstruction from RGB 

values. This method was tested with the 2nd and 3rd order polynomials with 10 and 20 

terms, respectively. In the training phase, the Macbeth chart color checker (24 samples) 

and Red-Yellow specimens of Munsell book (404 samples) were used to improve the 

reconstruction. As a testing set, sRGB values of the Macbeth chart and sRGB images of 

fish and measured skin samples of Arctic charr were utilized.  

Analysis of the results for different training sets demonstrated that by increasing the size 

of the training set the spectral reconstruction accuracy was improved. The testing process 

showed that the 2nd order polynomial model with extended training set produces the most 

accurate reconstruction of the tested method. Thus, this model was chosen as the most 

accurate model for spectra estimation of the Arctic charr from RGB values. The digital 

images of fish and of the training set must be acquired under the same condition, 

however. Calculation of corresponding transformation matrix W must be conducted for 

only certain conditions, i.e. the light source and type of camera. To estimate spectra from 

RGB images of fish taken under various conditions, corresponding transformation 

matrices must be computed.  
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5. EXAMINATION OF CORRELATION BETWEEN CAROTENOIDS 

AMOUNT IN FISH SKIN AND THEIR SPECTRA   

5.1. Measurements and pre-processing of spectral im ages 

As described in Chapter 2, the carotenoids of Arctic charr are important pigments which 

are responsible for specific fish coloration. One of the aims this study is to examine the 

correlation mechanism between carotenoids amount in fish skin and their reflectance 

spectra.   

For this purpose the spectral measurements of the Arctic charr’s skin were made in order 

to obtain spectral information of the skin coloration which varied in hue. Spectral images 

of fish skin were acquired by the spectral camera, ImSpector V10E with D65 illumination 

in the visible range of wavelengths 400 – 800 nm with a 5 nm step. The specimens of fish 

skin selected were of various colors to encompass as much hue of fish skin coloration as 

possible (Fig. 5.1). The size of each sample was approximately 10x10 mm (a size 

required in pigment analysis). All the measurements were conducted with skin samples of 

frozen and fresh fish. Fig. 5.2 shows the spectral image of a fish skin sample converted to 

sRGB and a spectra curve of a chosen pixel.  

 

Figure 5.1:  A color variety of measured fish skin   
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Figure 5.2: Skin sample of fish and spectral reflectance of chosen pixel 

Moreover, to conduct spectral reconstruction with a chosen in Chapter 4 the polynomial 

model with training set, RGB images of skin samples were taken by a digital camera 

(Canon) under D65 illumination. Since selected training set contains Macbeth chart (24 

patches) and Munsell book pages (YY, YR and RR), RGB images of them were acquired 

under the same with fish skin conditions.  

All the spectral images of skin samples were subjected to further processing. Average 

values of spectral reflectance were calculated for each fish skin sample to match them to 

carotenoids amount of corresponding skin sample and to examine their correlation. As a 

result, matrix of spectral reflectance was computed where the number of rows 

corresponds to the number of samples. Example of the fish skin samples and their 

corresponding average spectral reflectance is shown in Fig. 5.3 and Fig. 5.4. All the 

measured skin samples of fish and the computed means spectral reflectance for each one 

are shown in Appendix 1. 
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Figure 5.3: Spectral images of skin samples (numbers: 13-18) of frozen fish 

 converted to sRGB 

 
 

 
Figure 5.4: Average spectral reflectance for skin samples (numbers: 13-18) 

 
 

The analysis of the mean reflectance demonstrated that the skin samples with brighter red 

coloration have lower values of spectral reflectance rather than samples with dull 

coloration (Fig. 5.5).  
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Figure 5.5: Spectral reflectance and corresponding color of fish skin (on the right); 

saturation of skin color is increasing from up to down 

After the measurement session and digital imaging, the fish samples were exposed to 

chemical analysis for extraction of the carotenoids. The pigment analysis was conducted 

by the Department of Biology of University of Joensuu. Carotenoid pigment was 

extracted by an established method described by Scalia et al [Scalia et al., 1989]. The 

process was performed in several steps. The samples were placed into test-tubes and each 

fish skin sample was weighted (Fig. 5.6). Carotenoids, to be more precise – astraxanthin, 

were dissolved from fish skin with acetone and were filtered under reduced pressure (Fig. 

5.7). A special formula was used to calculate the concentration of the extracted 

astraxanthin. As a result a data set with the amounts of astraxanthin for each skin sample 

was obtained.  

 

 

 



 40 

 

Figure 5.6: Measuring the weight of skin samples 

 

 

       

Figure 5.7: Dissolving carotenoids with acetone (on the left) and filtering the pure 

carotenoids under reduced pressure (on the right) 

 

5.2. Correlation in frozen and fresh sets of fish s kin samples 

As input we had two data sets to analyze – data with the average spectral reflectance and 

data with measured carotenoids concentration of each skin sample. To examine the 

relationship between them, ratio analysis of reflectance spectrum [Chappelle et al., 1992] 

was used to estimate bands sensitive to the pigment. Blackburn [Blackburn, 1998] 

suggested that the optimal individual waveband for carotenoids estimation is located at 

470 nm. Thus, a carotenoids-specific index R800/R470 was derived for this purpose, 
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where R800 and R470 are the reflectance (R) at the corresponding wavelengths, 

respectively, as a quantitative measure of carotenoids.  

As mentioned before two types of fish were used (frozen and fresh fish) for 

measurements and pigment analysis.  The sample size of frozen fish was 30. It must be 

noted that the sample size was altered for the fresh fish sample because of the presence of 

noise. The sample size of fresh fish set was as such reduced from 42 to 32. The noise can 

be explained by the errors introduced by spectral measurement and pigment analysis. In 

addition, a glossiness of fresh fish skin caused the spectral reflectance to increase to 

values greater than 1 which created problems in the spectral measurements and digital 

imaging process.  

Thus, the relationships between the reflectance spectra and carotenoids amount, were 

verified separately with frozen and fresh fish data sets and are plotted in Fig. 5.8 and Fig. 

5.9.   
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Figure 5.8: Carotenoids-index reflectance R800/R470 is compared to measured 

carotenoid concentration in frozen fish 
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Fresh fish

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160

Measured carotenoid concentration, µg/g

C
ar

ot
en

oi
d-

in
de

x,
 R

80
0/

R
47

0

 

Figure 5.9: Carotenoids-index reflectance R800/R470 is compared to measured 

carotenoid concentration in fresh fish 

To evaluate the strength of the correlation between the reflectance ratio and amount of 

carotenoids quantitatively, the correlation coefficients1 and coefficient of determination2 

were calculated for frozen and fresh fish sets (Table 5.1). Positive values of correlation 

coefficients indicate a positive direction of correlation; which means that when one 

variable (i.e. amount of carotenoids) tends to increase, the other variable (Carotenoids-

index, R800/R470) also tends to increase. Values of the correlation coefficient show the 

significant correlation between two variables. A correlation coefficient of 0.7280 for a 

sample size of 30 frozen fish gave a 95% confidence interval of ranging from 0.50 to 

0.86. Similarly, for fresh fish a correlation coefficient of 0.5925 was obtained for a 

sample size of 32, with a 95% confidence interval ranging from 0.31 to 0.79. The values 

of the coefficients signify that for frozen fish, 53% of the variance in the carotenoids-

                                                 
1 Correlation coefficient (r) measures the strength and direction of the relationship between two or more 
variables [Statsoft Electronic Textbook]. 
2 Coefficient of determination (r2) gives the proportion of the variance of one variable that is predictable 
from the other variable [Statistic 2, Correlation] . 
 



 43 

index R800/R470 is "explained" by the amount of carotenoids in fish skin; for the fresh 

fish it is 31.1%.  

 

Table 5.1: Correlation and determination coefficients for sets of frozen and fresh fish 

Fish Correlation coefficient, r  Coefficient of determination, r2 

Frozen 0.7280 0.5300 

Fresh 0.5925 0.3510 

 

After analyzing the sets separately, the two sets of frozen and fresh fish were combined 

(Fig. 5.10). The relationship between the carotenoids-ratio and measured carotenoids 

concentration was plotted and a linear regression equation was found (Fig. 5.11). The 

calculated correlation coefficient equaled 0.679 showing a significant correlation between 

the two variables in combined set of frozen and fresh fish. The 95% Confidence Interval 

on the population with a sample size of 62 ranged from 0.52 to 0.80. The calculated 

determination coefficient equaled 46.12%, implying that 46.12% of the variability in the 

carotenoids-ratio can be explained by the variability in carotenoids concentration.  

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

measured carotenid/astraxantin concentration, µg/g

ca
ro

te
no

id
-in

de
x,

 R
80

0/
R

47
0

Fresh fish

Frosen fish

 

Figure 5.10: Carotenoids-index reflectance R800/R470 is compared to measured 

carotenoid concentration for combined set of frozen and fresh fish 
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y = 0.0454x + 2.8636
R2 = 0.4612
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Figure 5.11: Linear regression found between carotenoids-index and measured 

carotenoids concentration for combined set of frozen and fresh fish 

5.3. Summary 

In this chapter the correlation between amount of carotenoids in fish skin and their 

spectral reflectance was examined. As a metric of spectral reflectance for carotenoids, 

reflectance indices R800/R470 sensitive to the carotenoids were chosen. Frozen and fresh 

fish sets were investigated separately and together. Analyses of the results showed a 

positive correlation between the amount of carotenoids in fish skin and their spectral 

reflectance. Calculated correlation coefficients indicated a significant correlation (r>0.5). 

In addition, the correlation in the frozen fish set was higher than in fresh fish. It should be 

noted that the measurements and pigment analysis of fresh fish turned out to be more 

complicated than frozen fish. Glossiness of the fresh fish skin, errors of the measurements 

and analysis led to the elimination of some samples.  

A combined set of frozen and fresh fish with sample size of 62 was studied by regression 

analysis. A linear regression line was plotted with the following equation: 

y=0.0454x+2.8636. Using this, the amount of carotenoids can be predicted from the 
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spectral ratio of spectral reflectance of fish skin without an expensive or long pigment 

analysis process. Thus, a nondestructive technique for the assessment of carotenoids 

content from spectral reflectance in the Arctic charr was developed.  
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5. DISCUSSION AND CONCLUSION  

 
In this work we tried to apply known color imaging technique for particular issue from 

real life. The main aim of this work was to facilitate work of biology scientists in the 

investigation of the Arctic charr species. The key point in studying is assessment of 

carotenoids amount which conveys valuable information about fish vitality and health 

conditions in evolutionary biological research, particularly. To avoid an expensive and 

long chemical analysis required a sacrificing of fish specimens, an affordable methods to 

approximate amount of carotenoids in fish skin by using spectral information was 

proposed. The method involves a reconstruction spectral reflectance from RGB images 

and allows conducting a non-destructive process for approximation amount of 

carotenoids based on spectral carotenoids-ratio.  

During this research a polynomial regression method was investigated to improve 

accuracy of the reconstruction of fish spectra. A polynomial model and extended training 

set enhanced spectral reconstruction were determined. Relationships between carotenoids 

amount and spectral reflectance were investigated in frozen and fresh skin sets, 

separately. The significant positive correlation between carotenoids concentration and 

spectral reflectance of samples being measured was found. The examination showed 

higher correlation in set of frozen. We faced with challenges with fresh fish processing. A 

glossiness of fresh fish skin was an obstacle in correct measurements. A preparation of 

the samples of fresh fish (to cut and separate a thin layer of skin from a body) according 

to required parameters for pigment analysis was problematically. A weight of skin sample 

(with a required size) exceeded the maximum allowable weight. All these led to errors 

and noise in evaluation. Unlike the fresh fish, spectral measurements and pigment 

analysis of the frozen fish samples was performed without any difficulties. Taking into 

account this aspect and higher correlation coefficient, it can be assumed that frozen fish is 

preferable for utilizing for carotenoids investigation. But, from another hand, a process of 

freezing and defreezing can affect to carotenoids pigment content. Since this area is now 

well-studied, it is difficult to make a conclusion about frozen fish.    

The conducted examination of correlation between carotenoids amount in fish skin and 

their spectra confirmed a feasibility of the proposed method for quantify of carotenoids 
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by using spectral information. But the future developments of this method are needed. To 

see if there are any significant changes in the RMSE errors, testing of other spectral 

reconstruction methods are required. A re-examination of the relationship between 

carotenoid amount in fish skin and their spectra with larger number of samples would 

improve the results of correlation. Moreover, studying of the fresh fish and investigation 

new way to enhance the spectral measurements and pigment analysis process would 

recommend for improving results. Probably, any changes in the spectral reconstruction 

method and type of regression in prediction of carotenoid amount based on spectral 

information may produce better results in the future.  
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APPENDIX 1: Spectral measurements results 

 
FROSEN FISH SAMPLES  

 

 

 

 
Figure 1: skin samples # 1-6  

 
 

 

   
 

Figure 2:  The means of spectral reflectance (on the left) and corresponding color 

converted in sRGB (on the right) 
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Figure 3: skin samples # 7 – 12  
 
 
 

  
Figure 4:  The means of spectral reflectance (on the left) and corresponding color 

converted in sRGB (on the right) 
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Figure 5: skin samples # 13 – 18   

 
 
 

   
 

Figure 6:  The means of spectral reflectance (on the left) and corresponding color 

converted in sRGB (on the right) 
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‘spm.mat’ is matrix with mean of 18 samples 
 
 

 
Figure 7:  The means of spectral reflectance (samples # 1-18) 
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Figure 7:  skin samples # 19 – 24   
 
 
 
 
 

      
Figure 8:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 9:  skin samples # 25 – 30   
 
 
 
 
 

           
 

Figure 10:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 11:  The means of spectral reflectance for skin samples # 1-30 of frozen fish
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FRESH FISH SAMPLES  
 

 

 
 

Figure 12:  skin samples # 1 – 6   
 
 
 

       
Figure 13:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 14:  skin samples # 7 – 12   
 
 
 

          
 

Figure 15:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 16:  The means of spectral reflectance for skin samples # 1-12 of fresh fish



 62 

 
 

 

 
 

Figure 17:  skin samples # 13 – 18   
 
 
 
 

 

       
Figure 18:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 19:  skin samples # 19 – 24 

 
   
 
 

       
Figure 20:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 21:  skin samples # 25 – 30   
 
 
 
 

       
Figure 22:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 23:  skin samples # 31 – 36   

 
 
 
 

   
 

Figure 24:  The means of spectral reflectance (on the left) and corresponding color converted in sRGB 

(on the right) 
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Figure 25:  The means of spectral reflectance for samples # 1-36 of fresh fish



 

 
 

Figure 26:  skin samples # 31 – 36   
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APPENDIX 2:  Carotenoid-indices and astraxanthin 
concentration measured in the skin of Arctic charr  
 

       
 
Table 1: Frozen fish       Table 2: Fresh fish 

 

 
  
# 
sample 

carotenoid-
index  
R800/R470 

astaxanthin 
µg/g 
  

2 3.09 34.47 
5 2.96 40.48 
3 3.65 43.74 

29 7.24 63.17 
6 3.44 65.22 
4 3.36 72.88 
1 4.19 80.14 

25 4.18 85.06 
28 4.20 87.40 
18 9.18 100.96 
14 16.66 103.81 
24 6.24 110.04 
19 8.56 110.49 
30 5.64 115.07 
17 13.97 119.47 
26 4.08 127.09 
20 6.38 133.71 
16 6.43 137.56 

9 11.31 141.62 
27 4.11 144.92 
15 9.71 148.95 
10 9.60 152.31 

7 10.50 156.23 
22 9.76 170.98 
21 9.27 195.86 
23 11.57 199.80 
13 13.20 208.32 
12 13.87 231.87 
11 17.42 242.87 

8 12.57 246.16 

  
# sample 

carotenoid-
index  
R800/R470 

astaxanthin 
µg/g 
  

35 1.01 0.84 
36 1.03 2.88 

2 2.84 18.10 
1 2.84 22.42 

29 6.06 29.26 
8 3.40 33.50 

11 5.10 36.26 
34 8.10 40.35 

9 3.78 42.39 
31 6.07 43.51 

7 3.84 44.56 
37 12.06 48.60 
33 6.90 53.40 
32 7.06 57.69 
42 9.80 74.35 
41 8.62 76.34 
14 10.25 77.72 
18 7.37 79.52 
12 3.81 81.92 
10 3.34 84.66 

3 5.48 88.85 
13 9.27 97.71 
26 11.84 102.05 

6 3.70 104.60 
30 6.54 105.85 
39 8.24 107.62 

4 3.84 113.65 
27 12.24 122.71 
38 9.14 124.84 
16 8.42 131.94 
19 7.69 135.34 
23 12.60 141.28 


