
ABSTRACT 

 

This study is investigating several spectral reflectance estimation methods: Wiener 

estimate, first-order Markov process and Gaussian Mixture Model. The object of 

the study is the eye fundus multichannel images. Wiener estimate and Gaussian 

Mixture Model demand representative training set of a priori data for the 

estimation, while first-order Markov process need only illuminant conditions and 

camera sensitivities to be known. The goal of the study is to compare and evaluate 

performance of the chosen methods.  

 

Keywords: spectral reflectance, fundus, Wiener estimate, first-order Markov 
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1.1 Overview 

Color is the one significant feature in digital imaging. The accuracy of object’s 

color representation has significant affect on research results in many applications 

for printing, digital recording and archiving, medicine, e-commerce, and others 

based on digital color imaging.  

A spectral image represents spectral information – electromagnetic radiation 

reflected or transmitted from an object. It may contain hundreds of components in 

some wavelength range corresponding to samples from different spatial locations 

of the object. This representation is highly informative, and can eliminate the effect 

of illuminant and provide access to device independent color spaces.  

A multichannel image consists of 1 to 10 image components or channels. Widely 

used RGB cameras are based on the physiology of a human eye and have only 

three channels for image capturing. Thus conventional thrichromatic cameras 

quantize the whole spectral information into three channel color image. In this case 

the representation of color information is illuminant and device dependent. RGB 

images are fast to capture measurements and imaging is easy because of high 

mobility of camera. 

Spectral image acquisition is time consuming and expensive when compared to 

multichannel imaging, and therefore, researchers are looking for techniques of 
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estimating spectral information from multichannel measurements [5-7; 13; 14; 20; 

22; 24; 29]. 

1.2 Work Description 

Since 1950 some researchers attempted to study light reflected by the eye fundus 

both in spatial and in spectral spaces [1]. Development of new spectral and fundus 

cameras facilitated studying a fundus reflectance for different purposes. 

Researchers measure and identify druses in age-related macula degeneration, study 

macula, properties of crystalline lens, age related changes and pigments 

distribution, attempt to investigate and diagnose diabetic retinopaty, glaucoma, 

myopia and other eye diseases [1; 2; 23; 27; 32]. 

The aim of the study is to investigate the estimation relatively to computational 

cost and quality for fundus images. The estimation of reflectance from 

multichannel camera responses decreases the speed of spectral reflectance image 

acquisition. Obtained spectral estimates can be further used for the purposes of 

medical analysis. 

Spectral reflectance images of fundus, measured by the InFotonics Center, Joensuu 

[10] were used for the current work. Real multichannel images were not used, but 

multichannel fundus images were simulated from the spectral reflectance images 

under assumption of known illuminant, noise distribution and camera 

characteristics. 

Three standard estimation methods were used in this study. Multichannel images 

were simulated from reflectance data using Gaussian functions for different 

channels and chosen methods were examined in order to identify possible 

differences in the fidelity and input data requirements for the estimation. Initial 

requirements for the methods deviate significantly, and it is important to define the 

minimal amount of the information to be extracted in order to provide eligible 

fidelity of the estimation. 
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The thesis concepts are presented as follows. Chapter 2 provides an introduction to 

the objects of the study: light and color, structure of the human eye, specifics of the 

RGB and spectral imaging techniques. 

Chapter 3 will help the readers to get familiar with methods used to estimate 

spectral reflectance in current study. Chapter 4 provides a description of the 

experimental part of the study. It contains the detailed description of the used 

dataset, simulation settings and evaluation of the estimations by each of chosen 

methods with fidelity criteria. Chapter 5 summarizes experimental results and 

presents conclusion of the study with possible suggestions of improvement. 
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2.1 Light and Color 

Everything from clothes to leaves on the trees has a color. And that makes the 

world a beautiful place. But how does the color sensation work and what are the 

components of it? 

Number of objects in our environment, like stars, lamps, laptops, ovens and many 

of natural objects, emit streams of photons producing electromagnetic radiation 

waves of different wavelengths. Figure 2.1 represents wavelength ranges of the 

electromagnetic radiation. 

 

Figure 2.1. Electromagnetic spectrum of electromagnetic radiation with 

corresponding wavelengths. 

It is obvious that people deal with electromagnetic radiation every day when 

waking up in the morning and seeing the sun from the window, listening to music 

on the radio, using microwave oven to warm our food, walking in the forest in the 

afternoon, reading news on the laptop, turning on the floor lamp to read a book in 

the evening, doing X-ray photograph or tomography in the hospital, shooting home 
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video from the birthday, going to the bank to put money to the bank account. 

Indeed, the electromagnetic radiation is all around. 

Visible light is defined to be a part of the electromagnetic radiation in range of 

wavelengths from 380 to 780 nanometers perceptible and detectible by a human 

eye [31]. Imaging in visual light is what human is used to deal with in everyday 

activity. Figure 2.2 illustrates process of human color perception. 

 

Figure 2.2. Process of human color perception. 

According to [9] illuminant is a light source that has been measured or specified 

formally in terms of spectral energy. The CIE International Commission for 

Illumination has specified a number of CIE standard illuminants differing with 

their spectral power distribution. Most popular CIE illuminants are [9]: 

- Illuminant A – a tungsten light source; 

- Illuminant D – various models of daylight (D50, D55, D65, D75); 

- Illuminant F – various models of fluorescent light (F1-F12). 

In the current study all the spectral measurements and simulations were done using 

D65 standard illuminant. Spectral power distribution of the illuminant is presented 

on Figure 2.3. 
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Figure 2.3. D65 standard illuminant spectral power distribution. 

In the XVII century Newton suggested that surfaces absorb radiation in some 

wavelength range and reflect others. But the color is not a property of object. It is 

our perception of the reflected visible light [31]. The final signal is a combination 

of reflected radiation and illumination which propagates to imaging system. Figure 

2.4 illustrates human perception of visible light depending on the wavelength. 

 

Figure 2.4. Visible light. 
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2.2 Human Vision System 

Human color perception is a physiological process depending on the condition of 

human eyes (see Figure 2.5) and brain. Therefore the colors that human sees are 

unique and there is no two people who would see the color exactly the same.  

 

Figure 2.5. Structure of human eye [21]. 

Human eye together with brain receives visible spectrum of light and translates it 

into perception of color as shown in Figure 2.4. The question arises “How it 

happens?” 

When a person perceives visual information, the portion of light, measured by the 

iris, comes through transparent cornea from the environment and focuses onto the 

retina by the lens. The retina itself is a part of brain and it is covered by millions of 

light-sensitive receptors – cones and rods. Cones and rods process the light into the 

nerve impulses and pass them to the brain via the optic nerve [21; 31]. 

Cones are color sensitive receptors with different absorption characteristics as 

function of wavelength with peak in red, green or blue part of visible spectrum.  

Thus human vision system can not distinguish particular wavelengths of light [11]. 

Most of the cones are located in the central part of retinal macula, called fovea. 

Human sees colors because of the photopic (or bright-light) vision provided by 
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cones. Figure 2.6 illustrates typical absorption characteristics of the cones. Curves 

indicate what α  cones, responsible for blue light perception, have low sensitivity 

relating to others [21]. The existence of these types of cones and their curves 

overlapping provided a physiological basis of the thrichromatic theory of human 

color vision and prevalence of RGB imaging [28]. 

 

 

Figure 2.6. Spectral absorption curves of cones of human retina [21]. 

Number of rods is significantly larger – they cover almost all retina surface. Rods 

are sensitive to low levels of illumination. They provide general picture of the 

environment. The rods provide human’s ability to see colorless shapes of objects in 

the night time, when one uses the scotopic (or dim-light) vision [11]. 

It is really hard to misjudge the importance of the retina functionality in our life. 

And it makes the experimental part of this study more interesting since 

investigation in this study will be done for the images of human eye fundus. 

 

2.3 RGB Color Space and Imaging 

The aim of color model is to describe colors in some general way. Most of the 

color models are oriented toward hardware or toward color manipulations. Among 

hardware oriented models the most practically used are RGB (red, green, blue) for 

displaying and CMYK (cyan, magenta, yellow, black) for printing. Among the 
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color graphics and animation oriented mostly used models are HIS (hue, saturation, 

intensity) and HSV (hue, saturation, value) models [11]. 

Current study is based on simulated camera responses. It is assumed that these 

camera responses can be approximately transformed to RGB space (RGB). Here is 

some brief description of the RGB space, one of color space used in imaging.  

 

Figure 2.7. RGB color cube. 

RGB color model is additive, meaning that it operates with light emitted from a 

source. Red of 700.0 nanometers, Green of 546.1 nanometers and Blue of 435.8 

nanometers lights are so called primaries of the RGB color space. All others of 

more then 16 million colors can be obtained by combining different amount of red, 

green and blue light. All colors can be presented in the so called RGB color cube, 

shown in Figure 2.7. All values of red, green and blue are assumed to be 

normalized in the range [0,1]. Black color means that no light is added. Combining 

all primaries in an equal amount produces white color. Thus the main diagonal of 

the cube represents shadows of grey and indicates direction of lighter colors. 

Combining each two of primaries in an equal amount produces secondary 

primaries – cyan, magenta and yellow colors [11; 21; 28].  

RGB model can be called a basic color model because other color models like 

CMYK, YIQ, HIS, HSV can be obtained from RGB model through relatively 

simple computations. Formulas for the conversion can be found for example in [11; 

28]. Images in the RGB model consist of three independent primary color image 
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planes. Figure 2.8 illustrates representation of the RGB images and also introduces 

the image of a human fundus mentioned in the Section 2.2. 

 

Figure 2.8. RGB image of a human fundus. 

Since this model is comparatively easy and cheap to implement into hardware, the 

RGB color model became the most utilized way of gathering and reproducing 

color images in monitors, digital and video cameras, scanners. For example, 

computer monitor screen consists of hundreds of red, green and blue phosphor dots. 

These dots are activated electronically to emit light, thereby combination of 

different intensities from the dots produces color image on the screen. Digital 

cameras have thrichromatic matrices to gather amount of red, green and blue from 

the object of photography. 

The advantages of the RGB model are obvious: the model provides fast capturing 

of the image; RGB images are relatively small and fast to process; due to the 

human vision characteristics RGB imaging provides good colorimetric match to 
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natural objects. At the same time the disadvantages of the RGB object 

representation are strong as well. Once someone holds image acquisition process 

under illumination, the effect of it can not be eliminated. Thus if the illuminant is 

changed, the only way to obtain new RGB image is to repeat image acquisition 

process, restricted to visual wavelength range.  

Another problem is the effect of metamerism. In practice it means that either the 

number of channels, or the spectral sensitivity properties of the individual channels 

in the system are so poor, that two surfaces with different spectral color 

characteristics can look the same under one set of conditions and different under 

another set of conditions. 

 

2.4 Spectral Imaging 

Spectral reflectance is an accurate representation of the surface characteristics and 

it is independent of illuminant. Spectral imaging approach measures object surface 

spectral reflectance using high number of channels with high spectral resolution, 

extending information content not only in the visible wavelength range, but also in 

the ultraviolet (UV) and infrared (IR) range.  

Some of the advantages of this approach are that reflectance information of the 

object itself allows reproducing image of the object under any illumination, for any 

observer, under any sensitivity characteristics of the camera and in any of the color 

spaces. The approach also allows avoiding the effect of metamerism and multiple 

iterations of the new image acquisition, providing significantly higher information 

content comparing to multichannel data. This approach represents true color of 

surfaces and provides high-fidelity color reproduction of objects. Spectral 

reflectance image can be viewed directly, using pseudo-coloring of same 

wavelength areas or using conversion to some color space, like RGB mentioned in 

Section 2.3, under some chosen illuminant. 
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Figure 2.9. Spectral image of human fundus. 

Figure 2.9 illustrates typical spectral image. Each spectral image corresponds to a 

certain wavelength of visible spectrum range from 380 to 780 nanometers in 5 

nanometers sampling. Thus, unlike in thrichromatic imaging systems, spectral 

imaging system usually uses tens or hundreds of spectral channels in the visible 

range to capture the radiance reflected from the surface.  

 

Figure 2.10. Fundus camera based spectral imaging system [10]. 
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Figure 2.11. Spectral transmittance of interference filters [10]. 

Eye fundus spectral image acquisition demands modified fundus camera system to 

be used. Fundus camera is an optical tool based on low power microscope and 

digital camera, and designed to investigate interior surface of the eye [4]. Figure 

2.10 presents fundus camera based spectral imaging system [10] constructed in the 

InFotonics Center, Joensuu and used for capturing retinal spectral images. The 

modified fundus camera was made of basic fundus microscope optics with attached 

digital monochrome CCD (Charge-Coupled Device) camera and interference 

filters. Spectral transmittance of used filters is presented on Figure 2.11. 

Following explanation will briefly present details of obtaining reflectance images 

from spectral imaging system responses. Response ic  of the image capturing 

system for ith channel is approximated as: 

0)()()( iii ndrlsc += ∫ λλλλ  ,       (2.4.1) 

where )(λis  is the channel characteristic of the ith camera channel; )(λl  is the 

spectral power distribution of the illuminant; )(λr  is the spectral reflectance of the 
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object; 0in  is additive noise for ith capture; i=1,..,n and n is the total number of 

camera channels. It is assumed in this study that the channel’s characteristic is a 

combination of additional filter’s sensitivity and all other functions in the optical 

path. 

Further it is assumed that in an ideal case )(λis  corresponds to shifted Dirac delta 

function )()( ii λλδλδ −=  [3] and the noise-free spectral camera responses are: 

)()()()()( iiii rldrlsc λλλλλλ == ∫ ,       (2.4.2) 

The ideal white reflectance (reflectance value equal to 1) can be approximated as: 

)()()( iii ldlsw λλλλ == ∫ ,        (2.4.3) 

Then the reflectance r can be obtained as: 

w
cr = ,           (2.4.4) 

where the division is made point-wise. 

Approximation for further derivation of relationship between spectral input signals 

and sensor responses c  can be written in matrix notation as follows: 

0)( nrldiagSc T +=  ,        (2.4.5) 

where TS  denotes transposed matrix of camera channel characteristics; )(ldiag  

represents square matrix with illuminant power distribution values on the main 

diagonal; r  is surface reflectance; 0n  denotes additive zero-mean Gaussian 

distribution noise. Additive noise is the noise from sensors, measurement errors of 

the spectral characteristics of sensors, illuminations and reflectances [25]. Additive 

noise is expressed as system noise and can be estimated using methods from [26]. 

Equation (2.4.5) defines relationships between camera response and true 

reflectance of the object under assumption of fixed illumination. 
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Figure 2.12 illustrates an example of reflectance samples spectra from different 

parts of the retinal spectral reflectance image. The curves represent similar 

behavior according to corresponding retinal location. 

 

Figure 2.12. Spectral reflectances for retinal spectral image. 
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3.1 Introduction to Spectral Estimation 

Medical applications and art-recovery are the fields, where the information from 

spectral imaging can provide significant benefits [1; 12; 17]. Due to high cost of 

the equipment, low speed of spectral image capture and claim of special skills in 

spectral measurement, these techniques are sometimes difficult to use. 

Conventional multichannel imaging is fast and easy to process, but it can not 

obtain accurate device and illuminant independent representation of the surfaces. 

Thus many researchers try to derive efficient method to estimate spectral image 

from multichannel measurements [14; 19; 20; 22; 24; 29]. 

Spectral estimation is a process of reflectance recovery using a priori knowledge 

about the characteristics of imaging device, noise properties and assumptions of 

reflectance properties. The usual way of estimation is to combine all the available 

knowledge in order to obtain estimation of the reflectance in some sampling grid. 

Spectral estimation often involves estimation of the spectral reflectance from the 

series of observations of the form as it was written in Equation (2.4.5). So the 

reflectance can be treated as an input signal under assumption of fixed illumination 

(l). All fixed parameters can be written jointly as in Equation (3.1.1): 

SldiagF )(= ,           (3.1.1) 
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and simplify the Equation (2.4.5) to a relationship Equation (3.1.2): 

0nFrc += .           (3.1.2) 

Here F  corresponds to multichannel sensor mkF ×ℜ∈ , where k<m and m are 

dimensions of the sampled reflectance. When the system function F  is known, the 

estimation of reflectance r  from system responses c  is a linear inverse problem. 

Usually estimation techniques apply measured a priori data about the reflectance 

behavior [20; 29]. Some methods use low-spectral-dimensional and high-spatial-

dimensional images of surface to be recovered and limited training set of the high-

spectral-dimensional point-wise measurements of the same object [19; 24]. Other 

researchers try to capture color representation of the surface alternatively: by 

capturing several images of the surface under several illuminant conditions or by 

using additional filters in front of the multichannel camera [14; 24]. 

In some studies there is an assumption of reflectance distribution, which allows 

reflectance estimation to be done without any measured a priori information of 

reflectance data [22]. But it will not work if the assumption of the distribution is 

not correct enough. 

This study is concentrated on those methods, which use only multichannel surface 

measurements and a priori data. The a priori data can be gathered from the 

training set of fundus reflectance images. It is important to remember that the 

quality of the training set based estimation often depends on the quality and size of 

the training set. Small number of spectral measurements or poor representation of 

the reflectance properties can strongly diminish the fidelity of the estimation. 

Further sections of the current chapter present three estimation methods and 

fidelity criteria for evaluation of the estimation. 

 

3.2 Wiener Estimate 

Wiener estimate (Least Mean Square Filter) [11] is one of the most adopted linear 

filters for the estimation of reflectance spectra. The aim of the estimation is to find 
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matrix W  that can transform camera response c  under assumption of Equation 

(3.1.2) into the estimated reflectance r̂ : 

Wcr =ˆ            (3.2.1) 

with minimal mean square error [20]: 

2r̂r −=ε ,          (3.2.2) 

where r is a true reflectance of an object,  is an averaging operator and  is 2-

norm operator. 

Following explanation is based on [18] and [20]. Assume Equation (3.1.2) where n 

is noise. From a stochastic view r̂  can be calculated as a conditional mean of r 

given c: 

∫= rdrcrPr )|(ˆ ,          (3.2.3) 

where P(r|c) is a conditional probability density of r given c. If r and n are 

independent Gaussian distributions, meaning 0][][ == nErE , then: 

)()()|( nPrPcrP GaussianGaussian∝ ,        (3.2.4) 

where the Gaussian distributions are written as: 

)
2
1exp()( 1rrCrP r

T
rGaussian

−∑−= ,       (3.2.5) 

)
2
1exp()( 1nnCnP n

T
nGaussian

−∑−=        (3.2.6) 

where Cr and Cn are normalization constants and  ∑r  and ∑n  are covariance 

matrices of reflectance and noise respectively. 

Using Equations (3.2.3) – (3.2.6) we have [18]: 





 −−−∝= ∑ − )()(

2
1exp)|()|( *1** rrrrcrPcrP T

Gaussian ,    (3.2.7) 

where: 
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cFFFr nr
TT

r
1* )( −∑∑∑ += ,       (3.2.8) 

∑∑∑∑∑ −+−=
rnr

T
r

T FFFFI ])([ 1*       (3.2.9) 

Covariance matrices are defined as: 

}))({( T
r rrrrE −−=∑ ,         (3.2.10) 

where }{•E  denotes the expected value operation and }{rEr =  is the mean value 

of r. For the estimation of the reflectance, ∑r  is usually calculated from all 

available samples of the training set. 

Noise is commonly modeled as zero-mean Gaussian white noise process. In the 

current study the noises of the different channels are assumed to be identical and 

independent. Thus the correlation matrix for the noise is equal to: 

Inn
2σ=∑ ,           (3.2.11) 

where 2
nσ  is the noise energy for every of C spectral channels, and I denotes 

identity matrix, where all values are zeros except main diagonal with values equal 

to ones. 

 

3.3 First-order Markov process 

Another well-known linear estimate can be obtained using first-order Markov 

process (MP) [22]. In this case inverse operator is written as: 

1)( −∑∑∑ += n
T

M
T

MM FFFW ,       (3.3.1) 

where the covariance matrix M∑  is estimated using a first-order Markov process 

covariance matrix of the form: 
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σ ,      (3.3.2) 

where 2
cσ  represents energy of the reflectance and ρ  is the adjacent element 

correlation factor in range [0,1]. 

One advantage of first-order Markov process based linear estimate is that it does 

not require any a priori knowledge about the true reflectance. Thus the method 

does not require a training set of spectral measurements.  

 

3.4 Gaussian Mixture Model  

Murakami et al. [20] proposed a Gaussian mixture distribution based nonlinear 

estimation method (GMM). GMM minimizes the mean square error of estimates 

under the assumption that the distribution of reflectance is a mixture of Gaussian 

sequences. Further description in current section is based on paper [20]. 

Probability density distribution of a sequence r as Gaussian mixture distribution 

can be written as: 

∑
=

=
K

k
kk

M rpwrP
1

)()( ,         (3.4.1) 

where superscript M indicates a mixture distribution, K is the number of the 

components, wk is the kth weight coefficient in range [0,1], and pk(r) is the kth 

component Gaussian density of the form: 





 −−−= ∑−1 )()(

2
1exp)( k k

T
kkk rrrrCrp ,     (3.4.2) 

where Ck is the normalization constant such that ∫ =1)( drrP , kr  is the mean of 

sequence r, and ∑k is the covariance matrix of r. 
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The conditional probability density of reflectance r given camera responses c is: 

)()()|( nPrAPcrP GM= ,         (3.4.3) 

where A is a normalization constant such that ∫ =1)|( drcrP , and )(nPG  is 

Gaussian distribution of additive noise. 

Substituting Equation (3.4.1) into Equation (3.4.3) gives: 

∑
=

=
K

k
kk nPrpwAcrP

1
)()()|(         (3.4.4) 

It can be written: 

)|()()( crpBnPrpw kkkk = ,        (3.4.5) 

where )|( crpk  is the probability density of r given c when r is a random sequence 

of pk(r), and Bk is a proportion coefficient such that: 

∫= drnPrpwB kkk )()( .         (3.4.6) 

Now the estimate of reflectance r̂  can be calculated as the conditional mean of r 

given c as follows: 

k

K

k
k

K

k
kk rBArdrcrpBArdrcrPr ˆ])|([)|(ˆ

11
∑∑ ∫∫

==

=== ,    (3.4.7) 

where kr̂  is the best estimate of r if r is a random sequence of )(rk
p . Thus the 

estimate of reflectance r̂  is the sum of weighted estimates kr̂ . 

In case of Gaussian mixture distribution every )(rk
p  is Gaussian like in Equation 

(3.4.2) and probability density of r given c becomes Gaussian as (see detailed 

derivation in [20]): 

)]()(
2
1exp[)|( *1**

kk
T

kk rrrrcrp −−−= ∑ − ,     (3.4.8) 

where 

)()( 1*
knk

T
k

T
kk rFcFFFrr ⋅−++= −∑∑∑     (3.4.9) 
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and 

∑∑∑∑∑ +−= knk
T

k
T

k FFFI )]([* ,      (3.4.10) 

assuming mean vector kr  is not zero. 

Estimate kr̂  corresponds to the Wiener estimate using a priori information from 

Gaussian distribution pk(r). Ensemble of training samples to formulate the K 

Gaussian densities can be divided into k sub portions, for example, by c-Means 

clustering. Coefficients Bk can be obtained from Equation (3.4.6) as follows: 

)]()(
2
1exp[]

2
1exp[)()( *1**

kk
T

kknkkkk rrrrDCCwnPrpw −−−−= ∑ − ,    (3.4.11) 

where  

K
k

kC
)||2(

1

∑
=

π
,         (3.4.12) 

K
n

nC
)||2(

1

∑
=

π
         (3.4.13) 

are normalization constants and: 

)()()( 1
knk

TT
kk rFcFFrFcD −+−= −∑∑ .    (3.4.14) 

From Equation (3.4.11) coefficients Bk can be calculated as follows: 

||)2(]
2
1exp[

)]()(
2
1exp[]

2
1exp[

)])()(
2
1exp[]

2
1exp[(

*

*1**

*1**

∑

∫ ∑

∫ ∑

−=

−−−−=

−−−−=

−

−
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Normalization constant A in Equation (3.4.3) is now calculated as: 

∑
=

= K

k
kB

A

1

1 .           (3.4.16) 
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The weight of mixing for each of estimate rk
* will become: 

∑
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           (3.4.17) 

Finally the estimate of reflectance can be calculated as a linear combination of 

Wiener estimates *
kr : 

*

1
ˆ k

K

k
k rmr ∑

=

= ,           (3.4.18) 

In order to preliminary classify training data and obtain k clusters kr̂ , for Kk ,..,1= , 

c-Means clustering algorithm was used. Following briefly presents steps of c-

Means [30]. 

Algorithm 1: c-Means. 

Choose arbitrary initial estimates of cluster representatives )0(jθ  for j=1..K 

(number of clusters). 

Repeat: 

For i=1 to N (total number of candidate elements) 

 Determine the closest representative jθ  for candidate ri. 

 Set indicator of residence to cluster bi=j. 

End For 

For j=1 to K 

Parameter updating: Determine jθ  as the mean of the vectors ri 

with bi=j. 

End For 

Until no change in any of jθ  occurs between two successive iterations. 
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The dissimilarity between vectors ri and cluster representatives jθ  is measured 

with square Euclidian distance as follows: 

∑∑
=

−=
N

j

K

j
jiij ruUD

1
),( θθ ,        (3.4.19) 

where )1;0(∈iju  is the membership coefficient indicating whether candidate ri 

belongs to cluster j or not under constrain that it belongs to only one of the clusters: 

∑
=

=
K

j
iju

1
1.           (3.4.20) 

 

3.5 Error Metrics for the Evaluation of Estimation 

Accuracy 

Current paragraph describes metrics used for evaluation of the estimation fidelity 

[11]. One of the well known objective fidelity criteria is the root-mean-square-

error (RMSE). RMSE was used to express difference between measured and 

estimated spectral images. In the following description measured reflectance of the 

surface is denoted as ri,j and estimated reflectance at the same coordinates is 
jir ,ˆ . 

The error between these two values is their difference. Then the overall error 

between two reflectance images is: 

∑∑ −=
⋅

= =

MN

i

C

j jiji rre
1 1

)ˆ( ,,          (3.5.1) 

where N and M are spatial height and width of the reflectance image and C is the 

number of spectral dimensions of the image. 

The mean-square-error (MSE) is the squared error average over the image as 

follows: 
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Finally, RMSE is the square root of the squared error average over the image: 
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Another error metric is peak signal-to-noise ratio (PSNR): 

MSE
PSNR J

2

10
maxlog10 ⋅=         (3.5.4) 

where Jmax is the maximum of the jth spectral channel of the image. In the 

experimental part of this study to evaluate image quality and to adjust additional 

Gaussian white noise PSNR was used. 

  

3.6 Principal Component Analysis 

Well known approximation method - Principal Component Analysis (PCA), which 

provides optimal estimation in terms of data variance, was used for the 

approximation of the spectral images in this study. PCA linearly transforms an 

original dataset into a set of uncorrelated variables – principal components (PCs). 

Based on the eigendecomposition of covariance matrix, PCA projects original 

dataset onto an ortonormal subspace of eigenvectors in a way, that the average of 

squared error is minimized and the data variance is maximized [8]. The PCA 

process is as follows [15; 16]: 

1. Calculate the mean r  of the distribution { }N
iir 1=  and subtract the mean value 

from each corresponding band; 

2. Calculate the covariance matrix of the distribution { }N
iir 1= ; 

3. Find the eigenvalues { }M
ii 1=λ  of the covariance matrix and arrange them in 

decreasing order;  

4. Choose the eigenvectors vi, i=1..k corresponding to largest eigenvalues; 

5. Transform the initial data using eigenvectors v1..vk. Equation (3.6.1) 

represents the PCA approximation of the dataset, used in this study as an 

estimation benchmark: 
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where i is an index of PC in the k-dimensional subspace, vi is the ith 

eigenvector of the covariance matrix. 
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4.1 Dataset 

In the current study 11 retinal spectral reflectance images of diabetic and non-

diabetic human ocular fundi were used to investigate the performance of the 

estimation methods described in Chapter 3. Reflectance images were provided by 

the “InFotonics Center” research group, Joensuu. Images were obtained within the 

joint research project “ImageRet” by the University of Joensuu, the Lappeenranta 

University of Technology and the Kuopio University Hospital / University of 

Kuopio [10], funded by the Finnish Institute for Technology and Innovation. 

Images were taken with modified ophthalmic fundus camera system based on 

Canon CR5-45NM fundus camera system (Canon, Inc.) and QImaging Retiga-

4000RV digital monochrome CCD camera (QImaging Corp.) 1024×1024 pixels 

with 2×2 binning. Spectral radiance images were captured as monochrome digital 

images using transmittance filters in wavelength range from 400 to 694 

nanometers with 10 nanometers sampling. The effect of illumination (illuminant 

D65 daylight) and the optics were corrected by dividing each spectrum in the 

spectral radiance image with a mean white reference spectrum (Spectralon ® 

diffuse non-fluorescent white reflectance sample) [10]. 

For each of the spectral reflectance images the borders of images were cut because 

the spectrum on the borders is too noisy and may increase estimation error. Two 

kinds of image fragments were used in this study: fragments of images without 

borders of size 925x875 (notated as IMGS2, IMGS3) and fragments of size 



 30 

600x600 with optic disk and macula part (notated as IMGS2600, IMGS3600, 

IMGA600, IMGC600, IMG_S3600, IMGE600, IMGF600, IMGF2600, IMGG600, 

IMGH600, IMGM2600). The test set for all the estimation methods consists of 

fragments of images IMGS2, IMGS3 of size 925x875 and of size 600x600. Figure 

4.1 presents RGB representation of spectral reflectance test images with detailed 

spectral parameters (beginning of the wavelength interval : sampling : end of the 

wavelength interval). The reflectance samples for the training set were taken from 

set of 600x600 fragments of spectral images IMGA600, IMGC600, IMG_S3600, 

IMGE600, IMGF600, IMGF2600, IMGG600, IMGH600, IMGM2600. Figure 4.2 

presents RGB representation of the training images with detailed spectral 

characteristics. 

 

Figure 4.1. Frames of test images used in the study. 
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Figure 4.2. Training images used in the study. 

Training sets for the test images were formed as follows. From each of the 9 test 

images 10000 samples of spectral reflectance (a regular grid 100x100) were chosen 

using wavelength range 442-694 nm and 10 nm sampling for the test images 

IMGS2 and IMGS2600, and in wavelength range 458-694 nm using 10 nm 

sampling for the test images IMGS3 and IMGS3600. Totally 90000 samples of 

spectrum vectors were obtained for both wavelength ranges. The RGB images of 
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retina for the test set were simulated according to Equation (2.4.5), using the 

reflectance images and the standard D65 “daylight” spectral power distribution as 

the illuminant. 

Camera channel characteristics were modeled with the Gaussian functions: 
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where i indicates sensor and 2
iσ  is the variance of the Gaussian. Figure 4.3 

presents the shapes of the Gaussian sensitivities and additional transmittance filters 

used in the simulation. The purpose of using additional transmittance filters is to 

increase the amount of information in the measurements.  In some studies it can be 

assumed that additional filters can be used in front of illuminant or camera. This 

method can be slow and needs additional work. Alternatively we can assume that 

the camera has eight channels. In the current study additional filters were used only 

in the estimation based on First-order Markov process (MP). 

 

Figure 4.3. Eight camera sensitivities (3 Gaussian camera channels plus 5 

additional transmittance filters) weighted with D65 standard illuminant. 
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Three levels of additional zero-mean Gaussian white noise with PSNR ∞ (no 

additional noise), 40dB and 30dB were used in the simulation. The performances 

of the estimations were evaluated with average value, standard deviation and 

maximal root-mean-square error between the estimated and the original retinal 

reflectance images. 

 

4.2 Reflectance estimation using Wiener Estimate 

Resulting RMSE values for the Wiener estimate are presented in Table 4.3. The 

estimate was also examined for the case, when the covariance matrix was formed 

of the reflectance samples from the test images respectively. Results are presented 

in Table 4.4.  

Table 4.3. Errors of Wiener estimation for the test sets 

Image 

PSNR(dB) RMSE 
IMGS2 IMGS3 IMGS2600 IMGS3600 

Avg. 0.0096 0.0107 0.0102 0.0103 

Max. 0.0473 0.0222 0.0476 0.0222 ∞  

Std. 0.0043 0.0027 0.0045 0.0028 

Avg. 0.0104 0.0114 0.0110 0.0111 

Max. 0.0469 0.0255 0.0481 0.0266 40 

Std. 0.0042 0.0027 0.0043 0.0028 

Avg. 0.0131 0.0151 0.0137 0.0146 

Max. 0.0466 0.0449 0.0487 0.0416 30 

Std. 0.0046 0.0039 0.0047 0.0039 

 

Resulting error values for the estimation indicates that the estimation performance 

is good, since the average RMSE is less than 0.0107 for the noise-free images. 

Even under condition of high noise level the average RMSE value does not exceed 

0.0151. Comparing by resulting error values it was found that the estimate with the 
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covariance matrix of reflectance samples from the test images does not perform 

better than the estimate with training set from the reflectance samples from the test 

images in noise-free case. It means that the reflectance spectra of retina seem to 

show similarity, so that the training set used for the estimation may represent 

general behavior of the retinal spectral reflectance shapes. It can also be seen from 

the results that maximum RMSE is higher than average RMSE. It means that some 

of spectrum estimations are very poor. In the additional noise cases it was found 

that the estimation does not perform much worse both in terms of average and 

maximum RMSE values. 

Table 4.4. Errors of Wiener estimation for the test sets when the training set consist 

of the reflectance samples from the test set images respectively 

Image 

PSNR(dB) RMSE 
IMGS2 IMGS3 IMGS2600 IMGS3600 

Avg. 0.0093 0.0106 0.0102 0.0103 

Max. 0.0473 0.0222 0.0473 0.0222 ∞  

Std. 0.0039 0.0028 0.0045 0.0028 

Avg. 0.0102 0.0113 0.0110 0.0111 

Max. 0.0467 0.0258 0.0464 0.0291 40 

Std. 0.0038 0.0027 0.0043 0.0028 

Avg. 0.0129 0.0151 0.0137 0.0146 

Max. 0.0478 0.0401 0.0476 0.0410 30 

Std. 0.0043 0.0039 0.0047 0.0039 

 

4.3 Reflectance estimation using the first-order 

Markov process 

Next, estimation of the reflectance with the first-order Markov process (MP) was 

examined. Since this estimate does not require any training set, only the simulated 

RGB images with different levels of additional Gaussian noise for the estimation 
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and reflectance images of the test set for the evaluation were used. Parameter ρ  is 

usually taken to be from 0.9 [22] to 0.995 [19]. In this study ρ  is taken to be 0.95. 

Table 4.5. Errors of first-order Markov process estimation from 3 channel images 

Image 

PSNR(dB) RMSE 
IMGS2 IMGS3 IMGS2600 IMGS3600 

Avg. 0.0169 0.0259 0.0175 0.0235 

Max. 0.0444 0.0459 0.0444 0.0413 ∞  

Std. 0.0041 0.0092 0.0047 0.0088 

Avg. 0.0171 0.0257 0.0176 0.0235 

Max. 0.0445 0.0463 0.0442 0.0414 40 

Std. 0.0041 0.0091 0.0047 0.0087 

Avg. 0.0185 0.0262 0.0190 0.0241 

Max. 0.0474 0.0483 0.0468 0.0439 30 

Std. 0.0042 0.0090 0.0048 0.0086 

 

Table 4.6. Errors of first-order Markov process estimation for 8 channel input 

images (see channel characteristics on Figure 4.3) 

Image 

PSNR(dB) RMSE 
IMGS2 IMGS3 IMGS2600 IMGS3600 

Avg. 0.0127 0.0163 0.0141 0.0163 

Max. 0.0359 0.0283 0.0359 0.0276 ∞  

Std. 0.0040 0.0052 0.0043 0.0052 

Avg. 0.0146 0.0168 0.0158 0.0168 

Max. 0.0416 0.0317 0.0424 0.0298 40 

Std. 0.0041 0.0051 0.0043 0.0051 

Avg. 0.0187 0.0195 0.0196 0.0195 

Max. 0.0560 0.0483 0.0544 0.0444 30 

Std. 0.0051 0.0054 0.0052 0.0053 
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Table 4.5 contains resulting error values of the estimation. The estimate performs 

almost two times worse when compared to the results for the Wiener estimate. 

Nevertheless the average RMSE value upper limit is 0.0259 for the noise-free 

images and 0.0262 for the noisy images. At the same time in terms of maximum 

RMSE MP performs well when compared to other methods. This result is good in 

respect that no a priori information of the reflectance distribution was used during 

the estimation. 

For this method the multispectral images were also simulated as responses of the 

camera with 3 primary Gaussian sensitivities and 5 additional filters. Resulting 

RMSE values are presented in Table 4.6. It is obvious that the estimation works 

significantly better in case of using additional filters in about 0.01 better when 

compared to using only Gaussian sensitivities of camera. Even more, the 

estimation is about of same performance when compared to the Wiener estimate. 

It was also discovered that MP performs almost twice better for the training images 

IMGS2 and IMGS2600 than for images IMGS3 and IMGS3600 in terms of 

average RMSE in case of not using additional filters. Use of additional filters 

provided decreasing of the difference in terms of average RMSE and decreasing of 

the maximum RMSE values for the test images IMGS3 and IMGS3600. 

 

4.4 Reflectance estimation using Gaussian Mixture 

Model  

For this method the test and training sets introduced in Section 4.1 were used. The 

clustering of the training set to 3 and 6 clusters using C-Means algorithm 

introduced in Section 3.5 was done as a preprocessing phase. The evaluation of the 

method for both clustering results is performed in Table 4.7 and Table 4.8. It was 

found that increasing the number of clusters does not improve estimation 

performance much. When this method was compared to Wiener estimate it was 

found that GMM improves the estimation performance up to 0.008 maximum. But 
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generally the performance of Wiener and GMM was concluded to be very similar. 

GMM performs better even for noised input images when compared to MP. It was 

also discovered that GMM performs worst in terms of maximum RMSE with 

respect to other methods. 

Table 4.7. Errors of Gaussian Mixture Model estimation. 3 clusters 

Image 

PSNR(dB) RMSE 
IMGS2 IMGS3 IMGS2600 IMGS3600 

Avg. 0.0104 0.0098 0.0095 0.0093 

Max. 0.0667 0.0239 0.0667 0.0239 ∞  

Std. 0.0052 0.0024 0.0047 0.0027 

Avg. 0.0102 0.0106 0.0110 0.0102 

Max. 0.0733 0.0293 0.0716 0.0301 40 

Std. 0.0048 0.0024 0.0054 0.0027 

Avg. 0.0129 0.0145 0.0137 0.0140 

Max. 0.0846 0.0445 0.0874 0.0457 30 

Std. 0.0057 0.0040 0.0068 0.0041 

Table 4.8. Errors of Gaussian Mixture Model estimation. 6 clusters 

Image 

PSNR(dB) RMSE 
IMGS2 IMGS3 IMGS2600 IMGS3600 

Avg. 0.0095 0.0109 0.0107 0.0102 

Max. 0.0845 0.0273 0.0845 0.0273 ∞  

Std. 0.0063 0.0030 0.0079 0.0026 

Avg. 0.0103 0.0114 0.0114 0.0109 

Max. 0.0855 0.0309 0.0862 0.0304 40 

Std. 0.0063 0.0027 0.0079 0.0026 

Avg. 0.0141 0.0152 0.0132 0.0147 

Max. 0.0921 0.0467 0.0898 0.0472 30 

Std. 0.0080 0.0041 0.0064 0.0042 
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4.5 Results and Discussion  

According to the evaluation of the estimations with RMSE values, the Wiener 

method gives almost always the best performance for the noise-free images. The 

Tables 4.3, 4.7 and 4.8 also indicates the similarity of the performance quality 

when Wiener and GMM results are compared. Since GMM is a combination of 

several linear estimates, demanding some additional time for clustering and 

accurate adaptation to the training set distribution, it is more complex for modeling 

and calculations.  Nevertheless, according to evaluation with RMSE criteria the 

model does not improve performance of the estimation for the used data. 

MP shows relatively poor results of estimation when compared to Wiener and 

GMM, but the performance of the estimate may be acceptable for some 

applications. For highly noised input data the average RMSE value is double as 

much than the minimal among all estimates average RMSE, equal to 0.0129. 

Nevertheless the maximum RMSE value for the estimations is never higher than 

0.0483 in the worst case (30dB PSNR noised image).  

 

Figure 4.4. RMSE values for PCA approximation of the image IMGS2. 

PCA approximations of the original test images were calculated to evaluate the 

quality of the estimates, where the most significant eigenvectors of the covariance 

matrices were used. Figures 4.4 – 4.7 show the RMSE values for the 
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approximation of the images using different subspace dimension. Corresponding 

numerical results of the evaluation can be found in Appendix 1 and Appendix 2. 

The graphs of RMSE value dynamics and table of results indicate that generally 

more than 3 principal components provide approximation with the maximal RMSE 

value less than 0.03 and fidelity more than 0.99. Also more then 11 principal 

components provide approximation with the captured 99.9% of variance. Thus 

none of the estimates can perform as good as the PCA approximation does.  

 

Figure 4.5. RMSE values for PCA approximation of the image IMGS2600. 

 

Figure 4.6. RMSE values for PCA approximation of the image IMGS3. 
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Figure 4.7. RMSE values for PCA approximation of the image IMGS3600. 

Comparison of the estimation results indicates that the Wiener and GMM perform 

almost as good as the PCA approximation does with respect to the fact that PCA 

results correspond to ideal noise-free case. It is expected that the eigenvectors 

obtained from the training set are reasonable candidates for the camera channel 

functions when compare to the Gaussian function. This would provide better 

quality of the estimation.  

Spatial distribution of the RMSE values for the estimations was examined. It 

should be noted that in the following Figures 4.8 – 4.12 the color scales of the 

RMSE values are different for the estimates and the comparison of the RMSE 

value levels of estimates should be done with respect to that fact. The analysis of 

the contours showed that commonly for all three examined estimates high 

estimation errors occur on the borders of the image, on the optic disk part and on 

the macula part of image. There may be lack of reflectance behavior 

representatives for optic disk and macula part, since the training samples of 

reflectance were taken from point-wise measured training images using regular 

spatial grid. The borders of the reflectance images also contain larger amount of 

noise when compared to other regions in the images. Thus it is expected that more 
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careful analysis of the training data and adaptive collection of the training samples 

can improve the estimation quality in these areas. 

 

Figure 4.8. Color contours of the RMSE values for the image IMGS2 estimates. 

Color contours of the RMSE values for the estimations of image IMGS2 are 

presented on Figure 4.8. For the Wiener estimate the Figure 4.8 indicates compact 

distribution of the high RMSE values: on the border, in the macula part of the 

image (central part of the retina) and on the optic disk part. For the MP the RMSE 

value distributed more smoothly with respect to same locations as for Wiener 

estimate. In case of the GMM the highest RMSE values are located in the brightest 

part of the optic disk part. Same comparison and the same results were obtained for 
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the estimations from the noised images with PSNR value equal to 30dB – highly 

noised images (Figure 4.9). 

Figure 4.9. Color contours of the RMSE values for the image IMGS2 estimates 

under noise level of PSNR=30dB. 

Some of the previous fundus studies [2; 32] concentrate their analysis to 

wavelength range from 390 to 540 nanometers. In this study the RMSE values of 

the estimations were examined in 3 intervals of wavelengths: from 400 to 500, 

from 500 to 600 and from 600 to 700 nanometers. The resulting contours of the 

RMSE distribution are presented in Figures 4.10 – 4.12. The Figure 4.10 indicates 

that in the wavelength range from 400 to 500 nanometers the GMM leads to 

RMSE values with upper limit equal to 0.025 in the optic disk part, and 0.013 for 
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the blood vessels and less than 0.01 in the macula part. Wiener estimate gives 

about the same performance with upper limit equal to 0.03 in the optic disk part, 

0.013 for the blood vessels and less than 0.01 for the macula part. MP performs 

best when additional filters are used. The upper limit of RMSE value is 0.022 in 

the optic disk part, 0.01 for the blood vessels and 0.004 for the macula part. MP 

performed worse when only three Gaussian camera sensitivities were used in the 

estimation. The upper limit of RMSE value is 0.035 in the optic disk, 0.013 for the 

vessels and about 0.01 in the macula. 

 

Figure 4.10. Color contours of the RMSE values for the image IMGS2 estimates in 

the wavelength range 400 to 500 nanometers. 

In the wavelength range from 500 to 600 nanometers (Figure 4.11) GMM gives 

good performance with RMSE values less than 0.015 except the optic disk part, 
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where RMSE values can reach 0.06. The Wiener estimate gives better results: the 

upper limit of RMSE value is 0.055 in the optic disk part and less than 0.01 for 

other fundus parts. MP with only Gaussian camera sensitivities gives about the 

same performance: upper limit for the RMSE values in the optic disk part is 0.05, 

for the blood vessels is 0.01 and 0.02 for the macula part of the fundus. MP with 

additional filters gave the best performance for this wavelength range: the upper 

limit for RMSE values is 0.023 for the optic disk, 0.009 for the blood vessels and 

less than 0.005 for the macula part of the fundus. 

 

Figure 4.11. Color contours of the RMSE values for the image IMGS2 estimates in 

the wavelength range 500 to 600 nanometers. 

In the wavelength range from 600 to 700 nanometers (Figure 4.12) Wiener 

estimate performs best among the studied estimates and has upper limit for the 
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RMSE values in the optic disk part to be 0.06, 0.02 for the blood vessels and 0.025 

in the macular part of the fundus. GMM may give very high RMSE error in the 

optic disk part – up to 0.14 – at the same time the estimation error for the other 

parts of fundus image does not exceed the RMSE value of 0.02. MP in this 

investigation gave average performance both for 3 and 8 number of camera 

channels. For the MP with only Gaussian camera sensitivities the upper limit for 

the RMSE values in the optic disk part is 0.05, 0.025 for the blood vessels and 

0.045 for the macula. For the MP with additional filters the upper limit for RMSE 

values is 0.06 in the optic disk, 0.025 for the blood vessels and 0.04 in the macula. 

 

Figure 4.12. Color contours of the RMSE values for the image IMGS2 estimates in 

the wavelength range 600 to 700 nanometers. 
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Figure 4.13. Spectra samples of best and worst estimation. 

Comparisons of the best and the worst samples of estimations for the test image 

IMGS2 are presented in Figure 4.13. The Figure illustrates typical behavior of the 

MP – smooth and uniform shape of estimated reflectances – when other estimates 

attempt to follow the behavior of the reflectance. It can also be seen from the 

Figure 3.14 that there is probably varying amount of noise in the original 

measurements of reflectance images. In the real case this noise should be removed 

from the a priori reflectance data in order to guarantee reasonable estimation with 

respect to the true reflectance. General performance of the estimated spectral 

reflectance was also investigated when different spatial locations of fundus image 

are considered. Comparative graphs are presented in Figure 4.14. 
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Figure 4.14. Spectral estimation samples from different parts of fundus image. 

The examples of reflectance from different spatial locations show the same 

behavior, which was already discovered in the analysis of the RMSE contours. 

Additionally, despite the low maximum RMSE values, MP generally provides poor 

modeling of the spectral reflectance shape in all investigated cases. 
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The aim of this work was to examine and compare some methods for the spectral 

reflectance estimation for fundus images. The key point of the study was the 

estimation of the spectral reflectance images from multichannel images. All the 

methods are point-wise and can be derived using the probabilistic framework, 

where the modeling of measurement noise is included. During the research Wiener, 

first-order Markov process (MP) and Gaussian Mixture Model (GMM) estimates 

were applied and their performance was compared. Although in general none of 

the estimates performs as good as the PCA approximation of the original spectral 

reflectance images, spatial investigation of the estimations identified that the 

Wiener estimate usually provides good fit of the estimation for the fundus, except 

optic disk part. It was discovered that linear Wiener estimate performs almost 

equally well with the nonlinear GMM estimate. It means that the data can be 

modeled using Gaussian distribution. Alternatively it was proposed to use Markov 

process based linear estimate, which does not depend on any a priori information 

about the retinal reflectance spectral distribution. MP uses only assumption for the 

reflectance distribution, illuminant and camera characteristics. The performance of 

this method is worse when compared to the other two methods, but still MP can 

give adequate performance for some applications. It was also discovered that MP, 

in case of reconstruction from 8-channel multichannel image, lead to comparable 
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performance with the Wiener estimation, based on three channel measurements. In 

practical imaging this method should be used only with digital camera with more 

than 3 channels. The results and simulated settings, presented in this study, should 

be validated with real multichannel measurements. It is expected that this research 

provides information for fundus image analysis. In the most optimistic case the 

studied methods lead to relatively fast and cheap way of obtaining retinal spectral 

reflectance images to further processing. It would also lead to practical way of 

storing the reflectance information.  

It was discovered that the noise in the used reflectance data was not spatially 

uniform. In the further research it would be also useful to adjust the training sets 

according to spatial locations of the fundus. It is expected that using modified 

training set would lead to better estimation results. When the results are analyzed it 

can be suggested, that more careful investigation  of data, collection of the training 

set, and improvement of the clustering method would improve the performance of 

the estimation. 
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Numerical results of PCA approximation of test images with original eigenvectors 

IMGS2 IMGS2600 IMGS3 IMGS3600  Image 

 

# 

of PC 

Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity 

1 0.0081 0.0057 0.0603 0.8341 0.0081 0.0043 0.0444 0.9053 0.0076 0.0044 0.0415 0.9030 0.0073 0.0055 0.0378 0.8903 

2 0.0054    0.0046    0.0337 0.9153 0.0038 0.0026    0.0301 0.9754 0.0056    0.0018    0.0166 0.9573 0.0046 0.0016 0.0143 0.9685 

3 0.0036    0.0021    0.0298 0.9707 0.0028    0.0014    0.0294 0.9886 0.0039    0.0016    0.0165 0.9776 0.0033    0.0017    0.0142 0.9821 

4 0.0029    0.0014    0.0290 0.9826 0.0023    0.0013    0.0271 0.9920 0.0031    0.0010    0.0128 0.9870 0.0022    0.0007    0.0095 0.9928 

5 0.0023    0.0012    0.0282 0.9884 0.0020    0.0008    0.0149 0.9945 0.0025    0.0008    0.0127 0.9911 0.0020    0.0006    0.0082 0.9944 

6 0.0021    0.0010    0.0238 0.9908 0.0018    0.0008    0.0145 0.9959 0.0020    0.0007    0.0119 0.9946 0.0017    0.0006    0.0080 0.9958 

7 0.0019    0.0009    0.0183 0.9928 0.0016    0.0006    0.0097 0.9967 0.0017    0.0006    0.0105 0.9958 0.0015    0.0005    0.0070 0.9966 

8 0.0016    0.0008    0.0146 0.9944 0.0014    0.0006    0.0093 0.9973 0.0016    0.0006    0.0090 0.9965 0.0014    0.0005    0.0069 0.9973 

9 0.0015    0.0006    0.0108 0.9956 0.0013    0.0005    0.0072 0.9978 0.0014    0.0006    0.0089 0.9972 0.0012    0.0004    0.0065 0.9978 

10 0.0014    0.0006    0.0096 0.9963 0.0012    0.0005    0.0072 0.9981 0.0013    0.0005    0.0086 0.9977 0.0011    0.0004    0.0065 0.9983 

11 0.0013    0.0005    0.0096 0.9969 0.0011    0.0004    0.0072 0.9984 0.0011    0.0004    0.0082 0.9982 0.0009    0.0004    0.0065 0.9987 

12 0.0012    0.0004    0.0071 0.9974 0.0010    0.0004    0.0067 0.9987 0.0010    0.0004    0.0081 0.9986 0.0008    0.0003    0.0051 0.9990 

13 0.0011    0.0004    0.0069 0.9978 0.0009    0.0004    0.0067 0.9989 0.0009    0.0004    0.0075 0.9989 0.0007    0.0003    0.0050 0.9993 

14 0.0010    0.0004    0.0069 0.9982 0.0008    0.0003    0.0065 0.9991 0.0008    0.0003    0.0065 0.9992 0.0006    0.0003    0.0040 0.9994 

15 0.0009    0.0004    0.0066 0.9985 0.0008    0.0003    0.0065 0.9992 0.0006    0.0003    0.0064 0.9994 0.0005    0.0002    0.0040 0.9996 



 



 

 

 

Numerical results of PCA approximation of test images with eigenvectors from the training set 

IMGS2 IMGS2600 IMGS3 IMGS3600  Image 

 

# 

of PC 

Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity Avg. 
RMSE 

Std. 
RMSE 

Max. 
RMSE 

Fidelity 

1 0.0132 0.0072 0.0990 0.9441 0.0144 0.0098 0.0990 0.9441 0.0175 0.0050 0.0335 0.9457 0.0160 0.0046 0.0311 0.9457 

2 0.0108 0.0046 0.0541 0.9644 0.0115 0.0051 0.0544 0.9644 0.0148 0.0048 0.0282 0.9659 0.0135 0.0041 0.0239 0.9659 

3 0.0070 0.0048 0.0508 0.9780 0.0075 0.0059 0.0508 0.9780 0.0118 0.0033 0.0222 0.9794 0.0110 0.0033 0.0222 0.9794 

4 0.0063 0.0034 0.0416 0.9841 0.0068 0.0042 0.0416 0.9841 0.0109 0.0030 0.0195 0.9854 0.0100 0.0028 0.0175 0.9854 

5 0.0061 0.0032 0.0398 0.9886 0.0066 0.0041 0.0398 0.9886 0.0100 0.0026 0.0173 0.9898 0.0093 0.0026 0.0173 0.9898 

6 0.0054 0.0027 0.0348 0.9919 0.0060 0.0034 0.0348 0.9919 0.0089 0.0023 0.0163 0.9931 0.0085 0.0025 0.0163 0.9931 

7 0.0051 0.0025 0.0348 0.9938 0.0058 0.0032 0.0348 0.9938 0.0084 0.0020 0.0157 0.9946 0.0082 0.0023 0.0157 0.9946 

8 0.0049 0.0025 0.0342 0.9953 0.0056 0.0031 0.0342 0.9953 0.0080 0.0020 0.0157 0.9959 0.0079 0.0023 0.0157 0.9959 

9 0.0048 0.0025 0.0341 0.9963 0.0055 0.0031 0.0341 0.9963 0.0072 0.0017 0.0155 0.9969 0.0072 0.0019 0.0155 0.9969 

10 0.0046 0.0025 0.0341 0.9972 0.0052 0.0032 0.0341 0.9972 0.0071 0.0016 0.0153 0.9976 0.0071 0.0019 0.0153 0.9976 

11 0.0040 0.0021 0.0330 0.9977 0.0045 0.0025 0.0330 0.9977 0.0068 0.0018 0.0151 0.9982 0.0070 0.0021 0.0151 0.9982 

12 0.0039 0.0019 0.0240 0.9982 0.0043 0.0021 0.0240 0.9982 0.0037 0.0013 0.0104 0.9985 0.0033 0.0009 0.0089 0.9985 

13 0.0038 0.0019 0.0239 0.9985 0.0042 0.0021 0.0240 0.9985 0.0034 0.0011 0.0099 0.9989 0.0031 0.0009 0.0082 0.9989 

14 0.0036 0.0018 0.0234 0.9988 0.0040 0.0020 0.0234 0.9988 0.0031 0.0011 0.0097 0.9991 0.0027 0.0007 0.0074 0.9991 

15 0.0035 0.0017 0.0221 0.9990 0.0039 0.0019 0.0221 0.9990 0.0027 0.0009 0.0085 0.9993 0.0026 0.0007 0.0073 0.9993 

 


