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Abstract

In this thesis, we study the compression of digital maps, which allows achieving
compact storage size and fast transmission of them to clients. The thesis is
composed of two main parts.

The first part is dedicated to the lossless compression of raster map images. We
consider both dictionary-based and context-based statistical compression. The best
compression performance is achieved by using the context-based compression. To
prevent context dilution problem during the compression, we apply context-tree
based compression, which operates by an incomplete n-ary context tree. The
proposed algorithm outperforms all existing context-based methods on the set of test
images used.

The second part considers compression of geographical maps in vector format. We
study a variety of different methods of lossy compression of geographical vector
data: compression of rasterized vector map, compression of map contours by chain
codes, compression by coordinates quantization, and progressive encoding of the
vector data.

In the raster-based compression, the vector map is first rasterized and then
compressed by a raster image compression method. We consider to exploit the
vector information to simplify the rasterized image, and in this way, to obtain better
compression performance.

We also study the compression of map contours and use a chain code modeling
approach for this purpose. This approach is good and efficient alternative to the
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straightforward encoding of coordinates. We apply context-tree based compression,
and the proposed algorithm provides better results than any of the competitive
algorithms on the set of test data used.

Compression of vector data by coordinate quantization is also considered. We
construct optimal product quantizer both in Cartesian and polar spaces. The
proposed quantizer outperforms the heuristic ones in rate-distortion sense.

We consider also lossy compression of multiresolution vector data, based on
coordinate quantization. We use the coordinates of lower resolution data to predict
coordinate values of the higher resolutions. This approach narrows the set of
prediction errors, which is used for constructing of the quantizer.

Keywords: map compression, image compression, context-tree modeling, coordinate
quantization, chain code compression.
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1 Introduction

Maps are abstract objects used to represent real places and things through symbols.

Digital maps are widely used in geographical information systems (GIS), which can

be used for navigating a vehicle or in certain web-based services (see Fig. 1). The

data from a digital map can be represented in vector or raster formats. Map data can

also be represented in a hybrid format, where raster data is combined with vector

layers.

Figure 1: Maps in mobile and in-car navigation systems.

Raster maps are abstractions where spatial data is represented in 2-D arrays of

pixels, depicted as a schematic discrete-tone image. Raster-based GIS systems use

the following procedure: after first receiving a request from a client, raster-based

systems get a map from a database and convert it to a bitmap with predefined

dimensions. Next, this bitmap is sent to the client. The main advantage of this

procedure is its simplicity: the raster format does not require a large amount of
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computational resources and can be represented in portable devices with low

machine resources, like mobile phones.

Although the raster map format has many advantages, it also has several important

disadvantages. The first disadvantage is the size of the map: increasing the map

resolution immediately leads to a significant increase in file size. The second

disadvantage is that raster maps are displayed as images and, accordingly, they do

not contain any attributive information. The raster maps not having attributive

information makes it impossible to process queries.

Whereas raster maps represent data as 2D pixels, vector maps represent data as

geometrical objects. If, for example, in a vector map, a road was represented as a

combination of lines, those lines would be the geometrical objects. A vector map

consists of two main types of data: geometrical data and attributive data.

Geometrical data includes the coordinates of points and the rules regarding how

those points should be connected. Attributive data contains color, textual and other

types of information related to the objects. Unlike raster maps, vector maps are more

compact and are invariant to the zooming operation. The presence of attributive

information makes it possible to process different queries. The main disadvantage of

vector maps is their complex data structure, which can result in long display times

the use of a significant amount of machine resources.

Because of the large size of digital maps, their data often needs to be compressed for

map databases storage and transmission to remote users. The large size of digital

maps, the limited bandwidth of wireless data transmission channels, and the low

machine resources of mobile devices affect the efficiency of GIS and navigation

systems.

The use of effective compression algorithms can reduce the storage space needed for

map collection, which can increase the amount and quality of the geographic data

that can be stored on clients’ portable devices. Effective compression algorithms can
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also accelerate the transmission of data through low-bandwidth channels, which will

reduce the time needed to transfer geographic data to clients, which, in turn, will

make map services cheaper and more reliable.
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2. Compression of raster maps

Raster maps are discrete-tone schematic images with a limited number of colors.

Unlike continuous-tone images where the intensities change smoothly, the

intensities in discrete-tone images change abruptly through a limited number of

values. Another important property of raster map images is that they composed

solely of straight lines, text, and geometric objects.

Figure 2. An example of lossy compression in a map image. On the left is the

original image with 6 colors, and on the right is the JPEG-compressed image with

646 colors.

Compression algorithms for raster maps must preserve a their structure and color

information. Therefore, we concentrate our discussion here on lossless algorithms
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for raster images. Lossy algorithms such as JPEG [Wal91] produce changes in the

structure and the color palette that can significantly affect the quality of a decoded

map (see Fig. 2).

2.1 Dictionary-based image compression algorithms

Dictionary-based compression algorithms replace a subsequence of the encoded

message, by using pointers to a collection of strings of pixels called a dictionary.

The best known dictionary-based methods are based on the algorithms proposed by

Lempel and Ziv in 1977 [Ziv77] and 1978 [Ziv78], namely LZ77 and LZ78.

The Portable network graphics (PNG) format [PNG] and the CompuServe Graphics

Interchange Format (GIF) [GIF] are the most widely used standards for lossless

image compression. The PNG format is based on the DEFLATE [Deut96]

compression algorithm, which is a modification of the LZ77 algorithm. The GIF

format is based on the Lempel Ziv Welch (LZW) [Welch84] compression algorithm,

which is a further development of LZ78. In publication P1, we consider the semi-

adaptive modification of the LZW method in the case when an image is divided and

then compressed into small, rectangular blocks.

The main drawback of these LZW algorithms is that they do not utilize the 2-D

information of the image. Accordingly, GIF and PNG are less efficient than the

newer compression algorithms.

2.2 Predictive lossless compression of images

Predictive methods are the best for lossless encoding of photographic images.

Algorithms such as Fast and Efficient Lossless Image Compression Algorithm

(FELICS) [Hova93], Context-Based, Adaptive Image Codec (CALIC) [Wu97], Low-

Complexity Context-Based Lossless Image Compression Algorithm (LOCO-I)

[Wein96a] and TMW [Meye97] are based on the encoding of prediction errors,
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where the prediction is based on the values of the neighborhood pixels. These

algorithms give excellent results for continues-tone images, where colors change

smoothly. The main disadvantage of predictive algorithms for compressing raster

maps is that the prediction cannot be done properly, due to the discrete-tone nature

of the map images. Therefore, the proposed algorithms are unable to predict a

change of colors and are even less effective at prediction than dictionary-based

algorithms. Due to this fact, we do not consider prediction-based algorithms any

further here.

2.3 Context-based compression of images

Pixels in a map image form geometrical structures with appropriate spatial

dependencies. Those dependencies can be localized to a limited neighborhood, and

described by a context-based statistical model [LR81]. In this model, the pixel

probability is conditional on the context C, which is defined as a distinct

configuration of neighboring pixels. An example of a 4-pixel context template is

demonstrated in Figure 3.

? ? ?

Figure 3: An example of a 4-pixel template and three sample contexts.

The probabilities of different contexts are assumed to be independent. Because of

this assumption, the pixel probability for each context Cj can be found by calculating

the counters ( jC
kn ) for all possible pixel values k appearing in that particular context

in the entire image
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A context with more skewed probability distribution has smaller information content

and, therefore, smaller entropy, than with less skewed one.

Encoding symbols within each separate context are made by an entropy coder, such

as arithmetic [Riss79] or Huffman [Huff52] coding.

In principle, a skewed probability distribution can be obtained by using a larger

number of pixels in context. However, the overall number of contexts increases

exponentially as the number of pixels included in each particular context decreases.

This leads to the context dilution problem, which occurs when the count statistics are

distributed over too many contexts, thus affecting the accuracy of the probability

estimation.

2.4 Context tree modeling

In variable-size context modeling, the number of context pixels depends on the

combination of the neighboring pixel values; context selection is done by traversing
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the context tree instead of using a fixed size template [Riss83]. Each node in a tree

represents a single context, and the children of a context correspond to the parent

context augmented by one more pixel. The position of this pixel can be fixed in a

predefined order or optimized within a limited search area relative to the compressed

pixel position [Nohre94], [Mart98], namely free tree (see Fig. 4).

?

x ?

?

?

?

?

?

? ?

? ?

x
x

x x x

x
x

x

x

Figure 4: Locations of the context pixels: predefined (left) and optimized (right).

?

?

? ?

? ? ? ? ?

? ?
Figure 5: A small example of the incomplete trinary context tree. Instances of

traversing are marked with a bold line.

The context tree is used for compression in the same way like fixed-size context

templates, only the context selection is different. Context selection is done by

traversing the context tree from the root to the terminal node, each time selecting the

branch according to the corresponding neighbor pixel colors, as shown in Fig. 5. The

traversing stops if it comes to a leaf or if there is no outgoing branch, corresponding

to the next neighbor pixel color.
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Context-tree-based compression consists of two phases: the construction of the

context tree and image encoding. The tree can be used in a static manner, when the

context tree is constructed for a training image, and then used for the compression of

images with similar properties [Fränti99]. The context tree can also be optimized

directly for the encoded image [Nohre94] [Mart98]. In this case it must be stored in

the compressed file.

Context tree construction consists of two main phases: initialization of the context

tree, and pruning of the constructed tree.

To construct an initial context tree for an input image, we need to process through

the image data to collect statistics for all potential contexts, leaves and internal

nodes. Each node stores information on the counts of each pixel value that appears

in this particular context. Ragnar Nohre [Nohre94] introduced an exponential-

memory algorithm, but this algorithm was not applicable to practical tasks due to its

huge memory requirements. Another algorithm for constructing a context tree was

proposed in [Helf98]. That algorithm has linear time and memory requirements in

respect to the number of pixels in the image.

After collecting the statistics for all possible contexts, the context tree T must be

pruned by comparing every node w against its children nodes {wi} to find the

optimal combination of siblings. The number of bits required for describing each

node of the context tree is shown below, where the size of the image palette is

denoted as α





=
 .incomplete is  if  ,

full is  if   1,
)(

T

T
wc

α (4)

Let’ denote the set of all terminal nodes of the tree T as S(T). For each node w∈S(T),

the count of the color index i is denoted as ni(w). The estimated code length

generated by a terminal node w∈S(T) is calculated using the following expression
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[Wein95, Mart98]
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where ε is a constant. The aim of context tree pruning is to find a tree structure that

will minimize the following function
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Tw
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where the first term gives the storage cost of the tree structure, and the second term

is the estimated number of bits produced during the compression of the image using

this context tree.

A major difficulty in the pruning of the α-ary incomplete context tree is that the

number of all possible variants of the prunings of each node is O(2α), as shown in

Figure 6. Due to this fact, efficient construction of the optimal α-ary incomplete

context tree is still an open problem [Mart04]. All existing algorithms for context

tree pruning operate on full trees, where each node has α outgoing branches or does

not have them at all. In publication P2, we propose a solution, which uses a two-

stage algorithm, for the efficient construction of an α -ary incomplete context tree.

In our algorithm, pruning can be done in a bottom-up [Nohre94] or top-down

manner [Furl91, Fränti99]. In the top-down approach, the context tree is constructed

level-by-level. It compares the children nodes with their parent and prunes them out

if the addition of the new children would increase (6). The process continues until a

predefined depth is achieved, or when no new nodes are created during the process.

The bottom-up approach constructs the full tree up to a predefined depth and then

analyzes the tree from leaves to the root. The sub-trees of the nodes that increase (6)
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are pruned from the tree, which is similar to the way that new subtrees are pruned in

the top-down approach.

(1,0,0) (0,1,0) (0,0,1)(0,0,0)

(0,1,1) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) (1,1,1)

Figure 6: Possible variants of ternary tree pruning for a full tree (left) and an

incomplete tree (right). The numbers of possible variants are 2 and 8,

correspondingly.

2.5 Algorithms based on binary context modeling

JBIG is an ISO/ITU lossless binary image compression standard [ITU-T T.82],

based on the context modeling and arithmetic coding of the QM-Coder [Penn88].

This coder was specially developed for the encoding of binary data and it provides a

table-driven technique for updating a probability estimation. The context in JBIG is

defined according to the combination of neighboring pixels in locations predefined

by a context template (see Fig. 7).

? ?

Figure 7: The default 10-pixel context template, which is used in JBIG (left). An

example of a context uniquely defined by the pixel configuration: “0101010101”

(right).
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Although it has been designed primarily for the encoding of binary images, JBIG is

capable of compressing color and grayscale images up to a reasonable depth (e.g. 8

bits per pixel). The compression of a 256-color image will be processed by

separating the image into eight bit planes followed by separate JBIG. A grayscale

image can be preprocessed with a Gray-coding algorithm [Gray53] to normalize the

changes between adjacent byte values in image data. This process increases the

efficiency of the JBIG encoder.

JBIG2 [Howa98] is a compression standard [ITU-T T.88] for binary images, which

extends JBIG by incorporating two pattern matching strategies: Pattern Matching

and Substitution (PM&S) and Soft Pattern Matching (SPM).

PM&S operates by first segmenting an image into blocks and then searching the

dictionary in order to locate a previously coded block that matches the current block.

If an acceptable match is found, the associated dictionary index and the position

offset are encoded. If there is no acceptable match, the current pixel block is

encoded and its index appended to the dictionary. This strategy allows a high level

of lossy compression to be achieved.

SPM differs from PM&S in that, in addition to the dictionary index and position

offset, the current block of pixel data, called refinement data, is encoded without

losses. A two-layer coder makes use of previously coded pixels from a matched

block employing a context template, consisting of two binary layers. Since these

blocks match each other, the similarities between them allow the current block to be

very efficiently compressed. The inclusion of the refinement data enable the original

pixel to be losslessly reconstructed.

Context pixels are chosen using a 4-pixel template in the currently encoded block

and 6 pixels in the pattern image, see Figure 8.
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?

11

?

Figure 8: The 2-layer context template used in SPM encoding. The context pixels of

the current block are on the left and the pixels from the matched block are on the

right. The positions, shown in gray, are aligned.

The Embedded Image-Domain Adaptive Compression algorithm (EIDAC) was

introduced in [Yoo98]. The given compression algorithm processes the bit-planes of

the compressed image from the most significant bit (MSB) plane to the least

significant bit (LSB) plane, see Figure 9. The bits are encoded through context

modeling and arithmetic coding.

EIDAC uses a binary multilayer context. The context is defined by the neighboring

values of the current bitplane, namely Cintra, and the previous bit planes, namely

Cintro, see Figure 10. Note that this illustration shows only a simple context model.

The configuration of the bits in Cintra and Cintro could be defined at will, depending on

the particular properties of the image.

255 255 254 0 1 0

255 254 0 255 255 254

255 254 0 255 255 254

255 254 0 255 255 254

255 255 254 0 1 0

255 255 255 255 255 255

8-bit image 8-bit planes

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0
. . . . . .. . . . . .
. . . . . .

1 1 0 0 1 0

MSB = BP7

LSB = BP0

BP6

BP5

Figure 9: Bit-plane-oriented compression in the EIDAC algorithm [Yoo98].
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Figure 10: A context template used in the EIDAC algorithm [Yoo98]: Cintra (left)

and Cintro (right).

Multi-Layered Context Tree (MCT) modeling for encoding digital map images was

proposed in [Kopyl05]. The encoding was done by separating the map image into

binary layers and then by using binary context tree modeling. The separation could

be done through color separation, where each layer corresponds to one color in the

encoded image, or through semantic-separation, where each layer corresponds to a

semantic layer of the map, such as water and field layers. The second type of

separation requires that the encoder have semantic information for the map

beforehand.

The MCT algorithm optimizes the context template through the free tree technique.

Improved compression is obtained by using a reference layer: for each currently

encoded layer the pixels of the previously encoded layer are also used in the

construction of the optimized context template. The authors proposed using optimal

ordering of the binary layers to increase compression efficiency. For example, a

coastline layer strongly depends on the water layer and so on. This problem is solved

by constructing a cost matrix of the dependent compression, and finding the

minimum spanning tree in the graph based on this cost matrix.
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2.6 The runs of adaptive patterns algorithm

The Runs of Adaptive Patterns (RAPR) compression method was introduced in

[Ratn98]. That algorithm is based on the context of patterns, not on the values of the

individual pixels. A specialized basic pattern is determined for each pixel according

to its four closest neighbors. A set of basic patterns consists of 15 possible ways of

labeling these pixels with the four most common labels. Each basic pattern is

defined by a string of four letters, identifying the W, NW, N and NE neighbors. The

basic pattern is defined by the number of different colors in the neighbor pixels and

their order. Denoted  by the letters A, B, C and D, the set of basic patterns is:

{ AAAA, AAAB, AABA, ABAA, ABBB, AABB, ABAB, ABBA, AABC, ABAC, ABCA,

ABBC, ABCC, ABCD}, see Figures 11 and 12. For instance: if the color of the W,

NW and NE pixels are the same, and the color of the N pixel is different, then this

case is defined by the pattern AABA.

? ? ? ?

? ? ? ?

? ? ? ?

? ?

AAAA AAAB AABA ABAA

ABBB AABB ABAB ABBA

AABC ABAC ABCA ABBC

ABCC ABCD

Figure 11: An example of the set of basic patterns in RAPR algorithm.
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?

?

??

AABA

Figure 12: The correspondence between different combinations of colors and a basic

pattern.

The set of RAPR patterns, or the augmented patterns, is based on the combination of

the basic patterns and the uniform runs of colors along four directions (see Fig. 13).

A pattern defines the adaptive prediction rules, which are used in a binary manner:

the current pixel is the same as the most probable symbol of the current pattern. If

the encoded pixel value is present in the current basic pattern, then its index is sent

to the encoder. Otherwise, a special symbol ANOMALY is coded and the value of the

pixel is sent as supplementary data. The encoding is done through variable-length

encoding, such as arithmetic or Huffman coding. The supplementary data is encoded

by the DEFLATE algorithm [Deut96a].

?

Figure 13: The augmented context describing the pattern {<A, B, B, C>, <2, 1, 3, 2>}.

2.7 Skip pixel coding

Jensen and Forchhammer [Forch02a] introduced content-layer compression of

layered images. Layered images are composed of a number of layers, each

representing one type of information, such as roads, buildings and text. Efficient
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coding of layered images is achieved by utilizing inter-layer dependencies through

two approaches: the first one uses pixels from the layers with higher priority in the

context modeling; the second one uses SKIP pixel coding [Forch02a]. In a particular

layer, if a given pixel has already been coded in a layer of higher priority, it does not

need to be coded in the current layer or any of the other layers with lower priority.

Encoding of the layers is done with JBIG2. It is done in a free tree manner for bi-

level layers, and in an RAPR manner for multi-level layers.

2.8 The piecewise-constant image model

Piecewise-Constant Image Model (PWC) [Ausb00] is an algorithm for the

compression of palette images. It establishes boundaries between constant color

pieces and determines the domain colors using the following object-based language:

• D1: Is the color of the current pixel identical to a rectilinearly (horizontally or

vertically) connected neighbor?

• D2: Is the color of the current pixel identical to a diagonally (diagonally left or

diagonally right) connected neighbor?

• D3: Is the color of the current pixel identical to an estimated value?

• D4: What is the color of the current pixel?

Boundary information is represented with an edge map. This information is encoded

with the context modeling scheme proposed by Tate [Tate92] followed by entropy

coding.

The latest modification of PWC applies the skip-innovation technique. In this

technique, the four closest neighbors are checked: if they are of the same color, then

the skip-innovation case is considered. If the current pixel has the same color as its
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neighbors, then the skip case happens, and the length of the run of the same color is

output. Otherwise, it is called innovation, and a zero-length code with the value of

the encoded pixel is output. The lengths of the skips are encoded by Golomb-Rice

codes [Golo66] [Rice79].

2.9 The prediction by partial matching algorithm

Prediction by partial matching (PPM) [Clea84] is a fixed-order context-based

statistical modeling technique, which blends together several fixed-order contexts to

predict the next symbol from the input stream. The combination of contexts is

achieved through the use of “escape" probabilities. The context with the largest

depth is, by default, the one used for coding. However, if a novel symbol is

encountered under this context, then the largest depth context is not used for

encoding and an “escape" symbol is transmitted to give the decoder a signal that the

model has been switched to the context with a smaller depth. This process continues

until a model is reached in which the character is not novel, at which point it is

encoded in respect to the distribution predicted by that model. To ensure that the

process terminates, a model is assumed to be present below the lowest level

containing all characters in the coding alphabet.

In [Forch02b] it was proposed that PPM with a 2-D context be used for compression

of raster map images. The proposed scheme used content-layer compression with

JBIG compression of bi-level text layers and 2-D PPM coding of the background.

The authors have shown that the proposed method is more efficient that other object-

oriented compression algorithms, such as PWC [Ausb00], for the compression of

map images.
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Summary

Context-based compression has worked well for the compression of raster maps. But

the problem of context dilution, which arises during high-depth context modeling,

decreases the performance of context-based compression. The obvious way to avoid

this problem is to use variable depth context modeling or to use object based

modeling. The context tree approach is the most often-used type of variable depth

context modeling. Most of implemented context tree are based on a full tree. If a

map image consists of many colors then the context dilution problem becomes a

threat. In P2 we describe a sub-optimal algorithm for incomplete context-tree

construction. We show experimentally [P2] that the proposed scheme is at least as

efficient as other algorithms. Object-based modeling is an efficient way to reduce

the alphabet of encoding data. Such methods encode special object events instead of

real pixel values. The combination of object-based modeling with n-ary context tree

modeling seems to be very promising for further development of algorithms of

lossless compression of raster maps and other discrete-tone images.
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3. Compression of geographical vector data

A vector map is a type of digital map based on vector graphics. The main

advantages of vectors graphics, compared to raster graphics, are the ability to

support the zooming operation without loss of data representation quality, control of

the level of details, and the ability to process spatial queries such as “What is the

object?” or “Find this object” (see Fig. 14). Vector objects can also be placed on top

of other objects so that the object below will show through. Because of these

advantages, many different vector map formats have been developed over the past

few years: RaveGeoTM [RaveGeo], MapTPTM [MapTP], etc.

 

Figure 14: An example of zooming: original map (left), zooming in raster format

(center), zooming in vector format (right).

In general, a geographical vector map consists of several semantic layers, which

contain different types of geographical information − such as information about

water and fields. The layers contain geometry and associated information. By

geometry, we mean a series of coordinate pairs (x, y), which form curves and objects

that describe the geographical information, and topological information about how
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to connect them. The geometrical information keeps the data about coordinates of

the objects and curves in the maps. The associated information keeps attributive,

color, textual, style and other information associated with the map.

Geospatial data is usually quite large and methods to reduce their size need to be

investigated in order to reduce the requirements of clients’ portable devices, such as

PDAs and mobiles, and to improve the efficiency of data transfer. Methods to reduce

data size include map generalization [McMa98, Kast89, Zhou00] and data

compression. In this thesis, we do not consider the problem of map generalization

because it is beyond the scope of this work.

The compression of vector data can be performed in lossless and lossy manners.

Lossless compression can be achieved by applying universal lossless compression

algorithms, such as PPM [Clea84], LZW [Welch84] or GZip [Deut96b].

Lossy compression can be obtained by reducing the accuracy of the data. In this

case, the processed data must satisfy certain accuracy constraints. These constraints

could be defined by standards, like the National Map Accuracy Standards [NMAS],

or by customers’ requirements.

3.1 Raster-based compression

Raster-based GIS processes use the following scheme: they receive a request from a

client, get a map from a database, and convert the map to a bitmap with predefined

dimensions. This bitmap is then sent to the client. This scheme has two advantages:

the raster format does not require many computational resources and it can be

represented on portable devices with low machine resources, such as mobiles

phones.

The process of converting vector graphics into a raster format is called rasterizing. It

is performed by transforming the original coordinate values to the corresponding
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position in the raster, and filling in all the pixels between the end-points of the

vector object (in the case of straight line) or the pixels inside (in the case of closed

polygons). The compression of raster-based systems can be based on the algorithms

for lossless image compression described in Section 2. If a vector map is composed

from several semantic layers, then the result of the rasterization can either be one

image representing the overall map, or a set of separate layers of images, see Fig. 15.

Vector
  data

Rasterizing

Separate layersRaster image

Encoder

Result of rasterization

Figure 15: An overall scheme for raster-based compression.

Raster-based vector map encoding can use vector information to improve

compression. This idea has been used in [Forch02b] and [Kopyl05].

In [Kopyl05], the authors dealt with the case when a map image is a result of

rasterization. They worked with a vector map that consisted of several semantic

layers representing different types of geographical information, such as information

about water, fields and administrative borders. The semantic layers were represented

as black and white images, which were compressed sequentially by using binary

context-tree modeling. The context was built up from the pixels of the current and

previous layers. They found that the correlation between some types of the data, like

between the data from water areas and the data from coastal areas, could

significantly improve the efficiency of the pixel prediction during encoding and,

correspondingly, the performance of the encoding. The authors showed that the use

of the semantic separation is much better than the use of simple color separation.
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In [Forch02b], the authors formulated the object of compression as a composite

image that is formed from the content layers according to composition rules, which

are given beforehand. This approach works well when applied for raster-based

compression of vector maps, which could also be composed of several semantic

layers. In [Forch02b], layered information is used to prevent the multiple encoding

of pixels. If pixels were already encoded in a higher layer, then the same

corresponding location of pixels in the lower layers are skipped and not encoded.

Thus, they reduce the amount of encoded pixels from layer to layer. This inter-layer

dependency is also used for constructing the inter-layer contexts in statistical

modeling, as in [Kopyl05].

In publication P3, we consider an approach where text and symbols are separated

from the rest of the map. A separate symbol dictionary is constructed from the

corresponding bitmaps and compressed in a way that it is compatible with the JBIG2

standard. The rest of the information is compressed as a sequence of separate binary

layers.

3.2 Compression through chain code representation

An alternative to the coordinate representation of digital contours and shapes on a

surface is the chain code approach. Chain codes, or the Freeman code, were

introduced in [Free61]. They are used to represent connectivity between adjusted

pixels on a bitmap. If the chain coding scheme is based on 8-connectivity, then a

link can be represented by one of eight possible directions and can be denoted by

eight different values: East, North-East, North, North-West, West, South-West, South

and South-East.

Alternatively, we can describe a contour by using 4-connectivity, where only

transitions in four directions are allowed: East, North, West and South. A

straightforward encoding of the 8-connected chain codes requires 3 bits per code,
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while the 4-connected chain code requires only 2 bits. However, the 4-connected

chain code cannot describe diagonal moves efficiently; instead, it needs two codes to

represent one diagonal move (see Fig. 16). Therefore, the 4-connected chain codes

are 33% longer, on average, than the 8-connected codes [Rosen82].

North North

South South

West East West East

North-West North-East

South-West South-East

Figure 16: 8-connected (left) and 4-connected (right) chain codes.

Figure 17: A digital contour (left), described with 4-connected (center) and 8-

connected (right) chain codes.

An alternative method of chain code representation is to use differential chain codes,

as proposed in [Free74]. In differential chain codes, each chain code is replaced by

its difference from the preceding chain code. If a chain code is denoted as ci and the

difference between the codes as ki = ci–ci-1, then the formulas for obtaining a

differential chain code for 4-connected and 8-connected chain codes, respectively,

are
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The chain extraction consists of

Step 1: The transformation of coordinates.

Step 2: Chain code extraction.

In the first step, the original vector coordinates are converted to raster coordinates.

The dimensions of the raster are predefined. The transformed coordinates represent

the starting and ending points of straight lines, which form contours and curves on

the raster. In the second step, the chain codes are extracted pixel-by-pixel for each

line segment by using Bresenham’s algorithm [Bres62]. The resulting sequence of

the codes forms the final chain code.

Like raster-based compression, the compression of chain coding is lossy in the sense

that it depends on the dimensions of the bitmap, which are used in the final

representation of the map.

Encoding of the chain codes consists of two steps: encoding of the chain codes and

encoding of the beginning of chains (BOC).

3.3 Compression of chain codes

Variable-length chain coding has been proposed in [Liu05]. The authors proposed

using fixed Huffman coding to encode differential chain codes. The Huffman codes
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are predefined by a code table, which was defined after analyses of more than 1000

curves, contour patterns and various shapes found randomly on the Web [Liu05].

The code table assigns shorter code words to chain codes with smaller turn angles

and longer code words to chain codes with larger turn angles.

Kaneko and Okudaira [Kanek85] have proposed an algorithm for the encoding of

smooth contours. In their algorithm, first the contours are divided into straight

segments, each of which is represented by a sequence of one or two adjacent-

directions chain codes (see Fig. 18 [Kanek85]. Within a segment, each chain code

must be in one or two adjacent directions, requiring, therefore, only one bit for

encoding. The length and the main directions for each segment must also be encoded

and transmitted. Thus, the algorithm is more efficient for smooth curves with long

segments, but less efficient for rough curves with shorter segments.

Figure 18: The contour segmentation proposed in [Kanek85]

Lakhani’s [Lakh05] suggested encoding chain codes by describing image edges. The

author proposed using the LZW algorithm [Welch84] for encoding chain codes,

which was an improvement over an arithmetic encoder.

Eden and Kocher [Eden85] suggested encoding 4-connected chain codes based on

the analysis of a single code history. They introduced three symbols: turn left, turn

right and straight ahead, which were used to represent 4-connected chain codes.
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They also mentioned that, except in the case of very short curves, a right turn is

never followed immediately by another right turn, and the same applies to left turns.

In this way, they reduced the bit rate per code to ( )21log2 + .

Lu and Dunham [Lu91] proposed using context modeling [Salo00] to predict the

probabilities of chain codes. By using Huffman coding, based on the second-order

context model, they achieved bit rates similar to that of [Kanek85] but with a

significantly simpler implementation. The authors also showed that better results can

be obtained if arithmetic coding is used instead of Huffman coding.

Estes and Algazi in [Estes95] proposed using higher order context modeling for the

encoding of crack codes [Wils90], which are a modification of 4-connected chain

codes. The authors extended the context modeling up to the order 8, and used QM

encoder [Penn88] as the entropy coder. They showed that the use of a high order

model leads to better compression performance. A further increase in the context

depth, however, leads to the context dilution problem, when small probabilities are

distributed over too many contexts and, correspondingly, the efficiency of

compression is decreased.

Extending the context-based approach to adaptive context modeling, chain codes can

be efficiently encoded with prediction by partial matching (PPM) [Clear84], as

proposed in [Egger96].

In publication P4, we use context tree modeling for lossless compression of chain

codes.

3.4 Clustering-based compression

Clustering-based compression (CBC) was introduced in [Shekh02]. The authors

proposed using open-loop fixed-rate quantization [Gersho91] of the relative
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coordinates for lossy compression of vector data. Two different quantization

schemes were considered: quantization with a static codebook, and vector

quantization. The first quantization scheme uses a static codebook called Fibonacci,

Huffman, Markov (FHM) [Salo00] (see Fig. 20). In the second scheme, the

codebook was generated by the k-means algorithm [Linde80], also known as the

Generalized Lloyd Algorithm (GLA) or the Linde, Buzo and Gray algorithm (LBG)

[Gray98], see Figures 19 and 20. The main result of [Shekh02], which was presented

in a lemma, was that for a given size of codebook, the FHM quantization is looser,

in terms of the average distortion, than the k-means algorithm.

In publication P5, we perform optimal product scalar quantization, and then fine-

tune the result through vector quantization. Optimal quantizer of 1-dimensional

(scalar) data can be constructed by Dynamic Programming algorithm [Bruce65] of

complexity O(MN2). Wu [Wu91] reduced complexity of the algorithm to O(MN),

using Monge-property of the quantization error.

Figure 19: The original map (left) and the corresponding set of relative coordinates

(right) [Shekh02].



29

Figure 20: The CBC codebooks [Shekh02]: the FHM codebook (left) and the k-

means codebook adapted to the encoded data (right).

3.5 Compression through polygonal approximation

Polygonal approximation refers to the approximation of a 2-D piecewise curve

through the use of another coarser curve [Koles03a] (see Fig. 21). Polygonal

approximation is the simplest geometrical approximation, because only the positions

of vertices need to be encoded. Approximation algorithms using curves of higher

order are not considered here.

Figure 21: A digital contour and its polygonal approximation.

Compression using polygonal approximation is achieved through the reduction of

the number of points. The reduction can be done by any algorithm that minimizes

the approximation error E(P) of an approximated curve P.



30

There are two different types of polygonal approximation:

• Min-ε problem: Given a polygonal curve P, approximate it by another

polygonal curve Q with a given number of line segments M so that the

approximation error E(P) is minimized.

• Min-# problem: Given a polygonal curve P, approximate it by another

polygonal curve Q with the minimum number of segments M so that the

approximation error E(P) does not exceed a given maximum tolerance ε.

The most practical error measures in use are based on distance between vertices of

the input curve and the approximation of linear segments, see Figure 22.

The additive error measure Lp for a segment {pi, pj} of the curve P = {p1, …, pi, … ,

pj, …pN} is defined by the sum of distances dk(i, j), k∈(i, …, j), for all vertices in the

segment
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Figure 22: Distances between the points of the curve and the approximating segment

{ pi,pj}.

A large number of heuristic, sub-optimal and optimal algorithms for polygonal

approximation have been developed over the last 30 years [Koles03a].

The most widely used algorithm is a heuristic method called the Douglas-Peucker

algorithm [Dougl73]. The first approximation is given by only one segment between

the end points of the contour. This approximation is then recursively refined by

inserting new vertexes on the contour that is furthest away from its current

approximation. The procedure stops when the approximation meets a given error

constraint. The time complexity of the algorithm is O(N2) in the worst case, and

O(Nlog(N)) on average.

The optimal algorithm for the min- ε approximation was introduced by Perez and

Vidal [Perez94]. The proposed algorithm is based on the dynamic programming

method [Bell57] for solving an optimization task. The complexity of the algorithm

with error measure L2 is O(NM2).

The optimal solution for the min-# problem was published in [Dunh86]. The author

proposed using dynamic programming for optimal approximation with the least

number of segments for error measure L∞. The complexity of the algorithm is O(N3)

in the worst case.

Heuristic algorithms are fast, but they are inferior to optimum algorithms. The

Iterative reduced search approach for min-ε and min-# was introduced in [Koles02b,
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Koles03b] and [Koles02a], respectively. In the proposed approach, the initial

approximation for a given error tolerance ε is obtained with any other min-ε  or min-

#  algorithm, then a bounding corridor is constructed along the reference path, and

finally the solution is found through dynamic programming within the bounding

corridor. The time complexity of the algorithm is between O(N) and O(N2), which is

similar to the complexity of fast heuristic algorithms.

In publication P6, polygonal approximation is used for generating a coarse

approximation of the input curve. This reference curve is then used for predictive

compression of the original points in a lossless manner.

3.6 Compression using multiresolution information

An important property of modern vector maps formats is that their data can be

progressively transmitted. This streaming technique allows objects to be

downloaded in lower resolution first and then be displayed while downloading the

same objects in higher resolution. This technique minimizes the waiting time for

data versus viewing data ratio. On the other hand, the multiresolution approach

requires additional information for vector data indexing of the resolution level.

The principles of the progressive encoding of digital curves were first described in

[LeBuh97]. Progressive encoding consists of first transmitting the raw polygonal

approximation obtained at the upper level, and then transmitting its successive

refinements. A series of vertex positions defining the first polygon must be sent first.

For refinement polygons, information about the number of child vertices along the

coarse polygon edges must be transmitted, so that the decoder can correctly produce

the ordered list of vertices. The positions of these refinement vertices can be

encoded relative to their parent edge. The order of transmission, for an image

containing M approximated contours [LeBuh97], is illustrated in Figure 23.
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In encoding and decoding operations, geometrical knowledge about coarse

resolutions can be used. In [LeBuh97], the authors proposed using direct encoding

on the upper coarse level and letting the more expensive lower levels be encoded

relative to their parent approximation. The possible locations of the lower level

points are placed in ∆-tunnel along the segments of the coarse approximation, where

∆ is the maximum deviation of the coarse approximation, see Figure 24. This

information is used by the encoder and, consequently, by the decoder.

Image header

Polygon headers

Low resolution Level

Intermediate Level

High resolution Level

Choose
decoding
accuracy

Pol .1 Pol .í

Pol. 1 Pol. i

Pol .M

Pol. M

Pol. 1 Pol. i Pol. M

Vertex index bitstream

Vertex index bitstream

Vertex index bitstream

Pol .1 Pol .i Pol .M Header data bitstream

Figure 23: The scheme of progressive encoding of the vector data [LeBuh97].

Figure 24:  The ∆-tunnel along the segment of the coarse approximation [LeBuh97].

Summary

We consider different approaches of vector map compression. In P3 we rasterize the

vector information and apply context-based compression to the raster data utilizing

repetition of symbols. In P4 we use chain codes to represent the vector data and

apply context tree based compression.
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In P5 we develop an optimal product scalar quantizer and use it for lossy

compression of vector maps by coordinates quantization. In P6 we study the

problem of lossy compression of multi-resolution vector data. We use the

coordinates from lower resolution levels to predict the coordinates of higher

resolution layers.
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4. Summary of the publications

In the first paper (P1), we propose a LZW based semi-adaptive algorithm of map

image compression. The original LZW algorithm is an effective tool for lossless

compression of different data. We study the case when the map is compressed

beforehand and then transmitted to user. The LZW algorithm is symmetric by its

resource demands: the decoder requires same machine resources as the encoder.

This could be a bottleneck for user’s devices with tiny machine resources, and

therefore, we develop a semi-adaptive modification of the algorithm. The semi-

adaptive approach is asymmetric: decoding requires fewer resources than encoding.

The method also allows user to divide the whole image into rectangular blocks and

process and transfer the coded blocks separately from each other. The proposed

method gives compression ratio similar to that of GIF or PNG algorithms.

In the second paper (P2), we propose an algorithm for lossless image compression

based on the context tree modeling [Riss81, Wein95] with incomplete tree structure,

namely the generalized context tree (GCT) [Mart04]. The context tree is constructed

according to the two-pass scheme [Nohre94]: collecting the contexts statistics and

pruning of the context tree in order to minimize the tree costs. We introduce a near-

optimal fast pruning algorithm, which makes the GCT algorithm suitable for on-line

processing of map images. We also propose hybrid-tree, based on the free-tree

[Nohre94], which optimizes the context pixels locations according to the encoded

image. The proposed algorithm shows improvement over the competitive algorithms

by 20% on the set of test images used.
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In the third paper (P3), we study the problem of raster-based compression of

vector maps. Rasterization is done by converting semantic layers of the vector map

into a set of binary images followed by the compression by JBIG [ITU-T T.82]. In

order to simplify the binary layers, we provide rasterization of the maps without

textual information. The associated textual information and their locations are

compressed separately. The proposed scheme improves the compression of a single

binary layer by 12%, on average, and the whole map by 5%.

In the fourth paper (P4), we focus on lossless compression of chain codes

[Free61], which are widely used for describing digital contours and raster objects.

We extract chain codes from vector and raster maps. The resulting chain code

description of the digital contours is compressed by the context-based method

developed in P2. For vector data, this approach cannot be called lossless because the

chain codes are a result of precision reduction of the data in order to fit the vector

data to the raster image with some predefined dimensions. If the dimensions are

large enough, then the losses will be small or even no loss at all. The proposed

approach gives the best compression over the competitive methods on the test

dataset. The improvement is about 2-3% in comparison to the Prediction by Partial

Matching (PPM) algorithm [Clea84], and 40% in comparison to Huffman coding

[Liu05].

In the fifth paper (P5), we study coordinate quantization by product quantizer in

Cartesian and polar spaces, namely product quantizer (PQ) and strictly polar

quantizer (SPQ). The previously introduced algorithms use the Max-Lloyd

algorithm [Vora94], which cannot guarantee optimality. Other authors [Buck79,

Moo98a, Moo98b, Pearl79, Peric02, Vasil99] use numerical analysis for

constructing the quantizer. The numerical analyses are made under the assumption

of uniform phase distribution. This assumption provides optimal solution only for

the case of 2-D Gaussian distribution of the signal. We propose to use optimal scalar
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quantization for constructing the scalar quantizers for PQ and SPQ. This approach is

applied to the compression of relative coordinates of vector map and it gives better

rate-distortion performance.

In the sixth paper (P6), we consider quantization based lossy compression of

vector data. The main idea of the proposed approach is to use the approximation to

reduce redundancy of input vector data. For each digital curve, we construct a coarse

approximation, which is used then for improved prediction of the coordinates. The

residual vectors are encoded by vector quantization. The proposed approach slightly

loses to the DPCM algorithm. However, the proposed method allows to store

a rough representation for low-resolution mode at the cost of a small increase in the

bit rate.

The contributions of the author in these publications can be briefly summarized as

follows. In P2 and P4, the author is responsible for the development,

implementation, running of the experiments, and writing of the paper. In P1, P3, P5

and P6, the author took part in the development of the algorithm, took significant

part in implementation, running experiments and writing of the papers.
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5. Conclusions

We have studied the compression of raster and vector maps. We proposed several

approaches in the framework of lossless compression of raster map images, and

lossy compression of vector maps.

Semi-adaptive LZW algorithm was developed in order to minimize machine

requirements of the decoder. The original LZW algorithm is adaptive, which means

that the encoder and decoder require equal amount of memory. In the case of semi-

adaptive modification, the generation of the dictionary is done during the encoding

only. The decoder does not need to generate it again, which requires less memory

and processing time. The proposed approach shows good compression performance

in comparison to other dictionary-based algorithms.

We have studied the context-based compression of map images. The main problem

of the context-based compression is context dilution, when the number of context

models became too big. To prevent this happen we use the context tree modeling.

All existing algorithms use context tree modeling with full tree structure. This

approach makes the context tree inefficient in case of encoding of images with large

number of colors, because it leads to the same problem of context dilution. Because

of this, recent works have considered the case of binary tree only. We have proposed

the compression algorithm based on an incomplete n-ary context tree. The main

design problem of the context tree modeling with incomplete tree structure is the

pruning algorithm, which can be very time-consuming. We have solved this problem

by introducing a recursive-search pruning algorithm. The proposed algorithm
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showed excellent compression performance for map images in comparison with

other algorithms. A future extension of this work should consider the combination of

the incomplete context tree modeling with the object-based modeling.

For lossy compression of vector maps, we have considered raster-based

compression, compression by quantization of coordinates, and multi-resolution

compression.

First, we use the vector information to simplify the rasterized vector map in raster-

based compression. We considered compression by JBIG algorithm, where binary

layers represent semantic layers of the encoded map. The simplification was

obtained by extracting of textual information, which was encoded separately from

the rest. Experiments showed good performance of the proposed scheme.

We have proposed an optimal algorithm for constructing product quantizer in

Cartesian and in polar spaces. We used the dynamic programming approach to

construct scalar quantizer instead of heuristic ones, like Max-Lloyd. The proposed

optimal product quantizer was applied for the compression of vector maps.

We studied compression of vector map contours by chain coding, which are widely

used for describing digital contours and raster objects. The existing methods of chain

codes compression use the statistical correlation between the currently encoded

chain code and the history of previously encoded codes, also known as the context

modeling. We proposed to use the context tree modeling in order to prevent the

problem of context dilution.

For lossy vector map coding, we proposed to generate a coarse approximation and

used it as a reference line for coordinate transformation. We also proposed several

methods for prediction of the coordinates by using the values of the coarse

approximation. The improved prediction let us narrow the quantized set of

prediction errors and improve the compression performance in rate-distortion sense.
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Future extension would use coordinate quantization combined with polygonal

approximation and entropy encoding of the relative coordinates. The approximation

could be made on vertices of near-optimal distortion-constrained scalar quantizer.
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