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Abstract

In this thesis, we study the compression of digmelps, which allows achieving
compact storage size and fast transmission of thenclients. The thesis is
composed of two main parts.

The first part is dedicated to the lossless congiwasof raster map images. We
consider both dictionary-based and context-basaiisttal compression. The best
compression performance is achieved by using tikegtbased compression. To
prevent context dilution problem during the compies, we apply context-tree
based compression, which operates by an incompletey context tree. The
proposed algorithm outperforms all existing coniexsed methods on the set of test
images used.

The second part considers compression of geograpmiaps in vector format. We
study a variety of different methods of lossy coegsion of geographical vector
data: compression of rasterized vector map, cormmef map contours by chain
codes, compression by coordinates quantization, pragressive encoding of the
vector data.

In the raster-based compression, the vector mafirss rasterized and then
compressed by a raster image compression methodcoigider to exploit the
vector information to simplify the rasterized imaged in this way, to obtain better
compression performance.

We also study the compression of map contours aedauchain code modeling
approach for this purpose. This approach is goatl efficient alternative to the



straightforward encoding of coordinates. We appgtext-tree based compression,
and the proposed algorithm provides better redhiés any of the competitive
algorithms on the set of test data used.

Compression of vector data by coordinate quantimais also considered. We
construct optimal product quantizer both in Cadesiand polar spaces. The
proposed quantizer outperforms the heuristic omeate-distortion sense.

We consider also lossy compression of multiresofutvector data, based on
coordinate quantization. We use the coordinatdswér resolution data to predict
coordinate values of the higher resolutions. Thipraach narrows the set of
prediction errors, which is used for constructifigh@ quantizer.

Keywords: map compression, image compression, contextri@deling, coordinate
guantization, chain code compression.
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1 Introduction

Maps are abstract objects used to represent r@e¢pland things through symbols.
Digital maps are widely used in geographical infation systems (GIS), which can
be used for navigating a vehicle or in certain Wwebed services (see Fig. 1). The
data from a digital map can be represented in vextoaster formats. Map data can
also be represented in a hybrid format, where rafa is combined with vector

layers.

Figure 1: Maps in mobile and in-car navigation syss.

Raster maps are abstractions where spatial datepresented in 2-D arrays of
pixels, depicted as a schematic discrete-tone imdgster-based GIS systems use
the following procedure: after first receiving agoest from a client, raster-based
systems get a map from a database and convert at hidmap with predefined
dimensions. Next, this bitmap is sent to the cli€ftte main advantage of this

procedure is its simplicity: the raster format doed require a large amount of



computational resources and can be representedontabpe devices with low

machine resources, like mobile phones.

Although the raster map format has many advantagatso has several important
disadvantages. The first disadvantage is the dizheo map: increasing the map
resolution immediately leads to a significant irase in file size. The second
disadvantage is that raster maps are displayethageis and, accordingly, they do
not contain any attributive information. The rasteaps not having attributive

information makes it impossible to process queries.

Whereas raster maps represent data as 2D pixalgrveaps represent data as
geometrical objects. If, for example, in a vectapna road was represented as a
combination of lines, those lines would be the gewital objects. A vector map
consists of two main types of data: geometricaladand attributive data.
Geometrical data includes the coordinates of poamd the rules regarding how
those points should be connected. Attributive datatains color, textual and other
types of information related to the objects. Unlikster maps, vector maps are more
compact and are invariant to the zooming operatidre presence of attributive
information makes it possible to process differgunéries. The main disadvantage of
vector maps is their complex data structure, witiah result in long display times

the use of a significant amount of machine resaurce

Because of the large size of digital maps, theia dften needs to be compressed for
map databases storage and transmission to remets. Ude large size of digital
maps, the limited bandwidth of wireless data trassimn channels, and the low
machine resources of mobile devices affect thecieficy of GIS and navigation

systems.

The use of effective compression algorithms cancedhe storage space needed for
map collection, which can increase the amount arality of the geographic data

that can be stored on clients’ portable devicefedtife compression algorithms can

2



also accelerate the transmission of data througkblendwidth channels, which will
reduce the time needed to transfer geographic tdatdients, which, in turn, will

make map services cheaper and more reliable.



2. Compression of raster maps

Raster maps ardiscrete-toneschematic images with a limited number of colors.
Unlike continuous-toneimages where the intensities change smoothly, the
intensities in discrete-tone images change abruptifgugh a limited number of
values. Another important property of raster ma@gdes is that they composed

solely of straight lines, text, and geometric otgec

STASTTAS

Figure 2. An example of lossy compression in a nmage. On the left is the

original image with 6 colors, and on the right he tJPEG-compressed image with

646 colors.

Compression algorithms for raster maps must presartheir structure and color

information. Therefore, we concentrate our disausdiere on lossless algorithms



for raster images. Lossy algorithms suchlB&G [Wal91] produce changes in the
structure and the color palette that can signitigaaffect the quality of a decoded

map (see Fig. 2).

2.1 Dictionary-based image compression algorithms

Dictionary-based compression algorithms replaceulasequence of the encoded
message, by using pointers to a collection of g&riof pixels called aictionary.
The best known dictionary-based methods are basdbeoalgorithms proposed by
Lempel and Ziv in 1977 [Ziv77] and 1978 [Ziv78],maly LZ77 and LZ78.

The Portable network graphicé€PNG) format [PNG] and th€ompuServe Graphics
Interchange Forma(GIF) [GIF] are the most widely used standards lassless
image compression. The PNG format is based on DE#LATE [Deut96]
compression algorithm, which is a modification b&tLZ77 algorithm. The GIF
format is based on theempel Ziv WelclfLZW) [Welch84] compression algorithm,
which is a further development of LZ78. In publicatP1, we consider the semi-
adaptive modification of the LZW method in the cageen an image is divided and

then compressed into small, rectangular blocks.

The main drawback of these LZW algorithms is thegytdo not utilize the 2-D
information of the image. Accordingly, GIF and PN(ee less efficient than the

newer compression algorithms.
2.2 Predictive lossless compression of images

Predictive methods are the best for lossless engodi photographic images.
Algorithms such adrast and Efficient Lossless Image Compression Algar
(FELICS) [Hova93],Context-Based, Adaptive Image Cog€ALIC) [Wu97], Low-
Complexity Context-Based Lossless Image Compresaigorithm (LOCO-I)
[Wein96a] andTMW [Meye97] are based on the encoding of predictioors,



where the prediction is based on the values ofribighborhood pixels. These
algorithms give excellent results for continuesetamages, where colors change
smoothly. The main disadvantage of predictive algors for compressing raster
maps is that the prediction cannot be done propdtlg to the discrete-tone nature
of the map images. Therefore, the proposed algostlare unable to predict a
change of colors and are even less effective aligiren than dictionary-based
algorithms. Due to this fact, we do not considezdirtion-based algorithms any

further here.

2.3 Context-based compression of images

Pixels in a map image form geometrical structureish vappropriate spatial
dependencies. Those dependencies can be localizedimited neighborhood, and
described by aontext-based statistical modglR81]. In this model, the pixel
probability is conditional on thecontext C, which is defined as a distinct
configuration of neighboring pixels. An example af4-pixel context template is

demonstrated in Figure 3.

000 220 00®
0 00 e

Figure 3: An example of a 4-pixel template andéhsample contexts.

The probabilities of different contexts are assurteedbe independent. Because of
this assumption, the pixel probability for eachteotC; can be found by calculating

the counters ;') for all possible pixel valuels appearing in that particular context

in the entire image



c, _ hy
Pm = ancj ' (1)

%:ZZﬁ (2)

The Entropyof the context-based model is a weighted sum ofetiiteopies of the

individual contexts
H=->p Eﬁ; pC tog, (p? )j- 3)

A context with more skewed probability distributibas smaller information content

and, therefore, smaller entropy, than with lessvekeone.

Encoding symbols within each separate context agentoy an entropy coder, such
asarithmetic[Riss79] orHuffman[Huff52] coding.

In principle, a skewed probability distribution cée obtained by using a larger
number of pixels in context. However, the overalimber of contexts increases
exponentially as the number of pixels included aclheparticular context decreases.
This leads to theontext dilutionproblem, which occurs when the count statisties ar
distributed over too many contexts, thus affecting accuracy of the probability

estimation.

2.4 Context tree modeling

In variable-size context modelinghe number of context pixels depends on the

combination of the neighboring pixel values; cohtsaection is done by traversing



the context treanstead of using a fixed size template [Riss83kHzaode in a tree
represents a single context, and the children obrgext correspond to the parent
context augmented by one more pixel. The positiothis pixel can be fixed in a
predefined order or optimized within a limited s#aarea relative to the compressed
pixel position [Nohre94], [Mart98], namefyee tree(see Fig. 4).
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Figure 4: Locations of the context pixels: prededir{left) and optimized (right).
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Figure 5: A small example of the incomplete trinaxyntext tree. Instances of

traversing are marked with a bold line.

The context tree is used for compression in theesamy like fixed-size context

templates, only the context selection is differe@bntext selection is done by
traversing the context tree from the root totéreninal nodeeach time selecting the
branch according to the corresponding neighborl gialers, as shown in Fig. 5. The
traversing stops if it comes to a leaf or if they@o outgoing branch, corresponding

to the next neighbor pixel color.



Context-tree-based compression consists of two gshahe construction of the
context tree and image encoding. The tree can &e insastatic manner, when the
context tree is constructed for a training imagnel #nen used for the compression of
images with similar properties [Franti99]. The eotttree can also be optimized
directly for the encoded image [Nohre94] [Mart9].this case it must be stored in

the compressed file.

Context tree construction consists of two main phamitialization of the context

tree, and pruning of the constructed tree.

To construct an initial context tree for an inpuage, we need to process through
the image data to collect statistics for all patntontexts, leaves and internal
nodes. Each node stores information ondbents of each pixel value that appears
in this particular context. Ragnar Nohre [Nohre9dfroduced an exponential-
memory algorithm, but this algorithm was not apgile to practical tasks due to its
huge memory requirements. Another algorithm forstaucting a context tree was
proposed in [Helf98]. That algorithm has linear éimnd memory requirements in

respect to the number of pixels in the image.

After collecting the statistics for all possiblentexts, the context tre€ must be
pruned by comparing every node against its children nodesnv§ to find the
optimal combination of siblings. The number of higxjuired for describing each
node of the context tree is shown below, wheredize of the image palette is

denoted agr

1, if Tisfull
a, if T isincomplete

c(w) = { (4)

Let’ denote the set of all terminal nodes of tleer asST). For each node/[1XT),
the count of the color indek is denoted asy(w). The estimated code length

generated by a terminal nodé&IST) is calculated using the following expression



[Wein95, Mart98]

a n(w)-1

] u(jw)

Cr (nl(W)1"" n, (W)) =~ Iogz nl(W)+m+na(W)_l , ©))

1 j+alk)

wheree is a constant. The aim of context tree pruningpifnd a tree structure that

will minimize the following function

LT =2 cw)+ Y (m(W).n, (W),...n, (W), )
Wi wOS(T)

where the first term gives the storage cost ofttbe structure, and the second term

is the estimated number of bits produced duringctirapression of the image using

this context tree.

A major difficulty in the pruning of ther-ary incomplete context tree is that the
number of all possible variants of the pruningsath node i©(2°), as shown in
Figure 6. Due to this fact, efficient constructiohthe optimala-ary incomplete
context tree is still an open problem [Mart04]. &kisting algorithms for context
tree pruning operate on full trees, where each made outgoing branches or does
not have them at all. In publicatid??, we propose a solution, which uses a two-

stage algorithm, for the efficient constructioraofa -ary incomplete context tree.

In our algorithm, pruning can be done inbattom-up[Nohre94] ortop-down

manner [Furl91, Franti99]. In the top-down apprqdable context tree is constructed
level-by-level. It compares the children nodes witair parent and prunes them out
if the addition of the new children would incred6¢ The process continues until a
predefined depth is achieved, or when no new nadesreated during the process.
The bottom-up approach constructs the full tredaup predefined depth and then
analyzes the tree from leaves to the root. Thetseds of the nodes that increase (6)

10



are pruned from the tree, which is similar to treeywhat new subtrees are pruned in

the top-down approach.

(0.0,0) (1.1.1) (0,000 (1,000 (0,100 (0,0,1)
° Q/% ° f g %
(0,1,1) (1,0,1) (1,1,00  (1,1,1)

5065 056 660

Figure 6: Possible variants of ternary tree pruniog a full tree (left) and an

incomplete tree (right). The numbers of possibleriavds are 2 and 8,

correspondingly.

2.5 Algorithms based on binary context modeling

JBIG is an ISO/ITU lossless binary image compressi@nddrd [ITU-T T.82],

based on the context modeling and arithmetic codinthe QM-Coder [Penn88].
This coder was specially developed for the encodinginary data and it provides a
table-driven technique for updating a probabilisgimation. The context in JBIG is
defined according to the combination of neighbonnixgls in locations predefined

by a context template (see Fig. 7).

OO0 ol 1 _
OO0 0OO00®
OO@ OO®

Figure 7: The default 10-pixel context template,icihis used in JBIG (left). An
example of a context uniquely defined by the pizehfiguration: “0101010101”

(right).
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Although it has been designed primarily for theaghing of binary images, JBIG is
capable of compressing color and grayscale imagéds a reasonable depth (e.g. 8
bits per pixel). The compression of a 256-color gmawill be processed by
separating the image into eight bit planes follovigdseparate JBIG. A grayscale
image can be preprocessed with a Gray-coding #éitgoriGray53] to normalize the
changes between adjacent byte values in image dhata. process increases the

efficiency of the JBIG encoder.

JBIG2 [Howa98] is a compression standard [ITU-T T.88] lbiinary images, which
extends JBIG by incorporating two pattern matchstrgitegiesPattern Matching
and SubstitutiofiPM&S) and Soft Pattern MatchingSPM).

PM&S operates by first segmenting an image intackdoand then searching the
dictionary in order to locate a previously codedcdhlthat matches the current block.
If an acceptable match is found, the associatetiodary index and the position
offset are encoded. If there is no acceptable matod current pixel block is
encoded and its index appended to the dictionanms 3trategy allows a high level

of lossy compression to be achieved.

SPM differs from PM&S in that, in addition to théctionary index and position
offset, the current block of pixel data, callegfinement datais encoded without
losses. A two-layer coder makes use of previousiyed pixels from a matched
block employing a context template, consisting wb tbinary layers. Since these
blocks match each other, the similarities betwé&emt allow the current block to be
very efficiently compressed. The inclusion of teémement data enable the original

pixel to be losslessly reconstructed.

Context pixels are chosen using a 4-pixel tempiatthe currently encoded block

and 6 pixels in the pattern image, see Figure 8.

12



OO0 O
0@ O@O
OO0

Figure 8: The 2-layer context template used in S#oding. The context pixels of
the current block are on the left and the pixetsrfrthe matched block are on the

right. The positions, shown in gray, are aligned.

The Embedded Image-Domain Adaptive Compressadgorithm (EIDAC) was

introduced in [Yo0098]. The given compression altforn processes the bit-planes of
the compressed image from the most significant(BISB) plane to the least
significant bit (LSB) plane, see Figure 9. The e encoded through context

modeling and arithmetic coding.

EIDAC uses a binary multilayer context. The contiextlefined by the neighboring
values of the current bitplane, namély,,, and the previous bit planes, namely
Cintro, S€€ Figure 10. Note that this illustration sham$y a simple context model.
The configuration of the bits iG;.,, andCi,y, could be defined at will, depending on

the particular properties of the image.

L9 |, MmsB=BP7T|1f1|1f0]|0]0
55| 255 | 254[
255|254

Bp6| 1 (1 (1f(0f[0fO

Bps | 11 1(0]0|0O0

255(254

I R .
LSB = BPO 1| 1| 0| 0| 1| 0|

255(255

8-bit image 8-bit planes

Figure 9: Bit-plane-oriented compression in the E@algorithm [Y0098].
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Cintra = 1Py s Urp » Py s D 1 LSBP

Figure 10: A context template used in the EIDACoaliphm [Y0098]: Ciya (l€ft)
andCiy, (right).

Multi-Layered Context TreBMCT) modeling for encoding digital map images was
proposed in [KopylO05]. The encoding was done byas&jng the map image into
binary layers and then by using binary context trexleling. The separation could
be done througholor separation where each layer corresponds to one color in the
encoded image, or througlemantic-separatignvhere each layer corresponds to a
semantic layer of the map, such as water and feyers. The second type of
separation requires that the encoder have semamiticmation for the map

beforehand.

The MCT algorithm optimizes the context templatetiyh thefree treetechnique.
Improved compression is obtained by usingeterence layerfor each currently
encoded layer the pixels of the previously encotiser are also used in the
construction of the optimized context template. @oéhors proposed usimgptimal
ordering of the binary layers to increase compression efficy. For example, a
coastline layer strongly depends on the water laperso on. This problem is solved
by constructing acost matrix of the dependent compression, and finding the

minimum spanning trei@ the graph based on this cost matrix.

14



2.6 The runs of adaptive patterns algorithm

The Runs of Adaptive Pattern&RAPR) compression method was introduced in
[Ratn98]. That algorithm is based on the contextaiterns not on the values of the
individual pixels. A specializedasic patternis determined for each pixel according
to its four closest neighbors. A set of basic patteconsists of 15 possible ways of
labeling these pixels with the four most commonelab Each basic pattern is
defined by a string of four letters, identifyinget, NW, N andNE neighbors. The
basic pattern is defined by the number of differaiors in the neighbor pixels and
their order. Denoted by the lettefs B, C and D, the set of basic patterns is:
{AAAA AAAB AABA ABAA ABBB AABB ABAB ABBA AABC ABAGC ABCA
ABBC ABCC ABCD, see Figures 11 and 12. For instance: if the rcofothe W,
NW andNE pixels are the same, and the color of khpixel is different, then this
case is defined by the pattekABA

OO0 O02 020 @O0
0@ 0@ O® O@

AABA ABAA

200 Q@@ 202 920
O 0@ 06 0@

ABBB AABB ABAB ABBA

02@® 200 200 2@
0@ 0@ 00 0@

AABC ABAC ABCA ABBC
ABCC ABCD

Figure 11: An example of the set of basic patt@m®RAPR algorithm.
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Figure 12: The correspondence between differentawations of colors and a basic
pattern.

The set of RAPR patterns, or taegmented patternss based on the combination of
thebasic patternand the uniform runs of colors along four direcidree Fig. 13).
A pattern defines the adaptive prediction rulesicitare used in a binary manner:
the current pixel is the same as the most probspiebol of the current pattern. If
the encoded pixel value is present in the currastdopattern, then its index is sent
to the encoder. Otherwise, a special synfdéOMALYis coded and the value of the
pixel is sent as supplementary data. The encodirdpne through variable-length
encoding, such as arithmetic or Huffman coding. Singplementary data is encoded
by the DEFLATE algorithm [Deut96a].

d 0l
288

Figure 13: The augmented context describing thiepe{<A, B, B, C>, <2, 1, 3, 2>}.

2.7 Skip pixel coding

Jensen and Forchhammer [ForchO2a] introduced cblatger compression of
layered images Layered images are composed of a number of layeash

representing one type of information, such as roadgdings and text. Efficient

16



coding of layered images is achieved by utilizinter-layer dependencies through
two approaches: the first one uses pixels fromldalers with higher priority in the
context modeling; the second one uS&3P pixel coding [Forch02a]. In a particular
layer, if a given pixel has already been codedlmyar of higher priority, it does not
need to be coded in the current layer or any ofother layers with lower priority.
Encoding of the layers is done with JBIG2. It i;ydan a free tree manner for bi-

level layers, and in an RAPR manner for multi-leheglers.

2.8 The piecewise-constant image model

Piecewise-Constant Image ModéPWC) [Ausb00] is an algorithm for the
compression of palette images. It establishes bemig®l between constant color

pieces and determines the domain colors usingolfening object-based language:

D1: Is the color of the current pixel identical dorectilinearly (horizontally or
vertically) connected neighbor?

» D2: Is the color of the current pixel identicaldadiagonally (diagonally left or

diagonally right) connected neighbor?
» Da3: Is the color of the current pixel identicalan estimated value?
» D4: What is the color of the current pixel?

Boundary information is represented withedge mapThis information is encoded
with the context modeling scheme proposed by TaieP?2] followed by entropy
coding.

The latest modification of PWC applies tls&ip-innovationtechnique. In this
technique, the four closest neighbors are chedkéakey are of the same color, then

the skip-innovation case is considered. If the enirpixel has the same color as its

17



neighbors, then the skip case happens, and théhlehghe run of the same color is
output. Otherwise, it is callednovation and a zero-length code with the value of
the encoded pixel is output. The lengths of th@slkire encoded b@olomb-Rice
codes[Golo66] [Rice79].

2.9 The prediction by partial matching algorithm

Prediction by partial matchingPPM) [Clea84] is a fixed-order context-based
statistical modeling technique, which blends togeseveral fixed-order contexts to
predict the next symbol from the input stream. Tmenbination of contexts is
achieved through the use of “escape" probabilitidse context with the largest
depth is, by default, the one used for coding. Heweif a novel symbol is
encountered under this context, then the largepthdeontext is not used for
encoding and anescapé symbol is transmitted to give the decoder a digimat the
model has been switched to the context with a @mdipth. This process continues
until a model is reached in which the charactenas novel, at which point it is
encoded in respect to the distribution predictediat model. To ensure that the
process terminates, a model is assumed to be préstow the lowest level

containing all characters in the coding alphabet.

In [Forch02b] it was proposed that PPM with a 2dntext be used for compression
of raster map images. The proposed scheme usedntdayer compression with
JBIG compression of bi-level text layers and 2-DMP&oding of the background.
The authors have shown that the proposed methodris efficient that other object-
oriented compression algorithms, such as PWC [AQisdOr the compression of

map images.
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Summary

Context-based compression has worked well for timepression of raster maps. But
the problem of context dilution, which arises dgrinigh-depth context modeling,
decreases the performance of context-based congre$$ie obvious way to avoid
this problem is to use variable depth context madebr to use object based
modeling. The context tree approach is the mosnetfised type of variable depth
context modeling. Most of implemented context tege based on a full tree. If a
map image consists of many colors then the cordéution problem becomes a
threat. InP2 we describe a sub-optimal algorithm for incompletntext-tree
construction. We show experimentally [P2] that gneposed scheme is at least as
efficient as other algorithms. Object-based models an efficient way to reduce
the alphabet of encoding data. Such methods ersmeal object events instead of
real pixel values. The combination of object-basextieling withn-ary context tree
modeling seems to be very promising for further elewment of algorithms of

lossless compression of raster maps and otheretistane images.
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3. Compression of geographical vector data

A vector map is a type of digital map based on sedraphics. The main
advantages of vectors graphics, compared to ragtgrhics, are the ability to
support the zooming operation without loss of datagesentation quality, control of
the level of details, and the ability to procesatsp queries such as “What is the
object?” or “Find this object” (see Fig. 14). Vectibjects can also be placed on top
of other objects so that the object below will shtwough. Because of these
advantages, many different vector map formats lmeen developed over the past
few years: RaveGél [RaveGeo], MapTP' [MapTP], etc.

. !

r. i

Figure 14: An example of zooming: original map tjlezooming in raster format

(center), zooming in vector format (right).

In general, a geographical vector map consistsegéral semantic layers, which
contain different types of geographical informatiensuch as information about
water and fields. The layers contageometryand associated informatianBy

geometrywe mean a series of coordinate paks/), which form curves and objects

that describe the geographical information, andlmgcal information about how
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to connect them. The geometrical information ketygsdata about coordinates of
the objects and curves in the maps. The associatednation keeps attributive,

color, textual, style and other information asstedavith the map.

Geospatial data is usually quite large and method®duce their size need to be
investigated in order to reduce the requirementdiehts’ portable devices, such as
PDAs and mobiles, and to improve the efficiencgata transfer. Methods to reduce
data size includemap generalization[McMa98, Kast89, ZhouOO] and data
compression. In this thesis, we do not considerptiodlem of map generalization

because it is beyond the scope of this work.

The compression of vector data can be performeldssless and lossy manners.
Lossless compression can be achieved by applyingrsal lossless compression
algorithms, such as PP&lea84], LZW [Welch84] or GZip [Deut96b].

Lossy compression can be obtained by reducing toearacy of the data. In this
case, the processed data must satisfy certainasycuaonstraints. These constraints
could be defined by standards, like thational Map Accuracy StandarddMAS],

or by customers’ requirements.

3.1 Raster-based compression

Raster-based GIS processes use the following schbmereceive a request from a
client, get a map from a database, and convennéye to a bitmap with predefined
dimensions. This bitmap is then sent to the cli€éhis scheme has two advantages:
the raster format does not require many computatioesources and it can be
represented on portable devices with low machiruees, such as mobiles

phones.

The process of converting vector graphics intosteraformat is calledasterizing It

is performed by transforming the original coordeaialues to the corresponding
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position in the raster, and filling in all the pigsebetween the end-points of the
vector object (in the case of straight line) or fiveels inside (in the case of closed
polygons). The compression of raster-based systam$e based on the algorithms
for lossless image compression described in Setidha vector map is composed
from several semantic layers, then the result efrdsterization can either be one

image representing the overall map, or a set ddrsgp layers of images, see Fig. 15.

vV Encoder
ector | - |Rasterizi ng
data

: 4k \ ,/_Lf .,“{

Raster image Sepafate layers

Result of rasterization

Figure 15: An overall scheme for raster-based cesgon.

Raster-based vector map encoding can use vectarmafion to improve

compression. This idea has been used in [Forché@ab]Kopyl05].

In [Kopyl05], the authors dealt with the case whemap image is a result of
rasterization. They worked with a vector map thamsisted of several semantic
layers representing different types of geographitg@rmation, such as information
about water, fields and administrative borders. 3émantic layers were represented
as black and white images, which were compressqdes#ially by using binary
context-tree modeling. The context was built uprirthe pixels of the current and
previous layers. They found that the correlatiotmeen some types of the data, like
between the data from water areas and the data foastal areas, could
significantly improve the efficiency of the pixekgaiction during encoding and,
correspondingly, the performance of the encodirige authors showed that the use

of the semantic separation is much better thamslkeeof simple color separation.
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In [Forch02b], the authors formulated the objectcompression as a composite
image that is formed from the content layers adogrtb composition rules, which
are given beforehand. This approach works well wheplied for raster-based
compression of vector maps, which could also bepos®d of several semantic
layers. In [Forch02b], layered information is usedprevent the multiple encoding
of pixels. If pixels were already encoded in a ligHayer, then the same
corresponding location of pixels in the lower |lay/@re skipped and not encoded.
Thus, they reduce the amount of encoded pixels fey®r to layer. This inter-layer
dependency is also used for constructing the iatgr contexts in statistical

modeling, as in [Kopyl05].

In publicationP3, we consider an approach where text and symbelseparated
from the rest of the map. A separate symbol dietignis constructed from the
corresponding bitmaps and compressed in a wayttisatompatible with the JBIG2
standard. The rest of the information is compressed sequence of separate binary

layers.

3.2 Compression through chain code representation

An alternative to the coordinate representatiomligftal contours and shapes on a
surface is thechain codeapproach. Chain codes, or tlieeeman codewere
introduced in [Free6l]. They are used to represennectivity between adjusted
pixels on a bitmap. If the chain coding schemedseld on 8-connectivity, then a
link can be represented by one of eight possiblections and can be denoted by
eight different values=ast North-East North, North-West West SouthWest South
andSouthEast

Alternatively, we can describe a contour by usingodnectivity, where only
transitions in four directions are allowedEast North, West and South A

straightforward encoding of the 8-connected chaides requires 3 bits per code,
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while the 4-connected chain code requires onlyt&. biowever, the 4-connected
chain code cannot describe diagonal moves effigieinistead, it needs two codes to
represent one diagonal move (see Fig. 16). Thexetbe 4-connected chain codes

are 33% longer, on average, than the 8-connectgsdikosen82].

North-West North North-East North

A

A
A 4

West < East West East

TN

¥

South-West South South-East South

\ 4

Figure 16: 8-connected (left) and 4-connected (yighain codes.

/ + |

‘-
1

/| f ! 4

Figure 17: A digital contour (left), described withconnected (center) and 8-

connected (right) chain codes.

An alternative method of chain code representatida use differential chain codes,
as proposed in [Free74]. In differential chain ydsach chain code is replaced by
its difference from the preceding chain code. thain code is denoted gsand the

difference between the codes las= ¢—G.;, then the formulas for obtaining a
differential chain code for 4-connected and 8-catee chain codes, respectively,

are
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k +4 if k <-1

x =1k —4 if k >2 (7)
k, otherwise
kI +8 if kl <-3

X = kl -8 if kl >4 (8)
ki otherwise

The chain extraction consists of
Step 1: The transformation of coordinates.

Step 2: Chain code extraction.

In the first step, the original vector coordinates converted to raster coordinates.
The dimensions of the raster are predefined. Témestormed coordinates represent
the starting and ending points of straight linekjol form contours and curves on
the raster. In the second step, the chain codesxaracted pixel-by-pixel for each
line segment by using Bresenham’s algorithm [BrgstBe resulting sequence of

the codes forms the final chain code.

Like raster-based compression, the compressiohahaoding is lossy in the sense
that it depends on the dimensions of the bitmapichvtare used in the final
representation of the map.

Encoding of the chain codes consists of two stepsoding of the chain codes and
encoding of théeginning of chaingBOC).

3.3 Compression of chain codes

Variable-length chain coding has been proposed.imOp]. The authors proposed

using fixed Huffman coding to encode differentinhn codes. The Huffman codes
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are predefined by a code table, which was defiriient analyses of more than 1000
curves, contour patterns and various shapes foandomly on the Web [Liu05].
The code table assigns shorter code words to cdwaas with smaller turn angles

and longer code words to chain codes with larger amgles.

Kaneko and Okudaira [Kanek85] have proposed anrighgo for the encoding of
smooth contours. In their algorithm, first the aams are divided into straight
segments, each of which is represented by a seguaione or two adjacent-
directions chain codes (see Fig. 18 [Kanek85]. With segment, each chain code
must be in one or two adjacent directions, reqgiritherefore, only one bit for
encoding. The length and the main directions fehessegment must also be encoded
and transmitted. Thus, the algorithm is more effitifor smooth curves with long

segments, but less efficient for rough curves wsitbrter segments.

Segment 2

r‘/\‘s‘

Figure 18: The contour segmentation proposed im@k85]

Lakhani’s [Lakh05] suggested encoding chain codeddscribing image edges. The
author proposed using the LZW algorithm [Welch8dt &€ncoding chain codes,

which was an improvement over an arithmetic encoder

Eden and Kocher [Eden85] suggested encoding 4-cteuhehain codes based on
the analysis of a single code history. They intaatlithree symbols: turn left, turn

right and straight ahead, which were used to repted-connected chain codes.

26



They also mentioned that, except in the case of shport curves, a right turn is

never followed immediately by another right turndahe same applies to left turns.

In this way, they reduced the bit rate per codmgg(1+ ﬁ)

Lu and Dunham [Lu91] proposed usiegntext modelingSalo00] to predict the
probabilities of chain codes. By using Huffman ecagibased on the second-order
context model, they achieved bit rates similar Hattof [Kanek85] but with a
significantly simpler implementation. The autholsoashowed that better results can

be obtained if arithmetic coding is used insteatiaffman coding.

Estes and Algazi in [Estes95] proposed using higihéer context modeling for the
encoding ofcrack codeqWils90], which are a modification of 4-connectelain
codes. The authors extended the context modeling tipe order 8, and us&gM
encoder[Penn88] as the entropy coder. They showed tretute of a high order
model leads to better compression performance. rthdu increase in the context
depth, however, leads to the context dilution peail when small probabilities are
distributed over too many contexts and, correspuyigj the efficiency of

compression is decreased.

Extending the context-based approach to adaptimeegbmodeling, chain codes can
be efficiently encoded witlprediction by partial matchingPPM) [Clear84], as
proposed in [Egger96].

In publicationP4, we use context tree modeling for lossless conspyasof chain

codes.

3.4 Clustering-based compression

Clustering-based compressiq€BC) was introduced in [Shekh02]. The authors

proposed usingopen-loop fixed-rate quantizatiofiGersho91] of the relative

27



coordinates for lossy compression of vector dateio Tdifferent quantization
schemes were considered: quantization with a statidebook, and vector
guantization. The first quantization scheme ussttc codebook calleBibonacci,
Huffman, Markov (FHM) [Salo00] (see Fig. 20). In the second schente
codebook was generated by tkeneansalgorithm [Linde80], also known as the
Generalized Lloyd AlgorithriiGLA) or theLinde, Buzo and Gray algorithith. BG)
[Gray98], see Figures 19 and 20. The main resyBlé&kh02], which was presented
in a lemma, was that for a given size of codebdlo&,FHM quantization is looser,

in terms of the average distortion, than the k-rsesgorithm.

In publicationP5, we perform optimal product scalar quantizatiomg @ahen fine-
tune the result through vector quantization. Optimaantizer of 1-dimensional
(scalar) data can be constructed by Dynamic Progiag algorithm [Bruce65] of
complexity O(MN?). Wu [Wu91] reduced complexity of the algorithm @§MN),

using Monge-property of the quantization error.

Figure 19: The original map (left) and the corresfing set of relative coordinates
(right) [Shekh02].
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] o 1 2 3

Figure 20: The CBC codebooks [Shekh02]: the FHMebawk (left) and the-

means codebook adapted to the encoded data (right).

3.5 Compression through polygonal approximation

Polygonal approximatiorrefers to the approximation of a 2-D piecewiseveur
through the use of another coarser curve [Koles@3a¢ Fig. 21). Polygonal
approximation is the simplest geometrical approxioma because only the positions
of vertices need to be encoded. Approximation dlgms using curves of higher

order are not considered here.

Figure 21: A digital contour and its polygonal appmation.

Compression using polygonal approximation is adatdgethrough the reduction of
the number of points. The reduction can be donarpyalgorithm that minimizes

theapproximation erroE(P) of an approximated cunf
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There are two different types of polygonal apprcadion:

. Min-& problem Given a polygonal curve, approximate it by another
polygonal curveQ with a given number of line segmemt4 so that the

approximation erroE(P) is minimized.

. Min-# problem Given a polygonal curve, approximate it by another
polygonal curveQ with the minimum number of segment so that the

approximation erroE(P) does not exceed a given maximum toleramce

The most practical error measures in use are haseatistance between vertices of

the input curve and the approximation of lineamseqts, see Figure 22.

The additive error measutgfor a segmenty;, p;} of the curveP = {p,, ..., pi, ...,
o, ...pn} is defined by the sum of distancdgi, j), kO(, ..., ), for all vertices in the

segment

e i, i)= 3 d?G ). ©)

k=i+1

ForL. the approximation error is defined as

e, (i, j) =ma{d, (i, j)}- (10)

i<k<j

The approximation error of the whole curvelinandL., metrics is defined by (9)

and (10), respectively.

E,(P)=>e,(0. 1), (1)
E.(P) = maxd, i, )} (12
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Figure 22: Distances between the points of theecand the approximating segment
{pi.p}

A large number of heuristic, sub-optimal and optiralgorithms for polygonal

approximation have been developed over the lageadés [Koles03a].

The most widely used algorithm is a heuristic mdtlalled theDouglas-Peucker
algorithm[Dougl73]. The first approximation is given by grdne segment between
the end points of the contour. This approximatisrthen recursively refined by
inserting new vertexes on the contour that is &sthaway from its current
approximation. The procedure stops when the apmatkbn meets a given error
constraint. The time complexity of the algorithmQ$N? in the worst case, and

O(Nlog(N)) on average.

The optimal algorithm for thenin- £ approximation was introduced by Perez and
Vidal [Perez94]. The proposed algorithm is basedttdynamic programming
method [Bell57] for solving an optimization taskhé complexity of the algorithm

with error measurg, is O(NM?).

The optimal solution for thenin-# problem was published in [Dunh86]. The author
proposed using dynamic programming for optimal egpnation with the least
number of segments for error measuge The complexity of the algorithm B(N°)

in the worst case.

Heuristic algorithms are fast, but they are inferio optimum algorithms. The

Iterative reduced searcépproach fomin-¢ andmin-#was introduced in [Koles02Db,
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KolesO3b] and [KolesO2a], respectively. In the megd approach, the initial

approximation for a given error tolerancés obtained with any othenin-£ or min-

# algorithm, then a bounding corridor is construcéémhg the reference path, and
finally the solution is found through dynamic pragming within the bounding

corridor. The time complexity of the algorithm istiveenO(N) andO(N?), which is

similar to the complexity of fast heuristic algbnts.

In publication P6, polygonal approximation is used for generatingc@arse
approximation of the input curve. This referenceveuis then used for predictive

compression of the original points in a losslessmea.

3.6 Compression using multiresolution information

An important property of modern vector maps formigtdhat their data can be
progressively transmitted. This streaming techniqakows objects to be
downloaded in lower resolution first and then bgptiyed while downloading the
same objects in higher resolution. This techniqueimmzes the waiting time for
data versus viewing data ratio. On the other hahneé, multiresolution approach

requires additional information for vector datagwuhg of the resolution level.

The principles of the progressive encoding of digdurves were first described in
[LeBuh97]. Progressive encoding consists of firsngmitting the raw polygonal
approximation obtained at the upper level, and thransmitting its successive
refinements. Aseries of vertex positions defining the first papgmust be sent first.
For refinement polygons, information about the nembf child vertices along the
coarse polygon edges must be transmitted, solthate¢coder can correctly produce
the ordered list of vertices. The positions of #hesfinement vertices can be
encoded relative to their parent edge. The ordetrarismission, for an image

containingM approximated contours [LeBuh97], is illustratedrigure 23.

32



In encoding and decoding operations, geometricabwkedge about coarse
resolutions can be used. In [LeBuh97], the autlppoposed using direct encoding
on the upper coarse level and letting the more resige lower levels be encoded
relative to their parent approximation. The possildcations of the lower level
points are placed ifA-tunnel along the segments of the coarse approximaihere

A is the maximum deviation of the coarse approxiomtisee Figure 24. This

information is used by the encoder and, consequdnithe decoder.

Choose Image header
decoding - -
accuracy Polygon headers Pol.1 r-| Pol.i rq Pol.M —>| Header data bitstream
Low resolution Levg—>| Pol .1 t+ Pol.i" 1 Pol.M [—>{ Vertex index bitstrean
Y Intermediate Level—>{ Pol. 1 F- Pol. i rq Pol. M —> Vertex index bitstrean
\J High resolution Leve-!—>| Pol. 1 |--| Pol. i H Pol. M }—> Vertex index bitstrean

Figure 23: The scheme of progressive encodingeotéttor data [LeBuh97].

Tl 1]
P

e

Figure 24: The\-tunnel along the segment of the coarse approxamgkieBuh97].

Summary

We consider different approaches of vector map cesgon. InP3 we rasterize the
vector information and apply context-based compoest the raster data utilizing
repetition of symbols. IiP4 we use chain codes to represent the vector data an

apply context tree based compression.
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In P5 we develop an optimal product scalar quantizer asd it for lossy
compression of vector maps by coordinates quardizain P6 we study the
problem of lossy compression of multi-resolutionctee data. We use the
coordinates from lower resolution levels to predibe coordinates of higher

resolution layers.
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4. Summary of the publications

In the first paper (P1), we propose a LZW based semi-adaptive algorithrmayb
image compression. The original LZW algorithm is effective tool for lossless
compression of different data. We study the caserwthe map is compressed
beforehand and then transmitted to user. The LZ§érahm is symmetric by its
resource demands: the decoder requires same maasaarces as the encoder.
This could be a bottleneck for user’s devices witty machine resources, and
therefore, we develop a semi-adaptive modificatbdrthe algorithm. The semi-
adaptive approach is asymmetric: decoding reqd@esr resources than encoding.
The method also allows user to divide the wholegenato rectangular blocks and
process and transfer the coded blocks separatety &#ach other. The proposed

method gives compression ratio similar to that &8 & PNG algorithms.

In the second paper (P2)we propose an algorithm for lossless image comjmess
based on theontext tree modelinfRiss81, Wein95] with incomplete tree structure,
namely thegeneralized context trd&CT) [Mart04]. The context tree is constructed
according to the two-pass scheme [Nohre94]: caligcthe contexts statistics and
pruning of the context tree in order to minimize tree costsWe introduce a near-
optimal fast pruning algorithm, which makes the G&lgorithm suitable for on-line
processing of map images. We also propbgbrid-tree based on thdree-tree
[Nohre94], which optimizes the context pixels locations acawydo the encoded
image. The proposed algorithm shows improvement theecompetitive algorithms

by 20% on the set of test images used.
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In the third paper (P3), we study the problem of raster-based compression of
vector maps. Rasterization is done by convertingaseic layers of the vector map
into a set of binary images followed by the compi@s byJBIG [ITU-T T.82]. In
order to simplify the binary layers, we provide teszation of the maps without
textual information. The associated textual infotiora and their locations are
compressed separately. The proposed scheme impiteee®mpression of a single

binary layer by 12%, on average, and the whole byap%.

In the fourth paper (P4), we focus on lossless compression abfain codes
[Free61], which are widely used for describing @ibicontours and raster objects.
We extract chain codes from vector and raster maps. resulting chain code
description of the digital contours is compressedtibe context-based method
developed irP2. For vector data, this approach cannot be catlssléss because the
chain codes are a result of precision reductiothefdata in order to fit the vector
data to the raster image with some predefined dsines. If the dimensions are
large enough, then the losses will be small or everloss at all. The proposed
approach gives the best compression over the caiapemmethods on the test
dataset. The improvement is about 2-3% in comparisdhePrediction by Partial
Matching (PPM) algorithm [Clea84], and 40% in comparisonHoffman coding
[Liu05].

In the fifth paper (P5), we study coordinate quantization by product quantin
Cartesian and polar spaces, namely product quan(R®) and strictly polar
guantizer (SPQ). The previously introduced algongh use the Max-Lloyd
algorithm [Vora94], which cannot guarantee optityaliOther authors [Buck79,
Moo098a, Moo098b, Pearl79, Peric02, Vasil99] use moak analysis for
constructing the quantizer. The numerical analggesmade under the assumption
of uniform phase distribution. This assumption jdeg optimal solution only for

the case of 2-D Gaussian distribution of the sigi& propose to use optimal scalar
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guantization for constructing the scalar quantizers?Q and SPQ. This approach is
applied to the compression of relative coordinategector map and it gives better

rate-distortion performance.

In the sixth paper (P6) we consider quantization based lossy compression of
vector data. The main idea of the proposed appr@athuse the approximation to
reduce redundancy of input vector data. For eagitatlicurve, we construct a coarse
approximation, which is used then for improved pm®on of the coordinates. The
residual vectors are encoded by vector quantizalibe proposed approach slightly
loses to the DPCM algorithm. However, the proposeethod allows to store

a rough representation for low-resolution modehatdost of a small increase in the

bit rate.

The contributions of the author in these publications can be bristljnmarized as
follows. In P2 and P4, the author is responsible for the development,
implementation, running of the experiments, andimgiof the paper. I#1, P3, P5
and P6, the author took part in the development of the rtlgm, took significant

part in implementation, running experiments andingiof the papers.
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5. Conclusions

We have studied the compression of raster and veaéps. We proposed several
approaches in the framework of lossless compressioraster map images, and

lossy compression of vector maps.

Semi-adaptive LZW algorithm was developed in order minimize machine

requirements of the decoder. The original LZW alfon is adaptive, which means
that the encoder and decoder require equal amdunemory. In the case of semi-
adaptive modification, the generation of the dittiy is done during the encoding
only. The decoder does not need to generate ihagdiich requires less memory
and processing time. The proposed approach shoad gumpression performance

in comparison to other dictionary-based algorithms.

We have studied the context-based compression pfimages. The main problem
of the context-based compression is context dimtiwhen the number of context
models became too big. To prevent this happen wethes context tree modeling.
All existing algorithms use context tree modelingthwfull tree structure. This

approach makes the context tree inefficient in cdssncoding of images with large
number of colors, because it leads to the samdeobf context dilution. Because
of this, recent works have considered the casénaiptree only. We have proposed
the compression algorithm based on an incompiedey context tree. The main
design problem of the context tree modeling witbomplete tree structure is the
pruning algorithm, which can be very time-consumige have solved this problem

by introducing a recursive-search pruning algorithiine proposed algorithm
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showed excellent compression performance for magg@® in comparison with
other algorithms. A future extension of this wohoald consider the combination of

the incomplete context tree modeling with the objgsed modeling.

For lossy compression of vector maps, we have dernsi raster-based
compression, compression by quantization of coetds) and multi-resolution

compression.

First, we use the vector information to simplifyethasterized vector map in raster-
based compression. We considered compression iy dBjorithm, where binary
layers represent semantic layers of the encoded. mhp simplification was
obtained by extracting of textual information, whiwas encoded separately from

the rest. Experiments showed good performanceegptbposed scheme.

We have proposed an optimal algorithm for consimgctproduct quantizer in
Cartesian and in polar spaces. We used the dynpmigramming approach to
construct scalar quantizer instead of heuristicsplike Max-Lloyd. The proposed

optimal product quantizer was applied for the cagspion of vector maps.

We studied compression of vector map contours layncboding, which are widely
used for describing digital contours and rasteects} The existing methods of chain
codes compression use the statistical correlatiemvden the currently encoded
chain code and the history of previously encodadespalso known as the context
modeling. We proposed to use the context tree mugléh order to prevent the

problem of context dilution.

For lossy vector map coding, we proposed to geaexatoarse approximation and
used it as a reference line for coordinate transédion. We also proposed several
methods for prediction of the coordinates by usthg values of the coarse
approximation. The improved prediction let us narrohe quantized set of

prediction errors and improve the compression perémce in rate-distortion sense.
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Future extension would use coordinate quantizattombined with polygonal
approximation and entropy encoding of the relatiwerdinates. The approximation

could be made on vertices of near-optimal distartonstrained scalar quantizer.
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