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Abstract— The best lossless compression results of color map 

images have been obtained by dividing the color maps into layers, 
and by compressing the binary layers separately by using an 
optimized context tree model that exploits inter-layer 
dependencies. Even though the use of binary alphabet simplifies 
the context tree construction and exploits spatial dependencies 
efficiently, it is expected that equivalent or better result would be 
obtained by operating directly on the color image without layer 
separation. In this paper, we extend the previous context tree 
based method to operate on color values instead of the binary 
layers. We first generate an n-ary context tree by constructing a 
complete tree up to a predefined depth, and then prune out nodes 
that do not provide improvement in compression. Experiments 
show that the proposed method outperforms existing methods for 
a large set of different color map images. 
 

Index Terms—Map image coding, context tree compression, 
lossless image coding. 
 

I. INTRODUCTION 
e consider the problem of lossless compression of raster 
map images. This class of images is characterized by 

a small number of colors, a lot of structured details, and a large 
size. An example of a map image is shown in Figure 1. 
Predictive coding techniques such as JPEG-LS [4], CALIC [5] 
[6], TMW [24] and FELICS [25] work well on photographic 
images with smooth changes of colors but are less efficient on 
map images due to the sharp change of colors.  

CompuServe Graphics Interchange Format (GIF) and 
Portable Network Graphic (PNG) formats are the most 
commonly used file formats for compressing graphics. The 
first one uses LZW compression algorithm [1]. The second 
one uses the DEFLATE algorithm [2], which is a combination 
of LZ77 dictionary based compression algorithm [3] and 
Huffman coding. Both of these methods can also be used for 
the compression of map images. These algorithms are the 
oldest ones and loose to newer algorithms, based on context 
based modeling.  

As typical map images have a high spatial resolution for 
representing fine details such as text and graphics objects but 
not so much color tones as photographic images. Piecewise-
constant (PWC) algorithm [14] have been developed for 
compression. of palette images. It uses a two-pass object-based 
modeling. In the first pass, the boundaries between constant 

color pieces are established by the edge model and encoded 
according to the edge context model, proposed by Tate [24]. 
The color of the pieces are determined and coded in the 
second pass by finding diagonal connectivity and color 
guessing. Finally, an arithmetic coder encodes the resulting 
information. The latest version of PWC, which includes the 
skip-innovation technique and streaming single-pass variant 
[14], still remains as one of the best compression algorithm for 
palette images.  

   
Fig. 1. An example of color map image: full size 1024×1024 pixels (left), 

and 100×100 part (right). 

 
 

Statistical context modeling that exploits 2-D spatial 
dependencies is applied for the lossless palette image 
compression. The known schemes can be categorized to those 
that divide the images into binary layers, and to those that 
apply context modeling directly to the original colors. The 
separation of the input image can be done by color separation, 
or by semantic separation [9, 10]. The binary layers are then 
compressed by a context modeling scheme such as JBIG [7], 
or by using context tree [11]. The best results for this approach 
have been achieved for context tree compression with semantic 
separation [9, 10], but this requires that the encoder have the 
semantic decomposition available beforehand, which is not the 
case in general. In the case of color separation, best results 
have been achieved by multilayer context tree (MCT) 
compression with optimal order of layers and template pixels 
[10]. The drawback of this approach is the time taken by the 
compression, which can be quite huge due to the time required 
by the optimal ordering of layers.  

A possible alternative to the color separation is a separation 
of the colors into bit-planes following by the compression of 
them separately. Embedded image-domain adaptive 
compression of simple images (EIDAC) [12] uses three 
dimensional context model tailored for the compression of 
grayscale images. The algorithm divides the image into bit 
planes and compresses them separately but the context pixels 
are selected not only from the current bit plane but also from 
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the already processed bit planes. 

Fig. 2. Overall scheme of the proposed algorithm. 

Another approach is to operate directly on the color values. 
Statistical context-based compression known as the Prediction 
by Partial Matching (PPM) has been applied for the 
compression of map images [13]. The method is a 2-D version 
of the original PPM method by combining a 2-D template with 
the standard PPM coding. The neighboring context modeling 
is applied for the original colors without separation into binary 
layers. The method has been applied both to palette images 
and street maps [13]. The major problem of the PPM-based 
methods is the context dilution problem, when the pixel 
statistics are distributed over too many contexts, thus affecting 
the efficiency of the compression.  

We propose a generalized context tree (GCT) algorithm 
with n-ary tree with incomplete structure. This approach 
implies difficulties in the implementation due to its great time 
and memory requirements. Especially the construction of an 
optimal incomplete n-ary tree is problematic. We, therefore, 
propose a fast sub-optimal heuristic pruning algorithm, which 
significantly decreases the processing time. The compression 
consists of two main phases. In the first phase, we construct 
and prune the context tree. We build up the context tree to a 
predefined maximum depth and collect the statistics for each 
node in the tree, and then prune out nodes that do not provide 
improvement in compression. In the second phase, entropy 
coding is applied to the image using the optimized context 
tree. We need to store the context tree into the compressed file, 
which finally consists of two parts: the description of the 
context tree structure and the encoded image. The proposed 
compression algorithm is outlined in Figure 2.  

II. CONTEXT TREE MODELLING 

A. Finite context modeling 
In context modeling, the probability of the current pixel U is 

estimated conditioned on the combination of its m previously 
encoded pixels x1,…,xm. The combination of these pixel values 
is called context. The probabilities of the pixels, generated 
under the given context, are usually treated as being 
independent [17]. In 2-D modeling the context is defined by a 
set of closest pixels. There are several ways how to define the 
location and the order of the context pixels [17, 21]. Simple 
examples of 2-D template are shown in Figure 3. 

Thus, the context model is a collection of independent 
sources of random variables. By the assumption of 
independence, it is simple to assign probabilities to each new 
pixel generated at the current context. We denote the 
frequency of the pixel value k in the context x1,…,xm as: 

),...,(),...,( 11 mm
k xxkUnxxn ==  (1)

The conditional probability of the pixel value U = k, 
k∈[1,…,α], where α is the number of colors in the image, can 
then be calculated as: 
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Fig. 3. Default location and order of the neighbor pixels for standard 1-

norm (left) and 2-norm (right) templates. 
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We assume that an entropy coder makes the encoding of the 
given statistical model. Adaptive probability estimator of the 
entropy coder operates by the following formula (3). 
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Here the parameter ε is used for measuring uncertainty of the 
model, and its value depends on the selected modeling scheme 
[19]. At the beginning of encoding we set ε to 1/α, by analogy 
with [20]. 

B. Context tree algorithm 
Theoretically, better probability estimation of pixels can be 

obtained by using a larger context template. However, the 
number of contexts grows exponentially with the size of the 
template, and the distribution of the pixel statistics over too 
many contexts affects the compression efficiency. 

The use of context tree [11] provides a more efficient 
approach for the context modeling, so that a larger number of 
neighboring pixels can be taken into account without the 
context dilution. Context tree is applied for the compression in 
the same manner as the fixed size context; only the context 
selection is different. The context selection is made by 
traversing the context tree from the root to a terminal node, 
and at each time selecting the branch according to the 
corresponding previous pixel value. The terminal node points 
to the statistical model that is to be used. 

The single pass context tree modeling [11] makes the 
selection of the context according to the estimation of its share 
to the reducing of the conditional entropy. If this value 
outperforms the cost of the node then it is selected.  

The dual pass context tree modeling [11, 21] construct the 
tree structure and collect the statistics for each context before 
the entropy encoding. The context tree is pruned in order to 
minimize the sum of the overall conditional entropy and tree 
description cost. In this approach, the context selection is done 
by traversing the context tree until the corresponding symbol 
points to a non-existing branch, or the current node is a leaf.  

We use the second approach for constructing the context 
tree: optimize the context model according to encoded data 
and store it to the compressed file. This approach requires a lot 
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of memory and calculation resources during the encoding, but 
the decoding is much faster and requires significantly less 
memory resources as the tree already exists.  

The tree construction consists of two main phases: 
initialization of the context tree, and pruning of the constructed 
tree. These phases will be described below. 

Fig. 4. Example of different configuration vectors. 
C. Construction of an initial context tree 
To construct an initial context tree for the input image, we 

need to process through the image data to collect statistics for 
all potential contexts: leaves and internal nodes. Each node 
stores information of the counts of each color appearing in 
particular context. The algorithm of the context tree 
construction by processing every pixel in the image as follows: 

Step 1: Create a root of the tree. 
Step 2: For each pixel Ui, i∈[1..n] 

 
Fig. 4. Example of a single node pruning: resulted node configuration is 

(0,0,0,1). 

• Traverse the tree along the path defined by the values 
of the context pixel xj, j∈[1..m], where the positions 
of the pixels are defined according to the predefined 
template.  

• If the positions of some pixels in the context are 
outside of the image, then set these pixel values to 
zero.  

• If some node along the path does not have a 
consequent branch for transition to the next context 
pixel, then create the necessary child node and 
process it. Each new node has α counters, which are 
initially set to zero. 

• In all visited nodes, increase the count of the current 
pixel Ui value by 1. 

This completes the construction of the context tree for all 
possible contexts. The time complexity of the algorithm is 
O(m⋅n), where m is the maximum depth of the context tree, 
and n is the number of pixels in the image.  

D. Pruning the context tree 
The initial context tree is pruned by comparing every parent 

node against its children nodes for finding the optimal 
combination of siblings. We denote the overall tree by T, and 
the nodes of the tree by w. We estimate the number of bits 
required to store the node w in the compressed file by c(w): 
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The leaves constitute a significant part of all nodes in the 
context tree, and (4) reduces the total number of bits required 
for the context tree description. We will denote the set of all 
terminal nodes of the tree T as S(T). We denote the count of 
the symbol i as ni(s), s∈S(T). The estimated code length 
generated by a terminal node s is calculated using the 
following expression [15, 17]: 
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This definition corresponds to the result obtained by a one-
pass arithmetic coder [19]. We define the cost of the context 
tree T as: 
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The first term gives the cost of the storage of the tree, and 
the second term the cost of compression of the image with this 
tree. The goal of the tree pruning is to modify the structure of 
the context tree so that the cost function (6) will be minimized. 
For solving this problem, we used a bottom-up algorithm [21], 
which is based on the principle that the optimal tree consists of 
optimal subtrees.  

For any node w in the tree T, we denote the vector of counts 
as n(w)= (n1(w),…, nα(w)) and the child nodes as wi. We 
denote the vector describing the structure of node branches as 
the node configuration vector. This vector v = (v1,…, vα), 
vi∈{0,1}, defines which branches will be pruned out after the 
optimization: if vi = 0, then the i-th branch is pruned.  

The maximum number of all possible configuration vectors 
for a node is 2α. The optimal cost Lopt(T) for any given tree T 
can be expressed by the recursive equations (7) and (8):  
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Here Ti⊂T is a subtree of T, starting from its child node wi. 
The operator ‘ ’ denotes the Hadamard product (the element 
by element product of two vectors/matrices). These formulae 
require that for calculation of the optimal cost of any tree we 
need firstly to calculate optimal costs of all its subtrees. The 
calculation of the cost function Lopt(T) and pruning of the 
context tree T can be described as follows: 

�

Step 1: If T has no subtrees, then return the accumulated 
code length of its root according to (6). 

Step 2: For all subtrees Ti, calculate their optimal costs 
Lopt(Ti) recursively. 
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Step 3: According to the found values Lopt(Ti), the vectors of 

counts n(t) and n(t1),.., n(tα), find the configuration 
vector v that minimize (8). 

Step 4: Prune out the subtrees according the found vector v. 
Step 5: Return the value Lv(T,v). 

The algorithm recursively prunes out all unnecessary 
branches, and outputs the structure of the optimal context tree. 
An example of pruning a single node is shown in Figure 4. The 
best configuration was chosen from 16 different variants and 
resulting distribution of the statistics between parent and 
children produces smallest value of the function (6)- 

III. FINDING THE OPTIMAL CONFIGURATION VECTOR 
Finding the optimal node configuration vector is the most 

time-consuming phase in the construction of the α-ary 
incomplete context tree. In the case of the full context tree, the 
configuration can be chosen from two alternatives only: either 
prune all subtrees of the considered node, or preserve them all. 
In the case of incomplete context tree, however, we need to 
solve more complicated optimization problem. 

A. Full search approach 
We need to process the pruning of each node of the context 

tree. A straightforward approach is to calculate all possible 
variants of subtrees configurations and then choose the best 
one. If the number of nodes in the context tree is N, then the 
time complexity of the full search is O(2α⋅N). In practice, the 
tree pruning requires less computations because the number of 
existing subtrees at each node is usually smaller than α in real 
map images. Nevertheless, this part is the bottleneck of the 
algorithm because the pruning can take several hours even for 
small map image. 

B. Steepest descent approach 
One possible way to reduce the time complexity of the 

context tree construction is to compromise the optimality by 
considering only a small part of all possible configuration 

vectors. We apply the well known steepest descent 
optimization algorithm. According to (7) and (8) the 
optimization problem for tree T can be formulated as: 

[ResultVector, ResultValue] • OptimalConfiguration(Node) 
Begin 
 
   Vector0 • {0,0,…,0}; 
   Value0  • EstimateCodeLength(Node, Vector0); 
   Vector1 • {1,1,…,1}; 
   Value1  • EstimateCodeLength(Node, Vector1); 
 
   if Value0 < Value1 then 
      StartVector • Vector0; 
      StartValue  • Value0; 
      delta • +1; 
   else 
      StartVector • Vector1; 
      StartValue  • Value1; 
      delta • -1; 
   endif 
 
   [ResultVector, ResultValue] •  
      SteepestDescent(Node, StartVector, StartValue, delta, 1); 
 
  if ResultValue < StartValue then 
     StartVector • ResultVector; 
     StartValue  • ResultValue; 
     [ResultVector, ResultValue] •  
       SteepestDescent(Node, StartVector, StartValue, delta, 1); 
  endif 
 
End. 

Fig. 5. Pseudocode of the local optimal configuration search. 

[ResultVector, ResultValue] •  
 SteepestDescent(Node, StartVector, StartValue, delta, LeftBound) 
Begin 
  Min • StartValue; 
  ResultVector • StartVector; 
  ResultValue  • StartValue; 
    
  for i:= LeftBound to NColors     
    LocalVector     • StartVector; 
    LocalValue[i]   • StartValue; 
    if LocalVector[i]+delta≥0 and LocalVector[i] + delta≤1 
       LocalVector[i]  • LocalVector[i] + delta; 
       LocalValue[i]• EstimateCodeLength(Node, LocalVector); 
    endif 
    if LocalValue[i] < Min then 
       Min := LocalValue[i]; 
    endif 
  endfor 
 
  if StartValue = Min then 
   return; 
   endif 
 
   for i:= LeftBound to NColors 
   if LocalValue[i] – Min ≤ threshold then 
     LocalVector    • StartVector; 
     LocalVector[i] • LocalVector[i] + delta; 
     [TempVector, TempValue] • 
          SteepestDescent(Node, LocalVector[i], Min, delta, i+1); 
     if TempValue < ResultValue then 
        ResultVector  • TempVector; 
        ResultValue   • TempValue; 
     endif 
   endif  
  endfor 
 
End. 
Fig. 6. Pseudocode of the recursive steepest descent algorithm. 

{ }),(minargmin vTLv v
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The candidate solutions {v} are considered as the vertices of 
α-dimensional hypercube Cα.  

The proposed optimization algorithm is called for each node 
of the context tree. The result of the optimization is the 
optimal configuration vector and the cost of the node. The 
algorithm works as follows: 

Step 1: Find the starting point of the search.  
Step 1.1: Calculate values L0=Lv(T, v = (0,0,..,0)) and 

L1=Lv(T, v = (1,1,..,1)). Set the start value  
Lstart = min{L0, L1}.  

Step 1.2: If Lstart = L0, then the starting point vstart= 
(0,0,…,0), the search direction ∆ = +1. 
Otherwise the starting point vstart = (1,1,…,1) 
and ∆ = −1. 

Step 1.3: Set the left bound (LB) of the search to 1. 
Step 2:  Process steepest descent optimization for input 

arguments Lstart, vstart and LB. 
Step 2.1: If LB > α, then return vstart and Lstart as the result 

of the optimization. 
Step 2.2: Generate the set of candidate solutions vj, 

j∈[LB,…,α]: vj={ ,…, +∆,…, }, 

vj∈Cα. Find value L*= min{Lv(T,vj)}.  

startv1
start
jv startvα

If L*≥ Lstart then return vstart and Lstart. 
Step 2.3: Recursively call the optimization Step 2 for 

each candidate solution vk, which satisfies to: 
Lv(T,vk) – L*≤ threshold, with new input 
arguments: Lstart = L*, vstart = vk and LB=k+1. 
Denote the returned results of optimization as 
v*k and L*k for each vk. 
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Step 2.4: Find values Lmin = min{L*k} and  
vmin= argmin{L*k}. Return vmin and Lmin as the result 
of optimization. 

Step 3: If Lmin < Lstart then set vstart to vmin, Lstart to Lmin and 
LB to 1 and process Step 2 of the algorithm again. 

The pseudocodes of the proposed optimization technique 
and the steepest descent algorithm are shown in Figures 5 and 
6, respectively. In the worst case, the number of calculations in 
this steepest descendent algorithm for each node is 2α, which is 
the same as in the full-search. However, we can adjust the 
tradeoff between time and optimality of the algorithm by a 
suitable selection of the threshold. The threshold value defines 
how large is the set of possible solutions in the steepest 
descent optimization. If the threshold value is large, then the 
set of solutions is wide and the result of the optimization is 
close to the global optimum. The same time the algorithm 
works slower. A small threshold value narrows the set of 
processed solutions, therefore increases the speed of algorithm 
and reduces the accuracy of the optimization. We use the 
threshold value set to 0.01, which was found experimentally. 

IV. HYBRID TREE VARIANT 
The free tree coding was introduced in [21]. While the 

locations of context pixels in context algorithm are defined by 
a static template, the free tree optimizes the locations to the 
encoded image. The locations of each context pixel depends 
on the values of previous context pixels. Figure 7 shows an 
example of the binary free tree with optimized pixels locations. 
Here, for example, the coordinates of the second context pixels 
depend on the value of the pixel with relative coordinates (-1, 
0). If the pixel’s value is white then the next context pixel is 
located at position (-1,-1). Otherwise, if the pixel is black then 
the next context pixel is located at position (-2, 0). A greedy  
 

algorithm for the free tree constructing has been described in 
[17]. The algorithm builds up the free tree level by level, 
processing through the entire image during each iteration. The 
number of all possible contexts and memory requirements 
grows up exponentially with increasing of free tree depth. Due 
this the construction of a deep free tree can be problematic.  

#1 Topographic map 
1 : 20 000 

#2 Topographic map 
1 : 8 000 

#3 Road map 
1 : 100 000 

  
   

#4 Road map 
1 : 800 000 

#5 Detailed – City 
1 : 250 000 

#6 Road map 
1 : 400 000 

  
 

Fig. 9. Sample 256×256 pixel fragments of the test images. 
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Fig. 7. Illustrative example of the free tree. 
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Fig. 8. Example of the hybrid tree: locations of depths less or equal four 
are defined by free tree and locations of bigger depth are defined by 
unused positions in static template. 

The alternative to free tree is a so-called hybrid tree, when 
the free tree is build up only to some predefined depth f and 
the locations of deeper contexts are defined by a fixed 
template. During encoding we traverse along the context tree 
and mark all occurred locations in a fixed template as used 
ones. For contexts with depth smaller or equal to f we choose 
locations according the free tree structure. For contexts with 
depth greater than f we choose those unused location in the 
fixed template, which is the closest to encoded pixel. Figure 8 
shows an example of the hybrid tree. The hybrid tree coding 
produces better compression than the fixed one, but the free 
tree construction and the procedure of choosing the closest 
locations significantly increases the processing time.  

V. EXPERIMENTS AND DISCUSSIONS  
The proposed algorithm was tested on the six sets of 

different map images, see Figure 9 for illustrative examples, 
and Table 1 for their statistics. The sets from #1 to #4 are from 
the database of National Land Survey of Finland [22]. We 
compare the following compression methods:  

• GIF : CompuServe interchange format [1], 
• PNG: portable network graphics format [2, 3], 
• MCT: multilayer binary context tree with optimized 

ordering of the layers [10], 
• PWC: piecewise-constant image model [14], 
• CT: the n-ary context tree modeling with full tree 

structure [16, 21], 
• GCT: generalized context tree algorithm with an 

incomplete n-ary tree structure with fixed template. 
• GCT-HT: generalized context tree algorithm with 

incomplete n-ary tree structure with hybrid tree. 
The compression results are summarized in Table 2. The 

MCT algorithm is applied for binary layers with color 
separation of the encoded images. The rest of the algorithms 
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PROPERTIES OF THE MAP IM

 Scale Type of 
map 

Set #1 1 : 20 000 Topographi

Set #2 1 : 8 000 Topographi

Set #3 1 : 100 000 Roads 

Set #4 1 : 800 000 Roads 

Set #5 1 : 250 000 City roads

Set #6 1 : 400 000 Roads 

TABLE 3 
TOTAL PROCESSING TIMES (SEC) OF THE GCT FOR DIFFERENT STEPS OF THE 

COMPRESSION AND DECOMPRESSION 
Compression 

 Depth of the 
context tree Tree 

construction 
Entropy 
encoding 

Decompression 

Set #1 22 893.78 83.66 90.31 

Set #2 22 41.55 1.91 2.13 

Set #3 6 31.22 1.47 2.34 

Set #4 6 42.91 1.48 1.86 

T
COMPRESSION R

 GIF PNG MC

Set #1 0.557 0.830 0.1

Set #2 0.670 0.705 0.2

Set #3 2.125 2.067 1.4

Set #4 2.121 2.059 1.5

Set #5 1.866 1.785 1.3

Average: 1.468 1.489 0.9

Set # 6 0.986 0.845 N/

Average: 1.386 1.382 N/
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 Fig. 10. Dependency of the bit rate on 
TABLE I 
AGES FROM DIFFERENT TEST SETS 

Images Image size No. of 
colors 

c 5 5000×5000 6 
c 4 1024×1024 7 

4 1024×1024 16 
4 1024×1024 16 

 2 800×800 16 
5 1250×1250 67 
Set #5 6 13.22 0.41 0.98 

Set #6 8 99.42 2.91 3.86 
 

T
TOTAL PROCESSING TIMES (SEC) FO

DECOMPRESSION O

 Depth of the 
free/hybrid tree 

co

Set #1 8/22 

Set #2 8/22 

Set #3 6/6 

Set #4 6/6 

Set #5 6/6 

Set #6 8/8 

or images. The MCT algorithm 
st sets due to its huge processing 
ering of the layers.  

ass version of CT algorithm [11, 
1]. It utilizes the variable depth 
y context tree.  
outperforms all comparative 
ssion performance. The GCT 
all test sets because it utilizes 
The proposed algorithm gives at 
average, in comparison to the 
the two variants, the hybrid tree 
tly better than the GCT using 

rocessing times of the GCT and 
ompression stage, most time is 
onstruction and pruning. The 
lgorithm is asymmetric in the 
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bserved that the GCT method is 
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Fig. 11. Dependency of the bit rate on

T
COMPRESSION TIMES (SEC) OF THE GC

APPROACHES AS A FUNC

 Full search
Depth 4 6 
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which is a modification of Q coder [26]. The results indicate 
that the steepest descending approach provides almost as good 
results as the full search but significantly faster. It is therefore 
better applicable for on-line processing for images of this size. 
All benchmarking were done on a 3 GHz P4  computer with 1 
GB of RAM under Windows XP.  

Figure 10 shows the dependency of the compression 
efficiency and the image size. For this experiment, we took the 
images from the test set #5, and divided them into fragments of 
dimensions 100×100, 200×200 and 400×400 pixels. The 
resulting bit rate was calculated as the average of all 
compressed files. The experiments show that the bit rate of the 
GCT algorithm remains rather stable when operating for 
images of smaller size. 

Figure 11 illustrates the dependency of the GCT 
compression efficiency for different number of colors. The 
tests were processed on the test set #6, where the number of 
colors was decreased by color quantization from 67 down to 
32, 16, 10, 6 and 2.  

The proposed algorithm can be used mainly for the 
compression of palette and halftone images in general, but 
there are some problems, which can decrease its efficiency in 
the case of photographic images. The necessity of storing the 
context tree in the compressed file can decrease the 
compression performance if the number of colors is increased 
significantly. The storage demands are about α bits per each 
node and the space requirement grows up exponentially with 
the increase of the tree depth. The algorithm is therefore not 
expected to work efficiently for images with a large color 
palette (more than 128 colors), or for really small images (with 
the size less than 100×100 pixels).  

In the case of larger images, the processing time of the 
algorithm can still be a bottleneck in real time applications. 
Most time in the compression is taken by the construction and 
pruning of the context tree, and the time grows up with the 
increasing the number of colors and maximum depth of the 
tree. The time can be reduced further by applying fast 
calculation of the estimated code length, in the same manner as 
was proposed in [17].  

VI. CONCLUSIONS 
We propose an n-ary context tree model with incomplete 

tree structure for the lossless compression of color map 
images. A fast heuristic pruning algorithm was also introduced 
to decrease the time required in the optimization of the tree 
structure.  

The proposed n-ary incomplete context tree based algorithm 
outperforms the competitive algorithms (MCT, PWC) on 20%, 
and on 6% in comparing with the implemented algorithm, 
based on full context tree approach (CT). 

The method was successfully applied to map images up to 
67 colors. If the overwhelming memory consumption can be 
solved in the case of images with a larger number of colors, 
then it is expected that the method could also be applicable to 
photographic images. This is a point of further studies. 
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