
Accepted to IEEE Transactions on Image Processing

1

Lossless compression of color map images by
context tree modeling

Alexander Akimov, Alexander Kolesnikov and Pasi Fränti

Abstract— The best lossless compression results of color map

images have been obtained by dividing the color maps into layers,
and by compressing the binary layers separately by using an
optimized context tree model that exploits inter-layer
dependencies. Even though the use of binary alphabet simplifies
the context tree construction and exploits spatial dependencies
efficiently, it is expected that equivalent or better result would be
obtained by operating directly on the color image without layer
separation. In this paper, we extend the previous context tree
based method to operate on color values instead of the binary
layers. We first generate an n-ary context tree by constructing a
complete tree up to a predefined depth, and then prune out nodes
that do not provide improvement in compression. Experiments
show that the proposed method outperforms existing methods for
a large set of different color map images.

Index Terms—Map image coding, context tree compression,
lossless image coding.

I. INTRODUCTION
e consider the problem of lossless compression of raster
map images. This class of images is characterized by

a small number of colors, a lot of structured details, and a large
size. An example of a map image is shown in Figure 1.
Predictive coding techniques such as JPEG-LS [4], CALIC [5]
[6], TMW [24] and FELICS [25] work well on photographic
images with smooth changes of colors but are less efficient on
map images due to the sharp change of colors.

CompuServe Graphics Interchange Format (GIF) and
Portable Network Graphic (PNG) formats are the most
commonly used file formats for compressing graphics. The
first one uses LZW compression algorithm [1]. The second
one uses the DEFLATE algorithm [2], which is a combination
of LZ77 dictionary based compression algorithm [3] and
Huffman coding. Both of these methods can also be used for
the compression of map images. These algorithms are the
oldest ones and loose to newer algorithms, based on context
based modeling.

As typical map images have a high spatial resolution for
representing fine details such as text and graphics objects but
not so much color tones as photographic images. Piecewise-
constant (PWC) algorithm [14] have been developed for
compression. of palette images. It uses a two-pass object-based
modeling. In the first pass, the boundaries between constant

color pieces are established by the edge model and encoded
according to the edge context model, proposed by Tate [24].
The color of the pieces are determined and coded in the
second pass by finding diagonal connectivity and color
guessing. Finally, an arithmetic coder encodes the resulting
information. The latest version of PWC, which includes the
skip-innovation technique and streaming single-pass variant
[14], still remains as one of the best compression algorithm for
palette images.

Fig. 1. An example of color map image: full size 1024×1024 pixels (left),

and 100×100 part (right).

Statistical context modeling that exploits 2-D spatial
dependencies is applied for the lossless palette image
compression. The known schemes can be categorized to those
that divide the images into binary layers, and to those that
apply context modeling directly to the original colors. The
separation of the input image can be done by color separation,
or by semantic separation [9, 10]. The binary layers are then
compressed by a context modeling scheme such as JBIG [7],
or by using context tree [11]. The best results for this approach
have been achieved for context tree compression with semantic
separation [9, 10], but this requires that the encoder have the
semantic decomposition available beforehand, which is not the
case in general. In the case of color separation, best results
have been achieved by multilayer context tree (MCT)
compression with optimal order of layers and template pixels
[10]. The drawback of this approach is the time taken by the
compression, which can be quite huge due to the time required
by the optimal ordering of layers.

A possible alternative to the color separation is a separation
of the colors into bit-planes following by the compression of
them separately. Embedded image-domain adaptive
compression of simple images (EIDAC) [12] uses three
dimensional context model tailored for the compression of
grayscale images. The algorithm divides the image into bit
planes and compresses them separately but the context pixels
are selected not only from the current bit plane but also from

W

Accepted to IEEE Transactions on Image Processing

2

the already processed bit planes.

Fig. 2. Overall scheme of the proposed algorithm.

Another approach is to operate directly on the color values.
Statistical context-based compression known as the Prediction
by Partial Matching (PPM) has been applied for the
compression of map images [13]. The method is a 2-D version
of the original PPM method by combining a 2-D template with
the standard PPM coding. The neighboring context modeling
is applied for the original colors without separation into binary
layers. The method has been applied both to palette images
and street maps [13]. The major problem of the PPM-based
methods is the context dilution problem, when the pixel
statistics are distributed over too many contexts, thus affecting
the efficiency of the compression.

We propose a generalized context tree (GCT) algorithm
with n-ary tree with incomplete structure. This approach
implies difficulties in the implementation due to its great time
and memory requirements. Especially the construction of an
optimal incomplete n-ary tree is problematic. We, therefore,
propose a fast sub-optimal heuristic pruning algorithm, which
significantly decreases the processing time. The compression
consists of two main phases. In the first phase, we construct
and prune the context tree. We build up the context tree to a
predefined maximum depth and collect the statistics for each
node in the tree, and then prune out nodes that do not provide
improvement in compression. In the second phase, entropy
coding is applied to the image using the optimized context
tree. We need to store the context tree into the compressed file,
which finally consists of two parts: the description of the
context tree structure and the encoded image. The proposed
compression algorithm is outlined in Figure 2.

II. CONTEXT TREE MODELLING

A. Finite context modeling
In context modeling, the probability of the current pixel U is

estimated conditioned on the combination of its m previously
encoded pixels x1,…,xm. The combination of these pixel values
is called context. The probabilities of the pixels, generated
under the given context, are usually treated as being
independent [17]. In 2-D modeling the context is defined by a
set of closest pixels. There are several ways how to define the
location and the order of the context pixels [17, 21]. Simple
examples of 2-D template are shown in Figure 3.

Thus, the context model is a collection of independent
sources of random variables. By the assumption of
independence, it is simple to assign probabilities to each new
pixel generated at the current context. We denote the
frequency of the pixel value k in the context x1,…,xm as:

),...,(),...,(11 mm
k xxkUnxxn == (1)

The conditional probability of the pixel value U = k,
k∈[1,…,α], where α is the number of colors in the image, can
then be calculated as:

3 1713

9 515

?

2 8 144

161017 11 6

19 12 18

20

5 113

8 416

?

2 7 153

11 19912 1020 6

18 14 17

Fig. 3. Default location and order of the neighbor pixels for standard 1-

norm (left) and 2-norm (right) templates.

()
),...,(

),...,(,...,
1

1

1
1

m

j
j

m
km

xxn

xxnxxkUp

�
=

== α
.

(2)

We assume that an entropy coder makes the encoding of the
given statistical model. Adaptive probability estimator of the
entropy coder operates by the following formula (3).

()
εα

ε
α

⋅+

+
==

�
=

),...,(

),...,(,...,
1

1

1
1

m

j
j

m
km

xxn

xxnxxkUp .
(3)

Here the parameter ε is used for measuring uncertainty of the
model, and its value depends on the selected modeling scheme
[19]. At the beginning of encoding we set ε to 1/α, by analogy
with [20].

B. Context tree algorithm
Theoretically, better probability estimation of pixels can be

obtained by using a larger context template. However, the
number of contexts grows exponentially with the size of the
template, and the distribution of the pixel statistics over too
many contexts affects the compression efficiency.

The use of context tree [11] provides a more efficient
approach for the context modeling, so that a larger number of
neighboring pixels can be taken into account without the
context dilution. Context tree is applied for the compression in
the same manner as the fixed size context; only the context
selection is different. The context selection is made by
traversing the context tree from the root to a terminal node,
and at each time selecting the branch according to the
corresponding previous pixel value. The terminal node points
to the statistical model that is to be used.

The single pass context tree modeling [11] makes the
selection of the context according to the estimation of its share
to the reducing of the conditional entropy. If this value
outperforms the cost of the node then it is selected.

The dual pass context tree modeling [11, 21] construct the
tree structure and collect the statistics for each context before
the entropy encoding. The context tree is pruned in order to
minimize the sum of the overall conditional entropy and tree
description cost. In this approach, the context selection is done
by traversing the context tree until the corresponding symbol
points to a non-existing branch, or the current node is a leaf.

We use the second approach for constructing the context
tree: optimize the context model according to encoded data
and store it to the compressed file. This approach requires a lot

Accepted to IEEE Transactions on Image Processing

3

of memory and calculation resources during the encoding, but
the decoding is much faster and requires significantly less
memory resources as the tree already exists.

The tree construction consists of two main phases:
initialization of the context tree, and pruning of the constructed
tree. These phases will be described below.

Fig. 4. Example of different configuration vectors.
C. Construction of an initial context tree
To construct an initial context tree for the input image, we

need to process through the image data to collect statistics for
all potential contexts: leaves and internal nodes. Each node
stores information of the counts of each color appearing in
particular context. The algorithm of the context tree
construction by processing every pixel in the image as follows:

Step 1: Create a root of the tree.
Step 2: For each pixel Ui, i∈[1..n]

Fig. 4. Example of a single node pruning: resulted node configuration is

(0,0,0,1).

• Traverse the tree along the path defined by the values
of the context pixel xj, j∈[1..m], where the positions
of the pixels are defined according to the predefined
template.

• If the positions of some pixels in the context are
outside of the image, then set these pixel values to
zero.

• If some node along the path does not have a
consequent branch for transition to the next context
pixel, then create the necessary child node and
process it. Each new node has α counters, which are
initially set to zero.

• In all visited nodes, increase the count of the current
pixel Ui value by 1.

This completes the construction of the context tree for all
possible contexts. The time complexity of the algorithm is
O(m⋅n), where m is the maximum depth of the context tree,
and n is the number of pixels in the image.

D. Pruning the context tree
The initial context tree is pruned by comparing every parent

node against its children nodes for finding the optimal
combination of siblings. We denote the overall tree by T, and
the nodes of the tree by w. We estimate the number of bits
required to store the node w in the compressed file by c(w):

�
�
�

+
=

otherwise. ,1
leaf, a is if 1,

)(
α

w
wc (4)

The leaves constitute a significant part of all nodes in the
context tree, and (4) reduces the total number of bits required
for the context tree description. We will denote the set of all
terminal nodes of the tree T as S(T). We denote the count of
the symbol i as ni(s), s∈S(T). The estimated code length
generated by a terminal node s is calculated using the
following expression [15, 17]:

()
()

()
.log)(),...,(1)(...)()(

0

1

1)(

0
21 10

∏

∏ ∏
−+++

=

=

−

=

⋅+

+
−= snsnsn

j

i

sn

j
T

j

j
snsnc

i

α

εα

ε
α

α

(5)

This definition corresponds to the result obtained by a one-
pass arithmetic coder [19]. We define the cost of the context
tree T as:

().)(),...,(),()()(
)(

21��
∈∈

+=
TSs

T
Tw

snsnsncwcTL α (6)

The first term gives the cost of the storage of the tree, and
the second term the cost of compression of the image with this
tree. The goal of the tree pruning is to modify the structure of
the context tree so that the cost function (6) will be minimized.
For solving this problem, we used a bottom-up algorithm [21],
which is based on the principle that the optimal tree consists of
optimal subtrees.

For any node w in the tree T, we denote the vector of counts
as n(w)= (n1(w),…, nα(w)) and the child nodes as wi. We
denote the vector describing the structure of node branches as
the node configuration vector. This vector v = (v1,…, vα),
vi∈{0,1}, defines which branches will be pruned out after the
optimization: if vi = 0, then the i-th branch is pruned.

The maximum number of all possible configuration vectors
for a node is 2α. The optimal cost Lopt(T) for any given tree T
can be expressed by the recursive equations (7) and (8):

()

{ }��

�
�
� +

= . otherwise,),(min
subtrees, no has if, 1)(

)(vTL
Twnc

TL
vv

T
opt

 (7)

()() .1)()(),(++⋅+��
�

�
��
�

�
�
�

�
�
�

�−= �� α
i

iopti
i

iTv TLvwnvwncvTL �

 (8)

Here Ti⊂T is a subtree of T, starting from its child node wi.
The operator ‘ ’ denotes the Hadamard product (the element
by element product of two vectors/matrices). These formulae
require that for calculation of the optimal cost of any tree we
need firstly to calculate optimal costs of all its subtrees. The
calculation of the cost function Lopt(T) and pruning of the
context tree T can be described as follows:

�

Step 1: If T has no subtrees, then return the accumulated
code length of its root according to (6).

Step 2: For all subtrees Ti, calculate their optimal costs
Lopt(Ti) recursively.

Accepted to IEEE Transactions on Image Processing

4

Step 3: According to the found values Lopt(Ti), the vectors of

counts n(t) and n(t1),.., n(tα), find the configuration
vector v that minimize (8).

Step 4: Prune out the subtrees according the found vector v.
Step 5: Return the value Lv(T,v).

The algorithm recursively prunes out all unnecessary
branches, and outputs the structure of the optimal context tree.
An example of pruning a single node is shown in Figure 4. The
best configuration was chosen from 16 different variants and
resulting distribution of the statistics between parent and
children produces smallest value of the function (6)-

III. FINDING THE OPTIMAL CONFIGURATION VECTOR
Finding the optimal node configuration vector is the most

time-consuming phase in the construction of the α-ary
incomplete context tree. In the case of the full context tree, the
configuration can be chosen from two alternatives only: either
prune all subtrees of the considered node, or preserve them all.
In the case of incomplete context tree, however, we need to
solve more complicated optimization problem.

A. Full search approach
We need to process the pruning of each node of the context

tree. A straightforward approach is to calculate all possible
variants of subtrees configurations and then choose the best
one. If the number of nodes in the context tree is N, then the
time complexity of the full search is O(2α⋅N). In practice, the
tree pruning requires less computations because the number of
existing subtrees at each node is usually smaller than α in real
map images. Nevertheless, this part is the bottleneck of the
algorithm because the pruning can take several hours even for
small map image.

B. Steepest descent approach
One possible way to reduce the time complexity of the

context tree construction is to compromise the optimality by
considering only a small part of all possible configuration

vectors. We apply the well known steepest descent
optimization algorithm. According to (7) and (8) the
optimization problem for tree T can be formulated as:

[ResultVector, ResultValue] • OptimalConfiguration(Node)
Begin

 Vector0 • {0,0,…,0};
 Value0 • EstimateCodeLength(Node, Vector0);
 Vector1 • {1,1,…,1};
 Value1 • EstimateCodeLength(Node, Vector1);

 if Value0 < Value1 then
 StartVector • Vector0;
 StartValue • Value0;
 delta • +1;
 else
 StartVector • Vector1;
 StartValue • Value1;
 delta • -1;
 endif

 [ResultVector, ResultValue] •
 SteepestDescent(Node, StartVector, StartValue, delta, 1);

 if ResultValue < StartValue then
 StartVector • ResultVector;
 StartValue • ResultValue;
 [ResultVector, ResultValue] •
 SteepestDescent(Node, StartVector, StartValue, delta, 1);
 endif

End.

Fig. 5. Pseudocode of the local optimal configuration search.

[ResultVector, ResultValue] •
 SteepestDescent(Node, StartVector, StartValue, delta, LeftBound)
Begin
 Min • StartValue;
 ResultVector • StartVector;
 ResultValue • StartValue;

 for i:= LeftBound to NColors
 LocalVector • StartVector;
 LocalValue[i] • StartValue;
 if LocalVector[i]+delta≥0 and LocalVector[i] + delta≤1
 LocalVector[i] • LocalVector[i] + delta;
 LocalValue[i]• EstimateCodeLength(Node, LocalVector);
 endif
 if LocalValue[i] < Min then
 Min := LocalValue[i];
 endif
 endfor

 if StartValue = Min then
 return;
 endif

 for i:= LeftBound to NColors
 if LocalValue[i] – Min ≤ threshold then
 LocalVector • StartVector;
 LocalVector[i] • LocalVector[i] + delta;
 [TempVector, TempValue] •
 SteepestDescent(Node, LocalVector[i], Min, delta, i+1);
 if TempValue < ResultValue then
 ResultVector • TempVector;
 ResultValue • TempValue;
 endif
 endif
 endfor

End.
Fig. 6. Pseudocode of the recursive steepest descent algorithm.

{ }),(minargmin vTLv v
Cv α∈

= (9)
The candidate solutions {v} are considered as the vertices of
α-dimensional hypercube Cα.

The proposed optimization algorithm is called for each node
of the context tree. The result of the optimization is the
optimal configuration vector and the cost of the node. The
algorithm works as follows:

Step 1: Find the starting point of the search.
Step 1.1: Calculate values L0=Lv(T, v = (0,0,..,0)) and

L1=Lv(T, v = (1,1,..,1)). Set the start value
Lstart = min{L0, L1}.

Step 1.2: If Lstart = L0, then the starting point vstart=
(0,0,…,0), the search direction ∆ = +1.
Otherwise the starting point vstart = (1,1,…,1)
and ∆ = −1.

Step 1.3: Set the left bound (LB) of the search to 1.
Step 2: Process steepest descent optimization for input

arguments Lstart, vstart and LB.
Step 2.1: If LB > α, then return vstart and Lstart as the result

of the optimization.
Step 2.2: Generate the set of candidate solutions vj,

j∈[LB,…,α]: vj={ ,…, +∆,…, },

vj∈Cα. Find value L*= min{Lv(T,vj)}.

startv1
start
jv startvα

If L*≥ Lstart then return vstart and Lstart.
Step 2.3: Recursively call the optimization Step 2 for

each candidate solution vk, which satisfies to:
Lv(T,vk) – L*≤ threshold, with new input
arguments: Lstart = L*, vstart = vk and LB=k+1.
Denote the returned results of optimization as
v*k and L*k for each vk.

Accepted to IEEE Transactions on Image Processing

5

Step 2.4: Find values Lmin = min{L*k} and
vmin= argmin{L*k}. Return vmin and Lmin as the result
of optimization.

Step 3: If Lmin < Lstart then set vstart to vmin, Lstart to Lmin and
LB to 1 and process Step 2 of the algorithm again.

The pseudocodes of the proposed optimization technique
and the steepest descent algorithm are shown in Figures 5 and
6, respectively. In the worst case, the number of calculations in
this steepest descendent algorithm for each node is 2α, which is
the same as in the full-search. However, we can adjust the
tradeoff between time and optimality of the algorithm by a
suitable selection of the threshold. The threshold value defines
how large is the set of possible solutions in the steepest
descent optimization. If the threshold value is large, then the
set of solutions is wide and the result of the optimization is
close to the global optimum. The same time the algorithm
works slower. A small threshold value narrows the set of
processed solutions, therefore increases the speed of algorithm
and reduces the accuracy of the optimization. We use the
threshold value set to 0.01, which was found experimentally.

IV. HYBRID TREE VARIANT
The free tree coding was introduced in [21]. While the

locations of context pixels in context algorithm are defined by
a static template, the free tree optimizes the locations to the
encoded image. The locations of each context pixel depends
on the values of previous context pixels. Figure 7 shows an
example of the binary free tree with optimized pixels locations.
Here, for example, the coordinates of the second context pixels
depend on the value of the pixel with relative coordinates (-1,
0). If the pixel’s value is white then the next context pixel is
located at position (-1,-1). Otherwise, if the pixel is black then
the next context pixel is located at position (-2, 0). A greedy

algorithm for the free tree constructing has been described in
[17]. The algorithm builds up the free tree level by level,
processing through the entire image during each iteration. The
number of all possible contexts and memory requirements
grows up exponentially with increasing of free tree depth. Due
this the construction of a deep free tree can be problematic.

#1 Topographic map
1 : 20 000

#2 Topographic map
1 : 8 000

#3 Road map
1 : 100 000

#4 Road map
1 : 800 000

#5 Detailed – City
1 : 250 000

#6 Road map
1 : 400 000

Fig. 9. Sample 256×256 pixel fragments of the test images.

x ?

?

?

?

?

?

? ?

? ?

x
x

x x x

x
x

x

x

Fig. 7. Illustrative example of the free tree.

?

...

2

1

4

?
2 4

?
2 4

?
2 4

Free tree

 Static
template

Fig. 8. Example of the hybrid tree: locations of depths less or equal four
are defined by free tree and locations of bigger depth are defined by
unused positions in static template.

The alternative to free tree is a so-called hybrid tree, when
the free tree is build up only to some predefined depth f and
the locations of deeper contexts are defined by a fixed
template. During encoding we traverse along the context tree
and mark all occurred locations in a fixed template as used
ones. For contexts with depth smaller or equal to f we choose
locations according the free tree structure. For contexts with
depth greater than f we choose those unused location in the
fixed template, which is the closest to encoded pixel. Figure 8
shows an example of the hybrid tree. The hybrid tree coding
produces better compression than the fixed one, but the free
tree construction and the procedure of choosing the closest
locations significantly increases the processing time.

V. EXPERIMENTS AND DISCUSSIONS
The proposed algorithm was tested on the six sets of

different map images, see Figure 9 for illustrative examples,
and Table 1 for their statistics. The sets from #1 to #4 are from
the database of National Land Survey of Finland [22]. We
compare the following compression methods:

• GIF : CompuServe interchange format [1],
• PNG: portable network graphics format [2, 3],
• MCT: multilayer binary context tree with optimized

ordering of the layers [10],
• PWC: piecewise-constant image model [14],
• CT: the n-ary context tree modeling with full tree

structure [16, 21],
• GCT: generalized context tree algorithm with an

incomplete n-ary tree structure with fixed template.
• GCT-HT: generalized context tree algorithm with

incomplete n-ary tree structure with hybrid tree.
The compression results are summarized in Table 2. The

MCT algorithm is applied for binary layers with color
separation of the encoded images. The rest of the algorithms

Accepted to IEEE Transactions on Image Processing

6

PROPERTIES OF THE MAP IM

 Scale Type of
map

Set #1 1 : 20 000 Topographi

Set #2 1 : 8 000 Topographi

Set #3 1 : 100 000 Roads

Set #4 1 : 800 000 Roads

Set #5 1 : 250 000 City roads

Set #6 1 : 400 000 Roads

TABLE 3
TOTAL PROCESSING TIMES (SEC) OF THE GCT FOR DIFFERENT STEPS OF THE

COMPRESSION AND DECOMPRESSION
Compression

 Depth of the
context tree Tree

construction
Entropy
encoding

Decompression

Set #1 22 893.78 83.66 90.31

Set #2 22 41.55 1.91 2.13

Set #3 6 31.22 1.47 2.34

Set #4 6 42.91 1.48 1.86

T
COMPRESSION R

 GIF PNG MC

Set #1 0.557 0.830 0.1

Set #2 0.670 0.705 0.2

Set #3 2.125 2.067 1.4

Set #4 2.121 2.059 1.5

Set #5 1.866 1.785 1.3

Average: 1.468 1.489 0.9

Set # 6 0.986 0.845 N/

Average: 1.386 1.382 N/

are applied to the original col
was run only with the first 5 te
time needed for the optimal ord

We implemented the dual p
21] with backward pruning [2
context modeling with full n-ar

The proposed algorithm
methods in terms of compre
algorithm works better with
better the color dependencies.
least 6% lower bit rate, on
comparative methods. Among
approach (GCT-HT) is sligh
static template.

Tables 3 and 4 report the p
GCT-HT algorithms. In the c
spent for the context tree c
experiments show that the a
execution time: decompression
compression stage. It can be o

Test se

0.00

0.50

1.00

1.50

2.00

0 100 200 300 40

Imag

B
it

ra
te

 (b
its

 p
er

 p
ix

el
)

 Fig. 10. Dependency of the bit rate on
TABLE I
AGES FROM DIFFERENT TEST SETS

Images Image size No. of
colors

c 5 5000×5000 6
c 4 1024×1024 7

4 1024×1024 16
4 1024×1024 16

 2 800×800 16
5 1250×1250 67
Set #5 6 13.22 0.41 0.98

Set #6 8 99.42 2.91 3.86

T
TOTAL PROCESSING TIMES (SEC) FO

DECOMPRESSION O

 Depth of the
free/hybrid tree

co

Set #1 8/22

Set #2 8/22

Set #3 6/6

Set #4 6/6

Set #5 6/6

Set #6 8/8

or images. The MCT algorithm
st sets due to its huge processing
ering of the layers.

ass version of CT algorithm [11,
1]. It utilizes the variable depth
y context tree.
outperforms all comparative
ssion performance. The GCT
all test sets because it utilizes
The proposed algorithm gives at
average, in comparison to the
the two variants, the hybrid tree
tly better than the GCT using

rocessing times of the GCT and
ompression stage, most time is
onstruction and pruning. The
lgorithm is asymmetric in the
 takes much less time than the

bserved that the GCT method is

suitable for on-line processing
size.

The GCT-HT algorithm buil
to the free tree approach until
template defines the pixel lo
hybrid tree approach give
compression performance but
slower.

Table 5 shows the perform
approach in comparison with
from the test set #5. We used

t #5

0 500 600 700 800 900

e dimension

MCT
PWC
GCT

the image size.

Tes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2

Colo

Bi
t r

at
e

(b
its

 p
er

 p
ix

el
)

Fig. 11. Dependency of the bit rate on

T
COMPRESSION TIMES (SEC) OF THE GC

APPROACHES AS A FUNC

 Full search
Depth 4 6

Time (s) 1680.13 2113.32
Bit rate 1.537 1.519
ABLE 4
R DIFFERENT PHASES OF COMPRESSION AND

F THE GCT-HT ALGORITHM
Compression

Tree
nstruction

Entropy
encoding

Decompression

7427.18 1070.11 1095.91

272.14 4.52 5.97

427.14 2.75 6.55

596.31 2.77 6.83

181.79 1.16 2.48

1410.70 5.70 15.45
ABLE 2
ESULTS (BITS PER PIXEL)
T PWC CT GCT GCT-HT

62 0.236 0.172 0.153 0.152

52 0.268 0.278 0.248 0.223

16 1.436 1.137 1.108 1.087

12 1.343 1.141 1.090 1.048

71 1.221 1.079 1.037 0.992

43 0.901 0.761 0.727 0.700

A 0.355 0.376 0.340 0.319

A 0.814 0.697 0.663 0.637
 for images of reasonably small

ds up the context tree according
the predefined depth. The static
cations for bigger depths. The
s a small improvement in
 makes the compression much

ance of the steepest descent
the full search for a single map
MQ coder as the entropy coder,

t set #6

3 4 5 6 7

rs bit depth (bits)

PWC
MCT
GCT

 the image color depth.

ABLE 5
T FOR FULL SEARCH AND STEEPEST DESCENT
TION OF THE MAXIMUM DEPTH.
 Steepest descent

8 4 6 8
2561.90 4.53 7.55 17.25
1.518 1.540 1.524 1.524

Accepted to IEEE Transactions on Image Processing

7

which is a modification of Q coder [26]. The results indicate
that the steepest descending approach provides almost as good
results as the full search but significantly faster. It is therefore
better applicable for on-line processing for images of this size.
All benchmarking were done on a 3 GHz P4 computer with 1
GB of RAM under Windows XP.

Figure 10 shows the dependency of the compression
efficiency and the image size. For this experiment, we took the
images from the test set #5, and divided them into fragments of
dimensions 100×100, 200×200 and 400×400 pixels. The
resulting bit rate was calculated as the average of all
compressed files. The experiments show that the bit rate of the
GCT algorithm remains rather stable when operating for
images of smaller size.

Figure 11 illustrates the dependency of the GCT
compression efficiency for different number of colors. The
tests were processed on the test set #6, where the number of
colors was decreased by color quantization from 67 down to
32, 16, 10, 6 and 2.

The proposed algorithm can be used mainly for the
compression of palette and halftone images in general, but
there are some problems, which can decrease its efficiency in
the case of photographic images. The necessity of storing the
context tree in the compressed file can decrease the
compression performance if the number of colors is increased
significantly. The storage demands are about α bits per each
node and the space requirement grows up exponentially with
the increase of the tree depth. The algorithm is therefore not
expected to work efficiently for images with a large color
palette (more than 128 colors), or for really small images (with
the size less than 100×100 pixels).

In the case of larger images, the processing time of the
algorithm can still be a bottleneck in real time applications.
Most time in the compression is taken by the construction and
pruning of the context tree, and the time grows up with the
increasing the number of colors and maximum depth of the
tree. The time can be reduced further by applying fast
calculation of the estimated code length, in the same manner as
was proposed in [17].

VI. CONCLUSIONS
We propose an n-ary context tree model with incomplete

tree structure for the lossless compression of color map
images. A fast heuristic pruning algorithm was also introduced
to decrease the time required in the optimization of the tree
structure.

The proposed n-ary incomplete context tree based algorithm
outperforms the competitive algorithms (MCT, PWC) on 20%,
and on 6% in comparing with the implemented algorithm,
based on full context tree approach (CT).

The method was successfully applied to map images up to
67 colors. If the overwhelming memory consumption can be
solved in the case of images with a larger number of colors,
then it is expected that the method could also be applicable to
photographic images. This is a point of further studies.

REFERENCES
[1] T. Welch, A Technique for high-performance data compression,

Computer Magazine, vol 17, no. 6, pp. 8-19, June 1984.
[2] P. Deutsch, DEFLATE compressed data format specification, rfc1951,

http://www.cis.ohio-state.edu/htbin/rfc/rfc1951.html, May 1996.
[3] J. Ziv, A. Lempel, A universal algorithm for sequential data

compression, IEEE Transactions on Information Theory, vol. 23(6), pp.
337-343, May 1977.

[4] M. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image
compression algorithm: principles and standardization into JPEG-LS,
IEEE Transactions on Image Processing, vol. 9(8), pp. 1309-1324,
August 2000.

[5] X. Wu, An algorithmic study on lossless image compression, IEEE
Proceedings of Data Compression Conference, pp. 150-159, April
1996.

[6] N. Memon, A. Venkateswaran, On ordering color maps for lossless
predictive coding, IEEE Transactions on Image Processing, vol. 5(11),
pp. 1522-1527, November 1996.

[7] JBIG, Progressive bi-level image compression, ISO/IEC International
Standard 11544, 1993

[8] J. Cleary, I. Witten, Data compression using adaptive coding and partial
string matching, IEEE Transactions on Communications, vol. 32(4), pp.
396-402, April 1984.

[9] S. Forchhammer, O. Jensen, Content layer progressive coding of digital
maps, IEEE Transactions on Image Processing, vol. 11(12), pp. 1349-
1356, December 2002.

[10] P. Kopylov and P. Fränti, Compression of map images by multilayer
context tree modeling, IEEE Transactions on Image Processing, vol.
11(1), pp. 1-11, January 2005.

[11] J. Rissanen, A universal data compression system, IEEE Transactions
on Information Theory, vol. 29(5), pp. 656-664, September 1983.

[12] Y. Yoo, Y. Kwon, A. Ortega, Embedded image-domain adaptive
compression of simple images, Conference Record of the Thirty-Second
Asilomar Conference on Signals, Systems & Computers, vol. 2, pp.
1256-1260, November 1998.

[13] S. Forchhammer, J. Salinas, Progressive coding of palette images and
digital maps, IEEE Proceedings of Data Compression Conference, pp.
362-371, April 2002.

[14] P. Ausbeck, The piecewise-constant image model, Proceedings of the
IEEE, vol. 88 (11), pp. 1779-1789, November 2000.

[15] M. Weinberger, J. Rissanen, A universal finite memory source, IEEE
Transactions on Information Theory, vol. 41(3), pp. 643-652, May
1995.

[16] M. Weinberger, J. Rissanen, R. Arps, Application of universal context
modeling to lossless compression of gray-scale images, IEEE
Transactions on Image Processing, vol. 5(4), pp. 575-586, April 1996.

[17] B. Martins, S. Forchhammer, Tree coding of bi-level images, IEEE
Transactions on Image Processing, vol. 7(4), pp. 517-528, April 1998.

[18] P. Kopylov, P. Fränti, Context tree compression of multi-component
map images, IEEE Proceedings of Data Compression Conference, pp.
212-221, April 2002.

[19] P. Howard, J. Vitter, Analysis of arithmetic coding for data
compression, IEEE Proceedings of Data Compression Conference, pp.
3-12, April 1991.

[20] G. Martin, An algorithm for removing redundancy from a digitized
message, Presented at: Video and Data Recording Conference, July
1979.

[21] R. Nohre, Topics in descriptive complexity, PhD Thesis, University of
Linköping, Sweden, 1994.

[22] National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84, 00521
Helsinki, Finland. (http://www.nls.fi/index_e.html)

[23] S. Tate, Lossless compression of region edge maps, Duke University
Computer Science Technical Report CS-1992-09.

[24] B. Meyer, P. Tischer, TMW—a new method for lossless image
compression, Proceedings of International Picture Coding Symposium,
September 1997.

[25] P. Howard, J. Vitter, Fast and efficient lossless image compression,
IEEE Proceedings of Data Compression Conference, pp. 351-360,
April 1993.

[26] J. Mitchell, W. Pennebaker: Software Implementations of the Q-Coder.
IBM Journal of Research and Development, vol. 32(6), pp. 753-774,
November 1988.

http://www.nls.fi/index_e.html

	INTRODUCTION
	CONTEXT TREE MODELLING
	Finite context modeling
	Context tree algorithm
	Construction of an initial context tree
	Pruning the context tree

	Finding the optimal configuration vector
	Full search approach
	Steepest descent approach

	Hybrid tree variant
	Experiments and discussions
	Conclusions

