
Symbol representation in map image compression
Akimov Alexander and Pasi Fränti

Department of Computer Science
University of Joensuu, Finland

+358-13-2517931

akimov@cs.joensuu.fi, franti@cs.joensuu.fi

ABSTRACT
We propose map image compression system, in which we separate
text and symbol information from the rest of the data. The text and
other symbols are stored as one bitmap for each symbol into
a dictionary. The technical challenge of the work is to convert the
symbol data directly to output format similar to that of the JBIG2
standard. In this way, the text elements and special symbols are
compressed more efficiently but we still have the maps in
compatible raster image format.

Categories and Subject Descriptors
I.4.2, I.4.9: Image compression, Applications.

General Terms
Algorithms.

Keywords
Map images, compression, symbol representation, navigation.

1. INTRODUCTION
Maps are widely available in raster, as well as vector format.
Vector maps may be displayed in any resolution and are thus
convenient for zooming. Panning can be performed by retrieving
neighboring map blocks. However, mobile devices have limited
computing and storage capabilities and are thus unable to handle a
complete Database Management System (DBMS). The use of
vector data is thus impractical. In addition, maps are sometimes
unavailable in vector format, while the various formats and
incompatibility between different systems may restrict their use.

On the other hand, current compression technologies allow
efficient storage and transmission of raster maps via wireless
networks. This means that when maps need only to be viewed at
the mobile device, storage and map sheet generation in varying
scales at the server side becomes a feasible solution. The DBMS
may be located at the server side, whereas the client stores maps
only when needed [1]. The advantages of this approach are: (1) it
does not depend on any database or vector format, as raster maps
can be easily generated and reproduced from any source format,
including paper maps. (2) Only modest memory and computing
capabilities are required, allowing operation on a mobile device.

Permission to make digital or hard copies of all part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04...$5.00

Map imaging system, as proposed in [1], consists of two steps at
the server side: rasterization and compression. In the first step, the
map data is converted into a set of binary raster layers, and then
compresses the binary layers separately [2]. At the client side, the
map images are decompressed and reconstructed for viewing. On
the basis of this approach, dynamic map imaging application
could be constructed using low cost devices as outlined in [3].

In this paper, we improve the map image compression system by
separating the text and symbol information from the rest of the
data. Instead of rasterizing the symbols into the final images, we
store only one bitmap for each symbol into a special symbol
dictionary. The appearances of the symbols are coded as pointers
to the dictionary. Note that we do not need to perform any
character recognition procedure in the raster images, because of
the ability to recognize original symbols in text format.

The proposed approach is supported by the JBIG2 file format [4],
which has been applied for storing map images in [5] although
without utilizing the dictionary structure before. In the proposed
approach, we store the text elements and special symbols more
efficiently. The difference to JBIG2 is that we can skip the
refinement step, i.e. we do not compress the difference of the real
and the matched symbol as, in our case, they are identical.

To sum up, we exploit the redundancy of repeating the same
symbols in the image, and yet have the images in a compatible
raster format. The rasterization is still done at the server side in
the compression phase, and at the client side, the maps are
available in compatible raster format independent from the used
map database system.

2. OVERALL SYSTEM DESCRIPTION
The main steps of the proposed map image compression system
are shown in Figure 1. We exploit the vector information in the
compression of text and map symbols, and use the special features
of JBIG2 tailored for text information. Specifically, we rasterize
text information separately from the rest of the vector data.
Map images can be a result of rasterization of vector map format
such as Simple Vector Format (SVF) [6], Scalable Vector
Graphics (SVG) [7] or ERSI ArcShape [8]. The map server can
provide the maps as a set of layers with different semantic
meaning. For example, the topographic map series 1 : 20 000 of
National Land Survey of Finland (NLS) [9] divides the
information into four logical layers: basic (topographic data and
contours), elevation lines, fields and water (see Figure 2). The size
of each layer is 10000�10000 pixels representing a 10�10 km2
area. The map image can then be reconstructed by combining the
binary layers, and displayed as a color image. In this work, we
consider the two input vector formats: ArcShape and SVF.

29

2004 ACM Symposium on Applied Computing

mailto:akimov@cs.joensuu.fi
mailto:franti@cs.joensuu.fi

Figure 1. The principle scheme of the vector map rasterization

and encoding process.
Initial Image Topography & contours Elevation lines

Water ways Fields Text and symbols

Figure 2. The layer division of the NLS map image.

2.1 Text and symbols in Vector Format
The ArcShape format [8] was developed by ESRI [10] for
advanced map processing. It supports three types of primitives:
Point, Polyline and Polygon. These primitives are sufficient for
representing any map. The primitives could have additional
parameters such as Z-coordinate (altitude) and a measure. The
measure is a value associated with the primitive (for example, the
number of road). We will not consider these parameters because
they are used only in some special cases. Full technical
description of ArcShape format is in [8]. We just mention that the
ArcShape format uses ordered vertices for the text primitives. In
this work, we developed the ArcShape for maps acquired from the
NLS maps library, and therefore, we use some of these features.

ArcShape image consists of a set of shapefiles. Each shapefile
stores primitives of a specified type (points, polylines or
polygons). A map consists of a set of logical layers. Each logical
layer is a set of four shapefiles (points, polylines, polygons and
text). Shapefile belongs to some logical layer and has some
primitive type depending on the file name. The main file in NLS
map has the pattern name ?xxxxxx??.shp. The sequence xxxxxx
specifies a number of the map and is a constant for all files from
one map, for example 431204. The first character of the name
defines a logical layer that the shapefile belongs to. The following
list shows all possible values of the first character:

�� j — administration information,
�� l — communication objects,
�� m — areas (lakes, swamps, fields),
�� n — water,
�� r — buildings,
�� k — elevation lines,
�� s — conservations.

The character after the map number means the one of the quarter
part of the ArcShape image, and the last character the type of the
shape primitives included. For example, the shapefile with the
name m431204Bp contains polygon primitives from top left part
(part B) of the areas layer.

 The database has information about the direction of the text
primitives and arrow heads but no information about colour, line
style and other important primitive attributes. The reason is that
the database file locates in itself all textual information but not the
graphical layout about how the map should be displayed. This
feature of the NLS library makes the text extraction very simple.
On the other hand, the graphical layout and the rasterization parts
have had to be implemented ourselves.

SVF (Simple Vector Format) has been designed to be a simple
format for describing vector images [6]. The basic drawing
objects include points, lines, circles, arcs, Bezier curves and text.
Features of the format include layers (for controlling the visibility
of objects), hyperlinks (for allowing the user to click on a portion
of the drawing to perform an action), notifications (for sending
messages when the user has passed a certain zoom level), fills,
and the ability to override the default colours. Text in SVF files
can be displayed using a default system dependent courier-like
font. Text is drawn using the current text height (default is 10).
A width can also be specified with the text. If this value is 0, the
text will be drawn using the font's default width. In the case, when
the width is specified, the text will be scaled to fit. If the width of
the text is important, because of the font metrics, which can differ
between systems, then the text scaling procedure is suggested [6].

The proposed map rasterization scheme is shown in the Figure 3.
During the rasterization we separate text information from the
main image, which contains only generic info. The rasterization
procedure generates two output streams. The first one contains the
generic information of the map, and the second one the symbol
collection. By the word symbol we mean here a small bitmap,
which represents a character or other graphical symbol in the map.
The bitmap in the collection is stored as a binary array, so it is
necessary to associate it with a pair of numbers: the width and the
height of the symbol image. Besides this, we have additional
information for each text appearance, such as its location on the
map, its color and its content. This data is unique for every text or
symbol appearing on the map.

2.2 JBIG and JBIG2 compression standards
JBIG (Joint Bilevel Image Experts Group) is a lossless binary
image compression standard [11], which uses pixel by pixel
context-based compression. The combination of the neighboring
pixels (given by a template) defines the context, and in each
context the probability distribution of the pixels is adaptively
determined on the basis of the already coded pixel. The pixels are
coded by arithmetic coding according to their probabilities. The
arithmetic coding component in JBIG is the QM-coder.

30

http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html
http://www.softsource.com/svf/spec.html

Figure 3. The rasterization scheme.

The newer standard JBIG2 [4, 12] enhances the compression of
text images using pattern matching technique. The standard will
have two encoding methods: pattern matching & substitution
(PM&S), and soft pattern matching (SPM). The image is
segmented into pixel blocks containing connected black pixels
using any segmentation technique. The content of the blocks are
matched to the library symbols. If an acceptable match (within a
given error marginal) is found, the index of the matching symbol
is encoded. In case of unacceptable match, the original bitmap is
coded by a JBIG-style compressor. The compressed file consists
of bitmaps of the library symbols, location of the extracted blocks
as offsets, and the content of the pixel blocks.
The PM&S method works as follows [13]. The image is
segmented into pixel blocks containing connected black pixels.
These blocks are sequentially matched against representative
symbol bitmaps from the adaptively constructed dictionary. If an
acceptable match is found, the pointer to the corresponding
bitmap in the dictionary and the position of the character on the
page are encoded. If there is no acceptable match, the bitmap of
the current pixel block is encoded using standard bitmap encoding
techniques such as MMR or JBIG1, and added to the dictionary.
The method allows high lossy compression levels, but results in
infrequent but inevitable substitution errors. For cases where such
errors are unacceptable, the residue coding, that is the refinement
coding of lossy image back to the lossless original, or the SPM
technique can be used.

3. TEXT PROCESSING
The text rasterization procedure uses Hershey vector font for
drawing [14]. The vector font is useful for scaling, styling and
rotation opposite to a raster font. A character is represented as a
set of coordinate pairs. The coordinate pair (–1,–1) means pen up
operation, for example. Thus, we can use an algorithm of drawing
lines for output a text. Figure 4 demonstrates the character A with
the coordinate pairs marked with dark grey color. The character is
represented via six coordinate pairs: (0,0), (4,10), (8,0), (–1, –1),
(2,5), (6,5), which is enough for drawing the character.

In the compressed file, the text elements are stored as bitmaps.
From this point of view, a simple character is nothing more than a
small binary image. For example, the same characters of the same

size and style, but with different angles are represented as
different symbols. On the Figure 5 shows the moment of rotation,
when the same text in two cases produces different bitmaps.

Text rotation means rotation of the text around the point of text
output: the pole of rotation (see Figure 6). The rotation is done
directly before drawing a line between two coordinate pairs. Next
routine makes rotation of a point around another point with some
angle in radians using the standard matrix of rotation. The data
about the received bitmap: width of rotated character, its height
and its coordinates on the map are stored in the compressed file.
This related data is stored in the special structure: control data.

The data in the control data structure is represented in Figure 7. It
consists of four blocks: text numerical information, the array of
strip properties, the array of the strip elements properties and the
array character bitmap sizes. The text numerical information is the
information about the number of different text appearing in the
map file and information about the text colors, which were used in
the map.

Let us define now the each different text as a strip. The strip can
consist of one character or of several pages of text (the name of
the country "Great Britain" on a map would be one strip). But
each strip element has the same properties such as text size, text
color and close location of each symbol to the previous one. The
array contains information about the coordinates of the beginning
of the strip and the strip’s color.

The next information block has the data about the strip properties:
the array with the lengths of the strips, the coordinates of each
strip elements, and the indexes of these elements. To decrease the
amount of data, we use Huffman coding for compressing the
coordinate differences. To decrease the data redundancy, the array
of coordinates is divided into two parts: the first one contains the
information about the x coordinates and the second one contains
the information about the y coordinates. The last array is built
from the indexes of the strip elements.

The last block of the information is not related with the strips and
contains the horizontal and vertical sizes of the character bitmaps.
The arrays in the last two blocks are encoded by the Huffman
algorithm, where each array is encoded separately.

2

4 5

1 3
Figure 4. An example of the Hershey font.

Figure 5. Text rotation example.

31

Figure 6. Text rotation process.

Figure 7. Control data structure.

4. PROPOSED COMPRESSION METHOD
4.1 Encoding procedure
A new map image format called MISS (Map Image Storing
System) was recently developed as a part of the DYNAMAP
project [1, 2]. The maps in the MISS format are separated into
several layers, which were further divided into blocks for
supporting map browsing in mobile devises. Because of expensive
data transferring, the map server does not send the entire map,
where user is traveling, but a little piece around the current
location of the user. This concept is referred as dynamic map
handling. It allows map browsing without having the entire map
in the memory. New image blocks are added dynamically during
the browsing. This approach allows saving a lot of memory and
makes the map structure flexible. New blocks can be requested via
network communications. Transferring is effective, when blocks
are sent in the compress format. Therefore, MISS format should
be able to extract a block from MISS file and import it without
decompression.

The file structure of MISS is represented by the following
substructures: page, layer and block [8]. The MISS page structure
is the general structure; it stores geographic information of the
map, a page resolution, a background color and an array of
pointers to its layers. One MISS file can contain several pages
with different maps. The next structure after the page is the layer.
The layer represents encoded binary layer, which corresponds to
some color from the image. The layer contains the filename of the
input image, color, shifting in the map (usual equals zero),
separation to blocks, additional data for decompression and an
array of blocks. Block is the lowest level structure of the MISS
format. It is an encoded bitmap, with the predefined size of the
layer. The blocks are encoded independently from each other. The

principal structure of the MISS file is shown below in the Figure
8. The advantage of this format is direct access to the blocks. So if
we know the index of the block we can then extract it from the
MISS archive without decompression of the entire file.

Figure 8. MISS files structure.

We will not consider all the features of the given file format, but
let’s say some words according to our task. When MISS encoder
starts to operate, it has side by side with the set of binary images,
the text data and the collection of symbols. The original MISS file
format was changed to allow the compression of these two
additional structures. The basic principles of this modification are
shown in Figure 9. In specific, we add one additional layer to the
main structure called text layer. It contains all information from
the control data structure, all non-raster information from the
symbols collection and, finally, all symbols. This structure was
chosen because of the ability of MISS to the direct access to the
blocks in the layers, so the process of symbol decompression will
become much easier (details in the next chapter).

Figure 9. Modified MISS file format

The scheme of compression one layer is represented in Figure 10.
As it is shown the blocks are formed before compression. So the
coder defines the bounds of compression, if it deals with the
generic info layer, or the bounds of compression are the sizes of
the symbols, if the compressor deals with the text layer. The
encoder after this encodes the blocks separately and
independently from each other. The encoded bitmaps are placed
in the compressed file. To reconstruct the whole layer we need to
decode each block and unite the resulting bitmaps into one
according to the block’s indexes.
But in the case of the text layer we have situation when the
encoder needs to store a lot of relative data. That is the reason
why this data is also compressed. The compression is very simple:

32

due the flexibility of the MISS standard we are able to insert into
layer any kind of blocks. So the data is represented as the binary
image and the encoder compresses it as well as other symbols.

Figure 10. The layer encoding scheme.

4.2 Decoding procedure
The JBIG2 compression standard distinguishes the following four
procedures:
1. The generic region decoding procedure, which decodes a

bitmap treating it simply as an array of binary pixels.
2. The generic region refinement decoding procedure, which

decodes a bitmap by treating it as an array of binary pixels,
but coding each pixel with respect to some reference bitmap.

3. The text region decoding procedure, which decodes a bitmap
by drawing a collection of symbols into it, possibly applying
the generic refinement region decoding procedure to each one.

4. The halftone region decoding procedure, which decodes a
bitmap by placing a collection of patterns into it, at locations
specified by a halftone grid.

The given algorithm uses the generic region and text decoding
procedures.
The generic decoding procedure is used to decode a rectangular
array of 0 or 1 values, which are coded one pixel at a time (i.e., it
is used to decode a bitmap using simple, generic, coding). The
decoding procedure also modifies the array of probabilities which
may be used by other invocations of this generic region decoding
procedure. The generic region decoding procedure may be based
on sequential coding of the image pixels using JBIG1 coding.
This procedure is used to decode the binary layers.

The text region decoding procedure is used to decode a symbol-
coded bitmap by placing a set of symbols on it. If the symbols
bitmaps and the control data about the image have been obtained,
then the symbol-coded image decoding procedure support parallel
decoding. The symbols decoding process includes the decoding of
the symbol’s bitmaps data (its horizontal and vertical sizes) and
the bitmaps as themselves. The bitmaps decoding algorithm fully
repeats the decoding algorithm for generic regions. The control
data decoding process decodes the array of text elements
properties. The result of the decoding is a combination of the
binary layers and the symbols, which are placed on the map
according to the information from the control data.

Figure 12. The decoding scheme.

5. EXPERIMENTS
We used a set of maps from the NLS topographic database [9].
The maps are the 431204, 124101, 201401, 431306 region maps.
To compare the efficiency of the proposed algorithm we
compressed the maps by the old version of the MISS encoder,
which is the usual JBIG compression and processed compression
by the previously described method. To estimate the compression
results more precisely, we considered the compression of the
whole image with independent compression of the layers. The
results of the encoding are shown in Table 1. The results of the
compression of the first two layers are almost the same, as the
layers do not have text information on them. The difference in the
compressed file sizes is given in bytes. There are also statistical
data that have been received during the compression. Table 2
describes statistics of the text rasterization process as the number
of different characters, the number of text appearances on the
map, and the size of the compressed text layer. The elements of
Table 2 are:

�� The size of the dictionary measured as the number of
different bitmaps in the symbol collection

�� The number of symbols measured as the overall number
of the character bitmaps appearing on the map.

�� Strip data measured as the number of bytes needed to
store all side information about the strips (blocks 1 and
2 in the chapter 3).

33

�� X sizes measures as the number of bytes of the
compressed array of horizontal sizes of the bitmaps.

�� Y sizes measured as the number of bytes of the
compressed array of vertical sizes of the bitmaps.

�� Strip lengths measured as the number of bytes of the
compressed array of the strip lengths.

�� �X coordinates measured as the number of bytes of the
compressed array of the �X coordinates of the strip
elements.

�� �Y coordinates measured as the number of bytes of the
compressed array of the �Y coordinates of the strip
elements.

�� Bitmap’s indexes measured as the number of bytes of
the compressed array with indexes of the strip elements.

Table 1. Compression results (bytes).

MISS

124101 201401 431204 431306

Layer 1 213 44475 7966 38716

Layer 2 36817 129258 452048 192257

Layer 3 26447 531510 461415 589455

Layer 4 136559 678780 607846 576388

Whole map 199757 1383766 1528996 1396537

Proposed method

124101 201401 431204 431306

Layer 1 239 44501 7989 38742

Layer 2 36843 129291 452074 192280

Layer 3 27123 539624 466143 594323

Layer 4 116806 622925 578238 508052

Whole map 186514 1336733 1503048 1331644

Table 2. Statistical data of the text rasterization process.

 124101 201401 431204 431306

Size of dictionary 344 804 718 822

Number of symbols 2791 5440 9222 17726

Size of compressed blocks

Strip data 9930 13238 9222 17726

X sizes 351 733 609 736

Y sizes 453 706 633 731

Strip lengths 165 368 245 387

�X coordinates 1068 2173 1529 2707

�Y coordinates 672 1270 914 1530

Bitmap’s indexes 3332 5574 4249 7045

6. CONCLUSIONS
We have proposed method for compressing vector maps by
rastering them and excluding textual information into a special
symbol library. The system architecture is based on the MISS
[1,2] storage system, which adds some elements to the JBIG2
standard. The main goal of the method was to improve the
compression by exploiting vector information. The experiments
showed that the separation of the text and symbols from the
generic info improved compression within the limits that the maps
are stored in compatible raster formats. Thus, the method retains
independent from the used vector database system.

7. REFERENCES
[1] P. Fränti, P. Kopylov and V. Veis, "Dynamic use of map

images in mobile environment", IEEE Int. Conf. on Image
Processing (ICIP’02), Rochester, New York, USA, vol. 3,
917-920, September 2002.

[2] P. Fränti, E. Ageenko, P. Kopylov, S. Gröhn and F. Berger,
"Map image compression for real-time applications", Joint
Int. Symposium on Geospatial Theory, Processing and
Applications (Geomatics2002), Ottawa, Canada, July 2002.

[3] P. Fränti, "Dynamic Map Handling", GIM International, 17
(1), 28-31, January 2003.

[4] P.G. Howard, F. Kossentini, B. Martins, S. Forchammer and
W.J. Rucklidge, “The emerging JBIG2 standard”, IEEE
Trans. on Circuits and Systems for Video Technology, 8 (7),
1998, 838-848, 1998.

[5] P. Fränti, E. Ageenko, P. Kopylov and S. Gröhn,
"Compressing multi-component digital maps using JBIG2",
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, (ICASSP’02), Orlando, Florida, USA, vol. 3,
2677- 2680, May 2002.

[6] Soft Source, “Information on SVF (Simple Vector Format)”
http://www.softsource.com/svf/

[7] J.D. Eisenberg, SVG Essentials, O'Reilly, 2002.
[8] ESRI, “ESRI Shapefile Technical Description”, An ESRI

White Paper, 1998.
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[9] NLS, “Technical description of NLS map format”
http://www.nls.fi/kartta/selosteet/ts/maastotietokanta.html

[10] M. Zeiler, “Modeling Our World”, ESRI, 1999.
[11] JBIG Committee, Progressive Bi-level Image Compression,

ISO/IEC International Standard 11544, ISO/IEC/JTC1/
SC29/WG9; also ITU-T Recommendation T.82, 1993.

[12] JBIG Committee, Coding of Still Pictures, ISO/IEC/
JTC1/SC29/ WG1 N1359, 1999.

[13] P.G. Howard, "Text image compression using soft pattern
matching", The Computer Journal 40 (2/3): 146-156, 1997.

[14] P. Bourke, “Hershey Vector Font”, 1997.
http://astronomy.swin.edu.au/pbourke/other/hershey/

34

http://www.softsource.com/svf/
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.nls.fi/kartta/selosteet/ts/maastotietokanta.html
http://astronomy.swin.edu.au/pbourke/other/hershey/

	MAIN MENU
	FRONT MATTER
	TABLE OF CONTENTS
	AUTHOR INDEX
	REVIEWER'S LIST
	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

