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ABSTRACT

We consider the quantization problem of lossy vector map
compression. The compression is performed by scalar
quantization. The scalar quantization is processed in
optimal way: we use the Dynamic programming
quantization algorithm instead of using uniform or locally
optimal Max-Lloyd algorithms. This approach allows us
to increase the efficiency of lossy compression for product
scalar quantization in rate-distortion sense. We also
consider the problem of increasing speed of convergence
of existing vector quantization algorithm: randomized
local search. The proposed method of using the optimal
product scalar codebook as initial codebook increases the
speed of convergence for RLS algorithm.

KEYWORDS: vector map compression, polar
quantization, Cartesian quantization, vector quantization,
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1. Intreduction

The goal of vector map compression is to find a compact
representation of map, with some limited sacrifice of
spatial accuracy. Lossy compression schemes are
acceptable as long as the systems can accurately infer the
places of interests (e.g. a video store, train route, road
name and city block) with a location device such as a
GPS. Cartographers routinely use generalization to
highlight key features in a map by introducing bounded
distortions, e.g. errors in the location of spatial objects.

We consider lossy compression of coordinates by
quantization. The compression procedure consists of three
main steps (Fig. 1): transformation of input vector data,
quantization, and entropy coding of quantized data.

Vector Transformation
Map of coordinates

> Quantization | Entropy coding

Fig. 1. Principal scheme of the compression algorithm
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We considered two models of map data compression. The
first model supposes to have an independent codebook for
each map. This codebook need to be stored in the
compressed file. The given method demands to solve
combined problem of minimizing distortion of
quantization with minimizing the codebook storage place
requirements. The second model consists of building of a
single codebook for a map collection and using the given
codebook for all maps. This codebook is generated
according to all maps from the collection, or by some part
of them. In this case, we do not need to store the codebook
in the compressed file because it will be included in the
decoder.

For solution of the first problem (compression with
storage of the codebook) were used the product
quantizers. We have considered two types of product
quantizer: with Cartesian and polar coordinates. The
advantage of them that optimal solution for the quantizers
can be guaranteed by a relatively fast algorithm in O(MN)
time, and that the storage requirement for codebook is

sub-linear O(+M ), where N is the number of quantized
elements, and M is the codebook size.

For the solution of the second type problem (compression
without storage of the codebook) we have used vector
quantization. As the optimal vector
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Fig 2. The test sets #1 and #2: a) The shoreline of
Australia; 2903 points, b) The shoreline of Britain; 10909
points.
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Fig 3. The set of relative coordinates for test set #1 (top)
and test set #2(down)

quantization problem is NP-hard, suboptimal solution was
found by the Randomized Local Search (RLS) [1]. The
RLS algorithm is a locally optimal iterative algorithm. Its
performance depends on the number of iterations, and we
propose to use optimal product scalar quantization
codebook as an initial codebook for RLS to increase the
convergence of RLS and, consequently, decrease the
number of iterations needed.

2. Coordinates transformation

The encoding is processed in DPCM manner: we encode
the relative coordinates Ax; and Ay;:

Ax; = X1 — Xy

AV =yi— Vi1

The resulting 2D set of prediction errors (Ax; Ay;) forms
the input data set for quantization. See Fig. 3 for example.

3. Twe-dimensional quantization

According to the compression problem, when it is needed
to store the codebook in the compressed file, we use the
product quantizer.

Product quantizer for 2D-space is a quantizer with
following structure: Q: R* — C, xC, . This quantizer is the
mapping from 2D-space to the product set. ¢, xC,. It
means that we are quantizing all vector components as a
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Fig. 4. Strictly polar quantizer (top) and 2D product
Cartesian quantizer (down). Centroids are marked as dot
points.

set of independent variables, and the quantizer Q can be
considered as a vector-function O =(Q,,0, ), where Q; is

mapping from one-dimensional space to the scalar
codebook.

The principle choice of using the product quantizer for
this problem is made because of its low memory
requirements. To describe 2D product quantizer’s
codebooks C; and C, we need memory about:
L=F-(M;+M,)+2-1, where F is the number of bytes,

needed to represent float type number, / is the number of
bytes needed to represent an integer number, M, and M,
are the sizes of codebooks for the dimensions. In general,
this value i1s always smaller than the number of bytes,
needed to describe each element of the total
codebook C;XCy: Ly=2-F -(M,-M,)+1-1.

We consider product Cartesian quantizer (CQ) and
strictly polar quantizer (PQ). Voran and Scharf [2] used
Max-Lloyd algorithm to construct strictly polar quantizer,
but the method cannot guarantee optimality of the
solution. In [3, 4, 5, 6, 7] the problem of optimal polar
quantization was solved analytically or numerically under
assumption of uniform phase distribution. The approach
provides asymptotically optimal solution for signal with
known probability density function for special cases only
(2-dimensional Gaussian signal).



3.1 Product Cartesian quantization

Product scalar Cartesian quantizer for the data is
described by rectangular grid of centroids {x;} and

{¥; } for the coordinates x and y, respectively (see Fig.4);

the total number of cells is M=M,M,. Quantization cell C;;
of the product Cartesian quantizer is defined as
intersection of cells X; and Y; for dimensions x and y:
C;i=X;NY,. Consider the mean square error E(M) of the
product scalar quantization of the 2-dimensional variable

E=(x.y):
M, M,>‘
E<Y Y by =X)) + (0 =501

j=l k=1§,eC;
The error E(M) can be represented as summa of
quantization errors for two independent scalar quantizers:

M, M,
E= Y Y pG) =%+ Y X ) =3

J=lx,€X; k=1y,eY;

Problem of optimal 2-dimensional Cartesian quantization
for a given total number of clusters M can be formulated
as an optimization problem:

M,
E(M)= min {min{z pr(xn)(xn —%)"+

M .M, {)?j} j=lx,EeX;

M,
+min{Y" Y p, (), — 70}
{?‘} k=1 ynEYk
subject to: M. M,<M,
Introducing rate-distortion functions G(M,) and G,(M,) as

quantization errors for optimal scalar quantizers on x and
y we can formulate the optimization problem as follows:

E(M)= min {G (M ,)+G (M)}

subject to: MM, <M.

Minimum of the cost function £ has to be found by
optimal construction of product scalar quantizer for the
Cartesian coordinates, and optimal by choice of cell
numbers M, and M, for dimensions x and y.

3.2 Strictly polar quantization

Now let us consider problem of 2-dimensional vector data
quantization, represented in polar form in polar form
&, =r,e"" under assumption that radius » and phase ¢
are independent: p(r,0)=p,p,. The strictly polar quantizer
is described by two sets of centroids: centroids {r;} for
radius 7, and centroids {g,} for phase ¢ (see Fig.4). The

total number of cells is M=M,M,. Quantization cell C;, is
defined as intersection of ring R; and segment ‘.
Consider the mean square error £ of the polar quantization

of the variable &, =r,e'% :
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M, M,
R i - iPp 12
E ‘ZZ Zpr,q)(rn,(Pn) I e O _rje o
J=l1 k=1£,eC ;4 .
or

M, M,
E=YS p,0)(0, 7423 Y py@, )7 (1=cos6, ~5,)

J=lneR; k= g,
Minimization of the cost function E in general form is
difficult and time consuming time. Let us approximate the
expression for error E as follows: '

M, - M,
E=Y. 3 5.2y, 32y @0, <50

JELheR; k=1 @, e¥;

for the large M, and M, when |r,—7;|<<F;, and

|0, —, |<<7.

Construction of optimal polar quantizer for a given total
number of clusters M can be formulated as an
optimization problem:

M,
E(M)=Mr?3r},{r(rl§lj?z Zp,l(rn)(r,, _;-1')2 +

j=1 r,ER;

M,
+min{2 zp(p ((Pn )rnz(q’n —@)2}}

¥l k=l @,c'¥,
subject to: M,M=<M.

Introducing rate-distortion functions G(M,) and G(M,)
as quantization errors for optimal scalar quantizers on
radius and phase we can formulate the optimization
problem for as follows:
E(M)= min {G,(M,)+G,(M,)}
M .M

subject to: M,.My<M

Minimum of the cost function has to be found by optimal
construction of product quantizer for polar coordinates,
and optimal choice of cell numbers M, and M, for radius
and phase.

3.3 Dynamic programming algorithm

We attack the optimization problem under question using
Dynamic  Programming (DP) algorithm. Optimal
quantizer for 1-dimensional (scalar) data can be
constructed by DP algorithm [8}. The complexity of the
DP algorithm is O(MN?). Wu [9] reduced the complexity
of the DP algorithm to O(MN), using algorithm for
minimum search in monotonic matrices.

The problem of optimal product quantization for Cartesian
and polar coordinates can be solved with DP algorithm as
two sequential scalar quantization problems for
corresponding dimensions. Cartesian coordinates (x,y) and
polar coordinates (7,¢) are denoted as (u,v). Procedure
consists of two steps:



Step 1: Construct two independent optimal quantizers
for dimensions # and v using Dynamic Programming
algorithm and calculate rate-distortion functions G,(m)
and G,(m) for msM.

Step 2: Using the rate-distortion functions find optimal
number of quantization cells M, and M, for the
dimensions u and v by linear search to minimize the total
. error of quantization E(M):

E(M)= min {G,(M)+G([M/M,])}.
1< Mu <M
The complexity of the first step 1s O(MN), because it is
defined by of DP algorithm for scalar quantization [8].
The complexity of the second step is at most O(M). The
complexity of the total algorithm is therefore O(MN).

4. Vector quantization

. The rejecting from rough codebook structure (like in
product quantization) allows better adaptation of the
codebook structure to the input data will lead to
decreasing of the distortion. At the same time, the
codebook will need more. We use Randomized Local
Search (RLS) algorithm [1]. It is an iterative algorithm of
vector quantization with property of convergence of the
resulting quantizer distortion to some limit value. In
general, this limit value does not depend from initial
. solution, but the speed of convergence does. We propose
to use an optimized codebook as an initial codebook in
RLS algorithm to accelerate its convergence.
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Fig 5. Rate-distortion dependency in type 1 experiments
for test set #1

5. Experiments

Experimental series were taken for two test sets (see Fig.
1). The first test data set is a long digital curve with quite
smooth line; the second test data set is also a single curve
but with a noisy line. The points coordinates in the maps
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have (latitude, longitude) representation. Both maps were
taken from the ESRI maps database.

The comparison was done with four different quantization
approaches: Cartesian product Max-Lloyd quantizer (CQ-
ML), strictly polar Max-Lloyd quantizer (PQ-ML),
Cartesian product dynamic programming quantizer (CQ-
DP) and strictly polar dynamic programming quantizer
(PQ-DP).

We have processed two types of experiments. The first
type tests were aimed at checking efficiency of the
proposed algorithm in rate-distortion sense for the case
when it is necessary to store the codebook in the
compressed file. The second type of series was aimed at
checking efficiency of the proposed method in the case
when we do not need to store the codebook. In this series,
we check vector quantization, where the initial codebook
was generated randomly or by four predescribed methods,
with the following processing in RLS algorithm (RLS,
PQ-ML-RLS, CQ-ML-RLS, SD-PQ-RLS, CQ-DP-RLS).

The resuits of the first type of experiments series are
presented in Fig 5,6,7,8. According to them the PQ-DP
and CQ-DP algorithm outperforms their analogs using
Max-Lloyd quantization, and have almost the same
efficiency between themselves.

The results of the second type of experiments are depicted
at Fig 9 and Fig 10. To estimate the increasing of
convergence we processed original RLS with 100 and
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Fig 6. Rate-distortion dependency in type 1 experiments
for test set #2

5000 iterations (RLS 5000). The proposed method of
initializing of starting RLS codebook was processed with
100 iterations. It is shown in figures that RLS5000 slightly
overrun the PQ-DP-RLS and CQ-DP-RLS algorithms for
test set#1 and even looses for test set#2. In the same time
PQ-DP-RLS and CQ-DP-RLS shows better results than
PQ-ML-RLS and CQ-ML-RLS.
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Fig. 7. The dependency between size of codebook and bit
rate for test set #1
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Fig 9. Rate-distortion dependency in type 2 experiments
for test set #1

Max-Lloyd algorithm, used here, was processed in 200
iterations. RLS algorithm was used with two Generalized
Lloyd Algorithm [10] iterations per each iteration of RLS
algorithm. )

6. Conclusions

The problem of quantization of vector map coordinates in
vector map compression was attacked by DP algorithm as
two sequential scalar quantization problems, for
coordinates x and y for Cartesian quantization, and for
radius 7 and phase ¢ for strictly polar quantization. This
approach gives us benefit in rate-distortion sense for
vector map compression problem in comparison to the use
of Max-Lloyd quantization algorithm in product scalar
quantization. In case of vector quantization, the usage of

752

PQ-ML
T —a— CO-ML

0,0000 .
0 2000

4000 6000 8000 10000

codebook size

Fig. 8. The dependency between size of codebook and bit
rate for test set #2
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Fig 10. Rate-distortion dependency in type 2 experiments
for test set #2

optimized codebook in RLS is making able to increase
convergence of the algorithm.
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