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A PARALLEL ALGORITHM FOR THINNING OF BINARY IMAGES

A. N. Kolesnikov and E. V. Trishina

A parallel algorithm based on the distance transform for thinning of binary images is
developed. The represented algorithm is intended for implementation on multiprocessor
workstations with distributed memory. The checking of the algorithm on actual images
demonstrated its validity and efficiency.

INTRODUCTION

Thinning (skeletonization) of images has found a wide use in image processing and pattern recognition for
the structural description, parameters measurement, and redundancy reduction of images [1-6]. Due to the large
size of images to be processed, for treatment of applied tasks the thinning of images is very time-consuming process.
One way to reduce the time cost of computations is to use multiprocessor computer systems.

Our aim isto develop a parallel algorithm for thinning of binary images, which is intended for implementation
on multitransputer workstations with distributed memory.

In Section 1 the sequential algorithm for thinning of images is briefly described. Section 2 discusses a
hardware which the algorithm under development isintended for, as well as a model for parallelization. The parallel
algorithm for four processors is discussed in Section 3. In Section 4 the parallel algorithm for a 2D mesh network
is presented. In Section 5 a program implementation for a transputer workstation is described and results of
checking the program are discussed. ’

1. The sequential algorithm for image skeletonization. An algorithm based on the distance transform (DT)
for image skeletonization has been selected for parallelization. This method has two important advantages: the
skeleton of an image can be produced in a fixed number of passes through the image, and every point of the skeleton
labeled by distance to the nearest background point, thereafter the distance can be converted to the local width of
the object. The algorithm for skeletonization consists of three phases:

- distance transform;

— detection of skeletal points;

— distance-to-width conversion and reduction to unit width of the skeleton (for lines of even width).

The distance transform. The type of distance transform is defined by the type of distance metrics. In this work
we used the distance transform with the "chessboard metrics" [7,8]. The distance transform of this kind can be
performed by two raster scans through the whole image: the first scan is performed by a 3x2 window in the
lexicographic order; the other is performed in vice versa fashion. Hereafter we call these scans as forward and
backward passes. We suppose that the input image has a unit width border of background color. In addition, we
suppose that the image has initial labeling for the forthcoming DT as follows: the background pixels are set equal
to zero, the foreground ones are set equal to a sufficiently large number.

During the forward pass the DT value is calculated for every pixel p of an object by the following formula

(Fig. 1):
p=min(p,n+1,n+1,n3+1,n+1).
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Fig. 1. The relative location of the pixel p and its eight neighbors.

During the backward pass the DT value is calculated by means of the similar formula:
D= min (P,"5+1,n6+ 1,n7+1, n¢+1).

The results of the distance transform for a test object after the forward and backward passes are represented
in Fig. 2 to illustrate an essence of the teehnique.

The skeletal points detection from the local extremums of the DT is also performed in two passes through the
whole image by a 3 X 3 window [8-9). During the forward pass the skeletal points detection is performed by
analyzing the distance transform data (Fig. 3, @). During the backward pass a connectivity of the skeletonis restored
(Fig. 3, b). Due to the fact that the skeleton for even-width lines has a 2-pixel width, one additional pass for the
skeleton thinning is needed. Concurrently, for every point of the skeleton the distance to the nearest background
point can be converted to the local width of the line.

Conversion of DT values to width of the line. As it can be readily appreciated, the skeleton of even-width
lines has a two-pixel width. If for forthcoming processing a skeleton of a unit width is needed, "extraneous" skeletal
points are removed in one pass by a standard Arcelli algorithm. During this pass the distance transform D is
converted into local width of lines W by the obvious formula; W = 2D - d, where d (d = 0, 1) is defined by the
skeleton shape in a 3 X 3 window

So, several sequential passes through the whole image in two directions have to be done to perform the
described algorithm for thinning. Due to this fact, the parallelization of this algorithm is by no means a trivial
problem.

As can be seen, the distance transform is the crucial stage of the whole algorithm: if it is possible to develop
a parallel algorithm for the distance transform, then the task of parallelization of the algorithm for skeletal points
detection will be solved. In this connection the main attention in this paper is paid to describing the parallel
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Fig. 2. The test image after the forward (a) and backward (b) passes of the distance transform.
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Fig. 3. The test image after the forward (@) and backward (b) passes of the skeleton points detection algorithm:
a - the skeletal points detected in the forward pass are underscored;
b - the skeletal points detected in the backward pass are marked by a cross.

algorithm for the distance transform.

2. Hardware and the model of parallelization. In developing a parallel algorithm suitable for to solving the
applied tasks in image processing, the multiple-instruction multiple-data (MIMD) distributed memory multi-
processor systems were preferred because nowadays they are available on the market and give a good perfor-
mance/cost ratio. Most of the MIMD computers have a regular constant-valence architecture topology and can
generally be scaled proportionally without essential structure changing.

The character of the problem and the type of hardware dictate to select the geometric model of parallelism.
In our case it means the following algorithm: the input image is divided into blocks that are distributed between
processors combined into a 2D mesh processors network. Each processor performs processing of its own part of
data and from time to time exchanges information with its neighbors. The image blocks are gathered in the host
computer on completing the processing and are stored in the disk memory.

3. The parallel algorithm for skeletonization for four processors: N, = 2x2. Let us view a solution of the
problem in hand for four processors. This particular solution will be used subsequently to develop a general solution
for the 2D mesh processors network.

To parallelize the distance transform algorithm, first of all we take into consideration that its two passes have
a commutativity property, ie., the order of passes (namely, "left-to-right, top-to-bottom" and "right-to-left,
bottom-to-top") through the image can be reversed. In addition, we can take into consideration the symmetry of
the algorithm in the horizontal direction: the "left-to-right" processing procedure is commutative with the "right-
to-left" one.

So, the distance transform algorithm under consideration can be parallelized for execution in four processors.
According to this approach, the input image is divided into four image blocks (four quadrants). As all the distance
transform procedures in fact are performed in a 3x3 window, the image blocks are to be overlapped in the 2-pixel
width strip (Fig. 4, a)

Forward pass. The distance transform is performed in the four processors in converging directions (Fig. 4, a).
The data exchange is performed after reaching the border as follows: every processor gives the last processed row
and the last processed column to its neighbors, in its turn, the processor gets one column from one of the neighbors
and a row from another one.

Backward pass. The processors perform the distance transform in the opposite direction (Fig. 4, b, c).

The data exchange is performed on the border of partition after the backward pass in the opposite direction,
thereafter two passes (forward and backward) through the image are performed to detect the skeletal points.
Clearly, the data exchange has to be performed between the two passes.
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Fig. 4. A scheme of the image blocks processing for four processors: 4 - the forward pass direction;
b - the scheme of data echange between the processors; ¢ - the backward pass direction .
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4. The parallel algorithm for a 2D mesh processor network (N, = N, X N,). As mentioned above, this
algorithm is inherently sequential and its parallelization is by no means a trivial problem. Taking into account the
symmetry of the algorithm permitted us to parallelize the processing for execution in four processors.

As for the parallel algorithm for a 2D mesh processor network, let us consider the following solution of the
problem according to accepted model of parallelization: the input image is divided into blocks which have to be
distributed between the processors, thereafter the forward and backward passes of the distance transform are
performed with proper data exchange at the block borders. The distance transform of the whole image can be
obtained by execution of sufficient number of passes. It is obvious that this algorithm is effective if the number of
passes does not depend on the size of the image and, in addition, is not too large.

Let us view in detail the listed above phases of DT.
The image partition. So, the input image is divided into rectangular blocks with two-pixel width overlapping.
The size of the block is:

H. X H, = (size_x/N, + 2)x (size_y/N, + 2),

where size_x X size_y is the size of the image; H, X H, is the size of the block; N, X N, is the size of the 2D mesh
processors network. Every four processors are combined into one quadruplet of processors. In Fig. 5 the
quadruplets are marked by dotted lines. For the sake of simplicity we assume that the number of processors is a
multiple of 4; for majority of workstation models this condition is, as a rule, satisfied.
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Fig. 5. A scheme of the image blocks processing for a 2D mesh processors network: a — the direction of processing
for the forward pass; b — a scheme of the data exchange in quadruplets after the forward pass(data exchange

inside quadruplets); ¢ - the direction of processing for the backward pass; d~a scheme of the data exchange
between quadruplets after the backward pass.
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As for the problem of the optimal selection of the block size, ignoring possible limitations caused by the
memory size of the processors, a solution can be obtained by minimization of the data amount of data exchange
between the passes, that is, minimization of the perimeter of the rectangular block under condition of fixed area.

The forward pass. In every block the forward-pass is performed in accordance to the scheme in Fig, 5, a; the
direction of the pass is defined by number of the processor in the quadruplet. ,

After the first pass the data exchange is performed between blocks which belong to the same quadruplet
(Fig. 5, b); every block gives the last processed row and column and gets two proper vectors which have to be
disposed to the last row and the last column (the internal data exchange in quadruplets).

The backward pass. The second pass is performed in the opposite direction (Fig. 5, ¢), after that the data
exchange between the neighboring blocks belonging to the adjacent quadruplets is performed (the backward pass

“and the external data exchange between quadruplets; Fig. 5, d).

Analysis of the DT data. After the backward pass and the external data exchange the DT data in the proper
rows and columns are analyzed. On the basis of this analysis the number of rows n, and columns n, to be processed
during the next forward pass are calculated and the four conditions to complete the DT after this pass are checked.

The number of rows n, is defined by the expression:

n, = n:ax{O, { (D (x, 1) -D (x, 0) ) / 2}},

where D(x, y) is the values of the distance transform in the block; 0 < x < size_x.

The processing can be successfully completed after the next forward pass if the two following conditions are
satisfied:

1.n <H,

2. n:ax{D(x,l)} < 2H,,where0 <x < H,.

In a similar way we have the expression for the number of columns 7, to be processed in the next forward
pass, and the two last conditions of successful completion of the DT after this pass:

n,= n;ax{O, { (D (1, y) -D (O, y) )/ 2}}, where 0 < y < size_y,

3. n <H,
4. max{D(y,1)} < 2H,,where0 <y < H,.
y

Analysis of the DT on the other two sides of the block after the next forward and backward passes is
performed in a similar way.

Taking a decision on completion of DT. The number of rows and columns to be processed is calculated after
each pass as well as the conditions to complete processing after the current passes are determined. The information
about situation at the border of the blocks are transferred to the control processor through the network. The control
processor makes a decision on completion or continuation of the distance transform and informs the processors
about it, Taking into consideration that, in fact, the number of passes must be no less than three, we can start to
collect the information about the DT values after the third pass only.

After making a decision on completion of the DT, in every processor detection of the skeletal points is
performed, in doing so the number of the forward and backward passes of procedures for skeletal points detection
is exactly the same as the number of the forward and backward ones for the distance transform.

So, execution process of the distance transform can be controlled in a profitable way by analyzing the values
this transform at the border of the blocks. It is the principle of distance transform that gives us a tool for the control.
‘ In order to estimate the number of passes needed to process the actual images, the worst case should be
studied, namely, a P, X P, rectangle, as the object to be thinned (for the sake of simplicity P, < P,). Asthe analysis
has shown, if the width of the object is less than 4H, and the object is fitted in two quadruplets (in the width), it
can be processed in proper way in three passes of the DT through the image. If the object width is less than 3,
it can be processed also in three passes, even if the object belongs to three quadruplets (in the width). We underline
once more that we are dealing with the width of an object not with its length.

Since the algorithm for thinning is worth to apply for images of maps, schemes, engineering drawings, for

1




Optoelectronics, Instrumentation )
and Data Processing : No. 6, 1995

which the presence of broad objects is little likelihood, so in the majority of actual cases the number of passes does
not exceed three. Moreover, the third pass will most probably be shorter than full, if the number of rows and columns
to be processed is less than the block size. The weak dependence of the number of passes on the number of
processors for actual images assures efficiency of the developed parallel algorithm: performance of a multiproces-
sor system is linearly proportional to the number of processors.

Moreover, the developed technique for analysis of the distance transform allows one to define the minimal
number of computations for every block and thereby to avoid redundant computing.

For a 4 X 4 mesh processor network, three passes are enough regardless the size of the objects. For a
2 X 2 mesh processor network, as it was mentioned above, two passes are enough. The developed algorithm can
be easy modified for implementation on a linear array of processors.

Properties of the parallel algorithm. Let us point out the main properties of the developed parallel algorithm
for skeletonization for a 2D mesh processor network:

- the load balance is optimal, because every processor gets equal amount of data; the number of operations
per processor is approximately the same;

- the communication /computation ratio is good, because the data exchanges are relatively rare; the amount
of data for exchange during processing is proportional to the linear size of the image, the amount of computations
is proportional to its area;

— the algorithm efficiency is proportional to the number of processors (we neglect the time cost for
input/output) due to the good load balance, as well as the weak dependence of the number of passes on the number
of processors.

5. Program implementation of the parallel algorithm. To testify the developed parallel algorithm and to
create the correspondent software which would be suitable for solving applied image processing problems, this
algorithm was implemented for a parallel workstation PARAstation (by Transtech) with four INMOS T800
transputers. The SPARCstation 10 was used as the host computer. The input images were binary ones as TIFF-files.

On loading the input image, first of all a linear size of the image is defined. This information as well as the
total number of processors is distributed through the network to prepare the processors to get image blocks. As
the image rows are loading from the external memory, they are distributed through the network. In every processor,
some rows destined for it are picked out from the flow of rows, the others are transferred further through the
network. The loading of the obtained block to the local memory of the processor is performed in a certain order
that depends on the number of processor in the quadruplet. This procedure allows one to use the same program
for every processor, regardless of the direction of the first pass. In order to avoid deadlock during the data exchange
between passes, the sequence of data sending and receiving in each processor is determined by its position in the
processors network. After completion of the processing the image blocks are gathered in the control processor
and stored in the external memory as a TIFF-file. An input binary image and its skeleton, a result of the processing,
are represented in Fig. 6.

10 10

Fig. 6. The binary image’(a piece of the drawing) and its skeleton.
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Because of the small number of processors at our disposal, the time cost was measured for the ring
configuration of the processor network only (it is a linear array with one, two, and four processors). The results of
these measurements have shown that as the number of processors increased by a factor of two, the performance
increased 1.7-1.8 times. The difference of this coefficient from two is explained, we suppose, by the costs for
input/output, data exchange, and other overheads.

CONCLUSION

So, we have developed: a parallel algorithm for distance transform and skeletonization of binary images
intended for execution on multiprocessor computers with distributed memory; a processing supervision technique
which allows one to process correctly a binary image in minimal time; a method for conversion of the distance
transform data to the local width of lines. Checking the algorithm on actual images has demonstrated its validity
and efficiency.

The suggested technique can be used for developing parallel algorithms for skeletonization based on the
distance transform with different types of distance metrics.

This work has been done at the Department of Computer Science, the University of Joensuu, Finland, thanks
to kind help and assistance of Prof. Martti Penttonen and Mr. Juha Oinonen.
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