

A fast near-optimal min-# polygonal approximation of digitized curves

Alexander Kolesnikov1 and Pasi Fränti2

1) Institute of Automation and Electrometry

Pr.Ak.Koptyuga, 1, Novosibirsk, 630090, Russia
Email: kolesnikov@iae.nsk.su

2) Dept of Computer Science, University of Joensuu,
BOX 111, FIN 80101, Joensuu, F nland i

Email: franti@cs.joensuu.fi

ABSTRACT

We propose a fast near-optimal algorithm for solving the
problem of min-# polygonal approximation of digitized
curves. The algorithm consists of two steps. It first finds
a reference approximation with minimum number of
segments for a given error tolerance by using L

�
 error

metrics. It then improves the quality of the approximation
by a reduced-search dynamic programming with additive
L2 error measure. The algorithm is tailored for high-
quality vectorization of digitized curves.

Keywords: vectorization, polygonal approximation, min-#
problem, shortest path, dynamic programming

1. INTRODUCTION

We consider the problem of polygonal approximation of
open digitized curves for high-quality vectorization tasks.
The task is defined as optimal polygonal approximation of
N vertices with the minimum number of linear segments
M that satisfies a given error tolerance. It is known as the
min-# problem.

The problem is closely related to the min-�
problem, which aims at minimizing the approximation
error for a given number of segments M. This problem
can be solved by graph theory methods as proposed in
O(N2logN) time [1]. The problem can also be solved by
dynamic programming algorithm in O(N2 M) time as
proposed in [2]. Salotti has improved this approach by
a method that works in O(N2) time [3]. Schuster and
Katsagellos [4] have proposed another optimal algorithm
with the time complexity of O(N2) based on the Lagrange
multiplier method.

All the above algorithms are optimal but they
have quadratic or cubic time complexity, which makes
them impractical for large number of vertices N. In
a recent paper [5], we have introduced fast near-optimal
algorithm for the min-� problem that has time complexity
remarkably less than O(N2).

Several algorithms for the min-# problem also
exist. Graph theory method has been proposed in [6], and
the complexity of this algorithm was then reduced to
O(N2) in [1,4,7]. The dynamic programming approach
also can be used to solve the problem, but complexity of
the algorithm is O(N3) [2, 8].

A fast near-optimal algorithm was proposed for
the min-# problem in [9]. The algorithm provides solution
with minimum number of segments M for a given error
tolerance dT: d � dT.. The approximation error d is defined
as the maximum Euclidean distance from the vertices to
the approximating segments, and it is the so-called L

�

error metrics. The algorithm has been tailored especially
to polygons with low number of segments, which is
suitable as shape signatures in image retrieval from
multimedia databases.

Technically, the algorithm in [9] can also be used
for polygonal approximation in the vectorization tasks.
However, the error metrics L

�
 is inferior to L2 if we are

dealing with approximation with low error tolerance for
high-quality vectorization task. The L2 error metrics
(corresponding to the means squared error E) has also
been considered in [9] but only as local distortion
measure, and not as global cost function for the whole
curve.

Thus, it is expected that the additive error
metrics L2 provides better results for the same number of
approximating segments M in the vectorization
application, but the error measure E can hardly be used as
the error tolerance measure in the min-# problem because
of its additive characteristic.

To solve this dilemma, we propose to use the L
�

metrics as the input control parameter dT, and the additive
error measure E with metrics L2 as the cost function in the
optimization. In polygonal approximation of the lines in
engineering drawings, maps, schemes, etc., the distortion
tolerance dT can be set up to half of the line width [10], or
to 1-2 pixels for polygonal approximation of region
borders in segmentation tasks.

In this work, we generalize the near-optimal
algorithm solving the min-� problem [5] to solve the
min-# problem, too. We formulate the min-# problem in
two forms: strong and weak. The strong form means that
the optimal solution with error metrics L2 has to satisfy
the constraint of the maximum distortion: d � dT.. The
weak form means that we are looking for an optimal
solution that takes no account of the strong constraint on
the distortion; it merely aims at finding solution for which
d � dT.

mailto:kolesnikov@iae.nsk.su
mailto:franti@cs.joensuu.fi

2. ALGORITHM IN THE WEAK FORM

Let us define an open N-vertex polygonal curve in 2-D
space as the ordered set of P1,N = {pk: k = 1,…,N}. The
approximating (M+1)-vertex polygonal curve is defined
as Q1,M+1={qk: qk�P, k = 1,…, M+1). The proposed
algorithm consists of two steps:

Step 1: Minimize the number of segments M for
a given constraint: d1 � dT.
Step 2: Optimize the reference solution with
metrics L2

At the first step, we find a reference approximation with
minimum number of segments M for a given error
tolerance dT using the algorithm proposed in [9]
(algorithm A1). At the second step, we improve the
quality of the reference approximation using a fast near-
optimal algorithm with the cost function E (algorithm
A2). The algorithm A2 is based on the reduced-search
dynamic programming approach as proposed in [5].

2.1. Finding reference solution
We use the algorithm in [9] for generating the initial
(reference) solution. It is based on the algorithm for
finding single-source shortest path in directed acyclic
graph (DAG) [4,7].

The algorithm A1 is represented in Fig. 1. The
R(j) gives the minimum number of segments in the
polygon Q0,j connecting the start vertex p0 and the current
vertex pj. The local distortion d(i,j) is maximum
Euclidean distance for the approximating segment (pi,pj).

To reduce the processing time, Schroeder and
Laurent suggested to stop the further search when the
current local distortion d(i,j) is twice larger than the given
error tolerance dT. The B is an array of the parent vertices.
The obtained solution defines the number of segments M
and a reference solution.

Initialization
R(0) = 0

Recursion
FOR j = 1 TO N DO
 R(j)= �
 FOR i = j-i 0 DO
 IF(d(i,j) > 2 dT)
 BREAK
 ENDIF
 IF(d(i,j) < dT) AND (R(i) + 1 < R(j))
 R(j) = R(i) + 1, B(j) = i
 ENDIF
 END
END

Figure 1: Algorithm A1 [9] for the shortest path in the
directed acyclic graph.

2.2. Optimize the reference solution
Let us define discrete state space �, where every point
(n,m) in the space represents the sub-problem of
approximating part of the input polygonal curve P1,n by m
segments. Any output polygonal curve Q can be
represented as a path in the state space � from the initial
state (1,0) to the goal state (N,M). We also define E(n, m)
as the cost function of the optimal approximation for the
state (n,m).

The solution obtained at the first step defines
a reference path G = {(G(m),m): m = 0,…,M} in the state
space �. A bounding corridor is then constructed along
the reference path G in the space (see Fig.3) that defines
a bounded state space �C. The left {L(m)} and right
{R(m)} bounds of the corridor are defined as follows:

�
�
�

���

����
�

�
�
�

����

��
�

,...,,1;
,...,,0};1)(,min{

)(

,...,,1};)(,1max{
,...,,0;1

)(

2

22

11

1

MBMmN
BMmBmGN

mR

MBmBmGm
Bmm

mL

where B1 = �W/2�, and B2 = W – B1. The offsets {�m(n)}
of the bounding corridor are defined relative to the bottom
boundary of the state space � (see Fig.3):

�
�
�

�����

�
��

.,..,1);(,..,1)1(},,0max{
);0(...,,1,0

)(
1 MmmRmRnBm

Rn
nm

Dynamic programming is performed inside the bounding
corridor for solving the minimum cost function E(n, m)
using the recursive expression.

Initialization:
E(1,0) = 0

Recursion:
FOR m = 1 TO M DO
 FOR n = L(m) TO R(m) DO
 Cmin = �
 FOR j= L(m�1) TO R(m�1) DO
 C = E(j, (m�1) mod 2) + e2(j, n)
 IF(C < Cmin)
 Cmin = C, jmin = j
 ENDIF
 END
 E(n, m mod 2) = Cmin
 A(n, m � �m(n)) = jmin
 END
END
E = E(N,M)

Backtracking to find the optimal path H(m):
H(M)= N
FOR m = M TO 1 DO
 H(m�1) = A(H(m), m � �m(H(m)))
END

Figure 2: Algorithm A2 [5] for the reduced-search dynamic
programming.

Figure 3. Left: The scheme of the bounding corridor for the problem size of N=16 and M = 6. The reference path G is marked
with dark gray circles. The corridor width is W = 4, and the left (L) and right (R) bounds are marked with gray dots. Right:
Scheme of the modified bounding corridor for the problem size of N=16. The corridor width is W = 4. The four final states are
marked with circles, and the possible values of M are from 5 to 8.

The optimization algorithm A2 can be iterated
using the output solution as a new starting point for next
iteration. We can regulate the trade-off between quality
and run time by changing the corridor width W, and the
number of iterations. One iteration of the algorithm A2 is
described in Fig. 2.

In practice, with two iterations for corridor width
of W = 6-8 we can achieve 99-100% level of optimality.
With the proper selection of the corridor width and
number of iterations we can achieve the 100% level of
optimality with high confidence [5].

2.3. Complexity of the algorithm
The processing time T1 of the algorithm A1 for the error
metrics L

�
 can be roughly estimated as T1 = O(N2/M). In

the case under consideration, polygonal approximation for
precise vectorization, it means that the time complexity of
the algorithm A1 ranges from O(N) to O(N2) depending
on the given error tolerance: smaller error tolerances
would result in larger number of segments M and, thus,
smaller time complexity. The space complexity of A1 is
O(N).

The processing time T2 of the reduced-search
algorithm A2 is proportional to N2W2/M per iteration.
Thus, the time complexity of the algorithm A2 ranges
from O(N) to O(N2), too. This is also the time complexity
of the whole algorithm (A1+A2). The exact time
complexity depends on the given error tolerance, and on
the parameter W (corridor width).

In the implementation, we use ring buffer of size
2�N to store the values of E(n,m). For the parent states A,
we do not store the values in the absolute locations (n, m)
but the relative locations (n,m��m(n)) defined by the
offsets of the corridor boundary. In this way, we need an
array of size W�N that covers the reduced state space �C
exactly Thus, the algorithm A2 needs space for W�N
locations in the state space, and the corresponding
memory requirements is O(N).

3. ALGORITHM IN THE STRONG FORM

Solution for the weak form with fixed M can be found
with the two steps of the represented algorithm. As for
solution for the strong form, the situation is more
complicated. We have to find a new number of segments
M, which assure the constraint of the distortion measure
d� dT. It can be done in the following iterative way using
bisection algorithm.

We first find a reference solution for the
distortion tolerance dT with the algorithm A1. We then
optimize the reference solution with algorithm A2 and
define the distortion d2 of the optimized solution. If the
distortion d2 is greater than a given error tolerance dT, we
set a smaller error tolerance d*

T (for example dT/2). In this
way, we define error tolerance range [d*

T, dT] and apply
algorithms A1 and A2 for the error tolerance d*

T. We then
repeat bisection of the tolerance range and the Steps 1 and
2 until proper solution is found. If the distortion d2 is non-
increasing function of the segments number M, the
algorithm will converge.

For the optimal solutions the previous condition
is usually fulfilled. To speed-up the convergence and to
reduce the number of iterations we can use the search
redundancy of the dynamic programming method. For
this purpose we modified the bounding corridor to
provide us with solutions for W final states (see Fig. 3). In
this case, we have to use ring buffer of size W�N to store
the values of E(n,m) in the modified corridor. After every
step of the optimization algorithm A2, we check the
distortion of W optimal solutions with m = M�B2, …,
M+B1�1, and check whether we should continue the
process, or if the final solution was already found. The
number of iterations depends on the given error tolerance
dT, and on the corridor width W. The iterative process
converges faster for larger error tolerance values than for
smaller ones.

After that we can apply additional steps of the
algorithm A2 to achieve nearly optimal result.

Figure 4. Left: approximation after the 1st iteration for a sample 5004-vertex (from [3]) with M=100 segments. Right:
The bounding corridor in the state space with the width W=10.

Figure 5: Left: Fragment of the 5004-vertices test shape (from [3]) after approximation with algorithm A1 for the error
tolerance dT=2 pixels, the number of segments M = 281, the approximation error E1 = 4830. Right: Fragment of the
5004-vertices test shape after optimization of the reference solution with algorithm A2, the corridor width W=8,
distortion d=2.55 pixels, number of segments M = 281, the approximation error E2 = 2480.

4. RESULTS AND DISCUSSION

We concentrate here on the analysis of the algorithms A1
and A2 in the weak and strong forms. There are two
questions to be answered: (a) do we gain from the use of
the optimization algorithm A2, and (b) could we use the
algorithm A2 in weak form instead of the strong one for
polygonal approximation without increasing the number
of segments in the vectorization task.

4.1. Efficiency of the algorithm in weak form
Let us compare the properties of the reference solution
obtained by the algorithm A1, the result of the algorithm
A2, and the optimal solution. The data for the 5004-
vertices test shape are represented in Table 1. The run
times have been obtained using Pentium II, 266 MHz
processor.

Using the error metrics L
�
 for the optimization

changes the characteristics of the approximation error
distribution along the digitized curve. In the reference
solution we can observe the appearance of long slits
between linear segments and the digitized curve (see
Fig.5). It can be explained that the width of the slits is
smaller than the error tolerance.

The additive cost function E controls the global
approximation error for the whole curve. Approximation
error E2 of the optimized solution is therefore twice as
small as that of the reference solution. The approximating
segments usually lie closer to the vertices of the curve
with only a few exceptions. The maximum local distortion
(d2) of the solution A2 can be greater than the maximum
local distortion (d1) of the reference solution A1.
However, this is the case only for a few vertices, about
1-2% of the total number of the vertices.

Table 1. Number of segments M, distortions (d1 and d2), mean squared errors (E1 and E2)
and processing time (T1 and T2) of the algorithms A1 and A2 for the test shape (N = 5004).

dT (pixels): 0.5 1.0 1.5 2.0 2.5 3.0
M: 932 508 344 281 234 199
d1 (pixels): 0.50 1.00 1.50 2.00 2.50 3.00
d2 (pixels): 0.80 1.80 2.50 2.60 3.74 5.00
E1: 259 1158 2631 4832 7387 10685
E2: 204 674 1473 2477 3838 5763
T1 (s): 0.11 0.22 0.33 0.50 0.65 0.87
T2, (s): 0.77 1.32 1.87 2.30 2.75 3.30
Total time: 0.88 1.54 2.20 2.80 3.40 4.17

4.2. Weak vs. Strong
The optimized solution for the problem in the strong form
for the test shape can be achieved in 3-5 iterations,
depending on the given error tolerance. Moreover, in the
case of low error tolerance values, the solution for the
strong form will have larger number of approximating
segments: about 50% more than in the solution of the
weak form.

Actually, in applied tasks such as vectorization,
we usually define a space scale of the noise and treat it as
characteristic value (d � dT), not as a strong constraint
d � dT. Therefore, we do not need to spent processing time
to additional iterations of optimization to satisfy the
strong condition d2 � dT. In practice, we can use the
solution with less number of segments that satisfies the
weaker condition d2 � dT.

5. CONCLUSIONS

We have developed a fast near-optimal algorithm for the
min-# problem of polygonal approximation for digitized
curves. To combine the practicality of the metrics L

�
 and

the high quality of the error metrics L2, we proposed to
use the distortion measure with metrics L

�
 as input

control parameter dT in polygonal approximation, and the
additive error measure E with metrics L2 as cost function
for the optimization.

The min-# problem was considered in strong and
weak forms. In the strong form, the solution with error
metrics L2 has to satisfy the constraint on the maximum
distortion d � dT. The solution in the weak form takes no
account of the constraint on the error tolerance of
individual line segments but merely controls the algorithm
by aiming at solution with d � dT.

For the problem in the weak form, we proposed
two-step algorithm: at the first step we find a reference
approximation with minimum number of segments M for
a given error tolerance dT with error measure L

�
, and at

the second step we improve the quality of the reference
approximation using a fast near-optimal algorithm with
the error metrics L2.

Complexity of the algorithms varies between
O(N) and O(N2) depending on the error tolerance. The

algorithm has the space complexity proportional to (NW).
For the problem in strong form, we constructed

an iterative algorithm based on the two-step algorithm. To
speed-up the convergence and to reduce the number of
iterations, we introduced a modified bounding corridor of
width W for reduced-search dynamic programming with
controlled search redundancy that provides solutions for
W final states.

The results showed that in practical application it
is reasonable to use the algorithm in weak form for fast
near-optimal approximation of digitized curves in applied
tasks.

REFERENCES

[1] W.S.Chan, F.Chin, On approximation of polygonal curves
with minimum number of line segments or minimum error, Int. J
on Computational Geometry and Applications, 6, 1996, 59-77.
[2] J.C.Perez, E.Vidal, Optimum polygonal appro-ximation of
digitized curves, Pattern Recognition Letters, 15, 1994, 743-750.
[3] M.Salotti, An efficient algorithm for the optimal polygonal
approximation of digitized curves, Pattern Recognition Letters,
22, 2001, 215-221.
[4] G.M.Schuster, Katsaggelos, An optimal polygonal boundary
encoding scheme in the rate distortion sense, IEEE Trans. On
Circuits and Systems for Video Technology, 7, 1998, 13-26.
[5] A.Kolesnikov, P.Fränti, A fast near-optimal algorithm for
approximation of polygonal curves, submitted to the
International Conference on Pattern Recognition-IAPR’2002.
[6] H.Imai, M.Irai, Polygonal approximation of a curve:
formulations and algorithms, in Computaional Moprhology
(G.T.Toussaint, ed., North-Holland, Netherlands, 1988, 71-86).
[7] G.M. Schuster and A.K.Katsaggelos, An optimal lossy
segmentation encoding scheme, Proc. Conf. on Visual
Communications and Image Processing, SPIE, Mar. 1996,
1050-1061.
[8] C.-C.Tseng, C.-J.Juan, H.-C.Chang, J.-F.Lin, An opti-mal
line segment extraction algorithm for online Chinese character
recognition using dynamic programming, Pattern Recognition
Letters, 19, 1998, 53-961.
[9] K.Schroeder, P.Laurent, Efficient polygon approximations
for shape signatures, Proc. Int. Conf. on Image Processing-
ICIP’99, 2, 1999, 811-814.
[10] L.Wenyin, D.Dori, From raster to vectors: extracting visual
information from line drawings, Pattern Analysis &
Applications, 22, 1999, 10-21.

	1) Institute of Automation and Electrometry
	ABSTRACT
	
	
	
	
	2.1. Finding reference solution

	We use the algorithm in [9] for generating the initial (reference) solution. It is based on the algorithm for finding single-source shortest path in directed acyclic graph (DAG) [4,7].
	The algorithm A1 is represented in Fig. 1. The R(j) gives the minimum number of segments in the polygon Q0,j connecting the start vertex p0 and the current vertex pj. The local distortion d(i,j) is maximum Euclidean distance for the approximating se
	To reduce the processing time, Schroeder and Laurent suggested to stop the further search when the current local distortion d(i,j) is twice larger than the given error tolerance dT. The B is an array of the parent vertices. The obtained solution define
	
	
	
	
	
	
	Figure 1: Algorithm A1 [9] for the shortest path in the directed acyclic graph.

	2.2. Optimize the reference solution
	Figure 2: Algorithm A2 [5] for the reduced-search dynamic programming.

	2.3. Complexity of the algorithm

	4.1. Efficiency of the algorithm in weak form
	
	dT (pixels):
	
	
	M:

	T1 (s):
	
	
	
	4.2. Weak vs. Strong

	The optimized solution for the problem in the strong form for the test shape can be achieved in 3-5 iterations, depending on the given error tolerance. Moreover, in the case of low error tolerance values, the solution for the strong form will have larger
	Actually, in applied tasks such as vectorization,

	REFERENCES

