
Data reduction of large vector graphics 
 

Alexander Kolesnikov and Pasi Fränti 
 

Department of Computer Science, University of Joensuu, Joensuu, Finland 
koles@cs.joensuu.fi, franti@cs.joensuu.fi 

 
Abstract 

Fast algorithm for joint near-optimal approximation of multiple polygonal curves is 
proposed. It is based on iterative reduced search dynamic programming introduced 
earlier for the min-� problem of a single polygonal curve. The proposed algorithm 
jointly optimizes the number of line segments allocated to the different individual 
curves, and the approximation of the curves by the given number of segments. Trade-
off between time and optimality is controlled by the breadth of the search, and by the 
numbers of iterations applied.  
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1. Introduction 
Approximation of polygonal curves is classical problem in image processing, pattern 
recognition, computer graphics, digital cartography, and vector data processing. 
Optimal approximation of a single polygonal curve can be solved by methods from 
graph theory [1-5], dynamic programming [6-12], or A*-search [13,14] in O(N2)–
O(N3) time where N is the number of vertices in the input curve. 

A faster but sub-optimal heuristics also exist with time complexities of O(N)–O(N2) 
[15, 16]. Heuristic approaches for the approximation problem includes split [17-19], 
merge [20, 21], split-and-merge [22, 23], dominant points detection [23-27], 
sequential tracing [28-30], genetic algorithms [31-34], tabu search [34, 35], ant 
colony methods [36, 37]. The case of closed contours includes also the optimal 
selection of the starting point. This can be solved by considering all input points and 
choosing the one with minimal error [8], by algorithm for all shortest paths in graph 
[3] or by heuristic approaches [2, 9, 38-40].  

The polygonal approximation of a single curve can be extended to the case of multiple 
curves: 

a) Multiple object min-# problem: Given K polygonal curves P1, P2, …, PK, 
approximate it by K another polygonal curves Q1, Q2, …, QK with the 
minimum total number of segments M so that the approximation error does not 
exceed a given maximum tolerance �. 

b) Multiple object min-� problem: Given K polygonal curves P1, P2, …, PK, 
approximate it by K another polygonal curves Q1, Q2, …, QK  with a given 
total number of segments M so that the total approximation error is minimized. 

Solution for the multiple-object min-# problem depends on the error measure in use. 
In the case of L� error measure, the problem reduces to the single-object min-# 
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problem as the optimization can be solved for every object independently [41]. In the 
case of additive error measures (L1, L2, etc.), on the other hand, the problem is not 
trivial [41]. Fortunately, in practical applications we mostly have to deal with error 
measure L� in the case of min-# problem. 

The case of min-� approximation of multiple objects (with any error measure) is more 
complicated. The optimal approximation cannot be obtained by solving the 
approximation of each individual objects separately because the given total number of 
approximation segments should be optimally distributed among all objects. For 
example, uniform allocation of the segments can assign too many segments to the less 
complicated objects and, respectively, lacking the segments for more complicated 
objects. This situation is illustrated in Fig. 1. 

In literature, relatively little attention has been paid to the case of multi-object min-� 
approximation even though it is far from trivial to solve it efficiently. The optimal 
solution have been introduced by Schuster and Katsaggelos [41] but the algorithm has 
time complexity of O(N2)–O(N3) depending on the number of segments. This can be 
suitable for the encoding of object contours for MPEG-4 standard [42] but it can be 
too slow in the case of large vector maps. 
 

 

 
Figure 1. Example of multiple object approximation with uniform allocation of the segments 
number (Mk�NkM/N) (left), and with optimal allocation of the segments number (right). The 
number of points in the objects are ND = 3×121 (“Diamond”), and NL = 82 (“Leaf”). The 
corresponding number of segments are MD=3×9 and ML=6 with uniform allocation of the 
segments number, and MD=3×4 and ML=21 with the optimal allocation of the segments 
number. 
 
In this paper, we first generalize the dynamic programming approach of single object 
min-� problem for the case of multiple objects. We then introduce a fast iterative 
reduced search algorithm based on the near-optimal approximation algorithm for the 
case of single object [43]. The proposed algorithm solves the approximation of the 
individual objects and the allocation of the segments jointly. Although the optimality 
of the algorithm cannot be guaranteed in general, the experiments indicate that the 
method is capable of finding the optimal solution even in the case of very large data 
sets. Moreover, the algorithm is significantly faster than the optimal counterpart; the 
time complexity is between O(N)–O(N2). 
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The rest of the paper is organized as follows. In Section 2, we recall the full search 
and the reduced search dynamic programming algorithms for the single-object 
problem. In Section 3, we generalize the dynamic programming approach for the case 
of multiple objects, and then introduce the iterative reduced search algorithm. 
Experiments and discussions are made in Section 4, and conclusions are drawn in 
Section 5. 

 
2. Min-� problem for single curve 
Let us at first consider the optimal solution of the min-� problem for single curve by 
dynamic programming algorithm proposed by Perez and Vidal [8]. We then recall the 
iterative reduced search approach introduced earlier in [43]. The proposed approach 
algorithm will then be generalized in the next sections for the approximation of 
multiple objects. 

2.1 Problem formulation 
An open N-vertex polygonal curve P in 2-dimensional space is represented as the 
ordered set of vertices P={p1, …, pN} = {(x1, y1), …, (xN, yN)}. The single object min-
� problem is stated as follows: approximate the polygonal curve P by another 
polygonal curve Q with a given number of linear segments M so that total 
approximation error E(P, M) is minimized. The output curve Q consists of (M+1) 
vertices: Q={q1, …, qM+1}, where the set of vertices qm is a subset of P. The end 
points of Q are the end points of P: q1 = p1, qM+1 = pN. The approximation linear 
segment (qm, qm+1) of Q for curve segment {pi, …, pj} of P is defined by the end 
points pi and pj:  qm = pi and qm+1 = pj. 

The error of approximation of curve segment {pi, ..., pj} with the corresponding linear 
segment (qm, qm+1) is defined here as the sum of the square Euclidian distances from 
each vertex of {pi, ..., pj} to the correspondent line segment (qm, qm+1): 
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where the coefficients aij and bij are defined from the linear equation y = aijx+bij of the 
linear segment (pi, pj). The error e2(qm, qm+1) with measure L2 can be calculated in 
O(1) time with five arrays of cumulatives of x, y, x2, y2, xy coordinates [8]. 

The total approximation error E(P, M) of the input polygonal curve P by the output 
polygonal curve Q is the sum of the approximation errors of the curve segments 
{pi, …, pj} by the  linear segments (qm, qm+1) for m = 1, …, M: 
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To obtain optimal approximation we have to find the set of vertices {q2, …, qM} of Q 
that minimizes the cost function E(P, M) for a given M: 
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To solve the optimization task we first recall the dynamic programming algorithm [8]. 
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2.2 Full search dynamic programming 

Let us define two-dimensional discrete state space � = {(n, m): n = 1, …, N; 
m = 0, …, M} as shown in Fig. 2. Every point (n, m) in the space � represents the 
sub-problem of the approximation of n-vertex polygonal curve (p1, …, pn) by m linear 
segments. The complete problem is represented by the goal state (N, M). 

An approximation polygonal curve Q can be represented as a path H(m) in the state 
space � from the start state �(1,0) to the goal state (N, M). In the state space, we also 
define a function D(n, m) of the state �(n, m) as the cost function value of the optimal 
approximation for the n-vertex polygonal curve (p1, …, pn) by m linear segments.  

The state space � is bounded by left L(m), right R(m), bottom B(n) and top T(n) 
borders in the following way [43]: 
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 (4) 

The optimization problem can be solved by dynamic programming [8] in the bounded 
space (see Fig. 3) with the following recurrent equations: 
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(5) 

where n = 1, …, N and m = B(n), …, T(n). Here A(n, m) is the parent state that 
provides the minimum value for the cost function D(n, m) at the state (n, m). The time 
complexity of the algorithm is O(MN2), and the space complexity is O(MN).  
 

 

Figure 2: Illustration of the single-goal state space �, and the dependencies of  
the calculation of the cost D for state (n, m) from the previous states. 
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2.3 Iterative reduced search algorithm 
Based on the dynamic programming we have introduced an iterative reduced search 
method [43]. This algorithm was intended to bridge the gap between slow but optimal, 
and fast but non-optimal heuristic algorithms. The algorithm includes the following 
three basic steps: 

Step 1: Find reference solution with any fast heuristic algorithm. The obtained 
solution defines a reference path H0(m) in the state space �. 
Step 2: Construct a single-goal bounding corridor of a fixed width W in the state 
space � along the reference path H0(m). The left L(m), right R(m), bottom B(n), and 
top T(n) bounds of the corridor (bounded state space) are defined in respect to the 
reference solution as follows: 

  (6) 
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where c1 = �W/2�, and c2 = W – c1 are the bounds of the corridor. 

Step 3: Apply dynamic programming limited to the bounding corridor as shown in 
Fig. 2 with the recursive equations in Eq. 5. 

These three steps are then iterated using the output solution H1(m) as a reference 
solution in the next iteration. Instead of the time consuming search in the full state 
space � the algorithm performs the search iteratively in the most relevant part of it. 
Trade-off between quality and time can be controlled by setting up the corridor width 
(W) appropriately, and by limiting the number of iterations (ni). In [43], the optimal 
solutions were always found by setting up W=6, and by iterating the algorithm until it 
converged. The pseudo code of the algorithm is given in Fig. 3. 

The time complexity of the algorithm with ni iterations is O(niW2N2/M), which varies 
between O(N)–O(N2). The lower bound appears when M is large (proportional to N) 
and the upper bound when M is small (considered as constant). The speed-up in 
comparison to the full search is proportional to (W/M)2. The space complexity of the 
algorithm is O(WN). 
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IterativeReducedSearchDP(P, M); 
REPEAT 
     Q � ReducedSearchDP(P, M); 
UNTIL good enough 
 

ReducedSearchDP(P, M); 
D(1,0) �0 
FOR  n = 2  TO  N  DO 
    // a) Calculation of approximation errors 
     FOR j = L(B(n) � 1) TO  n�1  DO 
         �(n�j) � e2(pj,pn) 
     ENDFOR 
 
    // b)Minimum search 
 FOR m = B(n)  TO  T(n)  DO 
         dmin � � 
       FOR  j= L(m�1) TO  n–1  DO 
               d � D(j, m�1�B(n)) + �(n�j) 
               IF(d<dmin)  
                   dmin � d;    
                   jmin � j 
               ENDIF 
          ENDFOR 
          D(n, m�B(n)) � dmin 
       A(n, m�B(n)) � jmin 
     ENDFOR 
    
     // Restoration of the solution H1(m) 
    H1(M) = N 
    FOR M TO 1 DO 
 H1(m�1) = A(H1(m), m � B(H1(m))) 
    ENFOR 
    E � D(N,M�B(N)) 
 

Figure 3. General scheme of the iterative reduced search DP in the bounded state space. 
 
 
3. Min-� problem for multiple objects 
We first formulate the multiple-objects min-� problem, and then generalize the full 
search dynamic programming from the single object to the case of multiple objects. 
The iterative reduced search approach is then described. 
 
3.1 Problem formulation 
Consider the problem of joint approximation of multiple polygonal curves (objects), 
where we have K polygonal curves P1, …, PK. The total number of vertices is 
N = �Nk, where Nk is the number of vertices in the object Pk. We have to approximate 
the set of polygonal curves by another set of polygonal curves Q1, …, QK. The total 
number of approximation line segments is �Mk, where Mk is the number of segments 
allocated to the approximation of a single polygonal curve Qk. 

The approximation min-� problem for multiple objects can be formulated as follows: 
find the optimal approximation of the curves P1, …, PK by polygonal curves 
Q1, …, QK with minimum error E under the given constraint on the total number of 
segments: �Mk � M. 
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The approximation error E = Ek(Pk, Mk) of the input polygonal curve Pk by the output 
polygonal curve Qk is the sum of the errors of the approximation of curve segments 
{ pk,i, …, pk, j} of Pk by the line segments (qk,m, qk,m+1) of Qk (see Eq.2): 
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The total approximation error E(P1, …, PK, M) with measure L2 is defined here as the 
sum of approximation errors for all objects Pk: 
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To obtain the optimal approximation of K objects we have to solve the following 
optimization task: 
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Two approaches have been proposed in [41] for the problem. The first approach is 
based on the Lagrangian multipliers method, which uses the DP algorithm for the 
shortest path in a directed acyclic graph. The second one is based on a tree-pruning 
algorithm. The complexity of the first algorithm is O(N2 log N) because it is defined 
by the complexity of the shortest path algorithm and the number of bisection 
iterations. The pruning-based approach is a one pass variant algorithm with the 
complexity of O(N2), but the efficiency of the pruning scheme cannot be guaranteed 
in general. 

Algorithms with the complexity of higher than O(N2) can be used when N is relatively 
small. In the case of vector maps and digitized drawings, however, we have to process 
a large number of curves, and therefore, O(N2) can be too slow in practice. 

 

  

Figure 4. Illustration of the multiple-goal state space �k for sample problem of Nk=34 (left), 
and the multiple-goal bounding corridor for sample problem of Nk=34 and Mk=12 using 
corridor width W=3 (right). The reference path H(m) is marked with dark gray circles, and the 
goal states with gray squares. 
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3.2. Full search algorithm 
Let us consider the cost (rate-distortion) function gk(Mk), which represents the 
approximation error for object Pk as a function of the number segments Mk: 
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The optimization task for the approximation error can be rewritten using the cost 
functions gk(Mk) as follows: 

  (11) .:tosubject)(min),...,,(
11}{1 MMMgMPPE

K

k
k

K

k
kk

kMK �� ��
��

The approximation problem for multiple objects differs from that of the single object 
problem in the following: in addition to the minimization of the individual objects we 
have to find the optimal numbers of segments Mk allocated to the objects {P1, …, PK}.  

The joint optimization problem can be solved by three step dynamic programming 
approach as follows: 

Step 1. Solve the optimal approximation of every object by multiple-goal 
dynamic programming in order to obtain the cost functions {gk(Mk)}; 

Step 2. Solve the optimal allocation of the number of segments among the 
objects using the cost functions given by Step 1; 

Step 3. Re-solve the optimal approximation of every object using the number of 
segments given by Step 2. 

In step 1, we solve the optimal approximation of every object Pk using multiple-goal 
state space �k as shown in Fig. 4 (left). In other words, we solve rate-distortion 
function gk(Mk) as the minimum approximation error of the object Pk with all possible 
number of segments Mk in the range [1, min{M, Nk–1}]. The bounds of the state space 
are defined as follows: 
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In step 2, the optimal allocation of the segments Mk

(opt) is found in order to minimize 
the total approximation error E(P1, …, PK, M). Let us consider the function Gk(m) as 
the minimum approximation error of k objects with the total number of m segments: 

  (13) ).,,...,()( 1 mPPEmG kk �
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The problem of the optimal allocation of the constrained resource {Mk} among the K 
objects can be solved by dynamic programming method with the following recursive 
equations [44] for the given functions {gk(Mk)}: 
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The function G1(m) for one object (k=1) is given as follows: G1(m)=g1(m), where  
m=1, …, min{M, N1�1}. The error of the optimal approximation of K objects with M 
segments is given as E(P1, …, PK, M)=GK(M). 

In step 3, we solve the optimal solution Hk(m) for every object Pk with the found 
optimal number of segments Mk

(opt). The optimal solutions are solved by the same DP 
algorithm as applied in the first step but now with the fixed numbers of segments 
Mk

(opt) given by the second step. 

The time complexity of the first step is O(Nk
3) for one object, and O(�Nk

3) for all 
objects. This sums up to O(N3) in the worst case. The time complexity of the second 
step is O(KM2). The time complexity of the third step is O(Mk

(opt)Nk
2) for one object, 

and O(�Mk
(opt)Nk

2) for all objects. This sums up to O(MN2) in the worst case. The time 
complexity of the whole algorithm is dominated by the complexity of the first step, 
and is therefore O(N3).  

The space complexity of the first step is determined by the memory requirement of 
the full search DP algorithm for the approximation of the biggest object: max{Nk�Nk}, 
which is O(N2) in the worst case. The space complexity of the second step with 
dynamic programming procedure is O(K�M). The memory requirement of the third 
step is defined by the memory needed for approximating the biggest object with the 
found optimal number of segments: max{Mk

(opt)�Nk}. The total space complexity of 
the algorithm is therefore determined by the complexity of the first step, which is 
O(N2).  

 
3.3. Iterative reduced search algorithm 
The full search DP algorithm introduced in Section 3.2 has the following drawbacks: 

�� The time complexity of the algorithm is O(N3), which can be too much for 
vector data with long curves of thousands of vertices. 

�� The memory requirements of the algorithm is O(N2). This can also be a limiting 
factor for processing of large vector maps with long curves. 

We next generalize the iterative reduced search to the problem under consideration. 
We follow the main idea of the reduced search by reducing the search space by 
a given preliminary solution for the approximation, and then perform the search in the 
reduced space iteratively. The main difference to the full search is that a smaller 
search area is needed, which makes the algorithm faster. It also eliminates the need of 
the third step because of smaller memory requirements. 

The algorithm for multiple-object min-� problem with reduced search consists of the 
following steps: 

Step 1: Find preliminary approximation of every object for given initial 
number of segments; 
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Step 2: Iterate the following: 
a) Apply multiple-goal reduced search dynamic programming for the 
previous solution to define the cost functions gk(Mk); 
b) Solve the optimal allocation of the number of segments among the 
objects using the cost functions gk(Mk). 

In step 1, we find a set of reference solutions {Hk(m)} for every object Pk using any 
fast sub-optimal approximation algorithm. In this work, we use the Douglas-Peucker 
algorithm [18]. Initial values for the number of segments Mk

(0) are then calculated by 
distributing the total number of segments uniformly proportional to the number of 
vertices in each object Nk: Mk

(0)�NkM/N.  

In step 2a, multiple-goal state space �k is constructed for each object with the 
following goal states: Mk	[ak, bk], where ak = max{1, Mk

(0)–c1}, 
bk = min{Mk

(0)+c2, M(0), Nk–1}, and c1=
W/2�, c2=W–c1. Each state space �k is then 
processed by the reduced search algorithm using revised bounding corridor of width 
Wk = bk–ak+1�W. The result of the search is Wk solutions {Hk(m)} with the 
corresponding rate-distortion function gk(Mk) in the range Mk	[ak, bk]. If the corridor 
width Wk is small (W � 32), the found paths {Hk

(1)(m)} are stored in one-dimensional 
array of size Nk in order to avoid recalculation of the solutions later. 

The left Lk(m), right Rk(m), bottom Bk(n) and top Tk(n) bounds of the multiple-goal 
bounding corridor are defined as follows: 
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In step 2b, we find for every object Pk the optimal number of segments Mk in the 
range [ak, bk]. The optimal allocation of the constrained resource {Mk} among the K 
objects P1, …, PK with the given cost functions {gk(Mk)} can be solved by dynamic 
programming with the following recursive expression (k=1, …, K):  
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The required value of the approximation error for K objects by M linear segments is 
defined from the cost function Gk(m) as follows: E(P1, …, PK, M) = GK(M). Finally, 
for every object Pk we restore the optimal solution Hk(m) with the found number of 
segments Mk

(1) from the stored paths {Hk(m)}.  

The found numbers of segments {Mk
(1)} are restricted to the range [ak, bk], and they 

can provide only local minimum of the approximation error E(P1, …, PK, M). To find 
the global optimal allocation of the resource {Mk

(opt)} for the whole range of segments 
number, the iterations are necessary. The output solution of the previous iteration is 
used as the reference solution in the next iteration. The steps 2a and 2b are repeated 
until no changes appear in the approximation error values GK(M). The number of 
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iterations depends on the bounding corridor width and how close the initial 
distribution of segments number {Mk

(0)} is to the optimal distribution {Mk
(opt)}.  

 
Algorithm for multiple-objects min-e problem 

// Step 1: Preliminary approximation 
FOR k = 1  TO  K  DO 
    Mk

(0) �NkM/N; 
    {Qk} � FindPreliminaryApproximation(Pk, Mk

(0)); 
ENDFOR 
 
// Step 2: Iterative search 
i � 1; 
REPEAT  
    // Approximation of the objects 
     FOR k = 1  TO  K  DO 
          ReducedSearchDP(Pk, Mk

(i)); 
          gk

(i) � CostFunction(Pk, Mk
(i)); 

      ENDFOR 

     // Allocate resource 
     {Mk

(i+1)} � ResourceAllocation({gk
(i)(m)}, {Mk

(i)}); 
         Qk � H(Mk

(j)) 
      i � i+1; 
UNTIL no changes  
 

Figure 5. Iterative reduced search algorithm for the multiple object min-� problem. 

 
While we iterate the algorithm to find the optimal distribution of the segments number 
Mk, we simultaneously optimize the location of the approximation vertices {qk,m} for 
the current number of segments Mk. Finally, the algorithm converges to 
approximation solution for all objects P1, …, PK.  

The time complexity of the algorithm is dominated by the first step. The processing 
time is �(Wk

2Nk
2/Mk) in comparison to �(Nk

3) of the full search. This can be roughly 
estimated as O(W2N2/M), which varies from O(N) to O(N2) depending on M. The 
processing time for the second step is reduced by a factor of O(W/M)2 from the full 
search because the search range is reduced from M to W. The time complexity of the 
second step is O(KW2) in comparison to O(KM2) of the full search. At the third step, 
we restore the optimal solutions for the found number of segments from the stored 
paths. The time complexity of this simple procedure is O(N).  

To sum up, the time complexity of the reduced search algorithm for multiple-object 
min-� problem is defined by the first step, and it is between O(N) and O(N2). This is 
better than the O(N3) of the full search, and the O(N2logN) of the method proposed 
in [41]. 

The space complexity of the first step is reduced to max{W�Nk} from max{N2
k} of 

the full search as W<<Nk. The memory requirement of the second step is also reduced 
from K�M to K�W. In the third step, no additional memory is needed for restoring the 
optimal paths. The total space complexity of the proposed algorithm is defined by the 
complexity of the first step, which is O(WN). 
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3.4. Approximation of closed contours 
In the case of closed contours, we have to optimize the selection of the starting points 
as well. It can be done with the near-optimal algorithm we introduced recently in [40]. 
The proposed algorithm is based on reduced search dynamic programming algorithm 
for open curves [43]. It performs approximation of a cyclically extended input contour 
of double-size and then makes analysis of the state space to select the best starting 
point.  

The processing time is double to that of the approximation of the corresponding open 
curve. The efficiency of the approach depends on the characteristics of the contours to 
be approximated, the number of segments, and the initial location of the starting 
points. For smooth curves with big number of approximation segments and 
a reasonably good initial selection for the starting points the improvement of the 
approximation can be negligible. In the case of contours with sharp corners and small 
number of segments, however, it can be worth to reduce the approximation error at 
the cost of double processing time. The selection of the relevant strategy depends on 
task in the question, the properties of the vector data, and the time resources.  

4. Results and Discussion 

In order to evaluate the quality of sub-optimal algorithms, Rosin [15] introduced 
a measure known as fidelity (F). It measures how good a given sub-optimal solution is 
in respect to the optimal approximation in terms of the approximation error: 

 100min
��

E
EF .  (17) 

We test the proposed methods using the shapes shown in Fig. 6. The first and second 
shapes are didactic examples of the single and multi-object cases. The third shape 
contains geographic elevation lines from a sample map somewhere in Finland [45], 
and the fourth one is a large-scale vector map of Europe.  

 

   
N=5004K=1 

 
N=445 
K=4 

N=38924 
K=569 

N=169673 
K=365 

Figure 6. Test data from left to right: Shape #1 is a digitized curve from [13]; #2: “Diamond” 
and “Leaf”; #3: Elevation vector map; #4: Vector map of Europe. Here N is the total number 
of points, and K is the number of objects. 
 
4.1. Iterative reduced search for single object 
The iterative reduced search is first illustrated for the test shape #1 in Fig. 7. The 
preliminary approximation with M=100 is made by the Douglas-Peucker method [18], 
which is then improved by iterative reduced search DP algorithm with corridor width 
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W=10. The fidelity of the initial solution is F0=42%, fidelity of the solution after the 
1st iteration is F1=99%. The corresponding running times are T = 0.2 s for the 
preliminary approximation and T = 2.3 s for one iteration of the reduced search for 
Pentium-430 [43].  

With the full search DP algorithm of Perez and Vidal [8] the optimal result for the 
same test shape is achieved in T=500 s, and with fast optimal algorithm of Salotti 
optimal result is achieved in T=190 s [13, 43].  

 

 
Figure 7. Result of the approximation of test data #1 with M = 100 segments using Douglas-
Peucker algorithm (left), the iterative reduced search after the first iteration (middle), and the 
corresponding state space and the bounding corridor of width W=10 (right). 

 
4.2. Full search for multiple objects  
The full search DP for the test data #2 was illustrated already in Fig. 1, which contains 
N=445 vertices, and M=33 linear approximation segments. In this and the following 
tests, we use Pentium-733 MHz. The number of segments is uniformly distributed 
among the objects using the data reduction ratio of 445:33, so that the number of 
segments is MD=3�9 for the “Diamonds”, and ML=6 for the “Leaf”. It can be observed 
from Fig. 1 that this number of segments for “Leaf” is too small for adequate 
representation of the shape. Meanwhile, the shape “Diamond” is over-sampled. With 
optimal allocation of the resources using the full search algorithm, the number of 
segments is reduced from 27 (3�9) to 12 (3�4) in “Diamond”, and extended from 6 to 
21 in “Leaf”. The corresponding approximation error is reduced from E=17729 to 
E=356. 

The test data #3 contains N=38924 vertices in K=569 objects, and the approximation 
data M=7784 linear segments (N:M = 5:1). The processing time for the first step is 
124.1 s; the time for the resource allocation is 7.3 s, and the time for restoration of the 
optimal solutions is 27.2 s. In total, the processing time of the full search algorithm is 
156.6 s. 

The test data #4 consist of K=365 shapes with N=169673 number of points. The data 
include several long curves up to 10,000 vertices. The approximation data contain 
M=8483 linear segments corresponding to the reduction ratio of N:M =20:1. 
Calculation of the result even for one 10,000-vertex object (finding of 10,000 optimal 
solutions) with full search algorithm takes hours of computation. The memory 
requirements are also very high (about 600 Mbytes for the single 10,000-vertex 
curve). With the current hardware, we cannot perform the approximation of this data. 
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4.3. Iterative reduced search for multiple objects 
At first we find approximation for the test data #3 (see Fig. 9). The initial number of 
segments is proportional to the number of vertices: Mk�NkM/N. After one run of the 
optimization procedure with W=10 the vector data is approximated with fidelity 
F1 = 50.3% in T1=1.7 s. Fidelity of F15 = 99% is reached after 15 iterations in 
T15 = 18.7 seconds, and the optimal result after 20 iterations in T20 = 22.3 seconds. 

 

  

  

Fig. 9: Approximation results for test data #3: a) Douglas-Peucker algorithm (E0 = 892158); 
b) result after the 1st iteration (E1 = 246903); c) final result (E20 = 124093); d) Fidelity of the 
approximation as a function of time. 
 
Next we find approximation of the test data #4 with iterative reduced search using 
corridor width W=10 (see Fig. 10). After the first iteration the fidelity F1=89.5% was 
achieved (T1=23.1 s). Near-optimal result with fidelity F8=99% was achieved after 
8 iterations (T8=110 s). The solution of fidelity F22�100% was obtained after 22 
iterations (T22=159 s). Since the solution of the full search algorithm is not available, 
the fidelity is calculated in this case relative to the best solution found. As the 
algorithm converged to the same result with all parameter values W=8-32, we expect 
that it is also the optimal solution. 
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Fig. 10: Fragment of test data #4: a) Douglas-Peucker algorithm (E0 = 58.4); b) result after 
the 1st iteration (E1 = 22,1); c) the final result (E22=19.76); d) fidelity of the approximation as 
a function of time. 
 
 
The effect of the corridor width is reported in Table 1 as the number of iterations (and 
running time respectively) needed to obtain approximation with fidelity of 90%, 99% 
and 100%, respectively. The use of a wider corridor increases the processing time of 
a single iteration but, at the same time, decreases the total number of iterations 
needed. The overall results are roughly equal for most of the parameter values tested 
in respect to the time-distortion performance. The exceptions are the smallest 
parameter values (W=4-6), which do not always result in the optimal solution 
although quite close anyway (�99% fidelity). On the basis of the results, we 
recommend parameter value W=10 and conclude, that the exact choice of the 
parameter is not crucial for the performance of the algorithm. 

 
Table 1: The minimum number of iterations and the corresponding run times in which the 
algorithm reaches certain fidelity level with the test data #3 and #4. 

90 % fidelity 99 % fidelity Final result 
#3 Iterations Time (s) Iteration Time (s) Iterations 

(Fidelity, %) 
Time (s) 

W=4 36 17.4 58 26.5 58 (99.95) 31.1 
W=6 18 13.3 29 19.7 29 (100) 23.5 
W=8 12 12.0 19 18.2 19 (100) 22.1 
W=10 9 11.8 14 18.7 14 (100) 22.2 
W=12 7 11.3 12 18.8 12 (100) 24.5 
W=14 6 11.7 10 19.0 10 (100) 26.4 
W=16 5 11.6 9 20.2 9 (100) 26.6 
W=20 4 12.1 7 30.8 7 (100) 30.8 
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90 % fidelity 99 % fidelity Final result 

#4 Iterations Time (s) Iterations Time (s) Iterations 
(Fidelity, %) 

Time (s) 

W=4 4 24 44 118 67 (99.2) 140 
W=6 3 28 17 89 36 (99.4) 114 
W=8 3 29 12 107 28 (100) 145 
W=10 2 38 8 106 22 (100) 159 
W=12 1 26 7 119 19 (100) 174 
W=14 1 32 6 135 16 (100) 192 
W=16 1 37 5 144 14 (100) 210 
W=20 1 50 4 165 12 (100) 254 

 
 
The main results of the reduced search are summarized in Table 2, and compared to 
that of the full search. Vector data with a moderate number of objects and vertices 
(Sets #1, #2 and #3) can also be processed with the full search but the reduced search 
is significantly faster. In the case of a very large data set, however, the memory 
requirements were too large and the approximation would have taken hours. In such 
case, the reduced search should be used. 
 
Table 2: Summary of the fidelity and the processing times (seconds) for the iterative 
reduced search. 

Initial Full search Reduced search Set N K M 
Fidelity Time Fidelity Time Fidelity Time 

#1  5004 1 100 42% 0.20 100% 500 100% 7.5 
#2 445 4 33 5% 0.04 100% 0.06 100% 0.07 
#3 38924 569 7784 14% 0.45 100% 157 100% 22.3 
#4 169673 365 8483 34% 4.30 N/A N/A �100% 159 

 
 
 
5. Conclusions 
In the paper, the min-� problem of optimal approximation of multiple-object vector 
data was considered. We introduced two algorithms for solving the problem based on 
dynamic programming: full search and iterative reduced search. The algorithms 
optimize the number of segments and the approximation of the individual objects 
jointly. Experimental results indicate that the proposed algorithm reaches the optimal 
solution in all cases tested even though the optimality cannot be guaranteed in 
general.  

The iterative reduced search algorithm has time complexity of O(N)–O(N2) depending 
on the number of segments. This is significantly smaller than the O(N3) of the full 
search, or the O(N2log(N)) of [41]. The reduced search approach is also applicable for 
very large data sets with reasonable memory requirements. The algorithm can also be 
tuned for obtaining very fast sub-optimal solutions by reducing the number of 
iterations and corridor width. 
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