
MERGE–BASED COLOR QUANTIZATION AND CONTEXT TREE MODELING FOR
COMPRESSION OF COLOR QUANTIZED IMAGES

Alexey Podlasov and Pasi Fränti

Speech and Image Processing Unit
Department of Computer Science

University of Joensuu
P.O.Box 111, 80101 Joensuu, Finland

{apodla, franti}@cs.joensuu.

ABSTRACT

A two-stage lossless compression method based on a binary
tree representation of colors and on context-based arithmetic
coding has been recently proposed. We propose two
improvements to this method: merge-based color
quantization instead of the original splitting strategy, and
context tree modeling optimized for each layer separately.
The proposed method achieves better compression
performance, and a better reproduction quality in the color
progression.
Keywords: progressive image coding.

1. INTRODUCTION

Color-quantized and palette images are widely used in web
and on low-cost devices, which are typically restricted by a
low number of colors displayed simultaneously. Lossy
compression is not always applicable since the degradation
of the quality cannot be tolerated in many applications. On
the other hand, lossless algorithms optimized for
compression of photographic images lack the compression
efficiency since the correlation between image indexes in
palette images can be lost.

Significant progress has been made in recent years in
palette- and color-quantized-oriented lossless compression.
Typically, two principal approaches have been considered.
The first approach uses color map reordering [1], which
revives index correlation, followed by compression with
existing techniques such as JPEG-LS [2] or CALIC [3]. The
second approach concentrates on the development of
specific, well-tuned coding techniques. Successful examples
of such algorithms are PWC [4] and EIDAC [5].

Chen et al. [6] has proposed an algorithm following
the second approach. Besides the efficient compression it
also provides lossy-to-lossless progressive encoding
allowing to stop the transmission when the desired quality
level is reached. The algorithm consists of two main stages:
color indexing and context-based arithmetic coding. At the

indexing stage, the palette of the image is represented by a
binary tree. The root of the tree corresponds to all colors
appeared in the image. Two children of the root divide the
root’s color set into two subsets. Every node is divided in
the same manner until every single color gets its own leaf
node. The tree is constructed minimizing the distortion
caused by the color quantization. At the coding stage, the
tree is traversed starting from the root. For each node, the
encoder sends the weighted average color of each of its two
children and a bitmap indicating the location of the pixels
having a color change. The bitmap is encoded by a binary
context-based arithmetic coder.

In this paper, we follow the principles proposed by
Chen et al. and consider two improvements of the original
algorithm. First, we propose merge-based tree construction
[7]. Then, we consider improved encoding of pixel locations
based on highly-optimized context tree modeling [8]. We
show that the applied techniques achieve improvement both
in compression performance and in quality of the color
progression.

2. COMPRESSION SCHEME OUTLINE

In this section, we briefly outline Chen’s compression
algorithm, and its improved variant [9].

2.1. Binary tree color indexing

For the description of tree construction scheme, we use the
formulation as presented in [9]. We denote the color palette
of an image as a set of RGB triplets C = {c1, …, cM}, where
M is the total number of colors. Let S0 = {1, 2, …, M} be
the set of indexes identifying the colors in the palette, where
index i corresponds to the color ci. The number of pixels of
color ci is denoted pi. Each node j of the binary tree
represents a certain subset of the color palette. This node is
referred using the corresponding set of indexes sj. Every
color set is associated with a representative color qj, which
is given by the weighted average color of the node,

22771­4244­0481­9/06/$20.00 ©2006 IEEE ICIP 2006

�

�

∈

∈
=

j

j

si
i

si
ii

j p

cp

q

The tree is constructed in a top-down manner starting
from the root. Whenever the color set associated with a
node contains more than one color, the node is split into
two, in such a way that the two new subsets of colors are
separated by a hyperplane that is perpendicular to the
principal direction of the data and passes through the
average color value qj. The principal direction of the data is
given by the eigenvector of largest eigenvalue of the
covariance matrix of the weighted colors in sj, Cj, where

)(t
ii

si

t
iiij qqccpC

j

�
∈

−= .

When the tree is constructed, every color of the image
palette is associated with a unique variable-length binary
sequence representing the path in the tree. When
decompressing the sequence, we know that the first bits
represent the most important part of the color information.
In this way, the binary tree representation assigns indexes to
the image colors so that neighboring indexes are assigned to
neighboring colors, converting the correlation of colors into
the correlations of indexes. This property is utilized for
obtaining higher compression efficiency for color-quantized
images.

2.2. Image encoding

The encoding starts from the first node of the tree for which
its representative color value q0 is transmitted. The
following procedure is then applied for every node of the
tree:

1. Choose the node m for processing.
2. Transmit the index of the node and the representative

colors of its two children qm
l and qm

r.
3. Encode the location of the pixels, whose colors

belong to the sets sm
l and sm

r.

The node to process is chosen according to the largest
associated eigenvalue of Cj. The values qm

l and qm
r are the

representatives of the color sets sm
l and sm

r, associated with

m’s two child nodes (note, that sm = sm
l
� sm

r).

The pixel locations are encoded by a context-based
arithmetic coder. Chen et al. proposed to use an 8-pixel
fixed-order context template (see Figure 1, left context).
Since the location of the pixels whose color belongs to sm is
known to the decoder, we only need to encode, for each of
those pixels, which now belongs to sm

l and which to sm
r. The

information to be encoded is binary and for every pixel

which color q � sm we encode a bit b0, defined as

��

�
�
�

∈

∈
=

r
m

l
m

sq

sq
b

,1

,0
0 .

The context is constructed using a sequence of bits
b1, …, b8, where

��

�
�
� −≤−

=
otherwise

qqqq
b

r
m

il
m

i

i

,1

,0
,

and qi denotes the color of the pixel from the reconstructed
image corresponding to the position i of the context
template.

?15

4237

69

?

14

2

3 76

10

8 911

5

Figure 1. Sample contexts obtained by Chen’s algorithm (left) and
a sample context constructed by the context-tree approach (right).

In order to achieve better compression performance and
avoid context dilution problem, Chen et al. considered a
variable size context. Instead of using all 8 template
locations, only first k are used, where k is defined by the
relation

� �nnk 2log9)(−= ,

where n-1 is the number of colors already encoded.
Recently, Pinho et al. [9] proposed another context

adaptation model for Chen’s algorithm. The generalization
of context size function k(n) is considered as

� 	nNnk 2log)()(−= α ,

where �(N) = mlog2N + b is a function of the number of
pixels in the image. The values m and b are tuned using test
images. This scheme takes into account the size of the
image and results in about 4% compression improvement
over Chen’s algorithm.

3. PROPOSED APPROACH

The original algorithm assumes split-based (top-down) tree
construction method. Though this scheme allows combining
the tree construction with the encoding into one process,
this algorithm lacks quantization quality. Its visual
appearance is illustrated on a sample color images (see
Figure 2, upper row). We consider another simple and
popular quantization heuristics using a bottom-up approach
[7]. The algorithm is based on agglomerate (tree-structured)
clustering and it provides more precise quantization and
better visual appearance (see Figure 2, lower row). Besides
that, we apply free-tree context modeling [8], instead of a
variable-size static-order modeling used by Chen et al. The
overall scheme is illustrated on Figure 3.

2278

1 2 3 4 5

Figure 2. Illustration of the tree-structured quantization. Quantization steps are shown from left to right. Upper sequence corresponds to the
split-based tree construction, and the lower sequence represents merge-based tree construction.

Palette

Binary-tree
representation

Step I: Tree construction Step II: Progressive encoding

CT modeling &
arithmetic coding

Color identifiers Code stream

Figure 3. Two steps of the proposed algorithm.

3.1. Merge-based tree construction

The algorithm constructs the tree bottom–up using a
sequence of merge operations. First, every color ci of the
image palette C = {c1, …, cM} is associated with a leaf
node in the tree. At each step, two color nodes are
merged. The nodes are selected so that their merging
causes minimal increase in distortion. The distortion dij

caused by the merging of two color sets si and sj, is
calculated by

2

ji
ji

ji
ij qq

nn

nn
d −

+
= ,

where qi and qj are the color representatives of the
corresponding sets, and ni is the number of pixels that
belongs to the set si, defined as

�
∈

=
isi

ii pn

The value nj is defined analogously. The parent node is
associated with the merged color set. The process
continues until only one node is left in the tree. After the
tree is constructed, it is applied for color progression and
compression in the same top-down manner as in the
original algorithm.

3.2. Context tree modeling

Context tree is a highly optimized form of context
modeling technique, which has shown to be an efficient
tool in compression. It provides more flexible approach
for modeling the contexts so that a larger number of
neighbor pixels can be taken into account without the
context dilution problem. The contexts are represented by
a binary tree, in which the context is constructed pixel by
pixel and the memory is allocated only for contexts that
are really present in the image avoiding extensive
memory consumption.

In free-tree variant [8], the location of the template
pixels is also optimized. The position of the next context
pixel is determined at each step. When a new child is
constructed, all possible positions for the next context
pixel are analyzed within a predefined search area, and
the position resulting in maximal compression gain is
chosen. The construction is stopped when increasing the
context size does not give any further improvement in the
probability estimate, giving the optimal context size. The
sample context constructed by the free-tree is illustrated
in Figure 1, right context.

2279

Table 1. Compression performance of PNG, Pinho et al. and
PNN-Free Tree algorithms on a palette image test set.

Image PNG
Chen
et al.

Pinho
et al.

Proposed

pc 360291 135051 117794 91220
books 20754 8102 8047 7950
music 2800 830 829 814
winaw 33182 13046 12980 11366
party8 10140 3341 3442 2933
netscape 40546 11176 11176 11146
sea_dusk 2712 1497 1595 1128
benjerry 6239 2847 2848 2921
gate 47446 15329 15302 15057
descent 39738 17911 17853 17157
sunset 136966 59806 59489 58335
yahoo 11912 5764 5771 6442
Total 712726 274700 257126 226469

Table 2. Compression performance of PNG, Pinho et al. and
PNN-Free Tree algorithms on a natural image test set.

Image PNG
Chen
et al.

Pinho
et al.

Proposed

airplane 381946 121424 121121 122337
anemone 575643 164523 164073 163486
arial 715586 238231 235740 228611
baboon 597818 178131 177768 175876
bike3 1074229 287320 278711 274248
boat 520232 150633 148546 151991
clegg 966435 344181 326807 337366
cweel 299722 122990 108225 102530
fractal 245480 241345 238026 239310
frymire 787184 323584 286396 267087
ghouse 699103 214900 208669 201592
girl 398164 134186 132364 135017
Total 7261542 2521448 2426446 2399451

The drawback of the approach is that the context tree
should be transmitted to the decoder increasing the size of
required side information. For some images this increase
overweights the compression improvement. In order to
overcome this drawback we implemented a combined
scheme. On every encoding step, we compare the
performance of Chen’s and free-tree context modeling
schemes, choose the best and transmit a flag bit indicating
which modeling scheme is used.

4. EXPERIMENTS

We tested our algorithm on the set of images used in [9].
The images are separated into two classes: palette images
(of synthetic nature) and natural images. The proposed
algorithm is compared to the PNG compressor, the
original Chen’s algorithm [6], and Pinho’s modification
[9]. For palette images, our algorithm outperforms the
Chen’s algorithm by 17.5%, in total, and the Pinho’s
modification by 11.9%, though negative improvement
was obtained on some individual images. The tests on
natural image test set show that Chen’s algorithm is
outperformed by 4.8%; and minor improvement of 1.1%
is obtained to Pinho’s method. All three techniques
clearly outperforms PNG compressor for both test sets.

5. CONCLUSION

We proposed bottom-up tree construction based on
sequence of merging and tree-based context modeling for
color-quantized image coding. The proposed algorithm
improves the compression by about 12% for a set of
palette images, and about 1% for a set of natural images.

6. REFERENCES

[1] A.J. Pinho and A.J.R. Neves, “A survey on palette
reordering methods for improving the compression of

color-indexed images”, IEEE Trans. on Image
Processing, vol. 13, no. 11, pp. 1411-1418, Nov. 2004.

[2] M. Weinberger, G. Seroussi, G. Shapiro, “The LOCO-I
lossless image compression algorithm: Principles and
Standartization into JPEG-LS”, IEEE Trans. on Image
Processing, 9 (8), pp. 1309-1324, 2000.

[3] X. Wu, N. Memon, “Context-based, adaptive, lossless
image coding”, IEEE Trans. on communications, 45(4),
pp. 437-444, 1997.

[4] Ausbeck, P.J., Jr. “The piecewise-constant image model”
Proceedings of the IEEE, Vol. 88, Issue 11, pp. 1779–
1789, Nov 2000.

[5] Y. Yoo, Y. G. Kwon, A. Ortega, “Embedded image-
domain compression using context models”, Proc. of
IEEE Int. Conf. on Image Processing 1999 (ICIP 99),
Kobe, Japan, vol. 1, pp. 477–481, 1999.

[6] X. Chen, S. Kwong, and J.-F. Feng, “A new compression
scheme for color-quantized images”, IEEE Trans. on
Circuits and Systems for Video Technology, vol. 12, no.
10, pp. 904-908, Oct. 2002.

[7] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang,
“Fast and memory efficient implementation of the exact
PNN”, IEEE Trans. Image Process., vol. 9, no. 4 pp. 773-
777, May 2000.

[8] B. Martins and S. Forchhammer, “Bi-level image
compression with tree coding,” IEEE Trans. Image
Process., vol. 7, no. 4, pp. 517-528, Apr. 1998.

[9] A.J. Pinho and A.J.R. Neves. A context adaptation model
for the compression of images with a reduced number of
colors. Proc. of the IEEE Int. Conf. on Image Processing,
ICIP-2005, September 2005, Genova, Italy.

2280

