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Abstract 

The thesis is dedicated to processing of map images for improved filtering and 
compression. The main purpose of the study is the developing of optimized algorithms 
taking the properties of map imagery into account for improving performance of map 
processing techniques. The research consists of two major areas. 

The first topic is layer-wise enhancement and compression of map images. Firstly 
we propose binary morphological restoration technique for semantic layers of the map. 
The proposed technique reconstructs layers corrupted by color overlapping and allows 
achieving better map image compression. Secondly, we study bit plane separation, 
predictive modeling and highly optimized context modeling for compression of natural 
and palette images. Extensive evaluation of standard and novel compression techniques 
is presented. 

The second part of the thesis is dedicated to context tree modeling for filtering and 
compression of map images. Firstly, we propose generalized context tree based 
statistical filter for map images. The filter uses variable-size local probability estimator 
for effective detection of statistical inconsistencies and preserving the detailed areas of 
the image. Secondly, we propose the using of optimized free tree modeling and better 
color quantization for recently proposed progressive lossy-to-lossless compression 
algorithm. The new algorithm provides better compression and quality of the lossy 
progression. Thirdly, we propose a novel scheme for lossy compression of scanned map 
images based on color quantization and generalized context tree modeling. The new 
approach provides better lossy performance in sense of compression-quality tradeoff. 
 
Keywords: Map images, lossless compression, lossy compression, reconstruction, 
filtering, context tree, bit plane separation, mathematical morphology. 



 iv 



 v 

Acknowledgments 

I am very thankful to my supervisor Prof. Pasi Fränti for his support and guidance 
over the years I've spent in Speech and Image Processing Unit at the Department of 
Computer Science and Statistics, University of Joensuu. 

I owe many thanks to Dr. Alexander Kolesnikov for his help, inspiring ideas and 
valuable advices. Working with you was a great pleasure for me. 

I would like to express my gratitude to the staff of the department, especially to 
Merja Hyttinen, for her help and patience. I thank all my colleagues, former and 
present, especially Alexander Akimov, Victoria Yanulevskaya, Evgenia Chernenko, 
Ville Hautamäki and, of course, Alexey Andriyashin for making my working life 
more enjoyable and memorable. The supervisor of my master's thesis Eugene 
Ageenko deserves separate thanks for giving me a good start. 

I am indebted to my reviewers Prof. Jukka Teuhola and Prof. Su Yang for their 
benevolence. I thank Prof. Pekka Toivanen for agreeing to be my opponent. 

I sincerely wish to thank Prof. Chih–Cheng Hung and his wife May for hosting me 
on my trip to Atlanta, those days were filled with hospitality and warmth.  

Also, I would like to express my gratitude to Tekniikan Edistämissäätiö for provided 
financial support. 

I am deeply thankful to my beloved parents, Sergei Podlasov and Natalia Podlasova, 
who gave me their love and encouragement. I am proud to be surrounded by 
beautiful friends: Eugene Galiulin, Andrey Dyatlov, Konstantin ‘Foof’ Kozlov, 
Alexey Andriyashin, Ilia and Irina Lysenko and others, please forgive me for not 
mentioning your names =). Most of all, I wish to thank my dear Elena for her 
patience and sincerity. 

 

Joensuu, November 2007 

Alexey Podlasov 



 vi 

 

List of original publications 

P1. Podlasov A., Ageenko E., Fränti P., Morphological reconstruction of semantic 
layers in map images. Journal of Electronic Imaging, 15(1), 013016, January–March 
2006.  

P2. Podlasov A., Fränti P., Lossless image compression via bit-plane separation and 
multi-layer context tree modeling, Journal of Electronic Imaging, 15(4), 043009, 
October–December 2006. 

P3. Podlasov A., Fränti P., Merge-based color quantization and context tree 
modeling for compression of color-quantized images”, IEEE International 

Conference on Image Processing (ICIP’06), Atlanta, Georgia, USA, pp. 2277–2280, 
October 2006. 

P4. Podlasov A., Kopylov P., Fränti P., Statistical filtering of raster map images 
using a context tree model, Int. Conf. Signal-Image Technology & Internet-based 

Systems (IEEE-SITIS'07), Shanghai, China, December 2007. (to appear). 

P5. Podlasov A., Kolesnikov A, Fränti P., Lossy compression of scanned map 
images, 17th International Conference on Computer Graphics and Vision 

(Graphicon’07), Moscow, Russia, pp. 79–83, June 2007. 



 vii  

Contents 
 

1 Introduction     1 

 

2 Image compression    5 
2.1  Lossless compression algorithms    5 
2.2  Context modeling     6 
2.3  Context tree modeling    8 
2.4  Lossy compression algorithms    10 
   2.4.1  Existing methods     10 
   2.4.2  Lossy-to-Lossless approach    11 
   2.4.3  Lossy compression by color quantization ang GCT modeling 12 
 

3 Image filtering     14 

3.1  Existing algorithms     14 
3.2  GCT filtering     16 
 

4 Layerwise processing    18 

4.1  Morphological reconstruction of semantic layers  18 
4.2  Compression of gray-scale images    19 
4.3  Progressive compression via binary layers   21 
 

5 Summary of the publications   22 

 

6 Conclusions     24 

 

7 Future work     25 

 

8 Summary of the results    26 

 

   References     28 



 



 1 

1 Introduction 

The use of Geographical Information Systems (GIS) to provide users with digital 
navigation information is widespread and becoming more and more popular. 
Examples of this are the personal car navigator and PDA-based digital topographic 
maps for foresters, geologists and engineers. Usually the architecture of such 
systems does not depend on the application area. A typical example is a system 
where the user’s coordinates are obtained via a satellite positioning service, such as 
Global Positioning System (GPS), and geographical information about the current 
location is obtained from a local or remote map database.  

Map images in a database can be stored in two principally different formats: 
vector and raster. The vector format assumes that the map is stored as a set of 
geometrical primitives (lines, symbols, curves, textures) describing the image 
content. Each primitive is described by a set of required parameters. For example, a 
straight line segment is described by four real numbers defining the end points. In 
order to be displayed, the data must be projected on a plane with the desired scale 
and rotation, and then drawn on the screen of the client device. However, some 
geographical data is still unavailable in vector form, and the only sources are 
traditional maps printed on paper sheets. Although vectorization is an actively 
developing technology [1][2], a universal non-supervised vectorization algorithm 
still does not exist. It is often too expensive to manually convert such data into 
vector format, and therefore storage in raster format can be a better solution. 

Raster format assumes that the image is stored as an array of values that 
represents the rectangular matrix of pixels forming the picture. Depending on the 
application, the storage of one pixel requires one bit for binary images, one byte for 
gray-scale or indexed images, three bytes for true color, and even more in the case of 
a multi-spectral image. A natural advantage of raster format is that it does not 
require any additional processing for displaying the image. The image can be 
represented immediately after the data is received. A typical way of combining 
vector and raster format in the same system is to use the global database stored data 
as vectors and provide the user with a raster image converted from the vector 
original to represent the area needed. 

The main drawback raster format is that it is not flexible when some 
transformation of the image is needed. For example, zooming, rotation and 
projection of the image are all impossible without degradation. The storage size 
needed is also a problem. In contrast to vectors, raster images store all pixels of the 
line instead of coordinates of the corresponding segment. In the case of geographical 
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maps, the size of digitized images can be huge. For example, in maps from the 
National Land Survey of Finland (NLS) topographic database [3], a single map 
sheet of 10×10 km2 1:20,000 scale is represented by a single image of 5000×5000 
pixels, which requires about 70 Mbytes of memory to be stored. Another example is 
a map of A4 size scanned with 300 dpi in true color, which results in a 2500×3500 
pixel image requiring about 25 Mbytes. The necessity for image compression is 
obvious since more efficient storage space utilization as well as faster map 
transmission is needed to make digital navigation services more usable, reliable and 
cheaper. 

Features that are distinctive for map images can be characterized as follows. A 
map image contains only a few unique colors; in cases where the image is converted 
from a vector source the number of colors rarely grows higher than several tens. A 
map image also contains a lot of uniform areas representing particular regions like 
water, forests or background. The areas of the map are usually distinctly separated 
from each other. This makes a map image which contains sharp and easily localized 
edges. Smooth gradation is rarely present in map images. A typical map contains 
thin details and symbols, the presence of which is vital for the semantics of the map. 
Features of map images are illustrated in Figure 1. 

 

Uniform areas:

Sharp borders:

Symbols:

Textured areas:

 

Figure 1. Features of a map image. 

In addition to raster maps, which are converted from vector databases, there is 
another class of scanned map images. These images are produced by digitizing 
printed paper maps. Scanned map imagery unintentionally combines the properties 
of natural imagery and converted raster maps. Edges and details on a scanned map 
are smooth since the image is acquired with a physical sensor of the scanner. 
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Besides this, a scanned map image may have special patterns such as dithering. The 
number of paints available in typography is limited and color gradation is usually 
represented as a pattern of color dots. These structures are acquired by a scanner and 
appear in the scanned map image. Typical features of scanned map images are 
illustrated in Figure 2. 

 

Dithering :

Blurring :

 

Figure 2. Features in a scanned map image. 

A typical scanned map can contain hundreds of thousands of unique colors in 
contrast to the converted maps that contain only a few. Though these colors are 
visually grouped around the original colors in the distribution in the color space, 
they are far from being easily clustered. A visual example is presented in Figure 3 
where the color distribution for a sample scanned map image in L*a*b* [4] color 
space is illustrated. One can see that the distribution does not contain clear centroids. 
For example, the water pixels, which are supposed to be grouped around a dominant 
blue color, are actually a mix of blue and white clouds due to the dithering effects. 
The same holds for the yellow fields. For the whole image this effect makes the 
distribution uniformly spread. 

We consider map imagery as a class of images with distinctive properties 
separating them from photographic, computer generated or other classes of images. 
Digital map images (both scanned and converted) are widely used among a great 
variety of users worldwide. However, general purpose algorithms rarely take the 
properties of this kind of imagery into account. The work in this thesis is motivated 
by the fact that better understanding of the properties of map images together with 
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designing and optimization of algorithms exploiting these features can make map 
image processing and compression algorithms more efficient. 

Yellow field area

Blue water area

 

Figure 3. Distribution of colors in a sample scanned map image in L*a*b* color space 

This thesis is aimed at two specific topics. The first topic of the thesis is layer-
wise map image processing for reconstruction and compression. In paper P1, 
lossless compression is improved by trying to reconstruct the semantic layers of the 
map. In paper P2, bit plane separation and binary context-based compression of 
natural and palette images are studied.  

The second topic is dedicated to context tree (CT) modeling. In paper P3, we 
apply highly optimized CT modeling for the progressive lossy-to-lossless 
compression of map images. In paper P4, we propose a CT filter for improving the 
quality of noisy map images. In paper P5, we generalize the method for lossy 
compression of scanned maps. 
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2 Image compression 

Compression algorithms can be separated into two classes: lossless and lossy 
algorithms [5][6][7]. Lossless compression assumes that the data before and after the 
compression-decompression process is equal, i.e. no loss of information occurs. In 
contrast, lossy compression makes no such assumption, and allows distortion to 
happen. This is essential in those situations where some degradation of the data is 
tolerable for the benefit of better compression efficiency. The algorithms of the first 
type (lossless) are used in applications where information loss is not acceptable, e.g. 

compression of text, programs and executable code. In image compression, lossless 
compression can be used for compression of medical images, engineering drawings 
and circuits. The algorithms of the second type (lossy) are applied in photographic 
image, audio and video compression because minor degradation can be tolerated if it 
is visually not perceptible, and because lossless methods alone are inefficient for this 
type of data.  

2.1 Lossless compression algorithms 

Images as a class can be of very different natures, structures and contents. Therefore, 
any successful compression technique is usually adapted to be applied on a 
particular type of images. Lossless image compression algorithms can be organized 
into three groups: continuous-tone, discrete-tone and universal algorithms. The 
compression algorithms referred as continuous-tone are optimized to perform on 
natural imagery, usually photographic or other types of images obtained with a 
physical sensor. Discrete-tone algorithms are designed to perform on other types of 
images that contain fewer colors and less gradation, with more sharp edges and 
uniform areas. Images of this type are mostly of an artificial nature such as web 
graphics, engineering drawings, maps and circuits. Universal compression 
algorithms are usually applied when the type of the data is not predefined. 

Popular universal compression techniques are based on various adaptations of a 
classical dictionary-based LZ77 or LZ78 [13][14] algorithm. For example, 
CompuServe Graphics Interchange Format (GIF) [8], which is widely used for the 
compression of palette images, uses LZC [9] improvement of LZW [10]. The 
Portable Network Graphics (PNG) algorithm [11], which was proposed as the 
replacement for the relatively old GIF, uses DEFLATE [12] algorithm. It uses a 
combination of LZ77 [13] and Huffman coding [15]. The ITU Group 4 algorithm 
[16] incorporated in Tagged Image File Format (TIFF) [17] uses simple data 
compression techniques based on run-length coding, prefix coding and differential 
relative address designate (READ) coding to utilize line to line correlations. 
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However, universal compression algorithms suffer from the one-dimensional nature 
of the method, and thus present relatively low compression efficiency. 

A natural way to increase the efficiency of the compression algorithm is to 
optimize the compressor for the particular class of images. This approach was 
realized in Joint Bi-Level Image Experts Group (JBIG) [18], which is an algorithm 
optimized for bi-level images containing pixels of two types: background and 
foreground. As originally proposed in [21][22], the algorithm is based on local 
probability estimation via context modeling followed by an arithmetic coding [19] 
performed by Q-Coder [20]. The JBIG standard was then expanded by JBIG2 
[23][24]. 

Popular examples of lossless continuous-tone compressors are CALIC and 
JPEG-LS. Context-based adaptive lossless image compression (CALIC) [25][26] is 
based on gradient-adjusted prediction (GAP), which is adjusted via an error 
feedback loop. The residue of the predictor is entropy-coded based on eight 
estimated conditional probabilities in eight different contexts. JPEG-LS [27] is 
based on Low Complexity Lossless Compression for Images (LOCO-I) [28], which 
is also based on context-adaptive prediction and adaptive Golomb-Rice coding 

[29][30].  

Discrete-tone images are of a different nature and prediction-based techniques 
usually fail to present high compression efficiency. Discrete-tone oriented 
compressors exploit different ways of removing the redundancy. For example, the 
Piecewise-Constant Image Model (PWC) compression algorithm [31] uses a two 
pass model to capture the characteristics of a discrete-tone image. During the first 
pass, boundaries between constant color areas are detected. The second pass then 
determines the color of the area. Encoding is performed in an object-oriented 
manner using the PWC language consisting of four decision possibilities. 

Embedded Image-Domain Adaptive Compression (EIDAC) [32] compresses an 
input image as a sequence of bit planes starting from the most significant to the least 
significant bits allowing a progressive transmission. Coding is performed by inter-
layer context modeling and an adaptive binary arithmetic coder providing high 
compression efficiency. 

2.2 Context modeling  

Context modeling is a well known tool which is widely used in image compression 
[22]. The main idea is to estimate the probability distribution of symbols in the input 
data using the knowledge of the context in which the unknown symbol appears. This 
concept is effective when there are statistical dependencies in the data, which holds 
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true for most of the images. Usually, the encoder gathers the statistics of pixel 
occurrences taking into account the configuration of the already processed 
neighboring pixels. Using this information, variable length code words are assigned 
to pixels so that shorter codes are assigned to more probable pixels and vice versa. 

We refer to a configuration of positions of neighboring pixels as a context 
template, i.e. the context template defines the shape of the neighborhood to be 
examined. The choice of the context template is essential for the compression 
performance. We refer a configuration of pixel values in the neighborhood as a 
context. The principles of context-based probability estimation are easy to illustrate 
for a binary case when only back- or foreground pixels are possible in the image. 
Sample 10-pixel context template used in JBIG compression standard [18], and 
sample contexts for a binary and four-color image together with the corresponding 
probabilities are shown in Figure 4. 

× × ×

A B C

× = × =
.12 .88 .37 .11 .3 .22P = P = 

 

Figure 4. A sample 10-pixel context template (left); a binary 10-pixel context with the 
corresponding probability distribution (middle); a four-color 10-pixel context (right) 

with the corresponding probability distribution. 

When using large context modeling, its extensive memory consumption is a 
major problem. With any increase of the context template size the number of 
possible contexts grows exponentially; for an N-pixel context there can be 2N 
contexts in total. In a binary case, one must keep two counters for each context to 
track the probability distribution. Though this number is reasonable for N≈10, any 
further increase of the model size is problematic. Although K number of colors is 
possible in the image, the number of possible contexts raises to KN making the 
storage of K counters for each context impossible. 

Another problem with context modeling is context dilution [66]. Usually, a 
bigger context allows more accurate estimation of the probabilities. However, at 
some point the improvement will stop and any further increase becomes counter 
productive. Since the image is restricted by size, bigger contexts tend not to appear 
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frequently enough to make an accurate estimate of the probability. Wrong estimation 
causes deterioration of the compression efficiency.  

Both problems are usually overcome by considering context tree (CT) modeling 
[22]. The idea behind CT is that although the number of possible contexts is huge, 
the number of contexts actually appearing in an image is upper limited by the size of 
the image. Therefore, if memory is allocated only for really appearing contexts, a 
reliable estimation of the pixel probabilities becomes possible.  

2.3 Context tree modeling 

The storage of pixel counters in CT is organized in a tree structure, see Figure 5. 
The nodes of the tree represent the contexts appearing in the image. Symbol ‘×’ 
denotes the unknown pixel within the particular context. The statistics i.e. the 
counters represent how many times the unknown pixel appeared as a particular 
color. In case of binary image, two counters are needed: NW represents the number 
of white pixels which appeared, and NB represents the number of black pixels. 

The positions of the context pixels in the context template are arranged in a 
predefined order; that is, the construction of the tree starts from the root. For every 
pixel of the image, the algorithm sequentially examines its neighbors according to 
the defined context template. If the first pixel of the template appears as white, the 
transition to the left child node is made; otherwise the right transition is made. The 
process continues recursively: the algorithm examines the second neighbor position 
in a template and makes the transition to the next level of the tree corresponding to 
the value of the next context pixel. With every transition from node to node, the 
algorithm updates the pixel counters according to the value of the current (unknown) 
pixel. In cases where the current transition does not exist, the necessary node of the 
tree is created dynamically. Accordingly, only nodes corresponding to existing 
contexts are created in the tree and no memory is wasted for non-existing pixel 
combinations. 

In order to prevent a context dilution problem the size of the model used must be 
restricted. In context modeling this is usually done by using a context quantization 

approach [67], which is referred as tree pruning. The simplest way is to require that 
every node has children only if the code size provided by the children is less than the 
one provided by their parent. This guarantees that all surplus nodes of the tree will 
be pruned and the undesired increase of the context model will be prevented. 
However, this greedy-style approach does not provide the optimal performance and 
more sophisticated pruning algorithms can be found in literature [68][72][73].  
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Figure 5. Construction of binary context tree 

Although context tree modeling is not restricted to binary images, resource 
allocation problems limit the use of a more general approach for more than two 
colors. The principle of constructing a generalized context tree (GCT) as proposed 
in [72] is illustrated in Figure 6. In contrast to the binary case, the nodes of the tree 
have more than two children. Potentially there are as many children as there are 
colors in the image. Every node must track the appearance counters for all possible 
colors. Pruning is also more complicated in the generalized case. For K children, 
there are 2K pruning configurations and each can provide different code size. The 
selection of the optimal combination by a full search is extremely slow and therefore 
impractical. In GCT, sub-optimal pruning by a steepest descent search algorithm 
was considered for solving the pruning problem in a reasonable time, and still 
providing performance close to the optimum. 

1 1
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N2=110

N3=25

N4=35

1 1
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1
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2 2
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N2=67

N3=25

N4=5
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2

1 1

Children pointer array

Root

× × × ×

× × ×

 

Figure 6. Construction of the generalized context tree 
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The order of pixel positions in a context template is also essential and can be a 
subject of optimization. A solution for the CT model is called Free Tree [73] and it 
has been considered both for binary images [70] and for gray-scale [72]. It provides 
better compression performance in comparing to a static order CT [68]. Sample 
contexts optimized by free tree are illustrated in Figure 7 

×

14

2

3 76

10

8 911

5

×1

5 4

237

69

 

Figure 7. Two sample free tree contexts. 

2.4 Lossy compression algorithms 

Most popular lossy algorithms are used for compression of photographic imagery 
since the nature of the human eye’s perception allows significant reduction of 
information in the image without any subjective loss of quality. However, in some 
applications the properties of the input imagery can differ significantly from natural 
photography, thus requiring different compression principles to be applied. 

2.4.1 Existing methods 

The classical examples of popular lossy compression algorithms are Joint 

Photographic Expert Group (JPEG) [33] and a more recent standard JPEG2000 
[34]. These algorithms are based on image transforms: discrete cosine transform 

(DCT) [35] for JPEG and wavelet transform [36] for JPEG2000. The transform 
coefficients are rounded and quantized causing partial loss of information. These 
algorithms are optimized for compression of photographic images, which are mostly 
used in computer industry. There are also transform-based algorithms optimized for 
different tasks such as Enhanced Compression Wavelets (ECW) [37] and 
Multiresolution Seamless Image Database (MrSID) [38]. These are commercial 
solutions for the compression of aerial and satellite photos. DCT and especially 
wavelet based algorithms present excellent compression efficiency in terms of 
compression vs. degradation tradeoff for the class of images to which they were 
optimized. 

The DjVu [39] algorithm was proposed for lossy compression of scanned 
imagery containing text and line drawings, especially scanned books. This algorithm 
utilizes the fact that scanned images of that type contain a lot of sharp edges and 
details, which are difficult to represent by DCT or wavelets. The algorithm therefore 
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separates the image into two parts: text and background, and applies different 
compressors for each. The binary context-based algorithm JB2 is a variant of JBIG2 
[23] standard and is applied for text. The low resolution wavelet-based IW44 is 
proposed to compress the background.  

Lossy predictive coding is also used for the near-lossless compression when the 
degree of imposed degradation is limited. Lossy predictive coding assumes that the 
prediction error is not encoded precisely but quantized, thereby causing minor errors 
when the image sample is reconstructed. This technique is used in JPEG-LS [27] 
near-lossless mode, for example. 

Quantization of signal can also be seen as an approach of lossy compression 
[40]. Reducing the number of unique colors (or gray scale gradations) in the image 
imposes distortion, and at the same time, reduces the informational content of the 
image, thus improving its compressibility. For example, the GIF standard operates 
only on indexed palette images requiring quantizing colors to a predefined palette 
(typically 256-color) before the compression. The impact of quantization on 
compression efficiency has been studied in several papers [41][42][43]. 

2.4.2 Lossy-to-Lossless approach 

In some applications, it is not necessary to transfer the whole image data in one 
continuous transmission. It is often more important to have a schematic thumbnail of 
the image faster than the whole image. This requirement is typical for browsing and 
retrieval applications in restricted bandwidth transmitting channels, when one must 
decide whether the acquired image is relevant to the query. 

This task is usually solved by designing the compression algorithm in a way that 
allows lossy-to-lossless (progressive) decompression [34][44]. The image is 
decompressed step-by-step so that the most important part of the information is 
decompressed first. Each step then updates the data finally giving the exact lossless 
reproduction of the image. An importance criterion is usually defined by minimizing 
the mean squared error (MSE) distance from the partially reconstructed image to 
the original. An example of progressive reconstruction is given in Figure 8 where 
JPEG quality progression is illustrated. Progressive decompression is a popular 
feature of existing compression standards such as JBIG [18], JPEG [33], JPEG2000 
[34], GIF [8] and PNG [11]. 
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5% 10% 50% 100%
 

Figure 8. Sample JPEG quality progression. 

2.4.3 Lossy compression by color quantization and GCT modeling 

The class of scanned raster map images is commonly used in navigational 
applications in cases when vector map is not available. A scanned map image 
combines the properties of both the natural class and artificial imagery class. They 
originally contain only a few colors, sharp edges and small details. After the 
scanning, however, this image is corrupted by noise caused by the acquisition sensor 
imposing blurring and other inconsistencies. Therefore, neither traditional lossy 
image compression algorithms like JPEG and JPEG2000, nor lossless image 
compression techniques like PNG are well suited for scanned maps. 

 

Scanned original
699225 colors

Paper-printed map

Quantized image
256 colors

1.Acquisition

2.Quantization

3. Compression

 

Figure 9. Overall scheme of the proposed lossy compression technique. 
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In P5, we propose an algorithm for lossy map image compression based on 
Median Cut [71] color quantization and generalized context tree modeling (GCT) 
[72]; see Figure 9 for the overall scheme. Samples representing the quality provided 
by the proposed technique are presented in Figure 10. The upper row represents 0.72 
bit per pixel compression results, and the artifacts and blurring imposed by 
JPEG2000 along the edges are clearly seen. The corresponding image provided by 
the proposed algorithm is free from these artifacts. The lower row represents a 
higher quality level for the proposed technique using 256 colors. Although any 
difference with JPEG2000 is hardly visible, the objective measurement shows one 
advantage of the proposed algorithm. In general, when comparing images at a 
similar objective quality level the proposed algorithm provides up to 50% better 
compression efficiency than JPEG2000. 

 
Proposed JPEG2000 

 
0.72 bpp / MSE = 3.85  

32 colors  

 
0.72 bpp / MSE = 5.58 

 

 
1.77 bpp / MSE = 1.72  

256 colors  

 
1.77 bpp / MSE = 2.98 

 

Figure 10. Visual comparison of JPEG2000 and the proposed lossy compression 
algorithms. 
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3 Image filtering 

Image filtering aims at reconstructing the original image before degradation [45][46] 
[47][48]. As a rule, the reconstruction involves a criterion for measuring the quality 
of the desired result. There are two different approaches for the quality 
measurement: objective and subjective. Objective quality measurement assumes that 
it is possible to establish an objective metric. The most common examples of these 
metrics are MSE and peak signal-to-noise ratio (PSNR). The objective measurement 
measures a ‘distance’ between the original image and the result of reconstruction. 
This is possible when the original image is available for measurement, which is not 
always the case. 

Another approach is subjective quality estimation. In the case when the uncorrupted 
image is not available, one can estimate the restoration quality by subjective 
observations of the reconstructed image. This approach is less analytical than the 
first one and, therefore, less popular. Besides the two above mentioned approaches, 
different performance evaluation methods can be defined. For example, in P1 we 
use image compressibility as a quality evaluation criterion. 

3.1 Existing algorithms 

Linear filtering is an approach that has been widely used since the beginning of 
the computer era. The filter replaces a pixel with a linear combination of its 
neighbors combining the simplicity of implementation with robustness to various 
tasks from smoothing to edge detection. Linear filters, however, are not well suited 
for filtering of map images since the imposed smoothing is not (always) tolerable. 
Linear filters homogeneously process all pixels, which is another drawback for a 
filtering of images consisting of complex structures. 

Later, a great variety of more general non-linear filtering algorithms were 
considered. In the early sixties, the investigations of Matheron and Serra led to a 
new quantitative approach in image analysis, now known as mathematical 

morphology [49][50][51]. The central idea of mathematical morphology is to 
examine the geometrical structure of an image by matching it with small patterns at 
various locations in the image. By varying the size and shape of the matching 
pattern, called structuring element, one can obtain useful information about the 
shape of the different parts of the image and their interrelations. Flexibility of the 
concept allows various filters to be designed [52][53][54][55]. Mathematical 
morphology is widely applied in various disciplines such as mineralogy, medical 
diagnostics, machine vision, pattern recognition, granulometry and others [56]. 
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There exists a great variety of heuristical filtering approaches, which exploit 
knowledge about the noise. For example, edge preserving filters are trying to smooth 
uniform areas while keeping the edges untouched. One of the most popular edge 
preserving filtering methods is vector median filter (VM) [57], which is a non-linear 
operator. The filter replaces the current pixel value with a value called vector 
median defined in a local neighborhood. An attempt to design a filter that would be 
invariant to the features of the particular image was made in [58]. The filter is called 
rank-conditioned vector median filter or adaptive vector median filter (AVM), and it 
uses a noise detector before applying VM. An overview of weighted median filters 
can be found in [59]. 
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Figure 11. Application of vector median (VM), adaptive vector median (AVM), 
morphological Close-Open (CO) and peer-group analysis filters to sample map images. 
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Classical Kuwahara filter [60] examines the neighborhood for a sub-region with 
the smallest variance and replaces the current pixel with the mean of the region. A 
similar approach is used by peer group analysis (PGA) [61], which is an edge-
preserving smoothing technique based on finding a group of pixels similar to the 
current one in a local neighborhood. When such a group is found, the current pixel is 
replaced with the average of the group. Statistical non-linear filters use local 
probability estimation for noise detection and correction. A gain-loss filter was 
proposed in [62] for improving the compression of binary images. Various vector-
based filters are discussed in [63] and [64]. Application of selected VM, AVM, 
morphological Close-Open (CO), and PGA filters is illustrated in Figure 11. 

3.2 GCT filtering 

Map images are typically highly structured. The patterns are usually clearly defined 
and commonly repeated in the image. This makes context tree modelling an 
effective tool for statistical analysis and processing. Consider a map image which is 
slightly corrupted by impulsive or content-dependent noise. By content-dependent 
noise, we assume that the corruption occurs at the borders of the objects. The 
presence of noise corrupts the statistical consistency of the image and, therefore, 
statistical analysis is an appropriate tool for noise detection and removal. 

 

 

Figure 12. Principles of context-based filter. 

In P4, we propose a statistical context tree based filter for map images basing 
this on the preliminary works published earlier [62][65]. The filter analyzes the 
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statistical distribution of the colors within a local neighborhood using a generalized 
context tree model. Pixels are considered as noisy if their conditional probability 
falls below a predefined threshold. The size of the neighborhood is dynamically 
adapted using a tree pruning technique. The principle of the algorithm is illustrated 
in Figure 12, where two 3×3 contexts A and B are presented. One can see that black 
is much less probable than white in the context A, and vice versa; white is less 
probable than black in the context B. By replacing noisy pixels by the most probable 
ones, the filter is able to reconstruct the initial structure of the image. The proposed 
filtering is very sensitive to the original structure of the image and the amount of the 
corruption imposed is rather small. Sample corrupted and reconstructed images are 
presented in Figure 13. 
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Figure 13. Sample noisy and reconstructed images. 
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4 Layerwise processing 

There is a class of images consisting of a set of binary layers. Maps are a typical 
example of this kind of images since they consist of semantic layers: binary images 
representing geographical objects of similar nature and depicted with a particular 
color. For example forests are depicted in green and one can extract all green regions 
of the image into a binary image (a forest layer); see an example of layered image in 
Figure 14. In an atlas map, colors can represent a great variety of parameters such as 
density of population, pollution and temperature. Bit plane separation is another 
example of the layer decomposition approach. A gray-scale image can be 
decomposed into a set of binary layers according to the bits of each pixel value. 

 

 

Figure 14. Illustration of a multilayer map image from the NLS topographic database 
[3]. 

If there is a strong correlation between layers, this can be utilized to improve the 
performance of the compression, filtering, or other processing algorithms. This 
correlation certainly exists in map images between their semantic layers [69]. In 
[70], inter-layer correlation was used to improve the performance of a two-layer 
context-based lossless compressor. This motivates us to research layerwise 
processing of map and gray scale images as a method of improving the performance 
of lossless compression algorithms. 

4.1 Morphological reconstruction of semantic layers 

When producing a raster map image, map layers of different semantic nature are 
combined together overlapping each other in a predefined order. This image is well 
suited for user observation but less appropriate for further processing since the layer 
structure has been corrupted as the raster map image was produced. The problem is 
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that the overlapping introduces severe artifacts in places where the information on 
different layers overlap each other; see Figure 15, upper row. The holes on the face 
of the lake left by the overlapping letters are typical examples of the artifacts. The 
presence of these artifacts degrades the compressibility of the color map image, in 
comparison to the situation when the original semantic layers were available. 
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Figure 15. Semantic map layers: corrupted layers due to the color separation (upper 
row); reconstructed with the proposed algorithm (lower row). 

This problem led us to develop an algorithm for the reconstruction of the 
corrupted layers of map images. The algorithm proposed in P1 approximates the 
original layer structure existing before the color combination by repairing the 
corrupted layers as close as possible to the original ones. Since the converted raster 
map images are usually compressed by a lossless algorithm, we require that the 
color combination of the reconstructed layers must be equal to the originally 
received raster map image. 

The results of the proposed reconstruction technique are presented in Figure 15. 
The removal of overlapping artifacts provides 30-50% better compression on 
standalone layers, and 5-10% better compressibility for 4-layer map images without 
any loss of quality. Besides that, the proposed technique can be used for the removal 
of unnecessary layers from the map. 

4.2 Compression of gray scale images 

Other types of images can also be treated as layered images via the use of bit plane 
separation. This assigns one bit from the binary representation of the pixel value into 
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each bi-level layer, thus losslessly separating any gray scale image into eight layers. 
The overall scheme of this approach is shown in Figure 16. In the case where there 
is a correlation between the bit layers, it is possible to utilize this to gain better 
compression efficiency. For example, in context modeling, involving neighboring 
pixels from already processed binary images can improve the probability estimation 
and, therefore, the compression. Among existing implementations we can mention 
the EIDAC [32] lossless compression algorithm, which uses a binary multi-layer 
context model that operates on bit-layers of the image using both the actual bit 
values and their differential characteristics as context information. Two-layer 
context modeling with optimization of the order of layer processing was considered 
in [70].  

 

Figure 16. The overall scheme of bit-plane-based compression. 

In P2, we study how well the bit-plane-based approach can work on natural and 
palette images. We consider four different bit plane separation schemes: 
straightforward bit plane separation, Gray-coded bit plane separation, bit plane 
separation of prediction errors and separation of Gray coded prediction errors. We 
use the highly optimized MCT context modeling method for lossless compression 
and, furthermore, extend the two-layer MCT model to a multi-layer context model 
for better utilization of cross-layer dependencies. In general, any previously 
compressed layer can be used to provide the contextual information for the next 
layer being compressed. An example of a multi-layer neighborhood used in P2 is 
presented in Figure 17. We extensively evaluate the proposed combinations of the 
different bit plane separation and context modeling schemes, by applying them to 
natural and palette images. The efficiency of the bit-plane-based compression is 
compared to the existing compressors. Moreover, the dependency of the 
compression on the image content is studied by modeling the transition between 
natural and palette image classes. 
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Figure 17. A sample multi-layer context template. 

4.3 Progressive compression via binary layers 

Binary context modeling is also used for progressive encoding of color quantized 
images in [74]. The algorithm uses binary tree representation of the color palette 
followed by a progressive binary context-based encoding. In [75], an improved 
version has been proposed. In P3, we continue the development of this approach by 
improving the quality of the color progression by using merge-based color clustering 
[76] instead of the original splitting-based approach. We also propose the use of 
binary free tree modeling instead of the static context model. The proposed 
improvements provide better subjective quality of the color progression (see Figure 
18), and 10-20% better compression performance for the set of palette images. 
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Figure 18. Color progressions provided by the original and proposed algorithms. 
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5 Summary of the publications 

In the first paper (P1), we propose a technique for reconstruction of binary 
semantic layers of map images from the corruption imposed by overlapping of color 
layers in the map. Separation of the map into color layers and compressing them 
individually provides better compression performance than using standard 
techniques. However, color separation causes artifacts in areas where one layer 
overlaps another. The proposed algorithm approximates the original structure of the 
layer existing before the overlap by a sequential application of masked 
morphological operations. The image is processed so that the color map itself 
remains untouched, and only the underlying binary layers are modified. The 
proposed technique obtains up to 30-50% compression improvement for single 
layers, and improves the compression ratio of the whole map up to 5-10%. 

In the second paper (P2), we explore the efficiency of binary-oriented compression 
algorithms applied to gray-scale and palette images. In contrast to map images, gray-
scale imagery contains much more gradation and it is more difficult to exploit spatial 
dependencies via binary layers and color separation as in P1 is not possible since it 
would lead into too many (256) layers. In this work, we consider four different bit-
plane separation schemes using error prediction and Gray-coding. For prediction-
based schemes we evaluate three different predictors. Bit-plane separation schemes 
are combined with two binary-oriented compressors: one known (MCT) and one 
novel referred as N-layer Context Tree (NCT). 

We evaluate the proposed variants on natural and palette images. The variants 
providing the best compression are compared with six existing compression 
algorithms. We conclude that despite the high order optimization a binary-oriented 
compressor cannot outperform the best lossless gray-scale oriented algorithms due 
to the nature of the signal. For palette images we found out that highly optimized 
binary compression is able to provide compression performance close to the best 
existing compressors but at the cost of higher processing time. 

In the third paper (P3), we improve a recently proposed layerwise lossless 
compression algorithm, which is based on binary tree representation of the colors 
and on context-based arithmetic coding. We considered two improvements for the 
algorithm: merge-based color quantization instead of the original split-based 
strategy, and a context tree modeling optimized for each layer separately. The 
improved algorithm is evaluated on natural and palette images. The proposed 
method provides better subjective quality of the color progression, and compression 
improvement of 12% in the case of color palette images. 
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In the fourth paper (P4), we propose a statistical filter for map images based on 
local probability estimation using a context tree. The estimation is followed by 
replacing less probable pixels by the most probable one. The size of the context is 
dynamically adjusted according to the proposed tree pruning procedure. The main 
feature of the proposed filter is that the use of the context tree allows investigating 
larger neighborhoods with reasonable time and memory consumption. The filter 
effectively reconstructs patterns of the image in the presence of moderate impulsive 
and content-dependent noise. 

In the fifth paper (P5), we consider a novel lossy compression scheme for scanned 
map images. The proposed compression algorithm consists of two stages. First the 
number of colors in the original image is reduced by color quantization. The 
quantized image is then compressed with the lossless GCT compression algorithm. 
In this work, two improvements for the original GCT were considered: a fast pre-
pruning method and an optimized memory allocation. Both improvements reduce 
the memory consumption as well as significantly reducing the processing time of the 
algorithm. The proposed compression scheme is evaluated on a set of scanned 
topographic maps. The evaluation shows that the algorithm provides a compression 
improvement of about 50% in comparison to the closest competitor, JPEG2000, at 
the similar objective quality level. 

In paper P1, the author developed the principles of the algorithm, implemented 
and evaluated it. The other two authors took part in the problem formulation and 
editing of the article. In paper P2, the author implemented the N-layer context tree 
modeling, bit-plane separation schemes, predictors and performed all the 
experiments. In paper P3, the author implemented and tested the improved 
compression algorithm. Paper P4 is based on a preliminary version published in a 
conference by the second and third authors. The contribution of the author includes 
the tree pruning procedure, a new implementation of the filter with significantly 
better memory consumption, performing new experiments and a broader evaluation. 
In paper P5, the author considered and implemented the improved GCT compressor 
and performed the experiments. 
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6 Conclusions 

In this thesis, we have studied lossless and lossy compression of raster map images 
as well as layerwise processing algorithms for their improvement. 

We have proposed a morphological algorithm for restoration of binary semantic 
layers of multi-layer map images from the corruption appearing in areas where 
semantic layers overlap each other. The proposed reconstruction allows improving 
the lossless compression of the layers up to 30-50% for standalone layers and in the 
total compression rate up to 5 to 10%, depending on the compression method 
applied. 

We have studied the efficiency of highly-optimized binary-oriented compression 
algorithms to examine if it is possible to utilize their high performance, as presented 
for maps, for grayscale and palette images. We consider a set of binary layer 
separation schemes. We also consider two schemes for context modeling: one 
existing and one novel (NCT). The experiments show that statistical context 
modeling and arithmetic coding cannot outperform the best grayscale-oriented 
compressors. On the other hand, when applied to artificial palette-like imagery, the 
optimization of the model results in a compression performance which is close to the 
best existing algorithms and further improvement is possible. 

We have proposed a novel filter for reconstruction of map images in the presence 
of noise. In contrast to the existing edge-preserving filters designed to preserve areas 
of high color variation, our filter aims at preserving the repetitive structures of the 
image which is an essential property for raster map images. The problems of the 
appropriate context size and resource allocation are solved. The proposed filter 
outperforms edge-preserving competitors both in objective and subjective 
comparisons. 

We have improved a recently proposed lossy-to-lossless compression algorithm 
based on layerwise progressive binary compression. The improved algorithm 
provids better visual quality of the lossy progression; 12% better compression is 
achieved for palette images. 

We have proposed a novel scheme for lossy compression of scanned map images 
utilizing the common features of the map imagery. The novel scheme provides up to 
50% better compression at the same quality level when compared to its closest 
competitor JPEG2000. 
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7 Future work 

We believe that this thesis can be used as a basis for further research. In P5 a 
pioneer work in lossy context-based compression has been done. Although  
the algorithm is applied on scanned topographic maps only, we expect the results to 
generalize to similar image classes, such as other types of maps, engineering 
drawings, schemes, comic books and similar art imagery. Images of this kind have 
properties similar to map imagery, see Figure 19. A similar lossy algorithm DjVu 
can be developed where background and textual information would be separated, 
and the textual part compressed by a GCT-based encoder, which is not restricted to 
work only for bi-level images as DjVu. 

The potential of GCT-based compression is possible to extend to video 
compression. The method is expected to be efficient for video where features of the 
imagery are close to the ones illustrated in Figure 19, such as high quality cartoons 
and animation, see Figure 20. Since subsequent frames of the video are highly 
correlated, multi-layer GCT modeling is expected to be a very efficient compression 
tool. 

 

 
Atlas 

 
Engineering drawing 

 
Comic book 

Figure 19. Sample images with features similar to map imagery. 

 

 
Anime frame 1 

 
Anime frame 2 

Figure 20. Two consequent anime frames. 



 26

8 Summary of the results 

8.1 Publication 1 

Table 1. Compression of topographic map images with different compressors. The 
average results (size, bits per pixel and compression improvement) presented for 
original, corrupted with color separation and reconstructed layers. 

Original  Corrupted  Proposed reconstruction Compression 
algorithm Size bpp Size bpp Size bpp imp. 

PNG 2 085 871 0.66 2 149 490 0.68 2 078 254 0.66 3.31% 

TIFF 1 473 824 0.47 1 708 362 0.54 1 480 657 0.47 13.33% 

JBIG 684 978 0.21 790 257 0.25 720 185 0.23 8.87% 

AKF2 624 117 0.19 696 017 0.22 660 661 0.21 5.08% 

 

8.2 Publication 2 

Table 2. Compression results (bits per pixel) for the natural images. 

Proposed Competitive 
Image MCT-

GCPES 
JBIG-
BPS 

JBIG-
GCS 

CALIC 
JPEG-

LS 
PWC-

G 
PWC-P JPEG2K PNG 

Average 4.42 5.64 4.75 4.11 4.18 4.21 4.84 4.36 4.56 

 

Table 3. Compression results (in bytes) for the palette images.  

Proposed Competitive 
Image NCT-

BPS 
JBIG-
BPS 

JBIG-
GCS 

EIDAC CALIC 
JPEG-

LS 
PWC-G PWC-P PNG 

Total 175590 351913 211943 140957 226296 272555 198931 144344 245745 

 

8.3 Publication 3 

Table 4. Compression results of PNG, Chen’s, Pinho’s and the proposed algorithm as 
well as obtained compression improvement (comparing to the closest competitor) for 
natural and palette test sets. 

Test set PNG Chen et al. Pinho et al. Proposed Improvement  

Natural 7261542 2521448 2426446 2399451 1% 

Palette 712726 274700 257126 226469 12% 
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8.4 Publication 4 

Table 3. The efficiency of mathematical morphology (MM), vector median (VM), 
adaptive vector median (AVM) and the proposed (CT) filters measured as ∆E distance 
to the original image for 20% content-dependent (CD) and 5% impulsive noise (I).  

 Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

 CD I CD I CD I CD I CD I CD I 

MM 23.52 24.37 29.66 30.28 27.75 28.33 14.10 14.48 4.54 8.68 30.45 31.11 

VM 3.16 2.51 8.50 7.73 8.58 7.37 3.27 2.46 1.99 1.66 7.81 6.67 

AVM 2.51 1.70 4.60 2.46 5.05 3.12 2.18 1.18 1.33 1.15 5.07 3.10 

PGA 2.51 1.50 5.48 3.71 5.76 3.79 2.24 1.32 1.75 1.56 5.90 4.02 

CT 2.14 0.89 3.95 2.89 3.96 2.44 1.70 0.94 1.19 1.18 3.86 2.94 

8.5 Publication 5 
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Figure 21. Operational rate-distortion function of the proposed algorithm (L-GCT) and 
its competitors. 

Table 5. Compression performance of JPEG2000 and the proposed algorithm for 
similar objective quality level. 

MSE distance JPEG2000, Bpp Proposed, Bpp Improvement,% 

1.52 3.20 1.55 51 

1.99 2.40 1.23 48 

2.71 1.70 0.95 44 
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Abstract. Map images are composed of semantic layers depicted
in arbitrary color. Color separation is often needed to divide the
image into layers for storage and processing. Separation can result
in severe artifacts because of the overlapping of the layers. In this
work, we introduce a technique to restore the original semantic lay-
ers after the color separation. The proposed restoration technique
improves compression performance of the reconstructed layers in
comparison to the corrupted ones when compressed by lossless
algorithms such as International Communication Unit (ITU) Group 4
(TIFF G4), Portable Network Graphics (PNG), Joint Bi-level Image
experts Group (JBIG), and context tree method. The resulting tech-
nique also provides good visual quality of the reconstructed image
layers, and can therefore be applied for selective layer removal/
extraction in other map processing applications, e.g., area
measurement. © 2006 SPIE and IS&T. �DOI: 10.1117/1.2178188�

1 Introduction
Currently, there exist various services delivering map im-
agery content to the user. For example, real-time map im-
aging applications provide users with a view of a geo-
graphical map for the area surrounding the user’s location.
The location can be obtained using a global positioning
service �GPS�, mobile positioning service �MPS�, or other
analog services. It could also be weather, traffic, pollution,
or any other kind of map. The imagery data are usually
obtained from a digital spatial library,1 and transmitted via
the network to the user’s device such as a pocket computer
�PDA�, mobile phone, or desk-top terminal.

A typical map image consists of a set of semantic layers,
each containing data with distinct semantic content, each
depicted with its own color, e.g., black roads, brown eleva-
tion lines, blue water areas, yellow fields, etc. Regardless of
the semantic nature, typical maps need only a few color
tones to represent the layers, but high spatial resolution for
representing details. Let us call these images multilayer
map images.

We consider topographic images from the National Land
Survey of Finland �NLS� topographic database, in particu-
lar the basic map series 1:20,000.2 The images consist of a
set of semantic layers, each containing data with distinct

semantic content, such as roads, elevation lines, infrastruc-
tures, state boundaries, and water areas. The layers are
combined and displayed to the user as a generated color
image, in which the data of each type are depicted using
their own color. These images consist of the following se-
mantic layers: basic �roads, contours, labels, and other to-
pographic data�, elevation lines �thin lines representing el-
evations levels�, waters �solid regions and polylines
representing water areas and ways�, and fields �solid po-
lygonal regions� �see Fig. 1�.

The original map data are usually stored in vector format
on a server-side database. Each semantic layer is stored
separately. As the user’s request arrives, the server prepares
part of the data and transmits it to the user in raster format,
since raster images are easier to handle on a client-side
device. Using a vector format requires special software de-
veloped for vector map image processing, then the process-
ing of raster images is a standard feature of almost any
mobile terminal. Raster format is also often used for digital
publishing on the web or CDs.

When producing a raster map image, map layers of dif-
ferent semantic nature are combined together overlapping
each other in a predefined order. This image is well suited
for user observation, but it is less appropriate for further
processing, since the layer structure has been corrupted
when the raster of the map image was produced. For ex-
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Fig. 1 Illustration of a multilayer map image from the NLS Topo-
graphic database.
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ample, when one needs to calculate the area of the fields, or
the length of coastline, the layer must be extracted from the
color raster image through color separation. During this
process, the map image is divided into binary layers, each
representing one color in the original image. The main
problem of this approach is that the separation introduces
severe artifacts in places where the information of different
layers overlap each other �see Fig. 2�. The holes on the
fields caused by overlapping letters are a typical example of
these artifacts. The presence of the artifacts can make the
color separated layer useless for many map processing
tasks.

Moreover, the problem also affects the compressibility
of the images. Though the raster image could be com-
pressed with any existing lossless compression algorithm, it
has been shown that the best compression results can be
achieved if the image is decomposed into binary semantic
layers, which are consequently compressed by algorithms
designed to handle binary data �e.g., JBIG�.3 The artifacts
of the color separation, however, affect the statistical prop-
erties and consistency of the layers, and result in degraded
compression performance in comparison to the original
ones. This is apparent especially in applications requiring
the use of mobile hardware such as mobile phones or
pocket computers. For example, a single map sheet of 10
�10 km2 is represented by a single map image of 5000
�5000 pixels. Larger image size also takes a longer time
to transmit. For example, 10-sec transmission via a GPRS
channel with bandwidth 45 kb/sec results in at most 54 kB
of image data. This corresponds to only about 500
�500 pixels for a four-layer map image.

The problems mentioned led us to develop an algorithm
for the reconstruction of the corrupted layers of map im-
ages. The proposed algorithm approximates the original
layer structure existing before the color combination by re-
pairing the corrupted layers as close to the original ones as
possible. A natural restriction for the reconstruction tech-
nique is that the color combination of the reconstructed
layers should be equal to the originally received raster map
image.

The goal of image restoration is to reconstruct the origi-
nal image before degradation.4 The reconstruction involves
a criterion for measuring the quality of the desired result.
For our problem, we consider two criteria: image quality
and image compressibility. The first criterion measures how

close the reconstructed layer is to the original semantic
layer. This is important for applications where visual qual-
ity is essential, or the reconstructed layer is used for pro-
cessing, e.g., measuring the area of the fields. The second
criterion aims to modify the corrupted layer so that its com-
pressibility will be improved as much as possible without
causing any changes to the corresponding output color im-
age.

The artifacts appearing on the layers could be treated as
noise. If we guarantee that the color map remains un-
touched, noise removal could be considered as a tool for
improving image quality for achieving better compressibil-
ity. There are many image enhancement methods in the
literature,4–7 and various reconstruction techniques have
been considered.8–11 Statistical modeling,12 and specific
data modeling and representation techniques13–16 have also
been considered. However, noise filtering and typical image
enhancement algorithms are not suitable for solving our

Fig. 3 Outline of the reconstruction algorithm.

Fig. 2 Corrupted layers due to the color separation.
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problem, because, due to their local nature, they are not
able to recognize larger structures and dependencies be-
tween layers.

Therefore, we introduce a new morphological filter for
layer reconstruction. We chose mathematical morphology
to be the tool, mostly due to the simplicity of implementa-
tion. Morphological operators do not require sufficient
computational and memory resources to be applied, which
is apparent for use on mobile terminals. The benefits of the
proposed filter are its capability to reconstruct semantic in-
formation in a multilayer map image, and that the original
color image can always be reconstructed exactly without
any loss in the quality. The effect of the filter is therefore
limited only to the binary layers. The method is applicable
for extraction or removal of individual layers, and for loss-
less compression of the map images. The method is fast
and simple to implement.

The rest of the work is organized as follows. Mathemati-
cal morphology is briefly introduced in Sec. 2. In Sec. 3,
we introduce two variants of the new filtering method for
layer extraction, and then apply it for layer removal in Sec.
4. Empirical results are reported in Sec. 5, and conclusions
drawn in Sec. 6.

2 Mathematical Morphology
Mathematical morphology refers to a branch of nonlinear
image processing and analysis originally introduced by
Matheron17 and Serra,18 and currently continuing its
development.19 This chapter gives the basic morphological
definitions. In discrete binary morphology, an image space

E is usually defined as E=Z2 �the space of all possible
image pixel locations�, and a binary image X as a set X�E.
For a given set A, the reflection �or the symmetric� of A

with respect to the origin, denoted as Ã or −A, is defined by

Ã= �−a �a�A�. The power set of E, or in other words, the
set of all subsets of E, is denoted as P�E�. One of the main
fundamentals of mathematical morphology is to analyze the
geometrical and topological structure of an image X by
“probing” the image with another small set A�E called a
structuring element. The choice of the appropriate structur-
ing element depends on the particular application.

2.1 Fundamental Morphological Operators

The dilation of X by A, denoted as �A�X�, is defined as the
operator on P�E� given by:

�A�x� = �
a�A

Xa = �h � E�Ah
˜� X � � � .

The erosion of X by A, denoted by �A�X�, is

�A�X� = �
a�A

X−a = �h � E�Ah � X� .

The cardinality of set A, or the number of elements in A, is
denoted by card�A�. Let us also define the translation in-
variant operator �A,n, called a rank operator, as follows:

�A,n�X� = �h � E�card�X � Ah� � n� .

The operator �A,n�X� sets current pixels to be the fore-
ground if the amount of foreground pixels in a neighbor-
hood defined by the structuring element is greater than n.
Otherwise, the pixel is defined as a background pixel. Since
the rank operator performs similar to erosion or dilation
depending on the value of the rank parameter, it is possible
to treat the rank as a soft counterpart of classical erosion
and dilation operators. In particular:

Fig. 4 Scheme for the mask creation.

Fig. 5 Water and field layers with their masks. Object pixels from
the layer are plotted by black, and the mask pixels by gray to differ-
entiate which pixel belongs to the layer, and which pixel to the mask.

Fig. 6 The block diagram of CC algorithm.
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�Ã�X� = �A,1�X� and �A�X� = �Acard�A��X� .

The operator �A�X�=�A��A�X�� is called the �structural�
opening by A. Dually, the operator �A�X�=�A��A�X��, is
called the �structural� closing by A.

2.2 Conditional Operators
If an image is, say, dilated by a structuring element con-
taining the origin, it is expanded, and the manner of the
expansion depends only on the shape of the structuring el-
ement. If the dilation is successively repeated, the original
image grows without bounds. Sometimes it is important to

restrict the growth. This can be accomplished by using con-
ditional operators. A common form of conditioning restricts
the translations to a superset of the input image: if image A
is a subset of image T, then for any operator ��A�, the
operator ��A �T� is called ��A� conditioned relative to T
and is defined as:

��A�T� = ��A� � T .

The image T is usually referred to as a mask image.

Fig. 7 Sample images for the water and field layers: original and reconstructed with CC and CDME
algorithms as well as mismatching of reconstructed layer and the original.
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3 Layer Reconstruction Technique
We consider two approaches. The first approach aims at
maximal compression improvement for the reconstructed
layers, and the second at more accurate restoration of the
original semantic layers.20 In the first approach, we simply
try to minimize the storage size of the layers, which is
essential for map storage systems. In the second approach,
we try to produce layers that are as close to the original
semantic layers as possible. The resulting layers can then
be used for additional map processing and analysis. Fol-
lowing the underlying principles behind the previous two
approaches, we have designed two reconstruction algo-
rithms referred to further as conditional closing �CC� and
conditional dilation with mask erosion �CDME�.

Both algorithms have the same structure, consisting of
three main steps as outlined in Fig. 3. At the first step, the
color map �scanned or obtained from the third party source�
is decomposed into a set of binary layers by a color sepa-
ration process. This is done so that each layer represents
one color in the original image.3 Then, according to the
predefined layer order, a conditioning mask is created for
every layer for restricting the reconstruction of the layers to
be equal to the original color image. Finally, the actual
reconstruction is performed for every layer with respect to
its conditioning mask.

3.1 Conditioning Mask
Further, we denote a layer image as L; when we talk about
some particular layer, we denote it as Lk, 1	k	N, where
N is the total number of layers in a map image. The require-
ment that the composition of reconstructed layers should be

identical to the initial color map can be met by conditioning
the operator ��Lk� on the mask Mk, which defines the re-
gion where changes of the layer content are allowed. The
requirement of keeping the reconstructed color map identi-
cal to the original one leads to the fact that the restoration
operator must not remove pixels that are already present in
the corrupted layer. It can only add pixels to a layer, so that
the condition

Lk � ��Lk�Mk� ,

is met. The conditioning mask defines the set of pixels that
are allowed to change value in the restoration, so that the
combination of the restored layers would be kept un-
touched. Since we assume that the order of layer overlap-
ping is predefined, the mask for every layer is computed as
the union of all upper-laying layers,

Fig. 8 Outline of the CDME algorithm.

Fig. 9 Block diagram of the CDME algorithm.

Fig. 10 Step-by-step illustration of the dilation with mask erosion. Object pixels from the layer are
plotted by black, and the mask pixels by gray to differentiate which pixel belongs to the layer, and
which pixel to the mask.
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Mk ª �
j=1

k

Lk,

�see Figs. 4 and 5�.

3.2 Layer Reconstruction

3.2.1 Conditional closing
Having the compression objective in mind, let us consider
using a simple and effective conditional closing �CC� op-
erator Lª�A�L �M� to perform reconstruction. The algo-
rithm is outlined in Fig. 6. The quality of the reconstruction
in terms of compressibility strongly depends on the applied
structuring element. In our experiments, we have tried out
several alternatives and found that square block provides
the best compression improvement. The size of the block

depends on the size of the artifacts, and, for our test set 7
�7 has been selected. Once applied successfully, the clos-
ing fills artifacts inside the objects, leaving the borders al-
most untouched �see Fig. 7�. The main characteristics of
this approach are its simplicity of implementation, and its
positive effect on compression.

3.2.2 Conditional dilation with mask erosion
Although efficient in terms of compression, the CC algo-
rithm is not as effective in approximating �restoring� the
original layers. The method expands the lower layers too
conservatively, whereas the color layer is typically a re-
duced version of the original semantic layer, due to over-
lapping. Therefore, we propose another algorithm, which
we call conditional dilation with mask erosion �CDME�,
using more aggressive expansion based on dilation, and
thus, aiming at a more accurate approximation of the origi-
nal semantic layers.

The idea in general is to spread objects step by step and
shrink the mask, too. The process is iterative: first, the
spreading is performed by the dilation operator �A�X�, and
then the mask shrinking is performed by the erosion opera-
tor �A�X�. The pseudocode of the algorithm is shown in Fig.
8, and outlined in Fig. 9. The stepwise process of the itera-
tions is illustrated in Fig. 10.

The iterative process is controlled by a stopping crite-
rion. We have investigated two approaches: iterate until sta-
bility and iterate fixed amount of times. The first approach
assumes that the iterative process will continue until the
layer �and mask� converges. The convergence is guaran-
teed, because the erosion sequentially decreases the mask
�see Fig. 10�. We can therefore perform the iterations until
the mask equals the layer itself.

Examination if the mask and layer are equal could be a
time-consuming operation, especially if the image size is
big. To avoid this, we consider the second approach by
assuming that most of the artifacts are of limited size,
which can be determined within the first few iterations. We
therefore restrict the amount of iterations by a fixed num-
ber. For example, if we suppose that the size of an artifact
is four pixels, on average, three dilations with a 3�3 block
are enough for the restoration.

As with the conditional closing, an important question is
the choice of an appropriate structuring element. There are

Fig. 11 Block diagram of the layer removal algorithm. Elevation
lines layer to be removed is outlined with a black frame.

Fig. 12 Example of the layer removal.
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two structuring elements used in the algorithm: in the ob-
ject dilation and in the mask erosion. By varying the first
element, we can control how fast the object expands over
the mask, while varying the second element controls how
fast the mask shrinks. An essential matter is the relation
between the speeds of the dilation and erosion. Let A be the
structuring element of dilation and B be the structuring el-
ement of erosion. We use two structuring elements: square
is the 3�3 block ��−1,0 ,1�� �−1,0 ,1�� and cross ��0,
−1� , �1,0� , �0,0� , �−1,0� , �0,1��. We have tested three
cases: objects dilating faster than mask eroding �A
=square, B=cross�, objects dilating slower than mask erod-
ing: �A=cross, B=square�, and the case of equal speed �A
=square, B=square or A=cross, B=cross�.

The speed of dilation and shrinking could also be con-
trolled if dilation and erosion operators used in a restoration
technique are replaced with a rank operator as their “soft”
counterpart.17 The rank operator is equal to the dilation
operator when the rank parameter n is set to 1, and to the
erosion operator when the rank parameter is equal to the
cardinal number of the structuring element �n=card�A��.
Rank operators with rank parameters lying between these
two values behave approximately like dilation or erosion
operators. In other words, a rank parameter could be used
to regulate the “strength” of erosion or dilation, or how fast
objects shrink or expand. The case when a rank operator
equals card�A� /2 is called a median operator.

The performance of the restoration strongly depends on
the morphological structure of the layer under reconstruc-
tion. To choose the variant of the algorithm for evaluation,
we examined different structuring elements and parameter
values. The modification gaining the best performance is
described and evaluated in Sec. 5.

4 Layer Extraction/Removal Technique
The task of layer restoration arises if there is a need for
layer extraction or removal. Layer extraction is needed
when one wishes to perform some specific processing over
the layer, e.g., to calculate the area of the fields. Naturally,
a corrupted layer could not be accepted as accurate input. A
similar task is layer removal when less important layers are
not needed by the map user, e.g., user driving a car does not
need elevation lines, as such layers can limit map readabil-
ity. To remove a layer, the restoration technique of Sec. 3 is
first applied to all layers, and the color image is composed
of the restored layers except for the one to be removed �see
Fig. 11�.

The most important feature here is the quality of the
restoration, i.e., how closely the corrupted layer approxi-
mates the original layer. Moreover, in user interactive ap-
plications, the visual appearance of the reconstructed layer
becomes essential. Figure 12 illustrates the effect of the
removal of the basic and elevation layers.

5 Evaluation
The restoration techniques have been evaluated on a set of
topographic color-palette map images. These images were
decomposed into binary layers with distinctive semantic
meaning identified by the pixel color on the map. The res-
toration algorithms have been applied for reconstruction of
these semantic layers after the map decomposition process.
Both the combined color map images and the binary se-
mantic layers composing these color map images were
originally available for testing. This allowed us to compare
the restored images with their original undistorted counter-
parts.

Table 1 Restoration of elevation layer.

Compression
algorithm

Semantic
layers

Corrupted
layers

CDME CC

Size Imp. Size Imp.

PNG 825 510 808 126 811 958 −0.47% 805 774 4.30%

TIFF 460 811 481 338 464 934 3.41% 461 482 0.29%

JBIG 236 210 269 423 259 139 3.82% 253 606 6.24%

AKF2 223 555 261 386 250 820 4.04% 243 870 6.70%

Table 2 Restoration of water layer.

Compression
algorithm

Semantic
layers

Corrupted
layers

CDME CC

Size Imp. Size Imp.

PNG 381 608 425 862 384 766 9.65% 378 484 11.13%

TIFF 167 361 357 164 168 630 52.79% 171 673 51.93%

JBIG 81 334 137 258 93 230 32.08% 95 520 30.41%

AKF2 49 230 73 107 57 370 21.53% 54 695 25.18%
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The performance of the proposed restoration techniques
was evaluated according to two measures: the improvement
of compression performance and the quality of the recon-
struction. The first measure is relevant when dealing with
map image storage, and concerns only the improvement in
compressibility, regardless of how exact the reconstruction
is. The second measure is relevant to applications where the
reconstruction is expected to approximate the original as
close as possible.

The test set consists of five randomly chosen images
from the NLS Basic Map Series 1:2000, corresponding to
the map sheets 431306, 201401, 263112, and 431204. Each
image is of 5000�5000 pixels and consists of four binary
layers. The layer names are the following:

• basic—topographic image, supplemented with com-
munications networks, buildings, protected sites,
benchmarks, and administrative boundaries

• elevation—elevation lines
• water—lakes, rivers, swamps, and water streams
• fields—agricultural areas.

5.1 Compression Performance
The evaluation examines the compression performance of
the map images constructed on reconstructed layers in com-
parison to semantic layers �not affected by the layer sepa-
ration process� and corrupted layers �result of the layer
separation�. The proposed algorithms were evaluated using
four compression techniques: LZ �PNG�, ITU Group 4
�TIFF�, JBIG, and AKF221 �context-based compression
with optimized context size and shape�. For each of these
compression methods, we have measured the compressed

data size for the original semantic layers, for the corrupted
binary layers after decomposition, and for the reconstructed
layers with the two reconstruction algorithms �CC and
CDME�. The structuring elements in CC are 7�7 blocks;
the CDME uses soft erosion and dilation with rank param-
eters 2 and 8, respectively.

5.1.1 Results for stand-alone layers
Tables 1–3 give the average compressed sizes of the re-
stored elevation lines, water, and field layers, respectively.
The results are the average compressed file size �size� im-
provement in compression ratio �imp� for semantic, cor-
rupted, and reconstructed layers.

Evaluating the performance for the elevation-line layer
we conclude that neither reconstruction technique is effec-
tive in improving the compression performance. The struc-
ture of the layer does not allow for remarkable increase,
and only about 5% improvement was achieved. On the
other hand, significant compression improvement is gained
for water and field layers �20 to 50%, depending on the
compression technique�, since these layers contain a lot of
closed solid regions. The holes left by letters and other
artifacts were successfully filled by both algorithms. The
tradeoff between the algorithms is in the computational
complexity �the CC is simpler� and the quality of the res-
toration �the CDME has significantly better visual appeal,
as shown further�.

5.1.2 Overall results
In a real application, however, one cannot consider com-
pression improvement for independent layers, but we must
evaluate the compression performance altogether for all

Table 3 Restoration of field layer.

Compression
algorithm

Semantic
layers

Corrupted
layers

CDME CC

Size Imp. Size Imp.

PNG 309 712 456 710 320 821 29.75% 313 486 31.36%

TIFF 99 622 196 456 105 388 46.36% 119 306 39.27%

JBIG 49 409 113 977 50 936 55.31% 56 950 50.03%

AKF2 5917.5 16110.5 7056.25 56.20% 6 212 61.44%

Table 4 The average compression performance of the topographic map images based on semantic layers, color layer separation, and
reconstructed color layer separation with CDME and CC restoration algorithms.

Compresson
algorithm

Semantic layers Corrupted layers Reconstructed with CDME Reconstructed with CC

Size bpp Size bpp Size bpp imp. Size bpp imp.

PNG 2 085 871 0.66 2 149 490 0.68 2 078 254 0.66 3.31% 2 063 955 0.66 3.98%

TIFF 1 473 824 0.47 1 708 362 0.54 1 480 657 0.47 13.33% 1 483 727 0.47 13.15%

JBIG 684 978 0.21 790 257 0.25 720 185 0.23 8.87% 718 446 0.22 9.09%

AKF2 624 117 0.19 696 017 0.22 660 661 0.21 5.08% 650 191 0.20 6.58%
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layers forming a map image. Table 4 illustrates the average
compression performance of the test images based on se-
mantic layers, color layer separation, and reconstructed
color layer separation with CDME and CC restoration al-
gorithms. The results are average compressed file sizes
�size� computed as the sum of all compressed layers, bit
rate �bpp�, and improvement ratio �imp�. We conclude that
the proposed restoration technique achieves almost the
same degree of compression of the map images as if the
original semantic layer decomposition was available. Rela-
tively low compression improvement is caused by the
dominant size of the nonrestorable top-level layer basic, or
the hardly restorable elevation-line layers.

5.2 Restoration Quality
This section evaluates the restoration performance of the
proposed technique. By restoration quality, we mean how
close the original and reconstructed layers are, with respect
to some distance measure. In this work, we use normalized
mean absolute error �NMAE�, i.e., Hamming distance,
which measures the average number of different pixel val-
ues in the original semantic layers, and in the reconstructed
layers.

NMAE�X,Y� =
� j=1

H �i=1

W
�xi,j − yi,j�

H · W
,

where H and W are image dimensions.
The compression evaluation showed that the elevation

layer is hardly restorable. Therefore, we do not consider it
in the quality evaluation. We measured the NMAE differ-
ence between the original layers of water and field, and
their reconstructed counterpart, with both CC and CDME.
The same was done for the corrupted layers with respect to
the original ones. These results show that the reconstructed
layers are closer to the original layers than the corrupted
ones. In Fig. 13, we present the total NMAE differences
within the test set for each layer separately. The CDME
algorithm showed better reconstruction comparing CC both
for water and fields.

We evaluated the performance of the restoration by ap-
plying it to the task of area measurement. We compared the
area measured over the original layer with one measured
over the reconstructed and corrupted layer. The results are
presented for water and field layers separately on average
within the whole test set �see Table 5�. Since CDME ap-
proximates layers better, its area measurements are also
much closer to the original than the CC results. CDME
reconstruction reduces the error of the area measurement
from 15 to 20% to just about 1%.

6 Conclusion
We propose a technique for the restoration of binary seman-
tic layers of map images from the corruption caused by the
decomposition of the image using a color separation pro-
cess. The performance of the proposed method is evaluated
by improvement in compression performance and in quality
of the restoration. It allows us to obtain up to 30 to 50%
compression improvement for stand-alone layers and im-
proves the total compression rate �calculated for the sum of
the layers� up to 5 to 10%, depending on the compression
method. Low total improvement rates are caused by the
presence of non- or hardly restorable layers, such as basics
and elevation.

Quality evaluation shows that restoration efficiently ap-
proximates corrupted layers to the original. The properly
tuned algorithm reduces error in such applications as area
measurement from 15 to 20% to about 1%. The color map

Table 5 The area �in pixels� measured over the original, corrupted, and reconstructed with CC and
CDME elevation, water, and field layers.

Compression
algorithm

Semantic layers Corrupted layers CDME CC

Area Area Error, % Area Error, % Area Error, %

Water 10 480 893 8 678 605 17.20% 10 389 501 0.87% 9 996 454 4.62%

Field 4 267 983 3 663 960 14.15% 4 262 378 0.13% 4 057 253 4.94%

Fig. 13 The average NMAE difference with the original measured
for reconstruction with CC and CDME field �a� and water �b� layers
compared to corrupted ones.
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image resulting from the combination of the reconstructed
layers remains identical to the original image, because all
changes to the layer content are performed only within
those areas that will be overlapped during composition. The
method therefore affects only the separated layers, not the
original color image.
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Abstract. Color separation and highly optimized context tree mod-
eling for binary layers have provided the best compression results
for color map images that consist of highly complex spatial struc-
tures but only a relatively few number of colors. We explore whether
this kind of approach works on photographic and palette images as
well. The main difficulty is that these images can have a much
higher number of colors, and it is therefore much more difficult to
exploit spatial dependencies via binary layers. The original contribu-
tions of this work include: 1. the application of context-tree-based
compression (previously designed for map images) to natural and
color palette images; 2. the consideration of four different methods
for bit-plane separation; and 3. Extension of the two-layer context to
a multilayer context for better utilization of the crosslayer correla-
tions. The proposed combination is extensively compared to state of
the art lossless image compression methods. © 2006 SPIE and
IS&T. �DOI: 10.1117/1.2388255�

1 Introduction
Lossless image compression is needed for applications that
cannot tolerate any degradation of original imagery data,
e.g., medical applications such as mammography, angiog-
raphy, and x-rays. It is essential that the decompressed im-
age does not contain any degradation in quality, since it
could lead to misdiagnosis and health injury. Satellite or
geographical map images are another case where distortion
caused by compression cannot be tolerated.

The earliest lossless compression methods used either
dictionary-based methods or run-length encoding.1 How-
ever, these techniques do not exploit 2-D correlations in the
image, and they are not very efficient for natural images
that contain smooth color variations but do not have repeat-
ing patterns. Predictive modeling, on the other hand, ex-
ploits spatial correlations by predicting the value of the
current pixel by a function of its already coded neighboring
pixels. The difference between the actual and predicted
value, called prediction error, is then encoded.1 A simple
linear prediction is used in the lossless mode of the JPEG
still compression standard and a nonlinear predictor in the
newer JPEG-LS standard.2 Despite their apparent simplic-

ity, prediction-based techniques are quite effective and used
in state of the art compression methods.

Another approach is to use context modeling followed
by arithmetic coding.3 In context-based models, every dis-
tinctive pixel combination of the neighborhood is consid-
ered as its own coding context. The probability distribution
of the pixel values is estimated for each context separately
based on past samples. In grayscale images, however, the
number of possible pixel combinations is huge and only a
small neighborhood can be used. The number of contexts
must therefore be reduced by context quantization.4 This
approach, combined with predictive modeling, has been
used in the context-based adaptive lossless image compres-
sion �CALIC� algorithm.5 The recent JPEG20006 compres-
sion is based on wavelet transform, and although this algo-
rithm is aimed at lossy compression, it also includes a
lossless variant.

The efficiency of the prediction scheme also depends on
the type of image. For example, CALIC is efficient on pho-
tographic images �see Fig. 1� but not so good on images
that contain smaller amounts of color gradation �see Fig. 2�,
e.g., color palette images, web graphics, geographical
maps, schemes, and diagrams. On the other hand, a method
called the piecewise-constant model �PWC�7 has been op-
timized for this type of image. The algorithm is a two-pass
method. In the first pass, it uses special classification to
establish boundaries between constant color pieces in the
image. In the second pass, the decisions are coded by a
binary arithmetic coder. The method also takes advantage
of uniform regions where the same context repeatedly
appears.

One approach for exploiting spatial correlations effi-
ciently is to decompose the image into a set of binary lay-
ers, as demonstrated in Fig. 3, and then compress the layers
by a binary image compression method such as JBIG.8 The
advantage of this approach is that a much larger neighbor-
hood can be applied in the context model than when oper-
ating on the grayscale values. The decompression process is
reversed: the compressed file is decompressed into a set of
layers, which are then combined back into the grayscale
image.

Unfortunately, JBIG is not very efficient when applied to
bit-plane separated layers, as it is on images that are binary
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by their origin. Typically, the bit layers �especially less sig-
nificant bits� lack predictable structure to be compressed
well. This is because the bit-plane separation destroys the
gray-level correlations of the original image, making the
compressor unable to exploit them when coding the bit
planes separately. In fact, interlayer dependencies are stron-
ger than spatial dependencies within the layers. Embedded
image-domain adaptive compression of simple images
�EIDAC�9 therefore uses a 3-D context model, where con-
text pixels are selected not only from the current bit plane
but also from the already processed layers.

Another way to improve compression performance is to
increase the size of the context template. A larger context
can be achieved by a selective context expansion using
context tree �CT�,10 which allocates memory only for con-
texts that are really present in the image. The size as well as
the ordering of the pixels within the context can be
optimized.11 An attempt to spread the optimized context
tree modeling to a multilayer case called multilayer context
tree �MCT� modeling has been made in the case of
multilayer geographical map images.12 Optimal ordering of
the layers was shown to give additional improvement.13

In general, the efficiency of the particular compression
method depends on the utilization of color and spatial de-
pendencies �see Fig. 4�. Prediction-based algorithms con-
centrate mainly on color dependencies, since they are look-
ing for correlation between gray values in a relatively small
spatial neighborhood. On the other hand, binary image
compression algorithms concentrate more on utilizing spa-
tial dependency than color dependencies. Binary nature of
the input data makes it possible to use a larger spatial con-
text template, but when applied to bit-plane separated data,
the compression efficiency is low, since there are more in-
terlayer �color� dependencies than spatial dependencies
among the neighboring bits. A successful compression

method should utilize both types of dependencies.
We study how well the bit-plane-based approach can

work on natural and palette images. We apply the MCT
method presented in Ref. 13, but instead of the color sepa-
ration, we perform bit-plane separation because of a higher
number of colors in the images. We consider four different
methods: a straightforward bit-plane separation as such,
gray coding, a separate prediction step, as well as the com-
bination of the last two. Furthermore, we extend the two-
layer context model to a multilayer context model for better
utilization of the cross-layer dependencies. In general, one
can use any previously compressed layer as the reference
layers. The first layer is compressed as such, the second

Fig. 1 Test set of natural images.

Fig. 2 Test set of simple images.
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layer can use the first one as the reference layer, and the
process continues so that the last layer can use all previous
layers. We denote this extension as an N-layer context tree
modeling �NCT�.

The rest of the work is organized as follows. The aspects
concerning context modeling, context tree modeling, and
multilayer context trees are described in Sec. 2. Different
alternatives for bitplane decomposition are studied in Sec.
3. The performance of the proposed schemes is evaluated in
Sec. 4 against the most competitive algorithms both for
natural and palette images. Finally, conclusions are drawn
in Sec. 5.

2 Multilayer Context Tree Modeling
Statistical image compression consists of two phases: mod-
eling and coding. In the modeling phase, the probability
distribution of the pixels to be compressed is adaptively
estimated. The coding process assigns variable length code
words to the pixels according to the probability model, so
that shorter codes are assigned to more probable pixels and
vice versa. The coding is performed by arithmetic coding14

using implementation known as a QM-coder,15 which was
originally introduced for the JBIG standard.

2.1 Context Modeling
The probability of a pixel is conditioned on a context,
which is defined as the black-white configuration of the
neighboring pixels within a local template �see Fig. 5�. The
index of the selected context and the pixel to be coded are
then sent to the arithmetic coder. In principle, better prob-

ability estimation can be achieved using a larger context
template. However, it does not always result in compres-
sion improvement, because the number of contexts grows
exponentially with the size of the template. This leads to
the context dilution problem,16 in which the statistics are
distributed over too many contexts, and thus affects the
accuracy of the probability estimates.

2.2 Context Tree
The context tree �CT� concept10 provides a more flexible
approach for modeling the contexts so that a larger number
of neighbor pixels can be taken into account without the
context dilution problem. The contexts in CT are repre-
sented by a binary tree, in which the context is constructed
pixel by pixel. The context selection is deterministic and
only the leaves of the tree are used. The location of the next
neighbor pixels and the depth of the individual branches of
the tree depend on the combination of the already coded
pixel values.

The tree can be constructed beforehand using a training
image �static approach�,17 or optimized directly to the im-
age to be compressed �semiadaptive approach�.10 We use
the latter approach because it optimizes the structure and
size of the tree directly to the input image without any
parameter tuning or prior training. The structure of the tree
must then be stored in the compressed file, and it takes 1 bit
per node. In the case of our test sets �see Sec. 4�, this
corresponds to a 10 to 25% proportion of the compressed
file.

A variant called free tree10 optimizes the location of the
template pixels adaptively at each step of the tree construc-
tion. When a new child node is created, every possible

Fig. 3 Lossless compression of grayscale images by a binary-image-oriented compression.

Fig. 4 Spatial and color dependency diagram. The algorithms con-
sidered in this work are emphasized by shadow.

Fig. 5 Sample contexts defined by JBIG 10-pixel template �left�,
and the template optimized for a geographical image �right�. The
numbers refer to the order in which the pixels have been selected
for this particular context.
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location for the next context pixel is considered within a
predefined search area and the compression efficiency is
estimated by the entropy of the current context model HN.
The entropy is calculated as the sum of entropies of indi-
vidual contexts:

HN = − �
j=1

N

p�Cj��pw
Cj · log2pw

Cj + pb
Cj · log2pb

Cj� ,

where p�Cj� is the probability of the context Cj, pw
Cj and pb

Cj

are the probabilities of the white and black pixels in the
context Cj, and N is the total number of contexts. The prob-
abilities pw

Cj and pb
Cj are calculated on the basis of observed

frequencies.10 The position providing the best estimated-
compression gain is included into the context rtemplate.
The optimization, however, comes at the cost of additional
computation time and increase in tree storage size. A
sample context optimized by the free tree is demonstrated
in Fig. 5.

2.3 Two-Layer Context Tree
The CT modeling can be extended to the multilayer case,
called MCT, by defining a context template where pixels
from previously coded layers can also be included. In this
way, information from other bit layers, called reference lay-
ers, can compensate the loss of color correlation caused by
the bit-layer separation. A two-layer model was considered
in Ref. 12 using a search area consisting of 40 pixels from
the current layer, and 37 from the reference layer. The pix-
els in the current layer can be located in the neighborhood
area including already coded pixels, but the pixels in the
reference layer can be located anywhere, since they are
already known by the decoder, as the reference layer is
always coded before the current one.

Further optimization exploits the fact that the efficiency
of the compression of any particular layer strongly depends
on the choice of the reference layer. In general, we can
select any predefined order on the basis of known �or as-
sumed� dependencies. When image source is not known
beforehand, the optimal order of the layers can be solved as
a directed minimum spanning tree problem13 for maximal
utilization of the interlayer dependencies. Again, the opti-
mization comes at the price of a remarkable increase in the
processing time.

2.4 N-Layer Context Tree
In this work we generalize the idea by considering the
N-layer context tree, further referred as NCT. We consider
all previously compressed layers as reference layers. When
the first layer is compressed, the free-tree context template
involves only already processed pixels of the current layer.
After being compressed, this layer becomes a reference
layer for the second one. Figure 6 illustrates the search area
used for the compression of the third layer. It consists of
52 pixel positions, of which ten are from the current layer
and 42 are from the reference layers. Each template posi-
tion is examined for the provided compression gain, and the
most efficient position is included in the template at each
step. The process then continues as long as further im-
provement will be achieved. A sample context is illustrated
in Fig. 7.

The ordering of the layers affects the compression per-
formance in NCT in the same way as in MCT. For example,
when test image Airplane is compressed starting from the
least significant bit �LSB� toward the most significant bit
�MSB�, the obtained total code size would be
148,388 bytes. On the other hand, when compressed with
reversed ordering �from MSB toward LSB�, the code size is
136,185 bytes. In Ref. 13, the optimal ordering was solved
as a directed minimum spanning tree problem, which was
possible because only one previous layer was used as a
reference layer. In the case of an N-layer context tree, simi-
lar formulation would lead to a traveling salesman problem.
In this case, the optimal solution would take O�n ! �, and an
even faster heuristic would influence the processing time
significantly because of a larger search area. Fortunately,
the optimal ordering is not as critical as in the MCT, and
therefore, we used a fixed order starting from MSB to LSB.

A common property of the context-based techniques is
that in the case when the statistical dependencies of the
source are extremely weak, the code size produced by the

Fig. 6 Joint 52-pixel three-layer search area. The position of the
current pixel is marked with “?” and the corresponding positions on
the reference layers are emphasized with bold circles.

Fig. 7 A sample three-layer context constructed by the free-tree
approach using the search area presented in Fig. 6. The black color
represents 1 bit and white color represents 0 bits in the correspond-
ing bit layer. The current pixels position is emphasized with a bolder
circle.
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compressor could be even greater than the size of the un-
compressed file. This issue is especially essential for the
compression of the less significant bit layers, which are
quite noisy. In this situation, we transmit the uncompressed
bit layer as such.

3 Methods for Bit-Plane Separation
The proposed grayscale compression scheme consists of
two independent lossless stages as shown in Fig. 8. In the
first stage, the grayscale image is decomposed into a set of
binary images �layers�. In the second stage, the MCT or
NCT compression method is applied. The decompression is
performed in reverse order: first, an archive file is decom-
pressed into a set of binary layers, which are then combined
into a grayscale image. We consider the following four de-
composition methods:

• bit-plane separation �BPS�
• gray code separation �GCS�
• Prediction error separation �PES�
• gray code prediction error separation �GCPES�.

The first scheme is a straightforward bit-plane separation
�scheme 1 in Fig. 8�, which is a classical method for creat-
ing bit planes where each pixel value corresponds to a par-
ticular bit of the original grayscale image. The second
scheme is a gray-code separation �scheme 2 in Fig. 8�,18

which codes the pixel intensities so that the change of pixel
value by +1 or −1 causes the change of only 1 bit value in
the corresponding bit layers. This transform is defined as

x → G�x� = x � �x � 1� ,

where � indicates the “exclusive-or” function, and » indi-
cates the “binary shift-right” operation �i.e., m»n=m /2n�.
For example, when the gray code is not applied, increasing
value 127 �01111111b� by 1 gives 128 �10000000b�, which
causes changes in all eight bit layers. On the other hand, the
gray code for 127 is 64 �01000000b�, and for 128 it is 192
�11000000b�, which differ in 1 bit only. Gray coding has
turned out to be an efficient preprocessing technique for
improving compression performance.19

The third scheme uses a separate prediction step fol-
lowed by bit plane separation20,21 �scheme 3 in Fig. 8�. The

idea is to encode the prediction error, i.e., the difference
between the predicted and the actual value of a pixel, in-
stead of the original gray value. Error prediction is a loss-
less transformation converting a grayscale image of gray
values varying from 0 to 255 into a so-called prediction
error image, where every pixel represents the prediction
error varying from −255 to +255. Therefore, when using
this scheme, the grayscale image is decomposed into nine
binary layers instead of eight as in the first two schemes.
When the predictor is effective, the prediction error values
are mostly concentrated around zero. Therefore, after bit-
plane decomposition, more significant bit planes contain a
very small amount of variation, thus having low entropy
and resulting in high compression ratio.

The fourth scheme �scheme 4 in Fig. 8� employs gray
coding of the prediction error image with the following
bit-plane separation. The bit layers produced by the four
different bit plane separation schemes for the image Air-
plane are illustrated in Fig. 9.

An important design question is the choice of prediction
technique. In this works, we considered three popular pre-
dictors in order to choose the most efficient for further use.
The first scheme is a simple linear predictor defined as:

p�x,y� =
�x,y − 1�

2
+

�x − 1,y�
2

+
�x + 1,y − 1�

4

+
�x + 1,y + 1�

4
,

where �x, y� is the pixel value at coordinates x and y. This
is referred to further as linear. The second technique is a
slightly more complicated prediction method employed in
the JPEG-LS compressor,2 which we refer to here as a me-
dian predictor. Finally, for the third scheme we have chosen
the gradient-adjusted prediction �GAP� algorithm used in
CALIC,5 which is the most complicated of the three pre-
dictors considered. This predictor is referred here to as
GAP.

4 Experiments
We used two test image sets to evaluate the algorithms. The
first set consists of five classical test images: Airplane,

Fig. 8 Overall compression algorithm according to the different bit-plane decomposition schemes.
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Couple, Crowd, Goldhill, and Lena �see Fig. 1�. All of them
are 8-bit grayscale images of size 512�512 pixels. This
test set represents a class of natural images that are typi-
cally photographic images of smooth color gradation. The
second test set represents a class of palette images �see Fig.
2�, where the number of colors is much smaller than the
amount of pixels in the image. Such images can be Web
graphics, schemes, maps, slides and engineering drawings,
for example. This test set consists of eight images used in
Ref. 7, Benjerry, Books, Ccit01, Cmpndd, Flax, Gate,
Sea�dusk, and Sunset.

First, we evaluate the performance of the three predic-
tion techniques: linear, median, and GAP predictors. Then
we evaluate six variants of the proposed algorithms pro-
duced by the combination of the two context modeling
schemes �MCT and NCT�, and the three bit-plane decom-
position schemes �BPS, GCS, and the best prediction-based
scheme�. Finally, we compare the best variants with the
existing compressors. The competitive algorithms are:

• JBIG-GCS: JBIG applied to gray code separated
layers18,19

• JBIG-PES: JBIG applied to prediction error separated
layers

• EIDAC9

• CALIC5

• JPEG-LS2

• PWC-G: piecewise constant model optimized for
grayscale images7

• PWC-P: piecewise constant model optimized for pal-
ette images7

• JPEG20006

• PNG.

Results for EIDAC are taken from Ref. 9 and appear
only for the set of palette images. The rest of the results are
reported using publicly available implementations. All tests
have been performed on a Pentium III 996-MHz computer
with 384-MB memory and a Windows XP operating sys-
tem.

4.1 Choice of the Predictor
We tested the performance of the three prediction tech-
niques to choose the best for further comparison. Tables 1
and 2 summarize the overall compression performance of
the PES and GCPES variants depending on the choice of
predictor. In the case of natural images, the GAP predictor
provides the best compression performance with all vari-
ants. The best performance �4.42 bpp� is obtained by the
MCT-GCPES variant. In the case of palette images, the
median predictor works better and the best result is ob-
tained by MCT-PES �210,718 bytes�. In the rest of the
work, we apply the GAP predictor for natural images and
the median predictor for palette images.

Table 1 Average compression results �bits per pixel� depending on
the choice of predictor for the natural images.

Predictor

MCT NCT

PES GCPES PES CGPES

Linear 4.53 4.49 4.52 4.50

Median 4.49 4.48 4.50 4.48

GAP 4.45 4.42 4.44 4.43

Fig. 9 Four bit-plane decomposition schemes applied to the image Airplane. Columns correspond to
the bit planes starting with the sign bit, and continuing from the least significant bit to the most
significant bit. Rows are different bit-plane decompositions.

Table 2 Total compression results �in bytes� depending on the
choice of predictor for the palette images.

Predictor

MCT NCT

PES GCPES PES CGPES

Linear 282,280 274,525 296,877 290,815

Median 210,718 211,686 221,546 221,921

GAP 279,924 277,994 288,161 286,051
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4.2 Comparison of the Proposed Variants
Here we evaluate the proposed algorithms over two test
sets separately and choose the most efficient variants for
further comparison. Table 3 presents the compression re-
sults for the natural image test set. The best result
�4.42 bpp, on average� was obtained by MCT using both
the prediction and gray coding �GCPES�, but the difference
from the corresponding variant of NCT is only marginal.
The results also show that the choice of the bit-plane sepa-
ration method is important when using MCT, as the best bit
rate �4.42 bpp� is significantly better than if neither predic-
tion nor gray coding were used �5.10 bpp�. In the case of
NCT, the choice of the bit-plane separation is less signifi-
cant. This is because NTC can use all previous layers as
references, and thus it exploits the interlayer dependencies
better than MCT, which is limited to only one reference
layer.

Table 4 presents results for the palette image test set.
The best results �in total� are obtained by NCT without any
prediction �BPS� or by using gray-coding �GCS�. From

this, we make three main observations. First, NCT per-
forms better than MCT and is therefore the recommended
variant for palette images. Second, the prediction-based bit-
plane separation is extremely inefficient. Third, a notice-
able exception is the simplest three-color image �flax�, for
which the MCT provides significantly better results. In this
test set, the larger image files dominate the results. How-
ever, if we were to compress a large number of small im-
ages with very simple structure, then the preferred variant
should be MCT.

4.3 Comparison with Existing Methods
The best variant of the proposed method �MCT-GCPES� is
compared against existing methods in Table 5. As expected,
the proposed algorithm outperforms the standard JBIG ap-
plied for separated binary layers. It also gives better results
than PWC-P, which is a palette-image-oriented technique,
and PNG, which is a dictionary-based method. However,
the MCT fails to compete with the best grayscale oriented
methods such as CALIC, JPEG-LS, and JPEG2000, as well

Table 3 Compression results �bits per pixel� for the natural images.

Image

MCT NCT

BPS GCS GCPES BPS GCS GCPES

Airplane 4.60 4.21 4.05 4.13 4.16 4.08

Couple 5.22 4.68 4.54 4.78 4.72 4.54

Crowd 4.76 4.38 4.09 4.13 4.14 4.24

Goldhill 5.68 5.10 4.96 5.02 5.08 4.88

Lena 5.25 4.62 4.46 4.58 4.59 4.41

Average 5.10 4.59 4.42 4.53 4.54 4.43

Table 4 Compression results �in bytes� for the palette images.

Image

MCT NCT

BPS GCS PES BPS GCS PES

Benjerry 4236 4173 6204 2988 3135 5071

Books 8749 10,145 14,610 7948 8486 15,041

Ccitt01 12,046 11,827 18,312 12,055 11,990 27,993

Cmpndd 68,215 62,330 70,645 57,229 59,080 70,710

Flax 82 81 142 156 146 213

Gate 24,381 22,512 25,144 18,954 19,937 25,082

Sea�dusk 739 748 1047 992 859 1203

Sunset 83,011 75,673 74,614 75,268 73,914 76,233

Total 201,459 187,452 210,718 175,590 177,547 221,546
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Table 5 Compression results �bits per pixel� for the natural images.

Image

Proposed Competitive

MCT-
GCPES

JBIG-
BPS

JBIG-
GCS CALIC

JPEG-
LS

PWC-
G PWC-P JPEG2K PNG

Airplane 4.05 5.23 4.38 3.74 3.81 3.84 4.40 4.01 4.28

Couple 4.54 5.82 4.83 4.25 4.26 4.27 5.02 4.49 4.50

Crowd 4.09 5.35 4.57 3.77 3.91 3.93 4.46 4.19 4.52

Goldhill 4.96 6.17 5.26 4.64 4.71 4.71 5.33 4.81 4.88

Lena 4.46 5.66 4.72 4.11 4.23 4.33 4.96 4.28 4.60

Average 4.42 5.64 4.75 4.11 4.18 4.21 4.84 4.36 4.56

Table 6 Compression results �in bytes� for the palette images.

Image

Proposed Competitive

NCT-
BPS

JBIG-
BPS

JBIG-
GCS EIDAC CALIC JPEG-LS PWC-G PWC-P PNG

Benjerry 2988 7209 7104 2659 5939 6707 3960 3120 4846

Books 7948 23,277 14,927 8517 22,299 39,859 14,878 8972 15,019

Ccitt01 12,055 103,864 13,549 5471 22,547 35,840 20,619 14,056 46,772

Cmpndd 57,229 89,822 67,244 48,305 71,917 71,469 66,090 50,026 72,695

flax 156 1208 1143 71 760 3411 3485 1380 420

gate 18,954 31,020 26,198 16,662 25,038 27,656 23,127 16,242 24,922

Sea�dusk 992 2444 2344 870 1219 4061 941 1292 1986

Sunset 75,268 93,069 79,434 58,402 76,577 83,552 65,831 49,256 79,085

Total 175,590 351,913 211,943 140,957 226,296 272,555 198,931 144,344 245,745

Table 7 Compression results �bits per pixel� for Bridge image. Algorithms where prediction error modeling is used provide the worst results.

Image

Proposed Competitive

MCT-
BPS

MCT-
GCS

MCT-
PES

JBIG-
BPS

JBIG-
GCS CALIC

JPEG-
LS PWC-G PWC-P

Bridge 4.40 4.93 5.80 5.37 5.20 5.37 5.50 4.09 4.16
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as the PWC-G, which is also optimized for grayscale im-
ages. We conclude that the proposed method is most effi-
cient when comparing to binary, dictionary-based, and
palette-oriented compression algorithms, but the best
grayscale-oriented techniques cannot be outperformed.

Similar comparisons for palette images are shown in
Table 6. Again, the best variant of the proposed method
�NCT-BPS� outperforms JBIG and all grayscale-oriented
methods: CALIC, JPEG-LS, and PWC-G, as well as the
dictionary-based PNG. Results for wavelet-based
JPEG2000 are not presented, since this algorithm demon-
strated extremely weak performance. On the other hand, the
best palette-oriented algorithms such as EIDAC and
PWC-P are more efficient.

Although error prediction applied to natural images is
efficient in general, one can find an image where it fails to
improve the compression performance. The Bridge image
�see Fig. 1� is an example of such an image, as illustrated in
Table 7. Note that MCT-PES failed, presenting the worst bit
rate. The same holds for all competitive algorithms in

which error prediction is used—CALIC and JPEG-LS. This
example shows that even for a continuous-tone image case,
there can be found counterexample where prediction error
modeling fails to improve the compression.

4.4 Grayscale Versus Palette Compression

Competitive algorithms are designed to be applied to par-
ticular classes of images, either palette or photographic.
These classes can be considered as images with the oppo-
site characteristics: typical photographic images contain a
lot of unique colors and have smooth color gradation, while
palette images have only few colors and have sharp edges.
We next study how the efficiency of the compression algo-
rithms depends on how close the given image is to the class
for which the algorithm is tuned to.

We designed an artificial test set to fill the gap between
photographic and palette images by sequentially decreasing
the gray depth of the original 8-bpp images. For each five
images, we produced eight images with sequentially re-
duced gray depth, giving a set of 40 images in total. The
process is illustrated in Fig. 10 for the image Airplane. We
then compressed the images with two variants of the pro-
posed algorithm: MCT �GCPES variant, the best variant for
natural images� and NCT �BPS variant, the best variant for
palette images�, and compared them with CALIC, PWC-P,
and PNG.

The results presented in Table 8 and illustrated in Fig. 11
show that, as expected, the best results for the 8-bpp im-
ages are obtained by CALIC and the worst by palette-
optimized PWC-P. For images with 1 and 2 bpp, the situa-
tion inverts and the best results are shown by PWC-P and
the worst by CALIC. The PNG presented an intermediate
performance in both cases. NCT, on the other hand, has a
slight edge over the other methods, performing best every-

Fig. 10 Image Airplane with sequentially reduced graydepth.

Table 8 Compression results for gray depth reduction. Results are average bit rate over test set for
every color depth separately.

Color depth,
bpp.

Proposed Grayscale optimized Palette optimized Universal

MCT-
GCPES NCT-BPS CALIC PWC-P PNG

1 �binary
image�

0.42 0.16 0.23 0.18 0.43

2 0.55 0.18 0.39 0.23 0.55

3 2.28 0.50 1.10 0.53 1.11

4 3.46 1.00 2.13 1.07 1.65

5 4.30 1.72 3.14 1.86 2.66

6 4.50 2.59 3.85 2.89 3.37

7 4.46 3.56 4.08 3.97 4.01

8 �original
image�

4.42 4.53 4.11 4.84 4.56
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where else between 2 and 8 bpp. It seems to be the best
choice when the images are not clearly of one type: photo-
graphic or palette images.

5 Conclusion
We study the efficiency of binary-oriented compression al-
gorithms based on statistical probability estimation and
arithmetic coding applied to grayscale and palette images.
We consider two modeling schemes. The first scheme
�MCT� uses two-layer free-tree modeling with optimized
layer ordering. The second scheme �NCT� extended the
context modeling to a true multilayer case with fixed order-
ing. We use four schemes for bit-plane decomposition: bit
plane separation �BPS�, gray code separation �GCS�, pre-
diction error separation �PES�, and gray-coded prediction
error separation �GCPES�.

For prediction-based schemes, we evaluate three predic-
tors: a simple linear scheme, median predictor employed by
JPEG-LS, and gradient-adjusted prediction �GAP� used by
CALIC. We find that the gray-coded GAP predictor to-
gether with MCT �MCT-GCPES� modeling provides the
most efficient compression for natural images. The results
also show that prediction-based bit-plane separation is in-
efficient for palette images. For this class of images, NCT
with BPS separation �NCT-BPS� is the most efficient,
though its advantage over NCT-GCS is minor. We conclude
that NCT modeling is less dependent on the chosen bit-
plane separation method.

The comparison with the existing compression algo-
rithms on the Natural test set showed that MCT-GCPES
outperforms JBIG, which is of similar nature, dictionary-
based PNG, and palette-optimized PWC. Its performance is
also close to that of lossless JPEG2000. However, other
grayscale optimized algorithms—CALIC, JPEG-LS, and
grayscale optimized PWC—are not outperformed. For this
test set, we conclude that binary-based compression, even if
applied with a very high degree of optimization, cannot
outperform grayscale-oriented algorithms due to its binary
nature.

The same comparison applied to a test set of palette
images shows that NCT-BPS outperforms all binary-based
techniques �JBIG-BPS and JBIG-GCS� as well as
grayscale-optimized algorithms �CALIC, JPEG-LS,
PWC-G, and universal PNG�. Palette-optimized compres-

sors EIDAC and PWC-P, however, are not outperformed,
though the performance of the proposed method is closer to
the best algorithm than to the worst.

The results of the palette test set inspired us to perform
a detailed investigation of the algorithm’s behavior depend-
ing on the amount of colors in the image. We designed
eight test sets of images where color depth is sequentially
decreased from 8 �grayscale case� to 1 bpp �binary case�
and examined the performance of best palette �PWC-P and
the proposed NCT-BPS�, grayscale �CALIC and the pro-
posed MCT-GCPES�, and universal PNG. We found out
that NCT-BPS performs closely to PWC-P and even out-
performs it on some bit depths whereas MCT-GCPES loses
to CALIC in all cases. From this observation, we conclude
that first, bit-plane separation and binary modeling such as
MCT-GCPES cannot be considered to be efficient for natu-
ral images, even if strong optimization is involved. Second,
context-based compression techniques, such as NCT-BPS,
could be considered efficient to be applied for compression
of simple �palette� images and the optimization results in
compression improvement.
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Abstract 
 

We propose a statistical filter using a context tree 
modeling. The idea of context tree is to perform 
selective context expansion including only those 
pixel combinations that really appear in the image. 
This makes it possible to use much larger spatial 
neighborhood. The proposed context tree filtering is 
evaluated for a set of indexed-color raster map 
images corrupted with generated impulsive and 
content-dependent noise. The objective evaluation 
shows improvement of 15% for content-dependent 
noise and up to 30% for impulsive noise comparing 
to the closest competitor. Visual comparisons show 
that the spatial structures are preserved better than 
by vector median, morphological and peer group 
averaging filter. 
 

1. Introduction 
 
Geographical map images are typically present in 

two fundamentally different formats: raster and 
vector. Vector format is more suitable for large 
databases providing excellent flexibility and 
compression even though vector processing can be 
computationally expensive. Raster images are easier 
to process and this format is more suitable for final 
client-side processing for delivery, local archive 
storage and web-publishing. Typically, vector-to-
raster conversion does not affect the quality of the 
raster image presented to the user. However, cases 
when the original vector data is not available are 
common. Raster image can be degraded by noise 
caused by transformations and lossy compression. 
Distortion also appears when a printed map is 
digitized. In these cases, the presence of noise can 
corrupt the spatial structures in the image. 

A great variety of noise removal techniques are 
known for color image processing [1][2][3]. 
However, map images require some restrictions to be 
set. Firstly, the image should not be smoothed and it 
should remain readable. Secondly, the number of 
colors is typically small in a map image and 

  

Figure 1. Examples of complicated structures that are 
treated as noise by most filters. 

preferably it should not be increased. Thirdly, the 
spatial structures in the image should be preserved 
since they have distinctive meaning. Linear filtering 
methods cannot be effectively applied to map images 
because of their smoothing effect, which cannot be 
tolerated in map images. Among popular non-linear 
filtering there are methods such as morphological 
filters [4]; directional vector filters [5]; a class of 
weighted median filters [6]; its vector extension 
referred as vector median filter (VM) [7] and the 
adaptive variant referred as adaptive vector median 
filter (AVM) [8]. Peer group analysis (PGA) [9] is 
an edge-preserving smoothing technique based on 
finding a group of pixels similar to the current one in 
a local neighborhood. In case there is such group, the 
pixel is replaced with the average of its peer group. 

However, existing filtering methods are mostly 
designed for continuous-tone images and they do not 
apply well for map images, web graphics and similar. 
This kind of images include complicated spatial 
structures such as one-pixel thin lines, textured areas, 
dashed and dotted lines, text and symbols. False 
filtering of this kind of structures is typical for most 
filters designed for photographic imagery since they 
tend to consider noise as a local intensity variation 
without taking into consideration the repeated 
patterns in the globally in the image. On the other 
hand, high variance does not necessarily identify the 
noise. The regions with written text or textured 
background are far from being uniform but their 
presence is vital for the usability of the map. 

The examples of such structures are illustrated in 



 

Figure 1. The area consisting of isolated black pixels 
on the map represents sand field in nature. Single 
pixels and thin lines are considered as noise by most 
of the existing filters, and thus, they are filtered 
erasing important geographical information. 
Morphological filtering would be a natural choice to 
consider for this kind of imagery. However, the 
drawback of morphological filtering is the concept of 
structural element, defining the preferred 
configuration of local patterns where domination of 
some pixels over the others is emphasized. It is clear 
that the variety of patterns in a map image is great 
and one or even a set of structural elements is not 
able to describe it accurately. Moreover, color 
morphology is a generalization of gray-scale 
morphology made by reduced ordering, i.e. the 
‘domination’ relationship is defined on color vectors 
analogously to gray-scale intensity values. However, 
it seems that in color map images no color can be 
considered prevailing over the others just by its 
vector characteristics like energy and intensity. 

In this paper, we introduce a statistical filter based 
on conditional probability estimation allowing the 
preservation of detailed structures in map images. 
The proposed filter consists of two stages: analysis 
and filtering stage. In the analysis stage, local 
conditional probabilities are estimated within the 
image by gathering statistics of how often each 
particular color appears within the same local 
neighborhood, called context. The size of the context 
is then optimized by using a context tree. The 
analysis stage does not consider any a priori 
knowledge about the imposed noise characteristics. 
In the filtering stage, all pixels that have color of low 
probability in its context, are considered as noise and 
replaced by the most probable color. In this way, the 
repetition of local patterns can be discovered within 
the image. Patterns that appear frequently enough are 
considered belonging to the image structure and 
preserved. Pixels that are unlikely to appear in their 
neighborhood are considered to be noise and filtered 
out. This property allows the filter to preserve 
borders and structures independently of their size or 
variance. Preliminary version of the work has been 
presented in [10]. Similar filter was considered in 
[11][12], where context modeling and filtering 
decision is made in assumption that probabilistic 
characteristics of noisy channel are known. 

The rest of the paper is organized as follows: the 
proposed filter is described in Section 2; noise 
models are considered in Section 3; the results of 
experiments are presented in Section 4; and 
conclusions drawn in Section 5. 

 

2. Context Tree filter 
 
2.1 Context-based statistical filtering  

 
Consider an image I as a rectangular grid of pixels 

I(x,y), where (x,y) is a position of a pixel and I(x,y) is 
its value, or color. Let I(x,y) ∈ {1, …, k}, ∀(x,y), 
where k is the number of colors in the image. We 
assume that k is small enough to allow the storage of 
the image in palette-indexed format. We define a 
context c = { I(x1,y1), …, I(xn,yn) } as a set of n 
pixels, where n is denoted as the a size of the context 
c. The positions of the pixels in a context 
(x1,y1), …, (xn,yn) are defined as a set of offsets to the 
position of the current pixel, and is referred as a 
context template. In Figure 2, A illustrates a sample 
20-pixel context template where the position of the 
current pixel is marked with ‘×’. The context B 
illustrates a sample context for a binary case, i.e. 
I(x,y) ∈ {background, foreground}, ∀(x,y), and C 
illustrates similar example with more colors 
available. 
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Figure 2. Template used by context tree (A) and sample 
contexts for the case of binary (B) and color (C) images.  

The context defines the configuration of 
neighboring pixels and the same configuration can 
repeat in the image on different positions. When the 
neighborhood of the current pixel I(x,y) equals to a 
context c we say that pixel I(x,y) appears in a context 
c, and denote it as I(x,y)∈c. Note that the current 
pixel value is excluded from the context, meaning 
that different pixel values can appear in the same 
context. We associate each context c with a vector 
pc = (pc

1, …, pc
k) called a vector of statistics, where 

pc
i represents a number of times the pixel of color i 

appeared in a context c in the image. After the 
vectors of statistics have been gathered for every 
context of the image, the conditional probability of 
every pixel to appear in its context can be estimated 
as  

1..

( ( , ) | ( , ) )
c

j

c
i

i k

p
p I x y j I x y c

p
=

= ∈ =
∑

 

(1) 

We denote this probability as p(I(x,y)|c). 
After the statistics have been gathered, the actual 

filtering is performed requiring a separate pass over 
the image. The main idea of the proposed filter is 



 

based on the assumption of statistical consistency of 
the image data. We expect that patterns appear in the 
image frequently enough, i.e. conditional probability 
p(I(x,y)|c) of a pixel is higher than a predefined 
threshold for most of the pixels. Otherwise, the pixel 
is considered as noise and filtered out. As a 
replacement strategy we consider to replace the noisy 
pixels with the most probable color in the context. 
Formally, the algorithm can be outlined as follows: 
Analysis stage: 
For each ( x, y) do 
 C = { I( x1, y1), …, I( xn, yn)}; 
 pcI(x,y)  = pcI(x,y)  +1; 
For each C do 

Calculate P( I=j| C) ∀j ∈[1, k]  as (1) 
 
Filtering stage: 
For each ( x, y) do 
 If p( I( x, y)| c) < Threshold 

1..
( , ) arg max( ( ( , ) | ( , ) ))

j k
I x y p I x y j I x y c

=
= = ∈  

The concept is illustrated in Figure 3 for image 
consisting of three unique colors. For simplicity we 
consider context tree filtering within 3×3 
neighborhood, and two sample contexts (A and B). In 
the same context, some pixel values are less probable 
than the others, e.g. black pixel is much less likely to 
appear than white pixel in Context A, and vice versa, 
white pixel is much less probable than black pixel in 
Context B. The probability of these pixels falls below 
the threshold, and therefore, the pixels are filtered by 
replacing with the values of the most probable ones. 
Three examples of contexts and their corresponding 
probability distributions obtained in experiments with 
5-color images are presented in Figure 4. There is a 
clear domination of the most probable color over the 
others. 
 
2.2 Context Tree modeling 
 

Gathering pixel occurrence statistics requires one 
pass over the image and allocating memory for as 
much as there are different contexts in the image. 
This number is upper bounded by the number of 
pixels in the image. In order to optimize the memory 
allocation we organize the storage of statistics as a 
tree structure called context tree (CT). Similar 
structures have been used for probability estimation 
in binary image compression [13] and indexed color 
image compression [14]. 

In context tree, a context is sequentially 
constructed pixel-by-pixel, or to say more precisely, 
position-by-position according to a predefined 
ordered context template such as the one in Figure 2. 

Each node stores a vector of statistics for its 
context: fW for the number of white pixels and fB for 

 
Figure 3. Example of statistical filtering. Two sample 

contexts are marked by A and B. The filtered less probable 
pixels are pointed by arrows. 
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Figure 4. Sample contexts and the statistical distribution of 

the colors in a 5-color map image. 

the number of black pixels in Figure 5. Statistics are 
gathered only for those contexts that really appear in 
the image. The principle is illustrated in Figure 5 and 
Figure 6 for the case of binary and a 4-color images, 
respectively. Every node of the tree represents a 
particular combination of the template pixels. 

The deeper the tree grows the larger context 
model is used. Usually the image is processed pixel-
by-pixel. For every pixel, the tree is traversed down 
to the desired depth, and by updating all pixel 
counters for the corresponding nodes along the path 
from the root to a leaf. When a context appears first 
time in the image and the corresponding node tree 
does not exist in the context tree, it must then be 
created dynamically at this moment. 

Potentially, the final level of the tree can contain 
kn nodes, where n is the size of the template. 
However, since not all possible contexts are present 
in the image, some nodes will never be constructed 
and, therefore, memory will be allocated only for 
existing pixel combinations. For the case of color 
image (see Figure 6), the construction of the tree 
proceeds in the same manner as in the case of binary 
image, expect that there can potentially be as many  
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Figure 5. Construction of context tree for a binary image. 
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Figure 6. Construction of context tree for a color image. 

child pointers and frequency counters as there are 
colors in the image. The frequency counters 
(components of the statistics vector) are denoted here 
as f1, f2, … fk. With a large context size and large 
number of colors, however, it is unlikely that all 
colors will appear in a particular node. Our 
experiments show that for a 25-color image and 15-
pixel template, the proportion of non-appearing 
children pointers and frequency counters can be up to 
90% of all memory allocation if linear arrays were 
used. It is therefore essential to store the children 
pointers and the frequency vectors as linked lists to 
optimize memory consumption. 
 
2.3 Pruning the Context Tree 
 

Larger context size allows analyzing of larger 
structures of the images. However, larger patterns 
repeat less than smaller patterns and if the size is 
increased too much, most of the contexts will 
eventually appear only once or twice. Larger context 
size tends to make the distribution of the colors in a 
context more flat. Without enough statistics and clear 
statistical dominance of one color, the filter is unable 
to make reliable guess about whether given pixel is 
noisy, and by which color it could be replaced. 

We overcome this drawback by using a pruning 
technique. Consider a node with the corresponding 
context cP, and its children nodes c1, …, ck. Denote 
the number of times the context cP appears in the 
image as N(cP). By definition of CT 
N(cP) = N(c1) + … + N(ck). When a particular context 
does not appear frequently enough, it should not be 
used in filtering. We realize this by applying a simple 

pruning criterion: if the frequency of a given context 
falls below a predefined pruning threshold (∃ i : 
N(ci)≤Treshold ), the corresponding node is pruned 
out from the context tree.  

By definition of CT, all pixels that appear in a 
child context ci appear also in their parent context cp: 
∀ I(x,y) ∈ ci holds I(x,y) ∈ cP. When the child 
context ci is pruned, traversal in the tree will stop on 
its parent node, which by definition appears more 
frequently (or equally frequent in case of only one 
child) as its child context. The use of pruning 
criterion guarantees that every context appears in the 
image frequently enough to be a valid criterion of 
filtering. 

Empirical results support the usefulness of the 
pruning. Popularity of contexts of size 20 in a sample 
test image is illustrated in Figure 7. The histogram 
shows that without pruning most of the contexts 
(118941) appear only once or twice in the image, and 
majority of the remaining contexts (21253 + 8971) 
less frequently than 8 times. Only 6 % of the contexts 
(about 10000 out of 150000) appear more than 10 
times. This means that most of the contexts have too 
sparse distribution in order to be used for reliable 
filtering.  

Figure 8 illustrates how many pixels are actually 
filtered in these contexts (filtering with probability 
threshold 20 %). The less populated contexts 
(appearing less frequently than 8 times) do not make 
significant contribution to the filtering. The effect of 
the pruning is demonstrated in Figure 9 and Figure 
10. From Figure 9 one can see that no contexts 
appearing less than 8 times remain in the tree and 
Figure 10 shows that the contexts of smaller sizes 
significantly increase their contribution to the 
filtering. 

 

3. Noise Models 
 
3.1 Displacement noise 
 

Typically, the map image obtained from a digital 
scanner is corrupted with specific type of noise. In 
order to reduce the influence of acquisition device as 
well as to decrease overall redundancy, that image 
usually goes through color quantization process. 
Though pixels of uniform areas are quantized well 
and are mapped to the same color values, border 
pixels can be easily mapped to a closer but different 
color value corrupting the contours of the objects. 
We refer this kind of noise as displacement noise.  

We model this type of noise by considering a 
probability of misplacing the current pixel in a local 
3×3 neighborhood. Consider the source image 
Source; the noisy image Dest is modeled as follows: 
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image. The graph represents the number of unique contexts 
(Y axis) appearing in the image within a given frequency 

(X axis). 
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For each Dest(x,y) do 
 If rand() < Treshold Then 
// do misplacing 
  DirX = rand(-1,0,+1) 
  DirY = rand(-1,0,+1) 
 Dest(x,y)=Source(x+DirX,y+DirY) 
 Else 
  Dest(x,y) = Source(x,y) 
 End If 
End For 

 
3.2 Impulsive noise 
 
Impulsive noise typically originates from noisy 
transmitting channels of acquisition devices 
randomly affecting whole image independently of the 
region. When the noise level is high, color 
quantization maps pixels to wrong colors 
independently of the location of the pixel, and noisy 
pixels can appear anywhere in the image and can be 
of any color available in the color palette. We refer 
this noise as impulsive noise. Consider the source 
image Source; the noisy image Dest is modeled as 
follows: 
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pruning out contexts appearing less frequently than 8 
times. 
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9. 

For each Dest(x,y) do 
 If rand() < Treshold Then 
Dest(x,y)=rnd(1,…,NumberOfColors) 
 Else 
  Dest(x,y) = Source(x,y) 
 End If 
End For 

 

4. Experiments 
 

We evaluate the proposed Context Tree filter 
(referred as CT) on a set of six map images chosen 
from Finnish National Land Survey database [15]. 
Two of them (images #1 and #4) are topographic and 
the rest are road maps. The images are of different 
spatial resolution and some of them (images #5 and 
#6) are affected by quantization noise. In addition to 
this, we corrupt all images with the noise of two 
types as described in Section 3. 

 
4.1 Objective evaluation 
 

The proposed filter (CT) is applied with context 
size 20, probability threshold level 5% and pruning 
threshold of 128. We compare CT with vector 
median (VM) [7], adaptive vector median (AVM) 
[8], morphological (MM) [4] and PGA [9] filters. 
The efficiency of the filters is evaluated using mean  



 

Table 3. The efficiency of MM, VM, AVM and CT filters measured as ∆E distance to the original image for 20% content-
dependent (CD) and 5% impulsive noise (I).  

 Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 
 CD I CD I CD I CD I CD I CD I 

MM 23.52 24.37 29.66 30.28 27.75 28.33 14.10 14.48 4.54 8.68 30.45 31.11 
VM 3.16 2.51 8.50 7.73 8.58 7.37 3.27 2.46 1.99 1.66 7.81 6.67 

AVM 2.51 1.70 4.60 2.46 5.05 3.12 2.18 1.18 1.33 1.15 5.07 3.10 
PGA 2.51 1.50 5.48 3.71 5.76 3.79 2.24 1.32 1.75 1.56 5.90 4.02 
CT 2.14 0.89 3.95 2.89 3.96 2.44 1.70 0.94 1.19 1.18 3.86 2.94 
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Figure 11. Efficiency of MM, VM, AVM, PGA and CT 

filters for content-dependent noise. 

color distance ∆E between the original (noiseless) 
and the filtered images defined by 

∑∆=∆ *1
abE

N
E  

as the normalized sum over all image pixels, where 
∆E*

ab is the Euclidean distance between the two color 
samples in L*a*b* (CIELAB) uniform color space 
[16] and is measured as 

2*2*2** )()()( baLEab ∆+∆+∆=∆ . 

However, objective distance measure cannot be 
considered completely relevant for evaluation of the 
performance because pixelwise measurement does 
not represent the visual quality. For example when 
thin and detailed structures are filtered out, this does 
but it is clearly visible and it corrupts the semantic 
structures in the map. We therefore present also 
visual examples of filtered map for subjective 
evaluation in order to emphasize the ability to 
preserve repetitive patterns independent of their size. 

For content-dependent noise we vary the noise 
level from 5% to 50% with step of 5%. The results 
are illustrated in Figure 11. One can see that the 
proposed filter provides better objective results for 
all nose levels. On average, the filter outperforms its 
closest competitor (AVM) by 15%. For impulsive 
noise we vary the noise level from 5 to 20% with step 
of 5%; the results are illustrated in Figure 12. The 
proposed filter outperforms AVM for noise levels 
higher than 5% noise. On average, CT outperforms 
AVM up to 30%. Table 3 summarizes the objective 
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Figure 12. Efficiency of MM, VM, AVM, PGA and CT 

filters for impulsive noise. 

measurements for all filters for 20% content-
dependent (CD) and for 5% impulsive (I) noise. The 
measurements are averages over the test set. 
 
4.2 Subjective evaluation 

 
Visual comparisons are presented in Figure 13 for 
three sample image fragments for 20% content-
dependent (CD) and 5% impulsive (I) noise. The VM 
and AVM filters tend to preserve edges with no 
blurring. However, thin details of the original data 
are extensively filtered out since the filters are based 
on quantitative domination which underlies the 
median concept. The MM filter is a generalization of 
gray-scale morphological filter to a color space, and 
it is based on qualitative dominance. The 
generalization is considered using reduced ordering 
technique, when an order relation is defined on a 
vector space by reducing a multivariate object to a 
single value. For MM filter this order relation is 
based on a luminance of the color sample [4]. In this 
way the filter assumes that brighter colors ‘dominate’ 
the darker or vice versa. Also, the structuring element 
defining the operation of the filter is fixed and 
therefore unable to perform relevant filtering in 
different areas of the map which have very different 
structure. All this makes MM filter to perform worst 
on the selected imagery both by the objective as well 
as by the subjective comparisons. 

The PGA filter performs rather well on impulsive 
noise. Although some impulses are still visible after 
one iteration of the filter, they will be removed after 
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Figure 13. Visual comparison of the competitive filters. 

few iterations. However, PGA mostly does not filter 
the content-dependent noise. This happens because, 
by its definition, peer group is formed of the 
neighbor pixels whose color is closest to the 
processed pixel. In case of content dependent noise, 
noisy pixels have pixels of the similar (or exactly the 
same) color in their neighborhood, which makes the 
peer group averaging ineffective. 

In contrary with the competitors, the proposed CT 

filter deals with statistical domination instead of 
quantitative or qualitative domination, or distance-
based grouping. The filter considers a local pattern to 
be preserved if it is repeated in the image frequently 
enough. However, irregular areas (the dotted area in 
the third example) or patterns not repeated frequently 
enough are filtered out. This property makes the 
proposed filter sensitive to the original image data. 
On the other hand, following the statistical 



 

assumptions, the filter is able to restore corrupted 
structures such as smooth distorted lines and borders. 
The major condition for the filter to be effective is 
the statistical consistency of the image; it is therefore 
mostly suitable for indexed-color palette images and 
images consisting of computer-generated graphics. 

 
4.3 Processing time 
 

We measure the processing time of the proposed 
filter (CT) for four selected content-dependent noise 
levels. The measurement is taken as the average over 
the test set, and the results are summarized in Table 
4. The MM and PGA filters are implemented in 
Matlab and presented the worst performance, which 
however originates mostly from the chosen 
implementation environment. The proposed filer is 
computationally expensive and its performance 
depends also on how complicated are the structures 
in the image.  

 
Table 4. Processing time of the filters under evaluation. 

Filter 
CT, 
C++ 

VM, 
C++ 

AVM, 
C++ 

MM, 
Matlab 

PGA, 
Matlab 

Time, 
sec. 

15.80 1.34 2.29 20.09 74.14 

 

5. Conclusion 
 

We proposed a statistical filter based on a context 
tree modeling. The proposed filter is based on a local 
probability estimation followed by a thresholding 
replacing less probable patterns with the most 
probable ones. The filter aims at preserving the 
repetitive structures of the image, which is an 
essential property for raster map images. The filter is 
implemented using a memory efficient management 
of context tree modeling allowing larger local 
neighborhood and color depth to be utilized. The size 
of the context template is dynamically optimized by 
considering a simple and efficient tree pruning 
technique.  

The performance is compared to vector median, 
adaptive vector median, color morphological and 
peer group averaging edge-preserving non-linear 
filters. The experiments show that the proposed filter 
outperforms these competitors both in objective and 
subjective comparisons.  

The proposed filter, however, has some limitations 
of its applicability caused by extensive memory 
consumption of the algorithm. The filter is 
considered to be practical for color-indexed palette 
images when the number of colors is less than or 
equal to 256, but does not generalize well to true-
color images as such. Larger irregular patterns are 

also not captured very well in case of high noise 
levels. Nevertheless, the main idea of statistical 
modeling of repeated structures is more general than 
relying only statistics within a local neighborhood as 
done in morphological and peer group filtering. 
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Abstract 

An algorithm for lossy compression of scanned map images is 
proposed. The algorithm is based on color quantization, efficient 
statistical context tree modeling and arithmetic coding. The rate-
distortion performance is evaluated on a set of scanned maps and 
compared to JPEG2000 lossy compression algorithm, and to 
ECW, which is a commercially available solution for compression 
of satellite and aerial images. The proposed algorithm 
outperforms these competitors in rate-distortion sense for the most 
part of the operational rate-distortion curve. 

 

Keywords: Digital map images, lossy image compression, context 
modeling, color quantization. 

1. INTRODUCTION 

Nowadays, digital Geographical Information Systems (GIS) 
became more and more popular among all kind of users. Though 
at the beginning the price of mobile positioning (e.g. GPS) and 
processing devices restricted the use of electronic navigation to 
military or corporate applications, today we are facing the 
extensive growth of this industry in personal user sector. Recent 
progress in low-cost mobile hardware and, especially, in low-cost 
memory made computer-aided navigation possible in personal car 
on a road trip, as well as in your hand while trekking.  

However, raster map image converted from the vector database is 
not always the case. It is still common that, when needed, 
geographical information could only be found on the paper 
printed map. Similar case is the digitization and storage of rare 
maps, which are too fragile and valuable to be used as such. 
Though this kind of paper-printed material could be easily 
digitized and integrated into computerized navigation or archive 
system, there are still some specific problems. The main problem 
of raster maps is their storage size. Paper printed material of 
approximately A4 size scanned with 300dpi in true-color results 
in about 2500×3500 pixel image requiring 24 bits per pixel, which 
is 25 megabytes per image. The number of unique colors can vary 
from hundreds of thousands to several millions depending on the 
type of the map. For example in our experiments we experienced 
up to 700 000 unique colors in topographic map images. Standard 
lossless compression techniques such as PNG, GIF or TIFF are 
able to provide about 1.2:1 compression ratio, which is not 
enough for effective transmission of the image to the user’s 
device and processing it there. Lossy compression is therefore 
needed. 

There is a wide variety of standard multi-purpose lossy 
compressions techniques, as well as techniques developed 
specifically for compression of scanned material. Among the 
standard algorithms JPEG and JPEG2000 [13] are the most 

popular. Wavelet-based Multiresolution Seamless Image 
Database (MrSID) [1] by LizardTech is a patented commercial 
solution for storing large amounts of satellite and aerial images. It 
is applied for compression of scanned map imagery as well. 
Wavelet-based Enhanced Compression Wavelet (ECW) [3] 
format by ER Mapper is also a commercially available solution 
for GIS-based image compression. Well-known DjVu format [2] 
by LizardTech and AT&T is specially developed for storage of 
scanned imagery, especially books. 

However, popular wavelet techniques have some disadvantages 
when used for compression of scanned maps. Scanned map 
combines the characteristics of both image classes: discrete-tone 
and continuous-tone. The image origin is artificial and, therefore, 
unlike photography, a map image contains of a small number of 
unique colors and lots of small-size detailed structures such as 
letters and signs, solid uniform areas such as waters, forests, 
fields, sharp edges and almost no gradient color gradation. 
Besides this, typical map image contains a lot of repetitive 
patterns and textures. This comes as from the map itself, e.g. areas 
like swamps or sands are usually represented by textures. Besides 
that when map is printed on the paper, color gradation is usually 
obtained by dithering the available inks forming uniformly 
textured areas. This dithering is acquired by the scanner and 
appears in scanned images as a repetitive pattern of color dots. 

Lossy compression based on wavelet transform significantly 
smoothes the edges of the image and destroys thin well-structured 
areas, such as textures. When higher level of quality is desired, 

Scanned original
699225 colors

Paper-printed map

Quantized image
256 colors

1.Acquisition

2.Quantization

3. Compression

 
Figure 1: Overall scheme of the proposed compression 

algorithm. 
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techniques like JPEG2000 or ECW loose efficiency in 
compression performance since wavelet transform requires more 
bits to represent high frequencies of the sharp edges of the image. 
On the other hand, the compression algorithms optimized for 
artificial graphics, such as Piecewise-constant Image Model 
(PWC) [4] or Embedded Image-Domain Adaptive Compression 
(EIDAC) [5], are not effective since these algorithms are designed 
to deal with computer-generated imagery. However, scanned 
image is affected with noise imposed by the acquisition device – a 
scanner or a camera. The inconsistency in illumination, sensor’s 
perception and other factors results in blurred edges, and 
significant increase in the number of colors and intensity 
gradation. This makes lossless algorithms inefficient in providing 
necessary compression ratio. 

In this work, we propose an alternative lossy compression 
technique for scanned map images based on color quantization 
and statistical lossless compression. The overall compression 
system under consideration is outlined in Figure 1. Firstly, the 
paper-printed map is digitized with e.g. flatbed scanner. The 
resulting image, referred further as the original image, is the input 
of the proposed compression algorithm. The proposed algorithm 
consists of two stages: color quantization and lossless 
compression. In quantization stage, the number of colors of the 
original image is reduced. This stage is a lossy part of the 
algorithm and the degradation of the image i.e. the information 
loss occurs here. The resulting image with reduced number of 
colors is referred further as the quantized image. In the second 
stage, the quantized image is compressed by the lossless image 
compression algorithm. 

In general, the proposed scheme does not require any specific 
quantizer and compressor to be used. Though a big variety of 
approaches can be considered for this task, we consider the using 
of simple, fast Median Cut (MC) quantizer [11], which is a 
classical approach widely used in image processing applications 
and is able to process map images in reasonable time. 

Among the variety of lossless compression algorithms which 
could be considered to be used to perform the compression stage 
one should mention that all we deal with color map images when 
the most of efficient lossless compression techniques are aimed at 
halftone imagery. Separating the color planes with following 
halftone-oriented compression typically means sacrifice in 
compression performance since color components are usually 
highly correlated. Besides that, linear prediction, which is a 
standard tool for continuous-tone lossless compression algorithms 
such as JPEG-LS or CALIC [7][8] fails on map images since the 
value of the current pixel depends on its neighborhood 
configuration, not on the local intensity gradation.  

This motivates us to choose for compression stage context-based 
statistical Generalized Context Tree (GCT) compression 
algorithm which has been recently proposed from compression of 
raster map images [6] and presented compression efficiency 
surely outperforming its closest competitor PWC. The algorithm, 
however, is designed to compress raster maps which are directly 
generated from the vector sources. This means that these images 
contain low amount of colors (only the colors of the original map) 
and no blurring or noise. However, the original GCT is 
inapplicable to the scanned map sources. Together with technical 
difficulties like memory consumption and great processing time 
there is a fundamental problem. The great number of colors in the 
scanned image destroys statistical dependency within the image 
and GCT approach is not applicable for the same reason as it is 

not applicable to photographic imagery. In order to spread the 
efficiency of GCT to scanned imagery one needs color 
quantization to be involved to revive the local statistical 
dependencies featuring map imagery and determining the 
following use of GCT. Besides that some improvements to the 
original GCT must be considered since straightforward 
application would encounter difficulties with processing time and 
memory consumption. In this work by taking the properties of the 
imagery into account we successfully apply GCT for up to 256 
color images.  

The visual comparison of the proposed algorithm and standard 
JPEG2000 applying to scanned map image is presented in Figure 
2. The upper and lower rows represent lower and higher quality 
levels respectively. The algorithms are applied to compress the 
test image with the same compression ratio – 0.72 bpp for low 
quality and 1.77 bpp for higher quality. One can see that for equal 
bitrate the proposed algorithm provides less degradation 
according to MSE distance. For lower quality level the proposed 
algorithm preserves edges and does not employ smoothing as 
JPEG2000. The performance of the proposed algorithm is 
evaluated on a set of scanned topographic maps and compared to 
JPEG2000 – standard lossy compressor and ECW – a 
commercially available compression system. Also in order to 
prove the efficiency of GCT compressor we consider the 
comparison with ‘trivial approach’ where color quantized image 
is compressed with PWC – an algorithm for compression of 
computer generated palette images (referred also as simple 
images). We denote this approach as “MC+PWC” i.e. median cut 
plus PWC. 

The rest of the paper is organized as follows: the proposed 
compression algorithm is described in Section 2; experiments are 
presented in Section 3, and conclusions are drawn in Section 4. 

Proposed JPEG2000 

 
32 colors 

0.72 bpp / MSE = 3.85 

 
 

0.72 bpp / MSE = 5.58 

 
256 colors 

1.77 bpp / MSE = 1.72 

 
 

1.77 bpp / MSE = 2.98 

Figure 2: Visual comparison of the proposed and JPEG2000 
algorithms. 
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Future development of the proposed technique is outlined in 
Section 5. 

2. PROPOSED ALGORITHM 

We propose two-stage algorithm for lossy compression of 
scanned map images: firstly, the number of colors in the image is 
reduced by median cut color quantization; then the resulting 
image is compressed losslessly by improved GCT lossless 
compression algorithm. 

2.1 Median cut quantization 
Median cut algorithm is a very popular method for color 
quantization widely used in image processing practice originally 
published in [11]. It is relatively simple both conceptually and 
computationally still providing good results. 

The conceptual idea behind the algorithm is to design a color 
palette in such a way that each color would represent 
approximately the same number of pixels of the input image. 
Firstly, the algorithm computes the color histogram of the image. 
Typically, the image is pre-quantized with uniform quantizer 
since 24-bit color histogram would be difficult to handle. Then, 
from the color histogram one considers a box enclosing the colors 
of the image. The idea of median cut is to split the box recursively 
until the desired number of palette colors is reached. At each step 
of the algorithm, the box containing largest number of pixels is 
split along the coordinate that spans the largest range. The split is 
made at the median point so that approximately equal number of 
pixels falls into sub-boxes. 

2.2 GCT compression 
Statistical context-based modeling is a well-known tool in image 
compression and it is widely used in various compression 
applications. The general idea is to exploit local dependencies 
among pixels. In typical image, the knowledge about the 
neighborhood of the unknown pixel significantly improves its 
probability estimation, e.g. for most of documents, the probability 
of the current pixel to be white is very high when all its neighbors 
white. The neighborhood configuration is called a context and is 
defined by the context template. Figure 3, left picture illustrates 
sample binary contest, where background pixels are drawn as 
white and foreground as black. The estimated conditional 
probabilities are usually coded by arithmetic coder [9], as has 
been done in the very first standard for encoding of bi-level 
images – JBIG [12]. 

However, every context-based approach faces two major 
problems: memory consumption and context dilution. The 
information about estimated probabilities needs to be stored for 
every context. In case when every possible context is expected to 
appear in the image this number grows exponentially. For 
example, for 10-pixel context on a binary alphabet (JBIG) 210 
context configurations are possible. In case when K intensity 
gradations are expected, 10-pixel template results in K10 contexts, 

which is a huge number even for gray-scale images. The problem 
can be partially solved using the Context Tree (CT) modeling 
originally proposed by Rissanen [10]. This approach organizes the 
storing of probability estimations in a tree structure. In this way, 
only the information about the contexts that are really present in 
the image are stored, which significantly reduces memory 
consumption. 

Context dilution problem is of different nature and cannot be 
solved only with optimized memory allocation. The problem is 
that larger context template does not always provide the increase 
in compression performance. With increasing of size, particular 
contexts do not appear frequently enough in the image for 
probability to be estimated accurately. Incorrect estimation 
degrades the efficiency of the entropy coder, and therefore, the 
compression efficiency. In CT modeling, this problem is solved 
by applying so called tree pruning technique. The idea is that if 
the parent node (smaller context) provides better compression 
than its children (larger context), then the children nodes of the 
tree are pruned and the parent is used instead for the probability 
estimation. The efficiency of compression is estimated by the 
entropy of the model. CT modeling is used mostly in simplified 
binary case where only two types of pixels are possible. 

Generalized Context Tree (GCT) generalizes CT model into more 
color case, sample context is illustrated in Figure 3 (right), where 
different colors of context pixels are illustrated with texture. 
Pruning is performed by steepest descent search algorithm 
resulting in sub-optimal tree configuration which, however, is 
very close to the best one obtained by full search. At the moment, 
GCT compression presents the best performance for lossless 
compression of computer-generated raster map images [6]. 

First, we considered a fast pre-pruning of the tree for GCT. In our 
experiments we discovered that the most part of the tree is not 
filled with representative statistics since the most of the contexts 
do not appear in the image frequently enough but just ones or 
twice. Though these contexts are pruned out by steepest descent 
search algorithm, it is computationally expensive and the vast of 
total processing time is spent on it. Therefore we considered a 
simple threshold-based pre-pruning. The idea is that the node (and 
the represented context) is pruned in case that its occurrence 
number falls below the predefined threshold. The surviving nodes 
are then processed by standard pruning algorithm. 

Then, we optimized the memory allocation for tree nodes. We 
discovered that in case when storage of pixel counters in tree 
nodes is implemented as an array, about 90% of array elements 
are not used. This originates from the fact that in many-color 
images the actual variety of colors appearing in a particular 
context is small since typically with increase of colors in the 
image contexts become less frequent. We consider implementing 
the storage of pixel counters as a linked list. Basing on the 
understanding of imagery features, this simple technical 
improvement dramatically increases the number of colors which 
GCT compressor is able to process same time making context tree 
faster to traverse. 

The effect of optimization is illustrated in Table 1 for sample 
1250×1250 image of 42 colors. Rows of the table represent 
memory consumption and processing time for original GCT, GCT 
with optimized memory allocation and for GCT with optimized 
memory allocation and pre-pruning. For images with more colors 
the effect is even more significant. In general, the use of these 
simple and effective optimization techniques made the algorithm 
applicable for 256-color 3000×3000 pixel images and 20-pixel 

?
 

?
 

Figure 3: Sample contexts: binary (left) and generalized 
(right). Pixel which probability is estimated is marked with “?” 

sign. 
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context on a personal computer with 1G operative memory. Note 
that no optimization would deal with 25620 possible context 
configurations. 

3. EXPERIMENTS 

We compare the performance of the proposed algorithm, referred 
further as Lossy Generalized Context Tree Modeling (L-GCT), 
with JPEG2000 [13], which is the recent standard for lossy image 
compression, and with ECW compressor [3] used widely in GIS 
solutions. For a test set we consider three scanned topographic 
maps of Finland: topo1, topo2 and topo3. Raster images are 
acquired by a flatbed scanner at 300 dpi. Samples and image 
dimensions are illustrated in Figure 4. The experiments are 
performed on P4-3GHz 1GB memory computer. 

We measure the distortion caused by the lossy compression 
algorithm as MSE distance in L*a*b* color space [14]. The 
distance is measured from the degraded image to the scanned 
original. The operational rate-distortion function for JPEG2000 is 
estimated by considering 16 quality levels varying bit rate 
approximately from 0.1 to 4 bpp, and respectively, MSE 
distortion from 8.69 to 1.16. For the proposed compressor we 

consider 5 quality levels by defining the number of colors in the 
image as 256, 128, 64, 32 and 16. Images of 256-color are the 
practical limit of the proposed algorithm. In our experiments for 
L-GCT, we use 20-pixel context modeling with pre-pruning 
threshold level set to 32. The compression results – bit rate and 
MSE distance are measured as the average over the test set. 

The compression performance of L-GCT and its competitors is 
illustrated in Figure 5. The proposed algorithm outperforms its 
competitors starting from 32-color images. Better performance is 
presented for the rest of quality levels up to 256-color images. 
The relative improvement over JPEG2000 with respect to the 
similar objective quality level is illustrated in Figure 6. The 
improvement of the proposed algorithm varies around 50% for 
images of 32 to 256 colors. The comparison with ‘trivial 
approach’ MC+PWC proved that GCT provides better lossless 
compression. ECW in our experiments performs worse than 
JPEG2000. 

The processing time required by the proposed algorithm 
depending on the quality of the image is represented in Table 2. 
One can see that the most of the time is spent on the construction 
of the context tree. Encoding and decoding times are almost equal 
and are much smaller than the tree construction time. 

As a disadvantage of the proposed algorithm one can still consider 
its compression time and memory consumption. For example for 
highest quality levels the compression of single image takes about 
one and a half hour. This restricts the use of the proposed 
approach in real-time applications, though the offline archiving is 
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Figure 4: Samples of the test set images. 
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Table 1: The effect of memory optimization and pre-pruning 
 Memory, MB Time, sec 

Original GCT 128 334 
Optimized memory 30 326 
Opt. memory + pre-pruning 30 72 
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Figure 6: The relative compression improvement provided by L-

GCT comparing to JPEG2000. 
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practical since decompression does not require significant time or 
memory. 

4. CONCLUSIONS 

We proposed a lossy compression algorithm for scanned map 
images. The algorithm is based on color quantization, which is a 
lossy part, and context tree modeling, which is a lossless 
compression technique. The quantization is performed by median 
cut algorithm. The compression is done by modified Generalized 
Context Tree lossless compression algorithm, for which pre-
pruning and optimized memory management techniques are 
considered, basing on the features of the target imagery. 

The rate-distortion performance of the proposed algorithm is 
evaluated on a set of scanned topographic maps and compared to 
JPEG2000 and ECW wavelet-based lossy compressors. 
JPEG2000 is a recent standard for common lossy image 
compression and ECW is a commercial proprietary format for 
aerial and satellite image storage used also for the compression of 
scanned imagery. Also, in order to prove the efficiency of GCT 
we compared the proposed algorithm to the ‘trivial approach’ 
where the compression is performed by standard PWC 
compressor. 

The proposed algorithm surely outperforms the competitors. For 
JPEG2000 the advantage is about 50% in average by the provided 
rate for similar MSE distortion level. However, one can consider 
processing time and memory consumption as the drawbacks of 
the proposed technique. 

5. FUTURE WORK 

We believe that the potential of the algorithm needs to be 
investigated in more details. Such application areas could be 
considered as lossy compression of simple graphics – 
architectural schemes, engineering drawings; different types of 
scanned map images – city plans, navigational and atlas-type 
maps. The effect of different type of sensor could also be studied; 
for example, simple graphics obtained with a digital camera. The 
optimal choice of the quantization scheme is also an open 
question as well as the question of faster processing time of the 
algorithm. 
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Table 2: L-GCT processing time (sec) depending on the 
amount of color in the image. 
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