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Abstract

The thesis is dedicated to processing of map imdgesmproved filtering and
compression. The main purpose of the study is #weldping of optimized algorithms
taking the properties of map imagery into accowntifnproving performance of map
processing techniques. The research consists afn@yor areas.

The first topic is layer-wise enhancement and casgion of map images. Firstly
we propose binary morphological restoration techaitpr semantic layers of the map.
The proposed technique reconstructs layers comdupyecolor overlapping and allows
achieving better map image compression. Seconddy,study bit plane separation,
predictive modeling and highly optimized contextdeling for compression of natural
and palette images. Extensive evaluation of stahdad novel compression techniques
is presented.

The second part of the thesis is dedicated to gotriee modeling for filtering and
compression of map images. Firstly, we propose rgéimed context tree based
statistical filter for map images. The filter usesiable-size local probability estimator
for effective detection of statistical inconsistescand preserving the detailed areas of
the image. Secondly, we propose the using of opéthiree tree modeling and better
color quantization for recently proposed progressigssy-to-lossless compression
algorithm. The new algorithm provides better compren and quality of the lossy
progression. Thirdly, we propose a novel scheméof&sy compression of scanned map
images based on color quantization and generatbedext tree modeling. The new
approach provides better lossy performance in seihsempression-quality tradeoff.

Keywords: Map images, lossless compression, lossy compresgioconstruction,
filtering, context tree, bit plane separation, neatiatical morphology.
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1 Introduction

The use ofGeographical Information Systen(&IS) to provide users with digital
navigation information is widespread and becomingremand more popular.
Examples of this are the personal car navigatorRIDA-based digital topographic
maps for foresters, geologists and enginegéfsually the architecture of such
systems does not depend on the application aregpidal example is a system
where the user’s coordinates are obtained viadligatpositioning service, such as
Global Positioning SystefGPS), and geographical information about the cuirre
location is obtained from a local or remote maadase.

Map images in a database can be stored in twoipailhg different formats:
vector and raster. The vector format assumes that the map is stased set of
geometrical primitives (lines, symbols, curves,ttiegs) describing the image
content. Each primitive is described by a set glineed parameters. For example, a
straight line segment is described by four real Iners defining the end points. In
order to be displayed, the data must be projected plane with the desired scale
and rotation, and then drawn on the screen of liemtcdevice. However, some
geographical data is still unavailable in vectornip and the only sources are
traditional maps printed on paper sheets. Althowughtorization is an actively
developing technology [1][2], a universal non-swiexd vectorization algorithm
still does not exist. It is often too expensivenbanually convert such data into
vector format, and therefore storage in raster &rcan be a better solution.

Raster format assumes that the image is storednaarray of values that
represents the rectangular matrix of pixels forming picture. Depending on the
application, the storage of one pixel requires bibéor binary images, one byte for
gray-scale or indexed images, three bytes fordalar, and even more in the case of
a multi-spectral image. A natural advantage oferasbrmat is that it does not
require any additional processing for displaying timage. The image can be
represented immediately after the data is receivedypical way of combining
vector and raster format in the same system iséotle global database stored data
as vectors and provide the user with a raster in@geerted from the vector
original to represent the area needed.

The main drawback raster format is that it is ntexible when some
transformation of the image is needed. For exampleming, rotation and
projection of the image are all impossible with@@&gradation. The storage size
needed is also a problem. In contrast to vectasger images store all pixels of the
line instead of coordinates of the correspondirggreent. In the case of geographical
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maps, the size of digitized images can be huge.ekample, in maps from the
National Land Survey of Finlan(NLS) topographic database [3], a single map
sheet of 10x10 kf1:20,000 scale is represented by a single imagg00x5000
pixels, which requires about 70 Mbytes of memorpé¢ostored. Another example is
a map of A4 size scanned with 300 dpi in true galMrich results in a 2500x3500
pixel image requiring about 25 Mbytes. The necgsft image compression is
obvious since more efficient storage space utibmatas well as faster map
transmission is needed to make digital navigatemises more usable, reliable and
cheaper.

Features that are distinctive for map images canhaeacterized as follows. A
map image contains only a few unique colors; iresashere the image is converted
from a vector source the number of colors raretyngr higher than several tens. A
map image also contains a lot of uniform areasessrting particular regions like
water, forests or background. The areas of the anapusually distinctly separated
from each other. This makes a map image which gm&harp and easily localized
edges. Smooth gradation is rarely present in magés. A typical map contains
thin details and symbols, the presence of whiatitéd for the semantics of the map.
Features of map images are illustrated in Figure 1.
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Figure 1. Features of a map image.

In addition to raster maps, which are convertednfneector databases, there is
another class of scanned map images. These imagegr@duced by digitizing
printed paper maps. Scanned map imagery uninteityooombines the properties
of natural imagery and converted raster maps. Edgdsdetails on a scanned map
are smooth since the image is acquired with a phisensor of the scanner.



Besides this, a scanned map image may have spatiatns such as dithering. The
number of paints available in typography is limiteeld color gradation is usually
represented as a pattern of color dots. Thesetstascare acquired by a scanner and
appear in the scanned map image. Typical featurescanned map images are
illustrated in Figure 2.
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Figure 2. Features in a scanned map image.

A typical scanned map can contain hundreds of #wds of unique colors in
contrast to the converted maps that contain onfgwa Though these colors are
visually grouped around the original colors in tfistribution in the color space,
they are far from being easily clustered. A viseghmple is presented in Figure 3
where the color distribution for a sample scanneg nmage in L*a*b* [4] color
space is illustrated. One can see that the disipibaloes not contain clear centroids.
For example, the water pixels, which are supposdzktgrouped around a dominant
blue color, are actually a mix of blue and whiteuds due to the dithering effects.
The same holds for the yellow fields. For the whiokage this effect makes the
distribution uniformly spread.

We consider map imagery as a class of images watinctive properties
separating them from photographic, computer geedrat other classes of images.
Digital map images (both scanned and convertedwadely used among a great
variety of users worldwide. However, general pugiaggorithms rarely take the
properties of this kind of imagery into accounteTwork in this thesis is motivated
by the fact that better understanding of the priogeiof map images together with



designing and optimization of algorithms exploititigese features can make map
image processing and compression algorithms mdiceesit.
bw

&
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Figure 3. Distribution of colors in a sample scanned mapgena L*a*b* color space

This thesis is aimed at two specific topics. Thetftopic of the thesis is layer-
wise map image processing for reconstruction anehpcession. In papePl,
lossless compression is improved by trying to retoict the semantic layers of the
map. In papelP2, bit plane separation and binary context-basedpcession of
natural and palette images are studied.

The second topic is dedicated to context tree (@dyeling. In papeP3, we
apply highly optimized CT modeling for the progigss lossy-to-lossless
compression of map images. In papdr we propose a CT filter for improving the
quality of noisy map images. In papEb, we generalize the method for lossy
compression of scanned maps.



2 | mage compression

Compression algorithms can be separated into tvssek:losslessand lossy
algorithms [5][6][7]. Lossless compression assuthasthe data before and after the
compression-decompression process is eqealhno loss of information occurs. In
contrast, lossy compression makes no such assumgtial allows distortion to
happen. This is essential in those situations wheree degradation of the data is
tolerable for the benefit of better compressioncefhcy. The algorithms of the first
type (lossless) are used in applications wheranmédion loss is not acceptabéeg.
compression of text, programs and executable dodenage compression, lossless
compression can be used for compression of menliaes, engineering drawings
and circuits The algorithms of the second type (lossy) areia@gph photographic
image, audio and video compression because mimgpadation can be tolerated if it
is visually not perceptible, and because losslesthoads alone are inefficient for this
type of data.

2.1 Losslesscompression algorithms

Images as a class can be of very different natates;tures and contents. Therefore,
any successful compression technique is usuallyptadato be applied on a
particular type of images. Lossless image comprasaigorithms can be organized
into three groupscontinuous-tonediscrete-toneand universal algorithms. The
compression algorithms referred as continuous-tanee optimized to perform on
natural imagery,usually photographic or other types of images iabth with a
physical sensor. Discrete-tone algorithms are desigo perform on other types of
images that contain fewer colors and less gradatieth more sharp edges and
uniform areas. Images of this type are mostly ofadificial nature such as web
graphics, engineering drawings, maps and circultkiversal compression
algorithms are usually applied when the type ofdae is not predefined.

Popular universal compression techniques are basedrious adaptations of a
classical dictionary-based LZ77 or LZ78 [13][14]gatithm. For example,
CompuServesraphics Interchange FormdGIF) [8], which is widely used for the
compression of palette images, uses LZC [9] impmox@t of LZW [10]. The
Portable Network Graphic{PNG) algorithm [11], which was proposed as the
replacement for the relatively old GIF, useEFLATE [12] algorithm. It uses a
combination of LZ77 [13] andHuffman coding[15]. ThelTU Group 4algorithm
[16] incorporated inTagged Image File FormafTIFF) [17] uses simple data
compression techniques based on run-length cogirgix coding and differential
relative address designatREAD) coding to utilize line to line correlations.
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However, universal compression algorithms suffermfithe one-dimensional nature
of the method, and thus present relatively low casgion efficiency.

A natural way to increase the efficiency of the poession algorithm is to
optimize the compressor for the particular classinodges. This approach was
realized inJoint Bi-Level Image Experts GroypBIG) [18], which is an algorithm
optimized for bi-level images containing pixels wio types: background and
foreground. As originally proposed in [21][22], tledgorithm is based on local
probability estimation via context modeling follogdvéy an arithmetic coding [19]
performed by Q-Coder [20]. The JBIG standard waentlexpanded by JBIG2
[23][24].

Popular examples of lossless continuous-tone caapre are CALIC and
JPEG-LS .Context-based adaptive lossless image compre$€iAhlC) [25][26] is
based ongradient-adjusted predictiofGAP), which is adjusted via an error
feedback loop. The residue of the predictor is aaycoded based on eight
estimated conditional probabilities in eight di#fat contexts. JPEG-LS [27] is
based orLow Complexity Lossless Compression for Imgg€xCO-1) [28], which
is also based on context-adaptive prediction anaptace Golomb-Rice coding
[29][30].

Discrete-tone images are of a different nature amdliction-based techniques
usually fail to present high compression efficiendpiscrete-tone oriented
compressors exploit different ways of removing tedundancy. For example, the
Piecewise-Constant Image Mod@&WC) compression algorithm [31] uses a two
pass model to capture the characteristics of aatestone image. During the first
pass, boundaries between constant color areaseseetell. The second pass then
determines the color of the area. Encoding is peréd in an object-oriented
manner using thBWC languageonsisting of four decision possibilities.

Embedded Image-Domain Adaptive Compres$EEIDAC) [32] compresses an
input image as a sequence of bit planes startomg the most significant to the least
significant bits allowing a progressive transmissi€oding is performed by inter-
layer context modeling and an adaptive binary arétic coder providing high
compression efficiency.

2.2 Context modeling

Context modeling is a well known tool which is wigleised in image compression
[22]. The main idea is to estimate the probabdisstribution of symbols in the input

data using the knowledge of the context in whighuhknown symbol appears. This
concept is effective when there are statisticakeddpncies in the data, which holds
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true for most of the images. Usually, the encodathers the statistics of pixel
occurrences taking into account the configuration tloe already processed
neighboring pixels. Using this information, variabéngth code words are assigned
to pixels so that shorter codes are assigned te prabable pixels and vice versa.

We refer to a configuration of positions of neighibg pixels as acontext
template i.e. the context template defines the shape of thehbeidnood to be
examined. The choice of the context template ierdg&d for the compression
performance. We refer a configuration of pixel wsun the neighborhood as a
context The principles of context-based probability estilon are easy to illustrate
for a binary case when only back- or foregrouncelsibare possible in the image.
Sample 10-pixel context template used in JBIG casfion standard [18], and
sample contexts for a binary and four-color imaggether with the corresponding
probabilities are shown in Figure 4.

A B C

=0O@ =00 0@
= 37 11 3 .22

P=.12 .88

Figure 4. A sample 10-pixel context template (left); a bina0-pixel context with the
corresponding probability distribution (middle)faur-color 10-pixel context (right)
with the corresponding probability distribution.

When using large context modeling, its extensivemory consumption is a
major problem. With any increase of the context pdlete size the number of
possible contexts grows exponentially; for Blpixel context there can be2
contexts in total. In a binary case, one must keepcounters for each context to
track the probability distribution. Though this nben is reasonable fd¥=10, any
further increase of the model size is problemaiithough K number of colors is
possible in the image, the number of possible octsteaises tok™ making the
storage oK counters for each context impossible.

Another problem with context modeling ntext dilution[66]. Usually, a
bigger context allows more accurate estimationhef probabilities. However, at
some point the improvement will stop and any furthrerease becomes counter
productive. Since the image is restricted by dimgger contexts tend not to appear



frequently enough to make an accurate estimateegbtobability. Wrong estimation
causes deterioration of the compression efficiency.

Both problems are usually overcome by considecimgtext tregCT) modeling
[22]. The idea behind CT is that although the nunddepossible contexts is huge,
the number of contexts actually appearing in argena upper limited by the size of
the image. Therefore, if memory is allocated ordy rfeally appearing contexts, a
reliable estimation of the pixel probabilities bews possible.

2.3 Context tree modeling

The storage of pixel counters in CT is organized inee structure, see Figure 5.
The nodes of the tree represent the contexts appgeir the image. Symbol ‘x’
denotes the unknown pixel within the particular teah The statistics.e. the
counters represent how many times the unknown ppg@eared as a particular
color. In case of binary image, two counters areded:N,, represents the number
of white pixels which appeared, aNd represents the number of black pixels.

The positions of the context pixels in the contexnplate are arranged in a
predefined order; that is, the construction of tifee starts from the root. For every
pixel of the image, the algorithm sequentially ekans its neighbors according to
the defined context template. If the first pixeltbé template appears as white, the
transition to the left child node is made; othernike right transition is made. The
process continues recursively: the algorithm exasiithe second neighbor position
in a template and makes the transition to the lessl of the tree corresponding to
the value of the next context pixel. With everyns@ion from node to node, the
algorithm updates the pixel counters accordindg¢éovialue of the current (unknown)
pixel. In cases where the current transition dagserist, the necessary node of the
tree is created dynamically. Accordingly, only nsedeorresponding to existing
contexts are created in the tree and no memoryaisted for non-existing pixel
combinations.

In order to prevent a context dilution problem $iee of the model used must be
restricted. In context modeling this is usually ddsy using acontext quantization
approach [67], which is referred &ee pruning The simplest way is to require that
every node has children only if the code size glediby the children is less than the
one provided by their parent. This guaranteesdhaurplus nodes of the tree will
be pruned and the undesired increase of the comextel will be prevented.
However, this greedy-style approach does not peothe@ optimal performance and
more sophisticated pruning algorithms can be faorderature [68][72][73].



Root Context template

NW:4OO m NW:]_O
Ng=100 Nz=800

X X
N,=375 N, =25
@ X Ng=3 X Ng=97
N,,=20 N,=5
Ng=7 X X Ng=70

Figure 5. Construction of binary context tree

Although context tree modeling is not restricted bimary images, resource
allocation problems limit the use of a more geneygproach for more than two
colors. The principle of constructinggeneralized context tre&CT) as proposed
in [72] is illustrated in Figure 6. In contrastttee binary case, the nodes of the tree
have more than two children. Potentially there @semany children as there are
colors in the image. Every node must track the amgee counters for all possible
colors. Pruning is also more complicated in theegelized case. FaK children,
there are 2 pruning configurations and each can provide différcode size. The
selection of the optimal combination by a full sdais extremely slow and therefore
impractical. In GCT, sub-optimal pruning bysteepest descent searalgorithm
was considered for solving the pruning problem imeasonable time, and still
providing performance close to the optimum.

Root

N,=400
N,=58
Ng=24
N,=30

Children

N,=112
N,=27
N,=0

* N,=20

Figure 6. Construction of the generalized context tree



The order of pixel positions in a context templat@lso essential and can be a
subject of optimization. A solution for the CT modae calledFree Treg[73] and it
has been considered both for binary images [70]fandray-scale [72]. It provides
better compression performance in comparing toaticsbrder CT [68]. Sample
contexts optimized by free tree are illustrate&igure 7

Figure7. Two sample free tree contexts.

2.4 Lossy compression algorithms

Most popular lossy algorithms are used for compoesef photographic imagery
since the nature of the human eye’s perceptiorwallgignificant reduction of
information in the image without any subjectivedad quality. However, in some
applications the properties of the input imageny ddfer significantly from natural
photography, thus requiring different compressiaongyles to be applied.

2.4.1 Existing methods

The classical examples of popular lossy compressilgorithms areJoint
Photographic Expert GrougJPEG) [33] and a more recent standard JPEG2000
[34]. These algorithms are based on image transfodmscrete cosine transform
(DCT) [35] for JPEG andvavelet transform36] for JPEG2000. The transform
coefficients are rounded and quantized causinggbdass of information. These
algorithms are optimized for compression of phaaphic images, which are mostly
used in computer industry. There are also transtomsed algorithms optimized for
different tasks such a¥nhanced Compression Wavele(ECW) [37] and
Multiresolution Seamless Image Databa@drSID) [38]. These are commercial
solutions for the compression of aerial and s#étejihotos. DCT and especially
wavelet based algorithms present excellent comimressfficiency in terms of
compressiorvs. degradation tradeoff for the class of images tacltihey were
optimized.

The DjVu [39] algorithm was proposed for lossy coegsion of scanned
imagery containing text and line drawings, espgcedanned books. This algorithm
utilizes the fact that scanned images of that typetain a lot of sharp edges and
details, which are difficult to represent by DCTwveavelets. The algorithm therefore
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separates the image into two parts: text and backgk, and applies different
compressors for each. The binary context-baseditigoJB2 is a variant of JBIG2
[23] standard and is applied for text. The low teson wavelet-based 1W44 is
proposed to compress the background.

Lossy predictive coding also used for theear-lossless compressigrhen the
degree of imposed degradation is limited. Lossyligtere coding assumes that the
prediction error is not encoded precisely but guant thereby causing minor errors
when the image sample is reconstructed. This tgadenis used in JPEG-LS [27]
near-lossless mode, for example.

Quantization of signal can also be seen as an approf lossy compression
[40]. Reducing the number of unique colors (or gsagle gradations) in the image
imposes distortion, and at the same time, reduwesnformational content of the
image, thus improving its compressibility. For exde the GIF standard operates
only on indexed palette images requiring quantiziotprs to a predefined palette
(typically 256-color) before the compression. Thapact of quantization on
compression efficiency has been studied in seypaaérs [41][42][43].

2.4.2 Lossy-to-Lossless approach

In some applications, it is not necessary to tem#ie whole image data in one
continuous transmission. It is often more importarhave a schematic thumbnail of
the image faster than the whole image. This reqerd is typical for browsing and
retrieval applications in restricted bandwidth swamitting channels, when one must
decide whether the acquired image is relevantdattery.

This task is usually solved by designing the corsgian algorithm in a way that
allows lossy-to-lossless (progressive) decompressiBd][44]. The image is
decompressed step-by-step so that the most impgotnh of the information is
decompressed first. Each step then updates thdidallg giving the exact lossless
reproduction of the image. An importance criten®unisually defined by minimizing
the mean squared erro(MSE) distance from the partially reconstructed gamdo
the original. An example of progressive reconstaucis given in Figure 8 where
JPEG quality progression is illustrated. Progressiecompression is a popular
feature of existing compression standards suctBES [1L8], JPEG [33], JPEG2000
[34], GIF [8] and PNG [11].

11



10% 50%

Figure 8. Sample JPEG quality progression.

2.4.3 Lossy compression by color quantization and GCT modeling

The class of scanned raster map images is commoséd in navigational

applications in cases when vector map is not availaA scanned map image
combines the properties of both the natural classaatificial imagery class. They

originally contain only a few colors, sharp edgesl asmall details. After the

scanning, however, this image is corrupted by nogesed by the acquisition sensor
imposing blurring and other inconsistencies. Thaesf neither traditional lossy

image compression algorithms like JPEG and JPEG2000 lossless image

compression techniques like PNG are well suitedéanned maps.

Paper-printed map

\,\\

Y \
Scanned original
699225 colors

2.Quantization

N
N

Quantized image
256 colors

Figure 9. Overall scheme of the proposed lossy compressidmique.
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In P5, we propose an algorithm for lossy map image cosgwe based on
Median Cut[71] color quantization and generalized contegetmodeling (GCT)
[72]; see Figure 9 for the overall scheme. Sammpsesenting the quality provided
by the proposed technique are presented in Figur&éHe upper row represents 0.72
bit per pixel compression results, and the artffaahd blurring imposed by
JPEG2000 along the edges are clearly seen. Thespomding image provided by
the proposed algorithm is free from these artifadise lower row represents a
higher quality level for the proposed techniquengsR56 colors. Although any
difference with JPEG2000 is hardly visible, theealbive measurement shows one
advantage of the proposed algorithm. In generakenwbomparing images at a
similar objective quality level the proposed algfum provides up to 50% better
compression efficiency than JPEG2000.

Proposed

Sl B '|1'r'- I.'-. ;

0.72 bpp / MSE = 3.85
32 colors

S R R .-I-, .I-_ _.|'-. I
1.77 bpp / MSE = 1.72
256 colors

Figure 10. Visual comparison of JPEG2000 and the proposexy losmpression
algorithms.
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3 Imagefiltering

Image filtering aims at reconstructing the origimaage before degradation [45][46]
[47][48]. As a rule, the reconstruction involvesraerion for measuring the quality
of the desired result. There are two different apphes for the quality
measuremenbbjectiveandsubjective Objective quality measurement assumes that
it is possible to establish an objective metrice Thost common examples of these
metrics are MSE anpleak signal-to-noise ratiPSNR). The objective measurement
measures a ‘distance’ between the original imagetha result of reconstruction.
This is possible when the original image is avdddbr measurement, which is not
always the case.

Another approach is subjective quality estimationthe case when the uncorrupted
image is not available, one can estimate the rasbor quality by subjective
observations of the reconstructed image. This ambras less analytical than the
first one and, therefore, less popular. Besidesdwlireabove mentioned approaches,
different performance evaluation methods can bé&nddf For example, i?1l we
use image compressibility as a quality evaluatidtergon.

3.1 Existing algorithms

Linear filtering is an approach that has been widely used sincbdgmning of
the computer era. The filter replaces a pixel wathlinear combination of its
neighbors combining the simplicity of implementatiwith robustness to various
tasks from smoothing to edge detection. Lineaerflt however, are not well suited
for filtering of map images since the imposed sroaf is not (always) tolerable.
Linear filters homogeneously process all pixelsjolvhs another drawback for a
filtering of images consisting of complex strucsire

Later, a great variety of more genemabn-linear filtering algorithms were
considered. In the early sixties, the investigatiofh Matheron and Serra led to a
new quantitative approach in image analysis, novwowkn as mathematical
morphology [49][50][51]. The central idea of mathematical mioofpgy is to
examine the geometrical structure of an image biclnirag it with small patterns at
various locations in the image. By varying the saea shape of the matching
pattern, calledstructuring elementone can obtain useful information about the
shape of the different parts of the image and timtarrelations. Flexibility of the
concept allows various filters to be designed [b2][54][55]. Mathematical
morphology is widely applied in various disciplinesch as mineralogy, medical
diagnostics, machine vision, pattern recognitioanglometry and others [56].
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There exists a great variety of heuristical fibgriapproaches, which exploit
knowledge about the noise. For example, edge prieggiilters are trying to smooth
uniform areas while keeping the edges untouched @nthe most popular edge
preserving filtering methods igctor median filte(VM) [57], which is a non-linear
operator. The filter replaces the current pixelueawith a value calledrector
mediandefined in a local neighborhood. An attempt to gles filter that would be
invariant to the features of the particular imageswnade in [58]. The filter is called
rank-conditioned vector median filter adaptive vector median filtd AVM), and it
uses a noise detector before applying VM. An owewof weighted median filters
can be found in [59].

Noisy image

VM

AVM

Cco

PGA

Figure 11. Application of vector median (VM), adaptive vectoedian (AVM),
morphological Close-Open (CO) and peer-group arsfifers to sample map images.
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ClassicalKuwahara filter[60] examines the neighborhood for a sub-regiath wi
the smallest variance and replaces the current piite the mean of the region. A
similar approach is used kpeer group analysigPGA) [61], which is an edge-
preserving smoothing technique based on findingoag of pixels similar to the
current one in a local neighborhood. When suclhoamis found, the current pixel is
replaced with the average of the group. Statistioah-linear filters use local
probability estimation for noise detection and eotion. A gain-loss filter was
proposed in [62] for improving the compression ofdby images. Various vector-
based filters are discussed in [63] and [64]. Aggilon of selected VM, AVM,
morphologicalClose-Oper{CO), and PGA filters is illustrated in Figure 11.

3.2 GCT filtering

Map images are typically highly structured. Thetgrais are usually clearly defined
and commonly repeated in the image. This makesegbritee modelling an

effective tool for statistical analysis and protegsConsider a map image which is
slightly corrupted by impulsive or content-depertdeaise. Bycontent-dependent

noise, we assume that the corruption occurs atbtivders of the objects. The
presence of noise corrupts the statistical consgt@f the image and, therefore,
statistical analysis is an appropriate tool forseailletection and removal.

> >

> >

[ ] ]
| [X]
[ [ ]

|
(x] |

[ |
E‘ ‘ Context A | | Context B ‘

Figure 12. Principles of context-based filter.

In P4, we propose a statistical context tree based fiiermap images basing
this on the preliminary works published earlier ][63]. The filter analyzes the
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statistical distribution of the colors within a Edmeighborhood using a generalized
context tree model. Pixels are considered as nibifyeir conditional probability
falls below a predefined threshold. The size of tegghborhood is dynamically
adapted using a tree pruning technique. The pilmapthe algorithm is illustrated
in Figure 12, where two 3x3 contexts A and B aespnted. One can see that black
is much less probable than white in the contextaAd vice versa; white is less
probable than black in the context B. By replaamogsy pixels by the most probable
ones, the filter is able to reconstruct the inisalcture of the image. The proposed
filtering is very sensitive to the original strucduof the image and the amount of the
corruption imposed is rather small. Sample cormdi@ted reconstructed images are
presented in Figure 13.

Content-dependent noise Impulsive noise

Noisy

Reconstructed

Figure 13. Sample noisy and reconstructed images.
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4 Layerwise processing

There is a class of images consisting of a setiradrp layers Maps are a typical
example of this kind of images since they condistemnantic layersbinary images
representing geographical objects of similar natmd depicted with a particular
color. For example forests are depicted in greehcare can extract all green regions
of the image into a binary image (a forest laysee an example of layered image in
Figure 14. In an atlas map, colors can represgnéat variety of parameters such as
density of population, pollution and temperaturét. fdane separation is another
example of the layer decomposition approach. A @@le image can be
decomposed into a set of binary layers accordingeddits of each pixel value.

Figure 14. lllustration of a multilayer map image from the Sltopographic database

[3].

If there is a strong correlation between layers, tlan be utilized to improve the
performance of the compression, filtering, or otipeocessing algorithms. This
correlation certainly exists in map images betw#ezir semantic layers [69]. In
[70], inter-layer correlation was used to improwe fperformance of a two-layer
context-based lossless compressor. This motivatestou research layerwise
processing of map and gray scale images as a methotbroving the performance
of lossless compression algorithms.

4.1 Morphological reconstruction of semantic layers

When producing a raster map image, map layers ftéreint semantic nature are
combined together overlapping each other in a fhireetk order. This image is well

suited for user observation but less appropriatéuidher processing since the layer
structure has been corrupted as the raster mapeimag produced. The problem is
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that the overlapping introduces severe artifactplates where the information on
different layers overlap each other; see Figureupper row. The holes on the face
of the lake left by the overlapping letters areit¢gpexamples of the artifacts. The
presence of these artifacts degrades the compitigsilh the color map image, in
comparison to the situation when the original sdrodayers were available.
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Figure 15. Semantic map layers: corrupted layers due todhe separation (upper
row); reconstructed with the proposed algorithmvéo row).

This problem led us to develop an algorithm for tleeonstruction of the
corrupted layers of map images. The algorithm psedoin P1 approximates the
original layer structure existing before the colmmbination by repairing the
corrupted layers as close as possible to the @ligines. Since the converted raster
map images are usually compressed by a losslessithig, we require that the
color combination of the reconstructed layers minst equal to the originally
received raster map image.

The results of the proposed reconstruction teclenaye presented in Figure 15.
The removal of overlapping artifacts provides 3@4bMetter compression on
standalone layers, and 5-10% better compressilidityi-layer map images without
any loss of quality. Besides that, the proposefrtiegie can be used for the removal
of unnecessary layers from the map.

4.2 Compression of gray scale images

Other types of images can also be treated as lkhyar@ges via the use of bit plane
separation. This assigns one bit from the bingpyasentation of the pixel value into
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each bi-level layer, thus losslessly separatinggray scale image into eight layers.
The overall scheme of this approach is shown iufeid6. In the case where there
is a correlation between the bit layers, it is guesto utilize this to gain better
compression efficiency. For example, in context eliog), involving neighboring
pixels from already processed binary images camamgthe probability estimation
and, therefore, the compression. Among existinglemgntations we can mention
the EIDAC [32] lossless compression algorithm, whitses a binary multi-layer
context model that operates on bit-layers of thagenusing both the actual bit
values and their differential characteristics asitext information. Two-layer
context modeling with optimization of the orderlayer processing was considered
in [70].
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Figure 16. The overall scheme of bit-plane-based compression.

In P2, we study how well the bit-plane-based approachveark on natural and
palette images. We consider four different bit plaseparation schemes:
straightforward bit plane separation, Gray-codetl giane separation, bit plane
separation of prediction errors and separation m@fy&oded prediction errors. We
use the highly optimized MCT context modeling methor lossless compression
and, furthermore, extend the two-layer MCT mode&tmulti-layer context model
for better utilization of cross-layer dependencid&s. general, any previously
compressed layer can be used to provide the caomatekiformation for the next
layer being compressed. An example of a multi-layeighborhood used IR2 is
presented in Figure 17. We extensively evaluateptiposed combinations of the
different bit plane separation and context modeBogemes, by applying them to
natural and palette images. The efficiency of titeplane-based compression is
compared to the existing compressors. Moreover, tlependency of the
compression on the image content is studied by fmadéhe transition between
natural and palette image classes.
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Current Layer

Already processed layer 2

Figure 17. A sample multi-layer context template.

4.3 Progressive compression via binary layers

Binary context modeling is also used for progressiicoding of color quantized
images in [74]. The algorithm uses binary tree @spntation of the color palette
followed by a progressive binary context-based dmgp In [75], an improved
version has been proposed.RA8, we continue the development of this approach by
improving the quality of the color progression smg merge-based color clustering
[76] instead of the original splitting-based apmimaWe also propose the use of
binary free tree modeling instead of the static texih model. The proposed
improvements provide better subjective qualityhs tolor progression (see Figure
18), and 10-20% better compression performancthset of palette images.

Original

Proposed

Figure 18. Color progressions provided by the original angppised algorithms.
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5 Summary of the publications

In the first paper (Pl), we propose a technique for reconstruction of ftyina
semantic layers of map images from the corruptmpased by overlapping of color
layers in the map. Separation of the map into ctagers and compressing them
individually provides better compression performanthan using standard
techniques. However, color separation causes cifen areas where one layer
overlaps another. The proposed algorithm approxémtte original structure of the
layer existing before the overlap by a sequentigblieation of masked

morphological operations. The image is processedhab the color map itself

remains untouched, and only the underlying binayeils are modified. The
proposed technique obtains up to 30-50% compressimumovement for single

layers, and improves the compression ratio of theleemap up to 5-10%.

In the second paper (P2), we explore the efficiency of binary-oriented cosgsion
algorithms applied to gray-scale and palette imalgesontrast to map images, gray-
scale imagery contains much more gradation arsdnitare difficult to exploit spatial
dependencies via binary layers and color separasonPl is not possible since it
would lead into too many (256) layers. In this wone consider four different bit-
plane separation schemes using error prediction@mag-coding. For prediction-
based schemes we evaluate three different preslidditrplane separation schemes
are combined with two binary-oriented compressoree known (MCT) and one
novel referred abl-layer Context TreéNCT).

We evaluate the proposed variants on natural afett@amages. The variants
providing the best compression are compared with estisting compression
algorithms. We conclude that despite the high oogeimization a binary-oriented
compressor cannot outperform the best losslesssgpag oriented algorithms due
to the nature of the signal. For palette imagesfawad out that highly optimized
binary compression is able to provide compressieriopmance close to the best
existing compressors but at the cost of highergssiag time.

In the third paper (P3), we improve a recently proposed layerwise lossless
compression algorithm, which is based on binarg tepresentation of the colors
and on context-based arithmetic coding. We consdi¢éwo improvements for the
algorithm: merge-based color quantization insteddth® original split-based
strategy, and a context tree modeling optimized dach layer separately. The
improved algorithm is evaluated on natural and t@alémages. The proposed
method provides better subjective quality of thiecprogression, and compression
improvement of 12% in the case of color palettegesa
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In the fourth paper (P4), we propose a statistical filter for map images tbase
local probability estimation using a context tr@ée estimation is followed by
replacing less probable pixels by the most probabke The size of the context is
dynamically adjusted according to the proposed preming procedure. The main
feature of the proposed filter is that the usehef tontext tree allows investigating
larger neighborhoods with reasonable time and mgngonsumption. The filter
effectively reconstructs patterns of the imagehm presence of moderate impulsive
and content-dependent noise.

In the fifth paper (P5), we consider a novel lossy compression schemectorned
map images. The proposed compression algorithmistensf two stages. First the
number of colors in the original image is reduced dolor quantization. The
guantized image is then compressed with the |as$<l3T compression algorithm.
In this work, two improvements for the original GQere considered: a fast pre-
pruning method and an optimized memory allocati®oth improvements reduce
the memory consumption as well as significantlyudg the processing time of the
algorithm. The proposed compression scheme is ateluon a set of scanned
topographic maps. The evaluation shows that theristhgn provides a compression
improvement of about 50% in comparison to the dbsempetitor, JPEG2000, at
the similar objective quality level.

In paperP1, the author developed the principles of the ataorj implemented
and evaluated it. The other two authors took parthe problem formulation and
editing of the article. In papd?2, the author implemented the N-layer context tree
modeling, bit-plane separation schemes, predictargl performed all the
experiments. In papeP3, the author implemented and tested the improved
compression algorithm. PapB# is based on a preliminary version published in a
conference by the second and third authors. The&ibation of the author includes
the tree pruning procedure, a new implementationhef filter with significantly
better memory consumption, performing new experisiand a broader evaluation.
In paperP5, the author considered and implemented the impr@&€T compressor
and performed the experiments.
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6 Conclusions

In this thesis, we have studied lossless and lossypression of raster map images
as well as layerwise processing algorithms forrtimprovement.

We have proposed a morphological algorithm foramedion of binary semantic
layers of multi-layer map images from the corruptiappearing in areas where
semantic layers overlap each other. The proposashséruction allows improving
the lossless compression of the layers up to 30-fa@%tandalone layers and in the
total compression rate up to 5 to 10%, dependingthen compression method
applied.

We have studied the efficiency of highly-optimizadary-oriented compression
algorithms to examine if it is possible to utilitesir high performance, as presented
for maps, for grayscale and palette images. Weidensa set of binary layer
separation schemes. We also consider two schemesofidext modeling: one
existing and one novel (NCT). The experiments shitvat statistical context
modeling and arithmetic coding cannot outperforne thest grayscale-oriented
compressors. On the other hand, when applied ifeciaft palette-like imagery, the
optimization of the model results in a compresgierformance which is close to the
best existing algorithms and further improvemenmassible.

We have proposed a novel filter for reconstructbmap images in the presence
of noise. In contrast to the existing edge-presgrilters designed to preserve areas
of high color variation, our filter aims at presexy the repetitive structures of the
image which is an essential property for raster nmagges. The problems of the
appropriate context size and resource allocatian saved. The proposed filter
outperforms edge-preserving competitors both ineabje and subjective
comparisons.

We have improved a recently proposed lossy-tod@sstcompression algorithm
based on layerwise progressive binary compressidre improved algorithm
provids better visual quality of the lossy progress 12% better compression is
achieved for palette images.

We have proposed a novel scheme for lossy compress$iscanned map images
utilizing the common features of the map imageiye fiovel scheme provides up to
50% better compression at the same quality levetnvbompared to its closest
competitor JPEG2000.
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7 Futurework

We believe that this thesis can be used as a basirther research. 5 a
pioneer work in lossy context-based compression hasn done. Although
the algorithm is applied on scanned topographicsnwayty, we expect the results to
generalize to similar image classes, such as dtm#s of maps, engineering
drawings, schemes, comic books and similar art @nagmages of this kind have
properties similar to map imagery, see Figure 1&irAilar lossy algorithm DjVu
can be developed where background and textualnmaEton would be separated,
and the textual part compressed by a GCT-basedlencahich is not restricted to
work only for bi-level images as DjVu.

The potential of GCT-based compression is possibleextend to video
compression. The method is expected to be effiémmntideo where features of the
imagery are close to the ones illustrated in Figifesuch as high quality cartoons
and animation, see Figure 20. Since subsequentefaoh the video are highly
correlated, multi-layer GCT modeling is expectedbéoa very efficient compression

tool.

ADMIND AS
80

L

Atlas Engineering drawing Comic book

Figure 19. Sample images with features similar to map imagery

Anime frame 1 Anime frame 2

Figure 20. Two consequent anime frames.
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8 Summary of theresults

8.1 Publication 1

Table 1. Compression of topographic map images with diffecempressors. The
average results (size, bits per pixel and compyasaiprovement) presented for
original, corrupted with color separation and restaucted layers.

Compression Original Corrupted Proposed reconstruction
algorithm Size bpp Size bpp Size bpp imp.
PNG 2085871 0.66 2149490 0.68 2078 254 0.66 319.
TIFF 1473824 0.47 1708 362 0.54 1480 657 0.47 3.33%
JBIG 684 978 0.21 790 257 0.25 720 185 0.23 8.87%
AKF2 624 117 0.19 696 017 0.22 660 661 0.21 5.08%
8.2 Publication 2
Table 2. Compression results (bits per pixel) for the ratimages.
Proposed Competitive
Image MCT- JBIG- JBIG- JPEG- PWC-
GCPES BPS GCS CALIC LS G PWC-P| JPEG2K PNG
Average 4.42 5.64 4.75| 411 4.18 4.21 4.84 4.36 4.56
Table 3. Compression results (in bytes) for the palettegiesa
Proposed Competitive
Image | NCT- | JBIG- JBIG- JPEG-
BPS BPS GCS EIDAC | CALIC LS PWC-G| PWC-P PNG
Total 175590| 351913 211943140957 | 226296 272555 19893{L 144344 245745

8.3 Publication 3

Table 4. Compression results of PNG, Chen’s, Pinho’s aedotioposed algorithm as
well as obtained compression improvement (compaartge closest competitor) for

natural and palette test sets.

Test set PNG Cheet al. Pinhoet al. Proposed Improvement
Natural 7261542 2521448 2426446 2399451 1%
Palette 712726 274700 257126 226469 12%
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8.4 Publication 4

Table 3. The efficiency of mathematical morphology (MM),cter median (VM),
adaptive vector median (AVM) and the proposed (filiers measured asE distance
to the original image for 20% content-dependent) @ 5% impulsive noise (1).

Image 1 Image 2 Image 3 Image 4 Image |5 Image 6
CD I CD I CD I CD I CD I CD I

MM | 23.52 24.37| 29.66 30.28 27.75 28.33 14.10 14.4854 8.68| 30.45 31.11
VM 316 251| 850 7.73 858 73y 327 246 199 616781 6.67
AVM | 251 1.70| 460 246, 505 312 218 1.18 133151 507 3.10
PGA | 251 1504 548 3.71 576 379 224 1B2 1.7561.590 4.02
CT 214 089 395 289 39 244 170 0P4 119811386 294

8.5 Publication 5

10 4

—>—ECW
—+—JPEG2000
—a—MC+PWC
—a—L-GCT

Rate, bpp
O T T T T T T T T

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Figure 21. Operational rate-distortion functiortlué proposed algorithm (L-GCT) and
its competitors.

Table 5. Compression performance of JPEG2000 and the pedpalgorithm for
similar objective quality level.

MSE distance JPEG2000, Bpp Proposed, Bpp Improvg®en
1.52 3.20 1.55 51
1.99 2.40 1.23 48
2.71 1.70 0.95 44
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Abstract. Map images are composed of semantic layers depicted
in arbitrary color. Color separation is often needed to divide the
image into layers for storage and processing. Separation can result
in severe artifacts because of the overlapping of the layers. In this
work, we introduce a technique to restore the original semantic lay-
ers after the color separation. The proposed restoration technique
improves compression performance of the reconstructed layers in
comparison to the corrupted ones when compressed by lossless
algorithms such as International Communication Unit (ITU) Group 4
(TIFF G4), Portable Network Graphics (PNG), Joint Bi-level Image
experts Group (JBIG), and context tree method. The resulting tech-
nique also provides good visual quality of the reconstructed image
layers, and can therefore be applied for selective layer removal/
extraction in other map processing applications, e.g., area
measurement. © 2006 SPIE and IS&T. [DOI: 10.1117/1.2178188]

1 Introduction

Currently, there exist various services delivering map im-
agery content to the user. For example, real-time map im-
aging applications provide users with a view of a geo-
graphical map for the area surrounding the user’s location.
The location can be obtained using a global positioning
service (GPS), mobile positioning service (MPS), or other
analog services. It could also be weather, traffic, pollution,
or any other kind of map. The imagery data are usually
obtained from a digital spatial library,1 and transmitted via
the network to the user’s device such as a pocket computer
(PDA), mobile phone, or desk-top terminal.

A typical map image consists of a set of semantic layers,
each containing data with distinct semantic content, each
depicted with its own color, e.g., black roads, brown eleva-
tion lines, blue water areas, yellow fields, etc. Regardless of
the semantic nature, typical maps need only a few color
tones to represent the layers, but high spatial resolution for
representing details. Let us call these images multilayer
map images.

We consider topographic images from the National Land
Survey of Finland (NLS) topograghic database, in particu-
lar the basic map series 1:20,000.” The images consist of a
set of semantic layers, each containing data with distinct
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semantic content, such as roads, elevation lines, infrastruc-
tures, state boundaries, and water areas. The layers are
combined and displayed to the user as a generated color
image, in which the data of each type are depicted using
their own color. These images consist of the following se-
mantic layers: basic (roads, contours, labels, and other to-
pographic data), elevation lines (thin lines representing el-
evations levels), waters (solid regions and polylines
representing water areas and ways), and fields (solid po-
lygonal regions) (see Fig. 1).

The original map data are usually stored in vector format
on a server-side database. Each semantic layer is stored
separately. As the user’s request arrives, the server prepares
part of the data and transmits it to the user in raster format,
since raster images are easier to handle on a client-side
device. Using a vector format requires special software de-
veloped for vector map image processing, then the process-
ing of raster images is a standard feature of almost any
mobile terminal. Raster format is also often used for digital
publishing on the web or CDs.

When producing a raster map image, map layers of dif-
ferent semantic nature are combined together overlapping
each other in a predefined order. This image is well suited
for user observation, but it is less appropriate for further
processing, since the layer structure has been corrupted
when the raster of the map image was produced. For ex-

Combined map image: Basic Elevation lines
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Fig. 1 lllustration of a multilayer map image from the NLS Topo-
graphic database.
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Fig. 2 Corrupted layers due to the color separation.

ample, when one needs to calculate the area of the fields, or
the length of coastline, the layer must be extracted from the
color raster image through color separation. During this
process, the map image is divided into binary layers, each
representing one color in the original image. The main
problem of this approach is that the separation introduces
severe artifacts in places where the information of different
layers overlap each other (see Fig. 2). The holes on the
fields caused by overlapping letters are a typical example of
these artifacts. The presence of the artifacts can make the
color separated layer useless for many map processing
tasks.

Moreover, the problem also affects the compressibility
of the images. Though the raster image could be com-
pressed with any existing lossless compression algorithm, it
has been shown that the best compression results can be
achieved if the image is decomposed into binary semantic
layers, which are consequently compressed by algorithms
designed to handle binary data (e.g., JBIG).? The artifacts
of the color separation, however, affect the statistical prop-
erties and consistency of the layers, and result in degraded
compression performance in comparison to the original
ones. This is apparent especially in applications requiring
the use of mobile hardware such as mobile phones or
pocket computers. For example, a single map sheet of 10
X 10 km? is represented by a single map image of 5000
X 5000 pixels. Larger image size also takes a longer time
to transmit. For example, 10-sec transmission via a GPRS
channel with bandwidth 45 kb/sec results in at most 54 kB
of image data. This corresponds to only about 500
X 500 pixels for a four-layer map image.

The problems mentioned led us to develop an algorithm
for the reconstruction of the corrupted layers of map im-
ages. The proposed algorithm approximates the original
layer structure existing before the color combination by re-
pairing the corrupted layers as close to the original ones as
possible. A natural restriction for the reconstruction tech-
nique is that the color combination of the reconstructed
layers should be equal to the originally received raster map
image.

The goal of image restoratlon is to reconstruct the origi-
nal image before degradatlon The reconstruction involves
a criterion for measuring the quality of the desired result.
For our problem, we consider two criteria: image quality
and image compressibility. The first criterion measures how
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close the reconstructed layer is to the original semantic
layer. This is important for applications where visual qual-
ity is essential, or the reconstructed layer is used for pro-
cessing, e.g., measuring the area of the fields. The second
criterion aims to modify the corrupted layer so that its com-
pressibility will be improved as much as possible without
causing any changes to the corresponding output color im-
age.

The artifacts appearing on the layers could be treated as
noise. If we guarantee that the color map remains un-
touched, noise removal could be considered as a tool for
improving image quality for achieving better compressibil—
ity. There are many image enhancement methods in the
literature,*” and various reconstruction techmques have
been considered.*™"! Statistical modehng, and specific
data modeling and representation techmques13 have also
been considered. However, noise filtering and typical image
enhancement algorithms are not suitable for solving our

[ |. Decomposition ]
A 4

Binary layers

-/

[ Ill. Perform Reconstruction
4
Reconstructed layers

Fig. 3 Outline of the reconstruction algorithm.
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problem, because, due to their local nature, they are not
able to recognize larger structures and dependencies be-
tween layers.

Therefore, we introduce a new morphological filter for
layer reconstruction. We chose mathematical morphology
to be the tool, mostly due to the simplicity of implementa-
tion. Morphological operators do not require sufficient
computational and memory resources to be applied, which
is apparent for use on mobile terminals. The benefits of the
proposed filter are its capability to reconstruct semantic in-
formation in a multilayer map image, and that the original
color image can always be reconstructed exactly without
any loss in the quality. The effect of the filter is therefore
limited only to the binary layers. The method is applicable
for extraction or removal of individual layers, and for loss-
less compression of the map images. The method is fast
and simple to implement.

The rest of the work is organized as follows. Mathemati-
cal morphology is briefly introduced in Sec. 2. In Sec. 3,
we introduce two variants of the new filtering method for
layer extraction, and then apply it for layer removal in Sec.
4. Empirical results are reported in Sec. 5, and conclusions
drawn in Sec. 6.

2 Mathematical Morphology

Mathematical morphology refers to a branch of nonlinear
image processing and analysis originally introduced by
Matheron'’ and Serra,'® and currently continuing its
development.19 This chapter gives the basic morphological
definitions. In discrete binary morphology, an image space

AN
vikkala
=

S &

Fig. 5 Water and field layers with their masks. Object pixels from
the layer are plotted by black, and the mask pixels by gray to differ-
entiate which pixel belongs to the layer, and which pixel to the mask.

Journal of Electronic Imaging

013016-3

Fig. 6 The block diagram of CC algorithm.

E is usually defined as E=77 (the space of all possible
image pixel locations), and a binary image X as a set XC E.
For a given set A, the reflection (or the symmetric) of A
with respect to the origin, denoted as A or —A, is defined by

A={-a|a € A}. The power set of E, or in other words, the
set of all subsets of E, is denoted as P(E). One of the main
fundamentals of mathematical morphology is to analyze the
geometrical and topological structure of an image X by
“probing” the image with another small set ACFE called a
structuring element. The choice of the appropriate structur-
ing element depends on the particular application.

2.1 Fundamental Morphological Operators

The dilation of X by A, denoted as §,(X), is defined as the
operator on P(E) given by:

Si(x)= UX,={he EA,NX# B}

acA

The erosion of X by A, denoted by &4(X), is

esX)= N X_,={h € E|A, C X}

acA

The cardinality of set A, or the number of elements in A, is
denoted by card(A). Let us also define the translation in-
variant operator p, ,, called a rank operator, as follows:

pan(X)={h € E|card(X N A;) = n}.

The operator p, ,(X) sets current pixels to be the fore-
ground if the amount of foreground pixels in a neighbor-
hood defined by the structuring element is greater than n.
Otherwise, the pixel is defined as a background pixel. Since
the rank operator performs similar to erosion or dilation
depending on the value of the rank parameter, it is possible
to treat the rank as a soft counterpart of classical erosion
and dilation operators. In particular:

Jan—-Mar 2006/Vol. 15(1)
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Fig. 7 Sample images for the water and field layers: original and reconstructed with CC and CDME
algorithms as well as mismatching of reconstructed layer and the original.

81(X) = pa.1(X) and €4(X) = pacaraa)(X).

The operator ay,(X)=384[£4(X)] is called the (structural)
opening by A. Dually, the operator B,(X)=g4[5,(X)], is
called the (structural) closing by A.

2.2 Conditional Operators

If an image is, say, dilated by a structuring element con-
taining the origin, it is expanded, and the manner of the
expansion depends only on the shape of the structuring el-
ement. If the dilation is successively repeated, the original
image grows without bounds. Sometimes it is important to

restrict the growth. This can be accomplished by using con-
ditional operators. A common form of conditioning restricts
the translations to a superset of the input image: if image A
is a subset of image T, then for any operator (A), the
operator YAA|T) is called y{A) conditioned relative to T
and is defined as:

YA[T) =pA) N T.

The image T is usually referred to as a mask image.

Journal of Electronic Imaging 013016-4 Jan—-Mar 2006/Vol. 15(1)
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M < Mask
A< Structuring element of dilation
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REPEAT
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UNTIL Iteration criterion met

Fig. 8 Outline of the CDME algorithm.

3 Layer Reconstruction Technique

We consider two approaches. The first approach aims at
maximal compression improvement for the reconstructed
layers, and the second at more accurate restoration of the
original semantic layers.20 In the first approach, we simply
try to minimize the storage size of the layers, which is
essential for map storage systems. In the second approach,
we try to produce layers that are as close to the original
semantic layers as possible. The resulting layers can then
be used for additional map processing and analysis. Fol-
lowing the underlying principles behind the previous two
approaches, we have designed two reconstruction algo-
rithms referred to further as conditional closing (CC) and
conditional dilation with mask erosion (CDME).

Both algorithms have the same structure, consisting of
three main steps as outlined in Fig. 3. At the first step, the
color map (scanned or obtained from the third party source)
is decomposed into a set of binary layers by a color sepa-
ration process. This is done so that each layer represents
one color in the original image.3 Then, according to the
predefined layer order, a conditioning mask is created for
every layer for restricting the reconstruction of the layers to
be equal to the original color image. Finally, the actual
reconstruction is performed for every layer with respect to
its conditioning mask.

3.1 Conditioning Mask

Further, we denote a layer image as L; when we talk about
some particular layer, we denote it as L;, | <k<N, where
N is the total number of layers in a map image. The require-
ment that the composition of reconstructed layers should be

[ Iteration criterion ]

Fig. 9 Block diagram of the CDME algorithm.

identical to the initial color map can be met by conditioning
the operator 4L;) on the mask M,, which defines the re-
gion where changes of the layer content are allowed. The
requirement of keeping the reconstructed color map identi-
cal to the original one leads to the fact that the restoration
operator must not remove pixels that are already present in
the corrupted layer. It can only add pixels to a layer, so that
the condition

is met. The conditioning mask defines the set of pixels that
are allowed to change value in the restoration, so that the
combination of the restored layers would be kept un-
touched. Since we assume that the order of layer overlap-
ping is predefined, the mask for every layer is computed as
the union of all upper-laying layers,

v/

N N

\4\

Original Waters layer and 18t iteration

mask

2nd jterations 5th jterations

Fig. 10 Step-by-step illustration of the dilation with mask erosion. Object pixels from the layer are
plotted by black, and the mask pixels by gray to differentiate which pixel belongs to the layer, and

which pixel to the mask.

Journal of Electronic Imaging

013016-5

Jan—-Mar 2006/Vol. 15(1)



Podlasov, Ageenko, and Frénti: Morphological reconstruction of semantic layers...

‘+,

v

v

Fig. 11 Block diagram of the layer removal algorithm. Elevation
lines layer to be removed is outlined with a black frame.

k
Mk = U Lk’
j=1

(see Figs. 4 and 5).

3.2 Layer Reconstruction
3.2.1 Conditional closing

Having the compression objective in mind, let us consider
using a simple and effective conditional closing (CC) op-
erator L:=8,(L|M) to perform reconstruction. The algo-
rithm is outlined in Fig. 6. The quality of the reconstruction
in terms of compressibility strongly depends on the applied
structuring element. In our experiments, we have tried out
several alternatives and found that square block provides
the best compression improvement. The size of the block

Original map

Elevation lines removed

depends on the size of the artifacts, and, for our test set 7
X7 has been selected. Once applied successfully, the clos-
ing fills artifacts inside the objects, leaving the borders al-
most untouched (see Fig. 7). The main characteristics of
this approach are its simplicity of implementation, and its
positive effect on compression.

3.2.2 Conditional dilation with mask erosion

Although efficient in terms of compression, the CC algo-
rithm is not as effective in approximating (restoring) the
original layers. The method expands the lower layers too
conservatively, whereas the color layer is typically a re-
duced version of the original semantic layer, due to over-
lapping. Therefore, we propose another algorithm, which
we call conditional dilation with mask erosion (CDME),
using more aggressive expansion based on dilation, and
thus, aiming at a more accurate approximation of the origi-
nal semantic layers.

The idea in general is to spread objects step by step and
shrink the mask, too. The process is iterative: first, the
spreading is performed by the dilation operator J4(X), and
then the mask shrinking is performed by the erosion opera-
tor £4(X). The pseudocode of the algorithm is shown in Fig.
8, and outlined in Fig. 9. The stepwise process of the itera-
tions is illustrated in Fig. 10.

The iterative process is controlled by a stopping crite-
rion. We have investigated two approaches: iterate until sta-
bility and iterate fixed amount of times. The first approach
assumes that the iterative process will continue until the
layer (and mask) converges. The convergence is guaran-
teed, because the erosion sequentially decreases the mask
(see Fig. 10). We can therefore perform the iterations until
the mask equals the layer itself.

Examination if the mask and layer are equal could be a
time-consuming operation, especially if the image size is
big. To avoid this, we consider the second approach by
assuming that most of the artifacts are of limited size,
which can be determined within the first few iterations. We
therefore restrict the amount of iterations by a fixed num-
ber. For example, if we suppose that the size of an artifact
is four pixels, on average, three dilations with a 3 X 3 block
are enough for the restoration.

As with the conditional closing, an important question is
the choice of an appropriate structuring element. There are

\ .

Basic layer and elevation lines
removed

Fig. 12 Example of the layer removal.
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Table 1 Restoration of elevation layer.

CDME CC
Compression Semantic Corrupted
algorithm layers layers Size Imp. Size Imp.
PNG 825510 808 126 811 958 -0.47% 805 774 4.30%
TIFF 460 811 481 338 464 934 3.41% 461 482 0.29%
JBIG 236 210 269 423 259 139 3.82% 253 606 6.24%
AKF2 223 555 261 386 250 820 4.04% 243 870 6.70%

two structuring elements used in the algorithm: in the ob-
ject dilation and in the mask erosion. By varying the first
element, we can control how fast the object expands over
the mask, while varying the second element controls how
fast the mask shrinks. An essential matter is the relation
between the speeds of the dilation and erosion. Let A be the
structuring element of dilation and B be the structuring el-
ement of erosion. We use two structuring elements: square
is the 3 X3 block {[-1,0,1]X[-1,0,1]} and cross {(0,
-1),(1,0),(0,0),(-1,0),(0,1)}. We have tested three
cases: objects dilating faster than mask eroding (A
=square, B=cross), objects dilating slower than mask erod-
ing: (A=cross, B=square), and the case of equal speed (A
=square, B=square or A=cross, B=cross).

The speed of dilation and shrinking could also be con-
trolled if dilation and erosion operators used in a restoration
technique are replaced with a rank operator as their “soft”
countelrpart.17 The rank operator is equal to the dilation
operator when the rank parameter 7 is set to 1, and to the
erosion operator when the rank parameter is equal to the
cardinal number of the structuring element [n=card(A)].
Rank operators with rank parameters lying between these
two values behave approximately like dilation or erosion
operators. In other words, a rank parameter could be used
to regulate the “strength” of erosion or dilation, or how fast
objects shrink or expand. The case when a rank operator
equals card(A)/2 is called a median operator.

The performance of the restoration strongly depends on
the morphological structure of the layer under reconstruc-
tion. To choose the variant of the algorithm for evaluation,
we examined different structuring elements and parameter
values. The modification gaining the best performance is
described and evaluated in Sec. 5.

4 Layer Extraction/Removal Technique

The task of layer restoration arises if there is a need for
layer extraction or removal. Layer extraction is needed
when one wishes to perform some specific processing over
the layer, e.g., to calculate the area of the fields. Naturally,
a corrupted layer could not be accepted as accurate input. A
similar task is layer removal when less important layers are
not needed by the map user, e.g., user driving a car does not
need elevation lines, as such layers can limit map readabil-
ity. To remove a layer, the restoration technique of Sec. 3 is
first applied to all layers, and the color image is composed
of the restored layers except for the one to be removed (see
Fig. 11).

The most important feature here is the quality of the
restoration, i.e., how closely the corrupted layer approxi-
mates the original layer. Moreover, in user interactive ap-
plications, the visual appearance of the reconstructed layer
becomes essential. Figure 12 illustrates the effect of the
removal of the basic and elevation layers.

5 Evaluation

The restoration techniques have been evaluated on a set of
topographic color-palette map images. These images were
decomposed into binary layers with distinctive semantic
meaning identified by the pixel color on the map. The res-
toration algorithms have been applied for reconstruction of
these semantic layers after the map decomposition process.
Both the combined color map images and the binary se-
mantic layers composing these color map images were
originally available for testing. This allowed us to compare
the restored images with their original undistorted counter-
parts.

Table 2 Restoration of water layer.

CDME cC
Compression Semantic Corrupted
algorithm layers layers Size Imp. Size Imp.
PNG 381 608 425 862 384 766 9.65% 378 484 11.13%
TIFF 167 361 357 164 168 630 52.79% 171 673 51.93%
JBIG 81 334 137 258 93 230 32.08% 95 520 30.41%
AKF2 49 230 73107 57 370 21.53% 54 695 25.18%
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Table 3 Restoration of field layer.

CDME CC
Compression Semantic Corrupted
algorithm layers layers Size Imp. Size Imp.
PNG 309 712 456 710 320 821 29.75% 313 486 31.36%
TIFF 99 622 196 456 105 388 46.36% 119 306 39.27%
JBIG 49 409 113 977 50 936 55.31% 56 950 50.03%
AKF2 5917.5 16110.5 7056.25 56.20% 6212 61.44%

The performance of the proposed restoration techniques
was evaluated according to two measures: the improvement
of compression performance and the quality of the recon-
struction. The first measure is relevant when dealing with
map image storage, and concerns only the improvement in
compressibility, regardless of how exact the reconstruction
is. The second measure is relevant to applications where the
reconstruction is expected to approximate the original as
close as possible.

The test set consists of five randomly chosen images
from the NLS Basic Map Series 1:2000, corresponding to
the map sheets 431306, 201401, 263112, and 431204. Each
image is of 5000 X 5000 pixels and consists of four binary
layers. The layer names are the following:

* basic—topographic image, supplemented with com-
munications networks, buildings, protected sites,
benchmarks, and administrative boundaries

¢ elevation—elevation lines

» water—lakes, rivers, swamps, and water streams

e fields—agricultural areas.

5.1 Compression Performance

The evaluation examines the compression performance of
the map images constructed on reconstructed layers in com-
parison to semantic layers (not affected by the layer sepa-
ration process) and corrupted layers (result of the layer
separation). The proposed algorithms were evaluated using
four compression techniques: LZ (PNG), ITU Group 4
(TIFF), JBIG, and AKF2?' (context-based compression
with optimized context size and shape). For each of these
compression methods, we have measured the compressed

data size for the original semantic layers, for the corrupted
binary layers after decomposition, and for the reconstructed
layers with the two reconstruction algorithms (CC and
CDME). The structuring elements in CC are 7 X7 blocks;
the CDME uses soft erosion and dilation with rank param-
eters 2 and 8, respectively.

5.1.1 Results for stand-alone layers

Tables 1-3 give the average compressed sizes of the re-
stored elevation lines, water, and field layers, respectively.
The results are the average compressed file size (size) im-
provement in compression ratio (imp) for semantic, cor-
rupted, and reconstructed layers.

Evaluating the performance for the elevation-line layer
we conclude that neither reconstruction technique is effec-
tive in improving the compression performance. The struc-
ture of the layer does not allow for remarkable increase,
and only about 5% improvement was achieved. On the
other hand, significant compression improvement is gained
for water and field layers (20 to 50%, depending on the
compression technique), since these layers contain a lot of
closed solid regions. The holes left by letters and other
artifacts were successfully filled by both algorithms. The
tradeoff between the algorithms is in the computational
complexity (the CC is simpler) and the quality of the res-
toration (the CDME has significantly better visual appeal,
as shown further).

5.1.2 Overall results

In a real application, however, one cannot consider com-
pression improvement for independent layers, but we must
evaluate the compression performance altogether for all

Table 4 The average compression performance of the topographic map images based on semantic layers, color layer separation, and
reconstructed color layer separation with CDME and CC restoration algorithms.

Semantic layers Corrupted layers

Reconstructed with CDME Reconstructed with CC

Compresson
algorithm Size bpp Size bpp Size bpp imp. Size bpp imp.
PNG 2085 871 0.66 2149 490 0.68 2078 254 0.66 3.31% 2 063 955 0.66 3.98%
TIFF 1473 824 0.47 1708 362 0.54 1480 657 0.47 13.33% 1483727 0.47 13.15%
JBIG 684 978 0.21 790 257 0.25 720 185 0.23 8.87% 718 446 0.22 9.09%
AKF2 624 117 0.19 696 017 0.22 660 661 0.21 5.08% 650 191 0.20 6.58%
Journal of Electronic Imaging 013016-8 Jan—-Mar 2006/Vol. 15(1)
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layers forming a map image. Table 4 illustrates the average
compression performance of the test images based on se-
mantic layers, color layer separation, and reconstructed
color layer separation with CDME and CC restoration al-
gorithms. The results are average compressed file sizes
(size) computed as the sum of all compressed layers, bit
rate (bpp), and improvement ratio (imp). We conclude that
the proposed restoration technique achieves almost the
same degree of compression of the map images as if the
original semantic layer decomposition was available. Rela-
tively low compression improvement is caused by the
dominant size of the nonrestorable top-level layer basic, or
the hardly restorable elevation-line layers.

5.2 Restoration Quality

This section evaluates the restoration performance of the
proposed technique. By restoration quality, we mean how
close the original and reconstructed layers are, with respect
to some distance measure. In this work, we use normalized
mean absolute error (NMAE), i.e., Hamming distance,
which measures the average number of different pixel val-
ues in the original semantic layers, and in the reconstructed
layers.

1 W
EFI Ei:] |xi,j _yi,j|

H-W ’

NMAE(X,Y) =

where H and W are image dimensions.

The compression evaluation showed that the elevation
layer is hardly restorable. Therefore, we do not consider it
in the quality evaluation. We measured the NMAE differ-
ence between the original layers of water and field, and
their reconstructed counterpart, with both CC and CDME.
The same was done for the corrupted layers with respect to
the original ones. These results show that the reconstructed
layers are closer to the original layers than the corrupted
ones. In Fig. 13, we present the total NMAE differences
within the test set for each layer separately. The CDME
algorithm showed better reconstruction comparing CC both
for water and fields.

We evaluated the performance of the restoration by ap-
plying it to the task of area measurement. We compared the
area measured over the original layer with one measured
over the reconstructed and corrupted layer. The results are
presented for water and field layers separately on average
within the whole test set (see Table 5). Since CDME ap-
proximates layers better, its area measurements are also
much closer to the original than the CC results. CDME
reconstruction reduces the error of the area measurement
from 15 to 20% to just about 1%.

0.025 @
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u Corrupted @ CC @ CDME
0.015

NMAE
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(b)
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w
L 004
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Fig. 13 The average NMAE difference with the original measured
for reconstruction with CC and CDME field (a) and water (b) layers
compared to corrupted ones.

6 Conclusion

We propose a technique for the restoration of binary seman-
tic layers of map images from the corruption caused by the
decomposition of the image using a color separation pro-
cess. The performance of the proposed method is evaluated
by improvement in compression performance and in quality
of the restoration. It allows us to obtain up to 30 to 50%
compression improvement for stand-alone layers and im-
proves the total compression rate (calculated for the sum of
the layers) up to 5 to 10%, depending on the compression
method. Low total improvement rates are caused by the
presence of non- or hardly restorable layers, such as basics
and elevation.

Quality evaluation shows that restoration efficiently ap-
proximates corrupted layers to the original. The properly
tuned algorithm reduces error in such applications as area
measurement from 15 to 20% to about 1%. The color map

Table 5 The area (in pixels) measured over the original, corrupted, and reconstructed with CC and

CDME elevation, water, and field layers.

Semantic layers  Corrupted layers CDME CcC
Compression
algorithm Area Area Error, % Area Error, % Area Error, %
Water 10 480 893 8678605 17.20% 10389501 0.87% 9996454 4.62%
Field 4 267 983 3663960 14.15% 4262378 0.13% 4057253 4.94%

Journal of Electronic Imaging

013016-9

Jan—-Mar 2006/Vol. 15(1)



Podlasov, Ageenko, and Frénti: Morphological reconstruction of semantic layers...

image resulting from the combination of the reconstructed
layers remains identical to the original image, because all
changes to the layer content are performed only within
those areas that will be overlapped during composition. The
method therefore affects only the separated layers, not the
original color image.
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Abstract. Color separation and highly optimized context tree mod-
eling for binary layers have provided the best compression results
for color map images that consist of highly complex spatial struc-
tures but only a relatively few number of colors. We explore whether
this kind of approach works on photographic and palette images as
well. The main difficulty is that these images can have a much
higher number of colors, and it is therefore much more difficult to
exploit spatial dependencies via binary layers. The original contribu-
tions of this work include: 1. the application of context-tree-based
compression (previously designed for map images) to natural and
color palette images; 2. the consideration of four different methods
for bit-plane separation; and 3. Extension of the two-layer context to
a multilayer context for better utilization of the crosslayer correla-
tions. The proposed combination is extensively compared to state of
the art lossless image compression methods. © 2006 SPIE and
IS&T. [DOI: 10.1117/1.2388255]

1 Introduction

Lossless image compression is needed for applications that
cannot tolerate any degradation of original imagery data,
e.g., medical applications such as mammography, angiog-
raphy, and x-rays. It is essential that the decompressed im-
age does not contain any degradation in quality, since it
could lead to misdiagnosis and health injury. Satellite or
geographical map images are another case where distortion
caused by compression cannot be tolerated.

The earliest lossless compression methods used either
dictionary-based methods or run-length encodlng How-
ever, these techniques do not exploit 2-D correlations in the
image, and they are not very efficient for natural images
that contain smooth color variations but do not have repeat-
ing patterns. Predictive modeling, on the other hand, ex-
ploits spatial correlations by predicting the value of the
current pixel by a function of its already coded neighboring
pixels. The difference between the actual and predicted
value, called predzctzon error, is then encoded." A simple
linear prediction is used in the lossless mode of the JPEG
still compression standard and a nonlinear predictor in the
newer JPEG-LS standard.’ Despite their apparent simplic-

Paper 05204RR received Nov. 23, 2005; revised manuscript received Jun.
22,2006; accepted for publication Aug. 2, 2006; published online Nov. 22,
2006.
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ity, prediction-based techniques are quite effective and used
in state of the art compression methods.

Another approach is to use context modeling followed
by arithmetic codlng In context-based models, every dis-
tinctive pixel combination of the neighborhood is consid-
ered as its own coding context. The probability distribution
of the pixel values is estimated for each context separately
based on past samples. In grayscale images, however, the
number of possible pixel combinations is huge and only a
small neighborhood can be used. The number of contexts
must therefore be reduced by context quantzzatmn This
approach, combined with predictive modeling, has been
used in the context-based adaptlve lossless i image compres-
sion (CALIC) algorrthm The recent JPEG2000° compres-
sion is based on wavelet transform, and although this algo-
rithm is aimed at lossy compression, it also includes a
lossless variant.

The efficiency of the prediction scheme also depends on
the type of image. For example, CALIC is efficient on pho-
tographic images (see Fig. 1) but not so good on images
that contain smaller amounts of color gradation (see Fig. 2),
e.g., color palette images, web graphics, geographical
maps, schemes, and diagrams. On the other hand a method
called the piecewise-constant model (PWC)' has been op-
timized for this type of image. The algorithm is a two-pass
method. In the first pass, it uses special classification to
establish boundaries between constant color pieces in the
image. In the second pass, the decisions are coded by a
binary arithmetic coder. The method also takes advantage
of uniform regions where the same context repeatedly
appears.

One approach for exploiting spatial correlations effi-
ciently is to decompose the image into a set of binary lay-
ers, as demonstrated in Fig. 3, and then compress the layers
by a binary image compressron method such as JBIG.® The
advantage of this approach is that a much larger neighbor-
hood can be applied in the context model than when oper-
ating on the grayscale values. The decompression process is
reversed: the compressed file is decompressed into a set of
layers, which are then combined back into the grayscale
image.

Unfortunately, JBIG is not very efficient when applied to
bit-plane separated layers, as it is on images that are binary

Oct—Dec 2006/Vol. 15(4)
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Goldhill

Fig. 1 Test set of natural images.

by their origin. Typically, the bit layers (especially less sig-
nificant bits) lack predictable structure to be compressed
well. This is because the bit-plane separation destroys the
gray-level correlations of the original image, making the
compressor unable to exploit them when coding the bit
planes separately. In fact, interlayer dependencies are stron-
ger than spatial dependencies within the layers. Embedded
image-domain adaptive compression of simple images
(EIDAC)9 therefore uses a 3-D context model, where con-
text pixels are selected not only from the current bit plane
but also from the already processed layers.

Another way to improve compression performance is to
increase the size of the context template. A larger context
can be achieved by a selective context expansion using
context tree (CT),'"” which allocates memory only for con-
texts that are really present in the image. The size as well as
the ordering of the pixels within the context can be
optimized.11 An attempt to spread the optimized context
tree modeling to a multilayer case called multilayer context
tree (MCT) modeling has been made in the case of
multilayer geographical map images.12 Optimal orderinl% of
the layers was shown to give additional improvement.

In general, the efficiency of the particular compression
method depends on the utilization of color and spatial de-
pendencies (see Fig. 4). Prediction-based algorithms con-
centrate mainly on color dependencies, since they are look-
ing for correlation between gray values in a relatively small
spatial neighborhood. On the other hand, binary image
compression algorithms concentrate more on utilizing spa-
tial dependency than color dependencies. Binary nature of
the input data makes it possible to use a larger spatial con-
text template, but when applied to bit-plane separated data,
the compression efficiency is low, since there are more in-
terlayer (color) dependencies than spatial dependencies
among the neighboring bits. A successful compression
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method should utilize both types of dependencies.

We study how well the bit-plane-based approach can
work on natural and palette images. We apply the MCT
method presented in Ref. 13, but instead of the color sepa-
ration, we perform bit-plane separation because of a higher
number of colors in the images. We consider four different
methods: a straightforward bit-plane separation as such,
gray coding, a separate prediction step, as well as the com-
bination of the last two. Furthermore, we extend the two-
layer context model to a multilayer context model for better
utilization of the cross-layer dependencies. In general, one
can use any previously compressed layer as the reference
layers. The first layer is compressed as such, the second

sea_dusk, 43 colors

Books, 7 colors

flax, 3 colors

sun_set, 138 colors
S & empndd, 133 colors

Fig. 2 Test set of simple images.
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Bit plane separation

Binary compressor

Fig. 3 Lossless compression of grayscale images by a binary-image-oriented compression.

layer can use the first one as the reference layer, and the
process continues so that the last layer can use all previous
layers. We denote this extension as an N-layer context tree
modeling (NCT).

The rest of the work is organized as follows. The aspects
concerning context modeling, context tree modeling, and
multilayer context trees are described in Sec. 2. Different
alternatives for bitplane decomposition are studied in Sec.
3. The performance of the proposed schemes is evaluated in
Sec. 4 against the most competitive algorithms both for
natural and palette images. Finally, conclusions are drawn
in Sec. 5.

2 Multilayer Context Tree Modeling

Statistical image compression consists of two phases: mod-
eling and coding. In the modeling phase, the probability
distribution of the pixels to be compressed is adaptively
estimated. The coding process assigns variable length code
words to the pixels according to the probability model, so
that shorter codes are assigned to more probable pixels and
vice versa. The coding is performed by arithmetic coding14
using implementation known as a QM-coder,"”> which was
originally introduced for the JBIG standard.

2.1 Context Modeling

The probability of a pixel is conditioned on a context,
which is defined as the black-white configuration of the
neighboring pixels within a local template (see Fig. 5). The
index of the selected context and the pixel to be coded are
then sent to the arithmetic coder. In principle, better prob-

High

Ideal case

C

-

Color dependency utilization

Dictionary- RLE

z
==

based
§ algorithms JBIG CT
=
Weak Spatial dependency utilization High

Fig. 4 Spatial and color dependency diagram. The algorithms con-
sidered in this work are emphasized by shadow.
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ability estimation can be achieved using a larger context
template. However, it does not always result in compres-
sion improvement, because the number of contexts grows
exponentially with the size of the template. This leads to
the context dilution problem,16 in which the statistics are
distributed over too many contexts, and thus affects the
accuracy of the probability estimates.

2.2 Context Tree

The context tree (CT) concept10 provides a more flexible
approach for modeling the contexts so that a larger number
of neighbor pixels can be taken into account without the
context dilution problem. The contexts in CT are repre-
sented by a binary tree, in which the context is constructed
pixel by pixel. The context selection is deterministic and
only the leaves of the tree are used. The location of the next
neighbor pixels and the depth of the individual branches of
the tree depend on the combination of the already coded
pixel values.

The tree can be constructed beforehand using a training
image (static approach),17 or optimized directly to the im-
age to be compressed (semiadaptive approach).10 We use
the latter approach because it optimizes the structure and
size of the tree directly to the input image without any
parameter tuning or prior training. The structure of the tree
must then be stored in the compressed file, and it takes 1 bit
per node. In the case of our test sets (see Sec. 4), this
corresponds to a 10 to 25% proportion of the compressed
file.

A variant called free tree" optimizes the location of the
template pixels adaptively at each step of the tree construc-
tion. When a new child node is created, every possible

8 14,12, 10 @

Fig. 5 Sample contexts defined by JBIG 10-pixel template (left),
and the template optimized for a geographical image (right). The
numbers refer to the order in which the pixels have been selected
for this particular context.
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location for the next context pixel is considered within a
predefined search area and the compression efficiency is
estimated by the entropy of the current context model Hy.
The entropy is calculated as the sum of entropies of indi-
vidual contexts:

N
Hy==2 p(C)(p}) - logap,) + py/ - Iogap),
J=

where p(C;) is the probability of the context C;, pVCVJ' and pbcf'
are the probabilities of the white and black pixels in the
context C;, and N is the total number of contexts. The prob-
abilities pSJ’ and pbcf' are calculated on the basis of observed
frequencies. = The position providing the best estimated-
compression gain is included into the context rtemplate.
The optimization, however, comes at the cost of additional
computation time and increase in tree storage size. A
sample context optimized by the free tree is demonstrated
in Fig. 5.

2.3 Two-Layer Context Tree

The CT modeling can be extended to the multilayer case,
called MCT, by defining a context template where pixels
from previously coded layers can also be included. In this
way, information from other bit layers, called reference lay-
ers, can compensate the loss of color correlation caused by
the bit-layer separation. A two-layer model was considered
in Ref. 12 using a search area consisting of 40 pixels from
the current layer, and 37 from the reference layer. The pix-
els in the current layer can be located in the neighborhood
area including already coded pixels, but the pixels in the
reference layer can be located anywhere, since they are
already known by the decoder, as the reference layer is
always coded before the current one.

Further optimization exploits the fact that the efficiency
of the compression of any particular layer strongly depends
on the choice of the reference layer. In general, we can
select any predefined order on the basis of known (or as-
sumed) dependencies. When image source is not known
beforehand, the optimal order of the layers can be solved as
a directed minimum spanning tree problem13 for maximal
utilization of the interlayer dependencies. Again, the opti-
mization comes at the price of a remarkable increase in the
processing time.

2.4 N-Layer Context Tree

In this work we generalize the idea by considering the
N-layer context tree, further referred as NCT. We consider
all previously compressed layers as reference layers. When
the first layer is compressed, the free-tree context template
involves only already processed pixels of the current layer.
After being compressed, this layer becomes a reference
layer for the second one. Figure 6 illustrates the search area
used for the compression of the third layer. It consists of
52 pixel positions, of which ten are from the current layer
and 42 are from the reference layers. Each template posi-
tion is examined for the provided compression gain, and the
most efficient position is included in the template at each
step. The process then continues as long as further im-
provement will be achieved. A sample context is illustrated
in Fig. 7.
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Current Layer

Already processed layer 2

Fig. 6 Joint 52-pixel three-layer search area. The position of the
current pixel is marked with “?” and the corresponding positions on
the reference layers are emphasized with bold circles.

The ordering of the layers affects the compression per-
formance in NCT in the same way as in MCT. For example,
when test image Airplane is compressed starting from the
least significant bit (LSB) toward the most significant bit
(MSB), the obtained total code size would be
148,388 bytes. On the other hand, when compressed with
reversed ordering (from MSB toward LSB), the code size is
136,185 bytes. In Ref. 13, the optimal ordering was solved
as a directed minimum spanning tree problem, which was
possible because only one previous layer was used as a
reference layer. In the case of an N-layer context tree, simi-
lar formulation would lead to a traveling salesman problem.
In this case, the optimal solution would take O(n!), and an
even faster heuristic would influence the processing time
significantly because of a larger search area. Fortunately,
the optimal ordering is not as critical as in the MCT, and
therefore, we used a fixed order starting from MSB to LSB.

A common property of the context-based techniques is
that in the case when the statistical dependencies of the
source are extremely weak, the code size produced by the

Q4 2
QON
200

Current Layer

Already processed layer 1

Already processed layer 2

Fig. 7 A sample three-layer context constructed by the free-tree
approach using the search area presented in Fig. 6. The black color
represents 1 bit and white color represents 0 bits in the correspond-
ing bit layer. The current pixels position is emphasized with a bolder
circle.

Oct—Dec 2006/Vol. 15(4)



Podlasov and Frénti: Lossless image compression...

Gray-scale image

Gray-coded image
z -

Binary layers

Stage II:
Bit plane MCT
separation compression

Gray ﬁ.#
Coding | WL
Prediction error image
Error
Prediction
Error Gray
Prediction Coding

‘ Stage I: Bit-plane decomposition ‘

Fig. 8 Overall compression algorithm according to the different bit-plane decomposition schemes.

compressor could be even greater than the size of the un-
compressed file. This issue is especially essential for the
compression of the less significant bit layers, which are
quite noisy. In this situation, we transmit the uncompressed
bit layer as such.

3 Methods for Bit-Plane Separation

The proposed grayscale compression scheme consists of
two independent lossless stages as shown in Fig. 8. In the
first stage, the grayscale image is decomposed into a set of
binary images (layers). In the second stage, the MCT or
NCT compression method is applied. The decompression is
performed in reverse order: first, an archive file is decom-
pressed into a set of binary layers, which are then combined
into a grayscale image. We consider the following four de-
composition methods:

* bit-plane separation (BPS)

e gray code separation (GCS)

e Prediction error separation (PES)

e gray code prediction error separation (GCPES).

The first scheme is a straightforward bit-plane separation
(scheme 1 in Fig. 8), which is a classical method for creat-
ing bit planes where each pixel value corresponds to a par-
ticular bit of the original grayscale image. The second
scheme is a gray-code separation (scheme 2 in Fig. 8),18
which codes the pixel intensities so that the change of pixel
value by +1 or —1 causes the change of only 1 bit value in
the corresponding bit layers. This transform is defined as

x—=Gx)=x® (x>1),

where @ indicates the “exclusive-or” function, and » indi-
cates the “binary shift-right” operation (i.e., m»n=m/2").
For example, when the gray code is not applied, increasing
value 127 (01111111b) by 1 gives 128 (10000000b), which
causes changes in all eight bit layers. On the other hand, the
gray code for 127 is 64 (01000000b), and for 128 it is 192
(11000000b), which differ in 1 bit only. Gray coding has
turned out to be an efficient preprocessing technique for
improving compression performance.

The third scheme uses a sezlzl)arate prediction step fol-
lowed by bit plane separation”>*! (scheme 3 in Fig. 8). The
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idea is to encode the prediction error, i.e., the difference
between the predicted and the actual value of a pixel, in-
stead of the original gray value. Error prediction is a loss-
less transformation converting a grayscale image of gray
values varying from 0 to 255 into a so-called prediction
error image, where every pixel represents the prediction
error varying from —255 to +255. Therefore, when using
this scheme, the grayscale image is decomposed into nine
binary layers instead of eight as in the first two schemes.
When the predictor is effective, the prediction error values
are mostly concentrated around zero. Therefore, after bit-
plane decomposition, more significant bit planes contain a
very small amount of variation, thus having low entropy
and resulting in high compression ratio.

The fourth scheme (scheme 4 in Fig. 8) employs gray
coding of the prediction error image with the following
bit-plane separation. The bit layers produced by the four
different bit plane separation schemes for the image Air-
plane are illustrated in Fig. 9.

An important design question is the choice of prediction
technique. In this works, we considered three popular pre-
dictors in order to choose the most efficient for further use.
The first scheme is a simple linear predictor defined as:

(-x9y_1) (-x_l’y) (x+13y_1)
= + +
2 2 4
(x+1,y+1)
7
4

p(x.y)

)

where (x, y) is the pixel value at coordinates x and y. This
is referred to further as linear. The second technique is a
slightly more complicated prediction method employed in
the JPEG-LS compressor,2 which we refer to here as a me-
dian predictor. Finally, for the third scheme we have chosen
the gradient-adjusted prediction (GAP) algorithm used in
CALIC,” which is the most complicated of the three pre-
dictors considered. This predictor is referred here to as
GAP.

4 Experiments

We used two test image sets to evaluate the algorithms. The
first set consists of five classical test images: Airplane,
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Sign

on error  Gray Code Bit plane

Predi

Gray-coded

Fig. 9 Four bit-plane decomposition schemes applied to the image Airplane. Columns correspond to
the bit planes starting with the sign bit, and continuing from the least significant bit to the most
significant bit. Rows are different bit-plane decompositions.

Couple, Crowd, Goldhill, and Lena (see Fig. 1). All of them
are 8-bit grayscale images of size 512X 512 pixels. This
test set represents a class of natural images that are typi-
cally photographic images of smooth color gradation. The
second test set represents a class of palette images (see Fig.
2), where the number of colors is much smaller than the
amount of pixels in the image. Such images can be Web
graphics, schemes, maps, slides and engineering drawings,
for example. This test set consists of eight images used in
Ref. 7, Benjerry, Books, Ccit0l, Cmpndd, Flax, Gate,
Sea_dusk, and Sunset.

First, we evaluate the performance of the three predic-
tion techniques: linear, median, and GAP predictors. Then
we evaluate six variants of the proposed algorithms pro-
duced by the combination of the two context modeling
schemes (MCT and NCT), and the three bit-plane decom-
position schemes (BPS, GCS, and the best prediction-based
scheme). Finally, we compare the best variants with the
existing compressors. The competitive algorithms are:

* JBIG-GCS: JBIG applied to gray code separated
1ayers 18.19

» JBIG-PES: JBIG applied to prediction error separated
layers

« EIDAC’

CALIC

JPEG-LS’

Table 1 Average compression results (bits per pixel) depending on
the choice of predictor for the natural images.

* PWC-G: piecewise constant model optimized for
grayscale images7

* PWC-P: piecewise constant model optimized for pal-

ette 1mages7

JPEG2000°

* PNG.

Results for EIDAC are taken from Ref. 9 and appear
only for the set of palette images. The rest of the results are
reported using publicly available implementations. All tests
have been performed on a Pentium III 996-MHz computer
with 384-MB memory and a Windows XP operating sys-
tem.

4.1 Choice of the Predictor

We tested the performance of the three prediction tech-
niques to choose the best for further comparison. Tables 1
and 2 summarize the overall compression performance of
the PES and GCPES variants depending on the choice of
predictor. In the case of natural images, the GAP predictor
provides the best compression performance with all vari-
ants. The best performance (4.42 bpp) is obtained by the
MCT-GCPES variant. In the case of palette images, the
median predictor works better and the best result is ob-
tained by MCT-PES (210,718 bytes). In the rest of the
work, we apply the GAP predictor for natural images and
the median predictor for palette images.

Table 2 Total compression results (in bytes) depending on the
choice of predictor for the palette images.

MCT NCT MCT NCT
Predictor PES GCPES PES CGPES Predictor PES GCPES PES CGPES
Linear 4.53 4.49 4.52 4.50 Linear 282,280 274,525 296,877 290,815
Median 4.49 4.48 4.50 4.48 Median 210,718 211,686 221,546 221,921
GAP 4.45 4.42 4.44 4.43 GAP 279,924 277,994 288,161 286,051
Journal of Electronic Imaging 043009-6 Oct-Dec 2006/Vol. 15(4)
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Table 3 Compression results (bits per pixel) for the natural images.

MCT NCT
Image BPS GCS GCPES BPS GCS GCPES
Airplane 4.60 4.21 4.05 413 4.16 4.08
Couple 5.22 4.68 4.54 4.78 4.72 4.54
Crowd 4.76 4.38 4.09 413 414 4.24
Goldhill 5.68 5.10 4.96 5.02 5.08 4.88
Lena 5.25 4.62 4.46 4.58 4.59 4.41
Average 5.10 4.59 4.42 4.53 4.54 4.43

4.2 Comparison of the Proposed Variants

Here we evaluate the proposed algorithms over two test
sets separately and choose the most efficient variants for
further comparison. Table 3 presents the compression re-
sults for the natural image test set. The best result
(4.42 bpp, on average) was obtained by MCT using both
the prediction and gray coding (GCPES), but the difference
from the corresponding variant of NCT is only marginal.
The results also show that the choice of the bit-plane sepa-
ration method is important when using MCT, as the best bit
rate (4.42 bpp) is significantly better than if neither predic-
tion nor gray coding were used (5.10 bpp). In the case of
NCT, the choice of the bit-plane separation is less signifi-
cant. This is because NTC can use all previous layers as
references, and thus it exploits the interlayer dependencies
better than MCT, which is limited to only one reference
layer.

Table 4 presents results for the palette image test set.
The best results (in total) are obtained by NCT without any
prediction (BPS) or by using gray-coding (GCS). From

this, we make three main observations. First, NCT per-
forms better than MCT and is therefore the recommended
variant for palette images. Second, the prediction-based bit-
plane separation is extremely inefficient. Third, a notice-
able exception is the simplest three-color image (flax), for
which the MCT provides significantly better results. In this
test set, the larger image files dominate the results. How-
ever, if we were to compress a large number of small im-
ages with very simple structure, then the preferred variant
should be MCT.

4.3 Comparison with Existing Methods

The best variant of the proposed method (MCT-GCPES) is
compared against existing methods in Table 5. As expected,
the proposed algorithm outperforms the standard JBIG ap-
plied for separated binary layers. It also gives better results
than PWC-P, which is a palette-image-oriented technique,
and PNG, which is a dictionary-based method. However,
the MCT fails to compete with the best grayscale oriented
methods such as CALIC, JPEG-LS, and JPEG2000, as well

Table 4 Compression results (in bytes) for the palette images.

MCT NCT
Image BPS GCS PES BPS GCS PES
Benjerry 4236 4173 6204 2988 3135 5071
Books 8749 10,145 14,610 7948 8486 15,041
Ccitt01 12,046 11,827 18,312 12,055 11,990 27,993
Cmpndd 68,215 62,330 70,645 57,229 59,080 70,710
Flax 82 81 142 156 146 213
Gate 24,381 22,512 25,144 18,954 19,937 25,082
Sea_dusk 739 748 1047 992 859 1203
Sunset 83,011 75,673 74,614 75,268 73,914 76,233
Total 201,459 187,452 210,718 175,590 177,547 221,546
Journal of Electronic Imaging 043009-7 Oct-Dec 2006/Vol. 15(4)
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Table 5 Compression results (bits per pixel) for the natural images.

Proposed Competitive
MCT- JBIG- JBIG- JPEG- PWC-
Image GCPES BPS GCS CALIC LS G PWC-P JPEG2K PNG
Airplane 4.05 5.23 4.38 3.74 3.81 3.84 4.40 4.01 4.28
Couple 4.54 5.82 4.83 4.25 4.26 4.27 5.02 4.49 4.50
Crowd 4.09 5.35 4.57 3.77 3.91 3.93 4.46 4.19 4.52
Goldhill 4.96 6.17 5.26 4.64 4.71 4.71 5.33 4.81 4.88
Lena 4.46 5.66 4.72 4.1 4.23 4.33 4.96 4.28 4.60
Average 4.42 5.64 4.75 4.1 4.18 4.21 4.84 4.36 4.56

Table 6 Compression results (in bytes) for the palette images.

Proposed Competitive
NCT- JBIG- JBIG-
Image BPS BPS GCS EIDAC CALIC JPEG-LS PWC-G PWC-P PNG
Benjerry 2988 7209 7104 2659 5939 6707 3960 3120 4846
Books 7948 23,277 14,927 8517 22,299 39,859 14,878 8972 15,019
Ccitt01 12,055 103,864 13,549 5471 22,547 35,840 20,619 14,056 46,772
Cmpndd 57,229 89,822 67,244 48,305 71,917 71,469 66,090 50,026 72,695
flax 156 1208 1143 71 760 3411 3485 1380 420
gate 18,954 31,020 26,198 16,662 25,038 27,656 23,127 16,242 24,922
Sea_dusk 992 2444 2344 870 1219 4061 941 1292 1986
Sunset 75,268 93,069 79,434 58,402 76,577 83,552 65,831 49,256 79,085
Total 175,590 351,913 211,943 140,957 226,296 272,555 198,931 144,344 245,745

Table 7 Compression results (bits per pixel) for Bridge image. Algorithms where prediction error modeling is used provide the worst results.

Proposed Competitive
MCT- MCT- MCT- JBIG- JBIG- JPEG-
Image BPS GCS PES BPS GCS CALIC LS PWC-G PWC-P
Bridge 4.40 4.93 5.80 5.37 5.20 5.37 5.50 4.09 4.16
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4 bpp 3 bpp 7 2 bpp 1 bpp

Fig. 10 Image Airplane with sequentially reduced graydepth.

as the PWC-G, which is also optimized for grayscale im-
ages. We conclude that the proposed method is most effi-
cient when comparing to binary, dictionary-based, and
palette-oriented compression algorithms, but the best
grayscale-oriented techniques cannot be outperformed.

Similar comparisons for palette images are shown in
Table 6. Again, the best variant of the proposed method
(NCT-BPS) outperforms JBIG and all grayscale-oriented
methods: CALIC, JPEG-LS, and PWC-G, as well as the
dictionary-based PNG. Results for wavelet-based
JPEG2000 are not presented, since this algorithm demon-
strated extremely weak performance. On the other hand, the
best palette-oriented algorithms such as EIDAC and
PWC-P are more efficient.

Although error prediction applied to natural images is
efficient in general, one can find an image where it fails to
improve the compression performance. The Bridge image
(see Fig. 1) is an example of such an image, as illustrated in
Table 7. Note that MCT-PES failed, presenting the worst bit
rate. The same holds for all competitive algorithms in

which error prediction is used—CALIC and JPEG-LS. This
example shows that even for a continuous-tone image case,
there can be found counterexample where prediction error
modeling fails to improve the compression.

4.4 Grayscale Versus Palette Compression

Competitive algorithms are designed to be applied to par-
ticular classes of images, either palette or photographic.
These classes can be considered as images with the oppo-
site characteristics: typical photographic images contain a
lot of unique colors and have smooth color gradation, while
palette images have only few colors and have sharp edges.
We next study how the efficiency of the compression algo-
rithms depends on how close the given image is to the class
for which the algorithm is tuned to.

We designed an artificial test set to fill the gap between
photographic and palette images by sequentially decreasing
the gray depth of the original 8-bpp images. For each five
images, we produced eight images with sequentially re-
duced gray depth, giving a set of 40 images in total. The
process is illustrated in Fig. 10 for the image Airplane. We
then compressed the images with two variants of the pro-
posed algorithm: MCT (GCPES variant, the best variant for
natural images) and NCT (BPS variant, the best variant for
palette images), and compared them with CALIC, PWC-P,
and PNG.

The results presented in Table 8 and illustrated in Fig. 11
show that, as expected, the best results for the 8-bpp im-
ages are obtained by CALIC and the worst by palette-
optimized PWC-P. For images with 1 and 2 bpp, the situa-
tion inverts and the best results are shown by PWC-P and
the worst by CALIC. The PNG presented an intermediate
performance in both cases. NCT, on the other hand, has a
slight edge over the other methods, performing best every-

Table 8 Compression results for gray depth reduction. Results are average bit rate over test set for

every color depth separately.

Proposed Grayscale optimized Palette optimized Universal
Color depth, MCT-

bpp. GCPES  NCT-BPS CALIC PWC-P PNG

1 (binary 0.42 0.16 0.23 0.18 0.43
image)

2 0.55 0.18 0.39 0.23 0.55

3 2.28 0.50 1.10 0.53 1.1

4 3.46 1.00 2.13 1.07 1.65

5 4.30 1.72 3.14 1.86 2.66

6 4.50 2.59 3.85 2.89 3.37

7 4.46 3.56 4.08 3.97 4.01

8 (original 4.42 4.53 4.11 4.84 4.56
image)
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Fig. 11 Compression efficiency (bpp) depending on the color depth.

where else between 2 and 8 bpp. It seems to be the best
choice when the images are not clearly of one type: photo-
graphic or palette images.

5 Conclusion

We study the efficiency of binary-oriented compression al-
gorithms based on statistical probability estimation and
arithmetic coding applied to grayscale and palette images.
We consider two modeling schemes. The first scheme
(MCT) uses two-layer free-tree modeling with optimized
layer ordering. The second scheme (NCT) extended the
context modeling to a true multilayer case with fixed order-
ing. We use four schemes for bit-plane decomposition: bit
plane separation (BPS), gray code separation (GCS), pre-
diction error separation (PES), and gray-coded prediction
error separation (GCPES).

For prediction-based schemes, we evaluate three predic-
tors: a simple linear scheme, median predictor employed by
JPEG-LS, and gradient-adjusted prediction (GAP) used by
CALIC. We find that the gray-coded GAP predictor to-
gether with MCT (MCT-GCPES) modeling provides the
most efficient compression for natural images. The results
also show that prediction-based bit-plane separation is in-
efficient for palette images. For this class of images, NCT
with BPS separation (NCT-BPS) is the most efficient,
though its advantage over NCT-GCS is minor. We conclude
that NCT modeling is less dependent on the chosen bit-
plane separation method.

The comparison with the existing compression algo-
rithms on the Natural test set showed that MCT-GCPES
outperforms JBIG, which is of similar nature, dictionary-
based PNG, and palette-optimized PWC. Its performance is
also close to that of lossless JPEG2000. However, other
grayscale optimized algorithms—CALIC, JPEG-LS, and
grayscale optimized PWC—are not outperformed. For this
test set, we conclude that binary-based compression, even if
applied with a very high degree of optimization, cannot
outperform grayscale-oriented algorithms due to its binary
nature.

The same comparison applied to a test set of palette
images shows that NCT-BPS outperforms all binary-based
techniques (JBIG-BPS and JBIG-GCS) as well as
grayscale-optimized  algorithms  (CALIC, JPEG-LS,
PWC-G, and universal PNG). Palette-optimized compres-
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sors EIDAC and PWC-P, however, are not outperformed,
though the performance of the proposed method is closer to
the best algorithm than to the worst.

The results of the palette test set inspired us to perform
a detailed investigation of the algorithm’s behavior depend-
ing on the amount of colors in the image. We designed
eight test sets of images where color depth is sequentially
decreased from 8 (grayscale case) to 1 bpp (binary case)
and examined the performance of best palette (PWC-P and
the proposed NCT-BPS), grayscale (CALIC and the pro-
posed MCT-GCPES), and universal PNG. We found out
that NCT-BPS performs closely to PWC-P and even out-
performs it on some bit depths whereas MCT-GCPES loses
to CALIC in all cases. From this observation, we conclude
that first, bit-plane separation and binary modeling such as
MCT-GCPES cannot be considered to be efficient for natu-
ral images, even if strong optimization is involved. Second,
context-based compression techniques, such as NCT-BPS,
could be considered efficient to be applied for compression
of simple (palette) images and the optimization results in
compression improvement.
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ABSTRACT

A two-stage lossless compression method based on a binary
tree representation of colors and on context-based arithmetic
coding has been recently proposed. We propose two
improvements to this method: merge-based color
quantization instead of the original splitting strategy, and
context tree modeling optimized for each layer separately.
The proposed method achieves better compression
performance, and a better reproduction quality in the color
progression.

Keywords: progressive image coding.

1. INTRODUCTION

Color-quantized and palette images are widely used in web
and on low-cost devices, which are typically restricted by a
low number of colors displayed simultaneously. Lossy
compression is not always applicable since the degradation
of the quality cannot be tolerated in many applications. On
the other hand, lossless algorithms optimized for
compression of photographic images lack the compression
efficiency since the correlation between image indexes in
palette images can be lost.

Significant progress has been made in recent years in
palette- and color-quantized-oriented lossless compression.
Typically, two principal approaches have been considered.
The first approach uses color map reordering [1], which
revives index correlation, followed by compression with
existing techniques such as JPEG-LS [2] or CALIC [3]. The
second approach concentrates on the development of
specific, well-tuned coding techniques. Successful examples
of such algorithms are PWC [4] and EIDAC [5].

Chen et al. [6] has proposed an algorithm following
the second approach. Besides the efficient compression it
also provides lossy-to-lossless progressive encoding
allowing to stop the transmission when the desired quality
level is reached. The algorithm consists of two main stages:
color indexing and context-based arithmetic coding. At the

1-4244-0481-9/06/$20.00 ©2006 IEEE
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indexing stage, the palette of the image is represented by a
binary tree. The root of the tree corresponds to all colors
appeared in the image. Two children of the root divide the
root’s color set into two subsets. Every node is divided in
the same manner until every single color gets its own leaf
node. The tree is constructed minimizing the distortion
caused by the color quantization. At the coding stage, the
tree is traversed starting from the root. For each node, the
encoder sends the weighted average color of each of its two
children and a bitmap indicating the location of the pixels
having a color change. The bitmap is encoded by a binary
context-based arithmetic coder.

In this paper, we follow the principles proposed by
Chen et al. and consider two improvements of the original
algorithm. First, we propose merge-based tree construction
[7]. Then, we consider improved encoding of pixel locations
based on highly-optimized context tree modeling [8]. We
show that the applied techniques achieve improvement both
in compression performance and in quality of the color
progression.

2. COMPRESSION SCHEME OUTLINE

In this section, we briefly outline Chen’s compression
algorithm, and its improved variant [9].

2.1. Binary tree color indexing

For the description of tree construction scheme, we use the
formulation as presented in [9]. We denote the color palette
of an image as a set of RGB triplets C = {cy, ..., cm}, where
M is the total number of colors. Let So={1,2, ..., M} be
the set of indexes identifying the colors in the palette, where
index i corresponds to the color ¢;. The number of pixels of
color ¢; is denoted p;. Each node j of the binary tree
represents a certain subset of the color palette. This node is
referred using the corresponding set of indexes s;. Every
color set is associated with a representative color g;, which
is given by the weighted average color of the node,
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The tree is constructed in a top-down manner starting
from the root. Whenever the color set associated with a
node contains more than one color, the node is split into
two, in such a way that the two new subsets of colors are
separated by a hyperplane that is perpendicular to the
principal direction of the data and passes through the
average color value g;. The principal direction of the data is
given by the eigenvector of largest eigenvalue of the
covariance matrix of the weighted colors in s;, C;, where

C, = Zpi(cicit —4,9;).
IESJ-

When the tree is constructed, every color of the image
palette is associated with a unique variable-length binary
sequence representing the path in the tree. When
decompressing the sequence, we know that the first bits
represent the most important part of the color information.
In this way, the binary tree representation assigns indexes to
the image colors so that neighboring indexes are assigned to
neighboring colors, converting the correlation of colors into
the correlations of indexes. This property is utilized for
obtaining higher compression efficiency for color-quantized
images.

2.2. Image encoding

The encoding starts from the first node of the tree for which
its representative color value ¢o is transmitted. The
following procedure is then applied for every node of the
tree:

1. Choose the node m for processing.

2. Transmit the index of the node and the representative
colors of its two children q,nl and ¢,,".

3. Encode the location of the pixels, whose colors
belong to the sets s, and s,,".

The node to process is chosen according to the largest
associated eigenvalue of C;. The values g, and g, are the
representatives of the color sets s, and s,", associated with

m’s two child nodes (note, that s, = s, U s,,).

The pixel locations are encoded by a context-based
arithmetic coder. Chen et al. proposed to use an 8-pixel
fixed-order context template (see Figure 1, left context).
Since the location of the pixels whose color belongs to s, is
known to the decoder, we only need to encode, for each of
those pixels, which now belongs to s, and which to s,,". The
information to be encoded is binary and for every pixel

which color g € s,, we encode a bit by, defined as

0, ge sz
b, = g
L, ges,
The context is constructed using a sequence of bits
by, ..., bg, where

=10 la'-a.

[ r
<’ -,
1, otherwise

and ¢' denotes the color of the pixel from the reconstructed
image corresponding to the position i of the context
template.

Figure 1. Sample contexts obtained by Chen’s algorithm (left) and
a sample context constructed by the context-tree approach (right).

In order to achieve better compression performance and
avoid context dilution problem, Chen er al. considered a
variable size context. Instead of using all 8 template
locations, only first k are used, where k is defined by the

relation
k(n)=9—|log, n |,

where n-1 is the number of colors already encoded.

Recently, Pinho er al. [9] proposed another context
adaptation model for Chen’s algorithm. The generalization
of context size function k(n) is considered as

k(n)=[a(N)—log,n].

where a(N) =mlog,N + b is a function of the number of
pixels in the image. The values m and b are tuned using test
images. This scheme takes into account the size of the
image and results in about 4% compression improvement
over Chen’s algorithm.

3. PROPOSED APPROACH

The original algorithm assumes split-based (top-down) tree
construction method. Though this scheme allows combining
the tree construction with the encoding into one process,
this algorithm lacks quantization quality. Its visual
appearance is illustrated on a sample color images (see
Figure 2, upper row). We consider another simple and
popular quantization heuristics using a bottom-up approach
[7]. The algorithm is based on agglomerate (tree-structured)
clustering and it provides more precise quantization and
better visual appearance (see Figure 2, lower row). Besides
that, we apply free-tree context modeling [8], instead of a
variable-size static-order modeling used by Chen et al. The
overall scheme is illustrated on Figure 3.
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Figure 2. Illustration of the tree-structured quantization. Quantization steps are shown from left to right. Upper sequence corresponds to the
split-based tree construction, and the lower sequence represents merge-based tree construction.

Binary-tree
representation

| R
> [ Color identi

CT modeling &
arithmetic coding

VAN .
]

N
= L)

Palette
Step I: Tree construction

Step II: Progressive encoding

Figure 3. Two steps of the proposed algorithm.

3.1. Merge-based tree construction

The algorithm constructs the tree bottom—up using a
sequence of merge operations. First, every color ¢; of the
image palette C={cy, ..., ¢y} is associated with a leaf
node in the tree. At each step, two color nodes are
merged. The nodes are selected so that their merging
causes minimal increase in distortion. The distortion dj;
caused by the merging of two color sets s; and s, is
calculated by
_ ninj
ij

2
-y

i J
where ¢; and g; are the color representatives of the
corresponding sets, and n; is the number of pixels that
belongs to the set s;, defined as

n, = z Pi

The value n; is defined analogously. The parent node is
associated with the merged color set. The process
continues until only one node is left in the tree. After the
tree is constructed, it is applied for color progression and
compression in the same top-down manner as in the
original algorithm.
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3.2. Context tree modeling

Context tree is a highly optimized form of context
modeling technique, which has shown to be an efficient
tool in compression. It provides more flexible approach
for modeling the contexts so that a larger number of
neighbor pixels can be taken into account without the
context dilution problem. The contexts are represented by
a binary tree, in which the context is constructed pixel by
pixel and the memory is allocated only for contexts that
are really present in the image avoiding extensive
memory consumption.

In free-tree variant [8], the location of the template
pixels is also optimized. The position of the next context
pixel is determined at each step. When a new child is
constructed, all possible positions for the next context
pixel are analyzed within a predefined search area, and
the position resulting in maximal compression gain is
chosen. The construction is stopped when increasing the
context size does not give any further improvement in the
probability estimate, giving the optimal context size. The
sample context constructed by the free-tree is illustrated
in Figure 1, right context.



Table 1. Compression performance of PNG, Pinho et al. and
PNN-Free Tree algorithms on a palette image test set.

Table 2. Compression performance of PNG, Pinho et al. and
PNN-Free Tree algorithms on a natural image test set.

Image PNG Chen Pinho Proposed Image PNG Chen Pinho Proposed
et al. et al. et al. et al.

pc 360291 135051 117794 91220 airplane 381946 121424 121121 122337
books 20754 8102 8047 7950 anemone 575643 164523 164073 163486
music 2800 830 829 814 arial 715586 238231 235740 228611
winaw 33182 13046 12980 11366 baboon 597818 178131 177768 175876
party8 10140 3341 3442 2933 bike3 1074229 287320 278711 274248
netscape 40546 11176 11176 11146 boat 520232 150633 148546 151991
sea dusk 2712 1497 1595 1128 clegg 966435 344181 326807 337366
benjerry 6239 2847 2848 2921 cweel 299722 122990 108225 102530
gate 47446 15329 15302 15057 fractal 245480 241345 238026 239310
descent 39738 17911 17853 17157 frymire 787184 323584 286396 267087
sunset 136966 59806 59489 58335 ghouse 699103 214900 208669 201592
yahoo 11912 5764 5771 6442 girl 398164 134186 132364 135017
Total 712726 274700 257126 226469 Total 7261542 2521448 2426446 2399451

The drawback of the approach is that the context tree color-indexed —images”, [EEE Trans. on Image

should be transmitted to the decoder increasing the size of
required side information. For some images this increase
overweights the compression improvement. In order to
overcome this drawback we implemented a combined
scheme. On every encoding step, we compare the
performance of Chen’s and free-tree context modeling
schemes, choose the best and transmit a flag bit indicating
which modeling scheme is used.

4. EXPERIMENTS

We tested our algorithm on the set of images used in [9].
The images are separated into two classes: palette images
(of synthetic nature) and natural images. The proposed
algorithm is compared to the PNG compressor, the
original Chen’s algorithm [6], and Pinho’s modification
[9]. For palette images, our algorithm outperforms the
Chen’s algorithm by 17.5%, in total, and the Pinho’s
modification by 11.9%, though negative improvement
was obtained on some individual images. The tests on
natural image test set show that Chen’s algorithm is
outperformed by 4.8%; and minor improvement of 1.1%
is obtained to Pinho’s method. All three techniques
clearly outperforms PNG compressor for both test sets.

5. CONCLUSION

We proposed bottom-up tree construction based on
sequence of merging and tree-based context modeling for
color-quantized image coding. The proposed algorithm
improves the compression by about 12% for a set of
palette images, and about 1% for a set of natural images.
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Abstract B T B

We propose a statistical filter using a contexetre
modeling. The idea of context tree is to perform
selective context expansion including only those
pixel combinations that really appear in the image.
This makes it possible to use much larger spatial
neighborhood. The proposed context tree filtering i
evaluated for a set of indexed-color raster map
images corrupted with generated impulsive and  Figure 1. Examples of complicated structures that a
content-dependent noise. The objective evaluation treated as noise by most filters.
shows improvement of 15% for content-dependentyeferably it should not be increased. Thirdly, the

noise and up to 30% for impulsive noise comparing gsatia| structures in the image should be preserved
to the closest competitor. Visual comparisons showSince they have distinctive meaning. Linear fitteri
that the spatial_structures are preserved betteamth methods cannot be effectively applied to map images
gze;/:;t:; fnglan’ morphological and peer group because of their smoothing effect, which cannot be
tolerated in map images. Among popular non-linear
filtering there are methods such asrphological
filters [4]; directional vector filters[5]; a class of
weighted median filterd6]; its vector extension
referred asvector median filter(VM) [7] and the
adaptive variant referred aslaptive vector median

1. Introduction

Geographical map images are typically present in
two fundamentally different formats: raster and

vector. Vector format is more suitable for large filter (AVM) [8]. Peer group analysi€PGA) [9] is

databases providing excellent flexibility and an edge- : . .
. . ge-preserving smoothing technique based on
compression even though vector processing can befinding a group of pixels similar to the currenteoin

computationally expensive. Raster images are easier, ; .
. ) ) .~ alocal neighborhood. In case there is such grihep,
to process and this format is more suitable foalfin g g

: . . ) . pixel is replaced with the average of its peer grou
client-side processing for delivery, local archive - L
_— . However, existing filtering methods are mostly
storage and web-publishing. Typically, vector-to- : . .
. ) designed for continuous-tone images and they do not
raster conversion does not affect the quality &f th . . S
. apply well for map images, web graphics and similar
raster image presented to the user. However, case

when the original vector data is not available are S”"S kind of images include complicated spatial

. .~ structures such as one-pixel thin lines, textured
common. Raster image can be degraded by noise P 2

caused by transformations and lossy compression dashed and dotted lines, text and symbols. False
y y P ._filtering of this kind of structures is typical fonost

Distortion also appears when a printed map is . o .
- . filters designed for photographic imagery sinceythe
digitized. In these cases, the presence of noiee ca . . . . an
: ) . tend to consider noise as a local intensity vammti
corrupt the spatial structures in the image. . . . ) :
A areat variety of noise removal techniques are without taking into consideration the repeated
9 y 9 patterns in the globally in the image. On the other

known for celor 'mage ~processing [;][2][3]' hand, high variance does not necessarily idertigy t
However, map images require some restrictions to be . ) ) :
noise. The regions with written text or textured

set. Firstly, the image should not be smootheditaind . ! )
: background are far from being uniform but their
should remain readable. Secondly, the number of I o
presence is vital for the usability of the map.

colors is typically small in a map image and The examples of such structures are illustrated in



Figure 1. The area consisting of isolated blacleisix 2. Context Treefilter
on the map represents sand field in nature. Single
pixels and thin lines are considered as noise bstmo 2.1 Context-based statistical filtering
of the existing filters, and thus, they are filidre
erasing important  geographical information.  Consider an imagkas a rectangular grid of pixels
Morphological filtering would be a natural choiae t  I(x,y), where K,y) is a position of a pixel anidx.y) is
consider for this kind of imagery. However, the its value, or color. Leti(xy) O{1, ..., Kk}, O(xy),
drawback of morphological filtering is the concept  wherek is the number of colorsn the image. We
structural  element defining the preferred assume thakt is small enough to allow the storage of
configuration of local patterns where domination of the image in palette-indexed format. We define a
some pixels over the others is emphasized. Iteiarcl  context ¢ = { I(X,Y1), ..., I(*uYn) } @as a set ofn
that the variety of patterns in a map image is tgrea pixels, wheren is denoted as the a size of the context
and one or even a set of structural elements is notc. The positions of the pixels in a context
able to describe it accurately. Moreover, color (x,y,), ..., (x.yn) are defined as a set of offsets to the
morphology is a generalization of gray-scale position of the current pixel, and is referred as a
morphology made byreduced ordering i.e. the  context templateln Figure 2, A illustrates a sample
‘domination’ relationship is defined on color veto  20-pixel context template where the position of the
analogously to gray-scale intensity values. However current pixel is marked with ‘x’. The context B
it seems that in color map images no color can beijllustrates a sample context for a binary case,
considered prevailing over the others just by its |(x,y) O {background foreground, 0(xy), and C
vector characteristics like energy and intensity. illustrates  similar example with more colors
In this paper, we introduce a statistical filteséd available.
on conditional probability estimation allowing the
preservation of detailed structures in map images.
The proposed filter consists of two stagasalysis
and filtering stage. In the analysis stage, local
conditional probabilities are estimated within the
image by gathering statistics of how often each
particular color appears within the same local
neighborhood, calledontext The size of the context
is then optimized by using @ontext tree The Figure 2. Template used _by context tree (A) anmm
analysis stage does not consider aaypriori contexts for the case of binary (B) and color (C)gew
knowledge about the imposed noise characteristics. The context defines the configuration of
In the filtering stage, all pixels that have coddriow neighboring pixels and the same configuration can
probability in its context, are considered as naisd repeat in the image on different positions. When th
replaced by the most probable color. In this whg, t neighborhood of the current pixKlx,y) equals to a
repetition of local patterns can be discovered iwith contextc we say that pixel(x,y) appears in a context
the image. Patterns that appear frequently enotggh a ¢, and denote it as(x,y)lc. Note that the current
considered belonging to the image structure andpixel value is excluded from the context, meaning
preserved. Pixels that are unlikely to appear @irth that different pixel values can appear in the same
neighborhood are considered to be noise and filtere context. We associate each contextith a vector
out. This property allows the filter to preserve p°=(p%, ..., p%) called avector of statisticswhere
borders and structures independently of their size  pS represents a number of times the pixel of color
variance. Preliminary version of the work has been appeared in a context in the image. After the
presented in [10]. Similar filter was considered in vectors of statistics have been gathered for every
[11][12], where context modeling and filtering context of the image, the conditional probabilify o
decision is made in assumption that probabilistic every pixel to appear in its context can be esthat
characteristics of noisy channel are known. as
The rest of the paper is organized as follows: the p.
proposed filter is described in Section 2; noise pI(x y) = j|1(x,y)0 )= <=
models are considered in Section 3; the results of i;(
experiments are presented in Section 4; andyye denote this probability al(x.y)[c).
conclusions drawn in Section 5. After the statistics have been gathered, the actual
filtering is performed requiring a separate passrov
the image. The main idea of the proposed filter is
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based on the assumption of statistical consistefcy
the image data. We expect that patterns appeéein t
image frequently enoughg. conditional probability
p(l(x,y)[c) of a pixel is higher than a predefined
threshold for most of the pixels. Otherwise, theepi

is considered as noise and filtered out. As a
replacement strategy we consider to replace th®y/noi
pixels with the most probable color in the context.
Formally, the algorithm can be outlined as follows:

Anal ysi s st age:
For each ( x,y) do

C:{ I(Xllyl)' (AR} |(Xn-Yn)};
pcl(x,y) = pcl(x,y) +1,
For each C do
Calculate P(I=|O 0O0O37, k] as(1)

Filtering stage:
For each ( x,y) do
If p(l(x,y)] ¢)<Threshold

I(x,y) = argmax( ( é<}3=/l)k= ilhgylce)

The concept is illustrated in Figure 3 for image
consisting of three unique colors. For simplicitg w
consider context tree filtering within 3x3
neighborhood, and two sample contexts (A and B). In
the same context, some pixel values are less pi®bab
than the otherse.g.black pixel is much less likely to
appear than white pixel in Context A, and vice aers
white pixel is much less probable than black pirel
Context B. The probability of these pixels fallddye
the threshold, and therefore, the pixels are &lidoy
replacing with the values of the most probable ones
Three examples of contexts and their corresponding
probability distributions obtained in experimentshw
5-color images are presented in Figure 4. Theee is
clear domination of the most probable color over th
others.

2.2 Context Tree modeling

Gathering pixel occurrence statistics requires one
pass over the image and allocating memory for as
much as there are different contexts in the image.
This number is upper bounded by the number of
pixels in the image. In order to optimize the meynor
allocation we organize the storage of statistica as
tree structure calledcontext tree (CT). Similar
structures have been used for probability estimatio
in binary image compression [13] and indexed color
image compression [14].

In context tree, a context is sequentially
constructed pixel-by-pixel, or to say more pregisel
position-by-position according to a predefined
ordered context template such as the one in F@ure

Each node stores a vector of statistics for its
context:fy, for the number of white pixels affigifor

o @

[T 1]
HEN

[ ~]
HEN

Context A Context B

Figure 3. Example of statistical filtering. Two galm
contexts are marked by A and B. The filtered lesbable
pixels are pointed by arrows.
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Figure 4. Sample contexts and the statisticalitision of
the colors in a 5-color map image.

the number of black pixels in Figure 5. Statistite
gathered only for those contexts that really apjrear
the image. The principle is illustrated in Figurard
Figure 6 for the case of binary and a 4-color insage
respectively. Every node of the tree represents a
particular combination of the template pixels.

The deeper the tree grows the larger context
model is used. Usually the image is processed pixel
by-pixel. For every pixel, the tree is traverseavdo
to the desired depth, and by updating all pixel
counters for the corresponding nodes along the path
from the root to a leaf. When a context appeast fir
time in the image and the corresponding node tree
does not exist in the context tree, it must then be
created dynamically at this moment.

Potentially, the final level of the tree can contai
K" nodes, wheren is the size of the template.
However, since not all possible contexts are ptesen
in the image, some nodes will never be constructed
and, therefore, memory will be allocated only for
existing pixel combinations. For the case of color
image (see Figure 6), the construction of the tree
proceeds in the same manner as in the case ofybinar

image, expect that there can potentially be as many



Root pruning criterion: if the frequency of a given oexit

m falls below a predefined pruning thresholdi (:

x N::jgg % ::Zo N(¢)<Treshold ), the corresponding node is pruned
. s out from the context tree.

- - !By definition of CT, all _pixel; that appear in a
X2y X@ newr child contextc; appear also in their parent context

m O I(xy) g holds I(xy) Oce. When the child

<0 x @ contextc; is pruned, traversal in the tree will stop on

0) N=20 () o its parent node, which by definition appears more

Ng=7 Ng=70

frequently (or equally frequent in case of only one
child) as its child context. The use of pruning
criterion guarantees that every context appeatisein
image frequently enough to be a valid criterion of
N,=220 X N,=405 x Ni=46 X N,=400 filtering.

N=110 & N=117 o N,=810  :  N,=58

Figure 5. Construction of context tree for a binamgge.

Root

Nezs O nezss ) Neae ) nge2a Empirical results support the usefulness of the
N,=35 N,=6 N.=75 N,=30 pruning. Popularity of contexts of size 20 in a pam
test image is illustrated in Figure 7. The histogra
x (2 x@zzj x @ shows that without pruning most of the contexts
NFO Ne2s L Ngo (118941) appear only once or twice in the imagd, an
Neio NS Ni=20 majority of the remaining contexts (21253 + 8971)

Figure 6. Construction of context tree for a coloage. less frequently than 8 times. Only 6 % of the criste

child pointers and frequency counters as there are(about 10000 out of 150000) appear more than 10
colors in the image. The frequency counters times. This means that most of the contexts hawe to
(components of the statistics vector) are denoggd h  sparse distribution in order to be used for regabl
asf, f,, ...f. With a large context size and large filtering.

number of colors, however, it is unlikely that all Figure 8 illustrates how many pixels are actually
colors will appear in a particular node. Our filtered in these contexts (filtering with probatyil
experiments show that for a 25-color image and 15-threshold 20 %). The less populated contexts
pixel template, the proportion of non-appearing (appearing less frequently than 8 times) do notemak
children pointers and frequency counters can biup  significant contribution to the filtering. The eéfeof
90% of all memory allocation if linear arrays were the pruning is demonstrated in Figure 9 and Figure
used. It is therefore essential to store the ohildr 10. From Figure 9 one can see that no contexts
pointers and the frequency vectors as linked tists appearing less than 8 times remain in the tree and

optimize memory consumption. Figure 10 shows that the contexts of smaller sizes
significantly increase their contribution to the
2.3 Pruning the Context Tree filtering.

Larger context size allows analyzing of larger 3 Noise Models
structures of the images. However, larger patterns
repeat less than smaller patterns and if the size i 31 Displacement noise
increased too much, most of the contexts will
eventually appear only once or twice. Larger cantex Typically, the map image obtained from a digital
size tends to make the distribution of the colorsti  scanner is corrupted with specific type of noise. |
context more flat. Without enough statistics arehcl  order to reduce the influence of acquisition devise
statistical dominance of one color, the filter mable well as to decrease overall redundancy, that image
to make reliable guess about whether given pixel isusually goes through color quantization process.
noisy, and by which color it could be replaced. Though pixels of uniform areas are quantized well
We overcome this drawback by using a pruning and are mapped to the same color values, border
technique. Consider a node with the correspondingpixels can be easily mapped to a closer but diftere

contextce, and its children nodes, ..., ¢. Denote color value corrupting the contours of the objects.
the number of times the context appears in the  We refer this kind of noise alisplacement noise
image as N(cp). By definition of CT We model this type of noise by considering a

N(cp) =N(cy) + ... +N(c). When a particular context  probability of misplacing the current pixel in ecé&
does not appear frequently enough, it should not be3x3 neighborhood. Consider the source image
used in filtering. We realize this by applying epie Source the noisy imag®estis modeled as follows:
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do
Then

For each Dest(x,y)

I f rand() < Treshold
// do misplacing

DirX =rand(-1,0,+1)

For each Dest(x,y) do
I f rand() < Treshold Then
Dest(x,y)=rnd(1,...,NumberOfColors)
El se
Dest(x,y) = Source(X,y)
End |f

End For

DirY =rand(-1,0,+1)
Dest(x,y)=Source(x+DirX,y+DirY)
El se

Dest(x,y) = Source(X,y)

End |f
End For

3.2 Impulsive noise

Impulsive noise typically originates from noisy
transmitting channels of acquisition devices
randomly affecting whole image independently of the
region. When the noise level is high, color
guantization maps pixels to wrong colors
independently of the location of the pixel, andsyoi

pixels can appear anywhere in the image and can be

of any color available in the color palette. Weeref
this noise asmpulsive noise Consider the source
image Source the noisy imageDestis modeled as
follows:

4. Experiments

We evaluate the proposed Context Tree filter
(referred as CT) on a set of six map images chosen
from Finnish National Land Survegatabase [15].
Two of them (images #1 and #4) are topographic and
the rest are road maps. The images are of different
spatial resolution and some of them (images #5 and
#6) are affected by quantization noise. In additmn
this, we corrupt all images with the noise of two
types as described in Section 3.

4.1 Objective evaluation

The proposed filter (CT) is applied with context
size 20, probability threshold level 5% and pruning
threshold of 128. We compare CT with vector
median (VM) [7], adaptive vector median (AVM)
[8], morphological (MM) [4] and PGA [9] filters.
The efficiency of the filters is evaluated usingame



Table 3. The efficiency of MM, VM, AVM and CT filtermeasured asE distance to the original image for 20% content-

dependent (CD) and 5% impulsive noise (l).

Image 1 Image 2 Image 3 Image 4 Image § Image 6
CD I CD I CD I CD I CD I CD I
MM | 23,52 24.37| 29.66 30.28 27.75 28.33 14.10 14.4854 8.68| 30.45 31.11
VM 3.16 251 8.50 7.73 8.58 7.37 3.27 246 199 6167.81 6.67
AVM | 251 1.70 4.60 2.46 5.05 3.12 2.18 1.18  1.33 151} 5.07 3.10
PGA | 251 1.50 5.48 3.71 5.76 3.79 2.24 182 1.7556 1. 5.90 4.02
CT 2.14 0.89 3.95 2.89 3.96 2.44 1.70 094 119 81.13.86 2.94
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Figure 11. Efficiency of MM, VM, AVM, PGA and CT
filters for content-dependent noise.
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color distanceAE between the original (noiseless)
and the filtered images defined by

1 .
AE :NZAEab

as the normalized sum over all image pixels, where
AE', is the Euclidean distance between the two color
samples inL*a*b* (CIELAB) uniform color space
[16] and is measured as

AE,, =-/(AL')? +(Aa’)? +(Ab')? .

However, objective distance measure cannot be

considered completely relevant for evaluation @& th
performance because pixelwise measurement doe
not represent the visual quality. For example when
thin and detailed structures are filtered out, ttoes
but it is clearly visible and it corrupts the semian
structures in the map. We therefore present als
visual examples of filtered map for subjective
evaluation in order to emphasize the ability to
preserve repetitive patterns independent of thedr. s
For content-dependent noise we vary the noise
level from 5% to 50% with step of 5%. The results
are illustrated in Figure 11. One can see that the
proposed filter provides better objective resutis f
all nose levels. On average, the filter outperfoitsis
closest competitor (AVM) by 15%. For impulsive
noise we vary the noise level from 5 to 20% witkpst
of 5%; the results are illustrated in Figure 12eTh
proposed filter outperforms AVM for noise levels
higher than 5% noise. On average, CT outperforms
AVM up to 30%. Table 3 summarizes the objective

Noise, %
T

20
Figure 12. Efficiency of MM, VM, AVM, PGA and CT
filters for impulsive noise.

measurements for all filters for 20% content-
dependent (CD) and for 5% impulsive (l) noise. The
measurements are averages over the test set.

0 5 10 15

4.2 Subjective evaluation

Visual comparisons are presented in Figure 13 for
three sample image fragments for 20% content-
dependent (CD) and 5% impulsive (I) noise. The VM
and AVM filters tend to preserve edges with no
blurring. However, thin details of the original dat
are extensively filtered out since the filters hesed

on gquantitative domination which underlies the

median concept. The MM filter is a generalizatidn o
gray-scale morphological filter to a color spaced a
it is based on qualitative dominance. The

ogeneralization is considered usireduced ordering

technique, when an order relation is defined on a
vector space by reducing a multivariate object to a
single value. For MM filter this order relation is
based on a luminance of the color sample [4]. is th
way the filter assumes that brighter colors ‘dortéha
the darker or vice versa. Also, the structuringredat
defining the operation of the filter is fixed and
therefore unable to perform relevant filtering in
different areas of the map which have very différen
structure. All this makes MM filter to perform waors
on the selected imagery both by the objective ds we
as by the subjective comparisons.

The PGA filter performs rather well on impulsive
noise. Although some impulses are still visibleeaft
one iteration of the filter, they will be removeftiea



Image #5, original

Image #4, 5% |

Noisy image

few iterations. However, PGA mostly does not filter filter deals with statistical domination instead of
the content-dependent noise. This happens becausejuantitative or qualitative domination, or distance
by its definition, peer group is formed of the based grouping. The filter considers a local patter
neighbor pixels whose color is closest to the be preserved if it is repeated in the image fretiyen
processed pixel. In case of content dependent noiseenough. However, irregular areas (the dotted area i
noisy pixels have pixels of the similar (or exadtig the third example) or patterns not repeated fretiyen
same) color in their neighborhood, which makes the enough are filtered out. This property makes the
peer group averaging ineffective. proposed filter sensitive to the original imageadat
In contrary with the competitors, the proposed CT On the other hand, following the statistical



assumptions, the filter is able to restore cormpte also not captured very well in case of high noise
structures such as smooth distorted lines and borde levels. Nevertheless, the main idea of statistical
The major condition for the filter to be effectii@ modeling of repeated structures is more general tha
the statistical consistency of the image; it ig¢figre relying only statistics within a local neighborhoasl
mostly suitable for indexed-color palette imaged an done in morphological and peer group filtering.
images consisting of computer-generated graphics.
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Abstract

An algorithm for lossy compression of scanned map images is
proposed. The algorithm is based on color quantization, efficient
statistical context tree modeling and arithmetic coding. The rate-
distortion performance is evaluated on a set of scanned maps and
compared to JPEG2000 lossy compression algorithm, and to
ECW, which is a commercially available solution for compression
of satellite and aerial images. The proposed algorithm
outperforms these competitors in rate-distortion sense for the most
part of the operational rate-distortion curve.

Keywords: Digital map images, lossy image compression, context
modeling, color quantization.

1. INTRODUCTION

Nowadays, digital Geographical Information Systems (GIS)
became more and more popular among all kind of users. Though
at the beginning the price of mobile positioning (e.g. GPS) and
processing devices restricted the use of electronic navigation to
military or corporate applications, today we are facing the
extensive growth of this industry in personal user sector. Recent
progress in low-cost mobile hardware and, especially, in low-cost
memory made computer-aided navigation possible in personal car
on a road trip, as well as in your hand while trekking.

However, raster map image converted from the vector database is
not always the case. It is still common that, when needed,
geographical information could only be found on the paper
printed map. Similar case is the digitization and storage of rare
maps, which are too fragile and valuable to be used as such.
Though this kind of paper-printed material could be easily
digitized and integrated into computerized navigation or archive
system, there are still some specific problems. The main problem
of raster maps is their storage size. Paper printed material of
approximately A4 size scanned with 300dpi in true-color results
in about 2500x3500 pixel image requiring 24 bits per pixel, which
is 25 megabytes per image. The number of unique colors can vary
from hundreds of thousands to several millions depending on the
type of the map. For example in our experiments we experienced
up to 700 000 unique colors in topographic map images. Standard
lossless compression techniques such as PNG, GIF or TIFF are
able to provide about 1.2:1 compression ratio, which is not
enough for effective transmission of the image to the user’s
device and processing it there. Lossy compression is therefore
needed.

There is a wide variety of standard multi-purpose lossy
compressions techniques, as well as techniques developed
specifically for compression of scanned material. Among the
standard algorithms JPEG and JPEG2000 [13] are the most
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Figure 1: Overall scheme of the proposed compression

popular.  Wavelet-based  Multiresolution — Seamless  Image
Database (MrSID) [1] by LizardTech is a patented commercial
solution for storing large amounts of satellite and aerial images. It
is applied for compression of scanned map imagery as well.
Wavelet-based Enhanced Compression Wavelet (ECW) [3]
format by ER Mapper is also a commercially available solution
for GIS-based image compression. Well-known DjVu format [2]
by LizardTech and AT&T is specially developed for storage of
scanned imagery, especially books.

However, popular wavelet techniques have some disadvantages
when used for compression of scanned maps. Scanned map
combines the characteristics of both image classes: discrete-tone
and continuous-tone. The image origin is artificial and, therefore,
unlike photography, a map image contains of a small number of
unique colors and lots of small-size detailed structures such as
letters and signs, solid uniform areas such as waters, forests,
fields, sharp edges and almost no gradient color gradation.
Besides this, typical map image contains a lot of repetitive
patterns and textures. This comes as from the map itself, e.g. areas
like swamps or sands are usually represented by textures. Besides
that when map is printed on the paper, color gradation is usually
obtained by dithering the available inks forming uniformly
textured areas. This dithering is acquired by the scanner and
appears in scanned images as a repetitive pattern of color dots.

Lossy compression based on wavelet transform significantly
smoothes the edges of the image and destroys thin well-structured
areas, such as textures. When higher level of quality is desired,
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techniques like JPEG2000 or ECW loose efficiency in
compression performance since wavelet transform requires more
bits to represent high frequencies of the sharp edges of the image.
On the other hand, the compression algorithms optimized for
artificial graphics, such as Piecewise-constant Image Model
(PWC) [4] or Embedded Image-Domain Adaptive Compression
(EIDAC) [5], are not effective since these algorithms are designed
to deal with computer-generated imagery. However, scanned
image is affected with noise imposed by the acquisition device — a
scanner or a camera. The inconsistency in illumination, sensor’s
perception and other factors results in blurred edges, and
significant increase in the number of colors and intensity
gradation. This makes lossless algorithms inefficient in providing
necessary compression ratio.

In this work, we propose an alternative lossy compression
technique for scanned map images based on color quantization
and statistical lossless compression. The overall compression
system under consideration is outlined in Figure 1. Firstly, the
paper-printed map is digitized with e.g. flatbed scanner. The
resulting image, referred further as the original image, is the input
of the proposed compression algorithm. The proposed algorithm
consists of two stages: color quantization and lossless
compression. In quantization stage, the number of colors of the
original image is reduced. This stage is a lossy part of the
algorithm and the degradation of the image i.e. the information
loss occurs here. The resulting image with reduced number of
colors is referred further as the quantized image. In the second
stage, the quantized image is compressed by the lossless image
compression algorithm.

In general, the proposed scheme does not require any specific
quantizer and compressor to be used. Though a big variety of
approaches can be considered for this task, we consider the using
of simple, fast Median Cut (MC) quantizer [11], which is a
classical approach widely used in image processing applications
and is able to process map images in reasonable time.

Among the variety of lossless compression algorithms which
could be considered to be used to perform the compression stage
one should mention that all we deal with color map images when
the most of efficient lossless compression techniques are aimed at
halftone imagery. Separating the color planes with following
halftone-oriented compression typically means sacrifice in
compression performance since color components are usually
highly correlated. Besides that, linear prediction, which is a
standard tool for continuous-tone lossless compression algorithms
such as JPEG-LS or CALIC [7][8] fails on map images since the
value of the current pixel depends on its neighborhood
configuration, not on the local intensity gradation.

This motivates us to choose for compression stage context-based
statistical ~ Generalized Context Tree (GCT) compression
algorithm which has been recently proposed from compression of
raster map images [6] and presented compression efficiency
surely outperforming its closest competitor PWC. The algorithm,
however, is designed to compress raster maps which are directly
generated from the vector sources. This means that these images
contain low amount of colors (only the colors of the original map)
and no blurring or noise. However, the original GCT is
inapplicable to the scanned map sources. Together with technical
difficulties like memory consumption and great processing time
there is a fundamental problem. The great number of colors in the
scanned image destroys statistical dependency within the image
and GCT approach is not applicable for the same reason as it is

GraphiCon'2007

Proposed JPEG2000

Fd
f

G
-.—,';»«(‘.-(Q-_—J?a -

256 colors
1.77 bpp / MSE = 1.72 1.77 bpp / MSE =2.98

Figure 2: Visual comparison of the proposed and JPEG2000
algorithms.

not applicable to photographic imagery. In order to spread the
efficiency of GCT to scanned imagery one needs color
quantization to be involved to revive the local statistical
dependencies featuring map imagery and determining the
following use of GCT. Besides that some improvements to the
original GCT must be considered since straightforward
application would encounter difficulties with processing time and
memory consumption. In this work by taking the properties of the
imagery into account we successfully apply GCT for up to 256
color images.

The visual comparison of the proposed algorithm and standard
JPEG2000 applying to scanned map image is presented in Figure
2. The upper and lower rows represent lower and higher quality
levels respectively. The algorithms are applied to compress the
test image with the same compression ratio — 0.72 bpp for low
quality and 1.77 bpp for higher quality. One can see that for equal
bitrate the proposed algorithm provides less degradation
according to MSE distance. For lower quality level the proposed
algorithm preserves edges and does not employ smoothing as
JPEG2000. The performance of the proposed algorithm is
evaluated on a set of scanned topographic maps and compared to
JPEG2000 - standard lossy compressor and ECW — a
commercially available compression system. Also in order to
prove the efficiency of GCT compressor we consider the
comparison with ‘trivial approach’ where color quantized image
is compressed with PWC — an algorithm for compression of
computer generated palette images (referred also as simple
images). We denote this approach as “MC+PWC” i.e. median cut
plus PWC.

The rest of the paper is organized as follows: the proposed
compression algorithm is described in Section 2; experiments are
presented in Section 3, and conclusions are drawn in Section 4.
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Figure 3: Sample contexts: binary (left) and generalized
(right). Pixel which probability is estimated is marked with “?”
sign.

Future development of the proposed technique is outlined in
Section 5.

2. PROPOSED ALGORITHM

We propose two-stage algorithm for lossy compression of
scanned map images: firstly, the number of colors in the image is
reduced by median cut color quantization; then the resulting
image is compressed losslessly by improved GCT lossless
compression algorithm.

2.1 Median cut quantization

Median cut algorithm is a very popular method for color
quantization widely used in image processing practice originally
published in [11]. It is relatively simple both conceptually and
computationally still providing good results.

The conceptual idea behind the algorithm is to design a color
palette in such a way that each color would represent
approximately the same number of pixels of the input image.
Firstly, the algorithm computes the color histogram of the image.
Typically, the image is pre-quantized with uniform quantizer
since 24-bit color histogram would be difficult to handle. Then,
from the color histogram one considers a box enclosing the colors
of the image. The idea of median cut is to split the box recursively
until the desired number of palette colors is reached. At each step
of the algorithm, the box containing largest number of pixels is
split along the coordinate that spans the largest range. The split is
made at the median point so that approximately equal number of
pixels falls into sub-boxes.

2.2 GCT compression

Statistical context-based modeling is a well-known tool in image
compression and it is widely used in various compression
applications. The general idea is to exploit local dependencies
among pixels. In typical image, the knowledge about the
neighborhood of the unknown pixel significantly improves its
probability estimation, e.g. for most of documents, the probability
of the current pixel to be white is very high when all its neighbors
white. The neighborhood configuration is called a context and is
defined by the context template. Figure 3, left picture illustrates
sample binary contest, where background pixels are drawn as
white and foreground as black. The estimated conditional
probabilities are usually coded by arithmetic coder [9], as has
been done in the very first standard for encoding of bi-level
images — JBIG [12].

However, every context-based approach faces two major
problems: memory consumption and context dilution. The
information about estimated probabilities needs to be stored for
every context. In case when every possible context is expected to
appear in the image this number grows exponentially. For
example, for 10-pixel context on a binary alphabet (JBIG) 2'°
context configurations are possible. In case when K intensity
gradations are expected, 10-pixel template results in K'* contexts,
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which is a huge number even for gray-scale images. The problem
can be partially solved using the Context Tree (CT) modeling
originally proposed by Rissanen [10]. This approach organizes the
storing of probability estimations in a tree structure. In this way,
only the information about the contexts that are really present in
the image are stored, which significantly reduces memory
consumption.

Context dilution problem is of different nature and cannot be
solved only with optimized memory allocation. The problem is
that larger context template does not always provide the increase
in compression performance. With increasing of size, particular
contexts do not appear frequently enough in the image for
probability to be estimated accurately. Incorrect estimation
degrades the efficiency of the entropy coder, and therefore, the
compression efficiency. In CT modeling, this problem is solved
by applying so called tree pruning technique. The idea is that if
the parent node (smaller context) provides better compression
than its children (larger context), then the children nodes of the
tree are pruned and the parent is used instead for the probability
estimation. The efficiency of compression is estimated by the
entropy of the model. CT modeling is used mostly in simplified
binary case where only two types of pixels are possible.

Generalized Context Tree (GCT) generalizes CT model into more
color case, sample context is illustrated in Figure 3 (right), where
different colors of context pixels are illustrated with texture.
Pruning is performed by steepest descent search algorithm
resulting in sub-optimal tree configuration which, however, is
very close to the best one obtained by full search. At the moment,
GCT compression presents the best performance for lossless
compression of computer-generated raster map images [6].

First, we considered a fast pre-pruning of the tree for GCT. In our
experiments we discovered that the most part of the tree is not
filled with representative statistics since the most of the contexts
do not appear in the image frequently enough but just ones or
twice. Though these contexts are pruned out by steepest descent
search algorithm, it is computationally expensive and the vast of
total processing time is spent on it. Therefore we considered a
simple threshold-based pre-pruning. The idea is that the node (and
the represented context) is pruned in case that its occurrence
number falls below the predefined threshold. The surviving nodes
are then processed by standard pruning algorithm.

Then, we optimized the memory allocation for tree nodes. We
discovered that in case when storage of pixel counters in tree
nodes is implemented as an array, about 90% of array elements
are not used. This originates from the fact that in many-color
images the actual variety of colors appearing in a particular
context is small since typically with increase of colors in the
image contexts become less frequent. We consider implementing
the storage of pixel counters as a linked list. Basing on the
understanding of imagery features, this simple technical
improvement dramatically increases the number of colors which
GCT compressor is able to process same time making context tree
faster to traverse.

The effect of optimization is illustrated in Table 1 for sample
12501250 image of 42 colors. Rows of the table represent
memory consumption and processing time for original GCT, GCT
with optimized memory allocation and for GCT with optimized
memory allocation and pre-pruning. For images with more colors
the effect is even more significant. In general, the use of these
simple and effective optimization techniques made the algorithm
applicable for 256-color 30003000 pixel images and 20-pixel
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Figure 4: Samples of the test set images.
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Figure 5: The compression performance of the proposed algorithm
(L-GCT) and its competitors.

Table 1: The effect of memory optimization and pre-pruning

Memory, MB Time, sec
Original GCT 128 334
Optimized memory 30 326
Opt. memory + pre-pruning 30 72

context on a personal computer with 1G operative memory. Note
that no optimization would deal with 256 possible context
configurations.

3. EXPERIMENTS

We compare the performance of the proposed algorithm, referred
further as Lossy Generalized Context Tree Modeling (L-GCT),
with JPEG2000 [13], which is the recent standard for lossy image
compression, and with ECW compressor [3] used widely in GIS
solutions. For a test set we consider three scanned topographic
maps of Finland: topol, topo2 and topo3. Raster images are
acquired by a flatbed scanner at 300 dpi. Samples and image
dimensions are illustrated in Figure 4. The experiments are
performed on P4-3GHz 1GB memory computer.

We measure the distortion caused by the lossy compression
algorithm as MSE distance in L*a*b* color space [14]. The
distance is measured from the degraded image to the scanned
original. The operational rate-distortion function for JPEG2000 is
estimated by considering 16 quality levels varying bit rate
approximately from 0.1 to 4 bpp, and respectively, MSE
distortion from 8.69 to 1.16. For the proposed compressor we
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Figure 6: The relative compression improvement provided by L-
GCT comparing to JPEG2000.

consider 5 quality levels by defining the number of colors in the
image as 256, 128, 64, 32 and 16. Images of 256-color are the
practical limit of the proposed algorithm. In our experiments for
L-GCT, we use 20-pixel context modeling with pre-pruning
threshold level set to 32. The compression results — bit rate and
MSE distance are measured as the average over the test set.

The compression performance of L-GCT and its competitors is
illustrated in Figure 5. The proposed algorithm outperforms its
competitors starting from 32-color images. Better performance is
presented for the rest of quality levels up to 256-color images.
The relative improvement over JPEG2000 with respect to the
similar objective quality level is illustrated in Figure 6. The
improvement of the proposed algorithm varies around 50% for
images of 32 to 256 colors. The comparison with ‘trivial
approach” MC+PWC proved that GCT provides better lossless
compression. ECW in our experiments performs worse than
JPEG2000.

The processing time required by the proposed algorithm
depending on the quality of the image is represented in Table 2.
One can see that the most of the time is spent on the construction
of the context tree. Encoding and decoding times are almost equal
and are much smaller than the tree construction time.

As a disadvantage of the proposed algorithm one can still consider
its compression time and memory consumption. For example for
highest quality levels the compression of single image takes about
one and a half hour. This restricts the use of the proposed
approach in real-time applications, though the offline archiving is
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practical since decompression does not require significant time or
memory.

Table 2: L-GCT processing time (sec) depending on the
amount of color in the image.

16 32 64 128 256
Tree constr. 204 333 591 1816 5021
Encoding 7 12 22 40 62
Decoding 11 16 28 49 71

4. CONCLUSIONS

We proposed a lossy compression algorithm for scanned map
images. The algorithm is based on color quantization, which is a
lossy part, and context tree modeling, which is a lossless
compression technique. The quantization is performed by median
cut algorithm. The compression is done by modified Generalized
Context Tree lossless compression algorithm, for which pre-
pruning and optimized memory management techniques are
considered, basing on the features of the target imagery.

The rate-distortion performance of the proposed algorithm is
evaluated on a set of scanned topographic maps and compared to
JPEG2000 and ECW wavelet-based lossy compressors.
JPEG2000 is a recent standard for common lossy image
compression and ECW is a commercial proprietary format for
aerial and satellite image storage used also for the compression of
scanned imagery. Also, in order to prove the efficiency of GCT
we compared the proposed algorithm to the ‘trivial approach’
where the compression is performed by standard PWC
Compressor.

The proposed algorithm surely outperforms the competitors. For
JPEG2000 the advantage is about 50% in average by the provided
rate for similar MSE distortion level. However, one can consider
processing time and memory consumption as the drawbacks of
the proposed technique.

5. FUTURE WORK

We believe that the potential of the algorithm needs to be
investigated in more details. Such application areas could be
considered as lossy compression of simple graphics -
architectural schemes, engineering drawings; different types of
scanned map images — city plans, navigational and atlas-type
maps. The effect of different type of sensor could also be studied;
for example, simple graphics obtained with a digital camera. The
optimal choice of the quantization scheme is also an open
question as well as the question of faster processing time of the
algorithm.
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