
Iterative shrinking method for clustering problems
(submitted for publication 20.9.2004)

Pasi Fränti and Olli Virmajoki

Department of Computer Science, University of Joensuu

P.O. Box 111, FIN-80101 Joensuu, FINLAND
franti@cs.joensuu.fi

Abstract: Agglomerative clustering generates the partition hierarchically by
a sequence of merge operations. We propose an alternative to the merge-based
approach by removing the clusters iteratively one by one until the desired number
of clusters is reached. We apply local optimization strategy by always removing
the cluster that increases the distortion the least. Data structures and their update
strategies are considered. The proposed algorithm is applied as a crossover
method in a genetic algorithm, and compared against the best existing clustering
algorithms. The proposed method provides best performance in terms of
minimizing intra cluster variance.

Keywords: Clustering algorithms, vector quantization, codebook generation,
agglomeration, PNN.

Statistics: 23 pages, 16 figures, 6 tables, 7900 words, 39000 characters.

1. Introduction

Clustering is an important problem that must often be solved as a part of more
complicated tasks in pattern recognition, image analysis and other fields of science and
engineering [1, 2, 3]. Clustering is also needed for designing a codebook in vector
quantization [4]. The clustering problem is defined here as follows. Given a set of N
data vectors X={x1, x2, …, xN}, partition the data set into M clusters such that a given
distortion function f is minimized.

Agglomerative clustering generates the partition hierarchically by a sequence of merge
operations. The clustering starts by initializing each data vector as its own cluster. Two
clusters are merged at each step and the process is repeated until the desired number of
clusters is obtained. Ward’s method [5] selects the cluster pair to be merged so that it
increases the given objective function value least. In the vector quantization context, this
is known as the pairwise nearest neighbor (PNN) method due to [6]. In the rest of this
paper, we denote it as the PNN method.

The PNN is an attractive approach for clustering because of its conceptual simplicity
and relatively good results [7]. It has also been combined with k-means clustering as
proposed in [8], or used as a component in more sophisticated optimization methods.
For example, the PNN method has been used in the merge phase in the split-and-merge
algorithm [9] resulting in a good time-distortion performance, and as the crossover
method in genetic algorithm [10], which has turned out to be the best clustering method
among a wide variety of algorithms in terms of the minimizing the distortion [11].

 1

mailto:franti@cs.joensuu.fi

The main restriction of the PNN method is that the clusters are always merged as a
whole. Once the vectors have been assigned to the same cluster, it is impossible to
separate them later. This restriction is not significant at the early stage of the process
when merging smaller clusters but it can deteriorate the clustering performance at the
later stages when merging larger clusters.

In this paper, we propose a more general approach called iterative shrinking (IS), which
generates the partition by a sequence of cluster removal operations: clusters are removed
one at a time by reassigning the vectors in the removed cluster to the remaining nearby
clusters. The PNN method can be considered as a special case of the iterative shrinking,
in which the vectors of the removed cluster are all forced to move to the same neighbor
cluster, see Fig. 1. In the proposed approach, the vectors can be reassigned more freely
as shown in Fig. 2. Apart from the difference in the removal operation, we follow the
local optimality strategy of the PNN method, and always remove the cluster that
increases the cost function value least. We also consider briefly the case where the
number of clusters must also be determined.

The method is also integrated within a genetic algorithm. The proposed method and its
genetic variant are extensively compared against the best existing clustering algorithms.
The results show that the iterative shrinking provides competitive result for all test sets,
and the variant with the genetic algorithm gives the best result among all tested
algorithms in terms of minimizing the intra cluster variance. The running time of the
proposed method can be rather large but we show how the genetic variant can also be
tuned for better time-distortion performance. The idea of iterative shrinking and its
genetic variant have been originally presented in two conference papers [12, 13]

Similar idea has been recently proposed for the opposite (incremental) direction in [14].
The method, known as Global k-means (GKM), generates the partition iteratively by
adding one new cluster to the partition. At each step, the method considers every data
vector as a potential location for the new cluster. It applies k-means to all candidate
partitions, and keeps the one that decreases the objective function value most. The
approach itself is feasible but its time complexity is rather high varying from O(gNM3)
to O(gN2M2) depending on the variant, where g is the number of k-means iterations
applied.

The rest of the paper is organized as follows. In Section 2, we give formal definition of
the clustering problem considered here, and then recall the PNN method. The new
iterative shrinking method is then introduced in Section 3. We first present the
definition of the secondary partition in Section 3.1. A straightforward solution for
finding the cluster to be removed is given in Section 3.2, and its exact calculation is
derived in Section 3.3. Update of the secondary partition is considered in Section 3.4.
The relationship between the PNN and the IS methods is discussed in Section 3.5. The
time complexities are summarized in Section 4. In Section 5, we apply the method
within a genetic algorithm, and also extend the method to the case of an unknown
number of clusters. Experimental results are reported in Section 6, and conclusions
drawn in Section 7.

 2

Code vectors: Data vectors:

Before cluster merge After cluster merge

Vectors to be merged

Remaining vectors

Data vectors of the clusters to be merged

Other data vectors

S2

S3

S4
S5

S1

x

+

x x
x

x
x

x

x
x

x x

x

x

x+

+

+ +
+

+

+

+ +

+

+

+

+
+

+
+ +

+

x x
x

x
x

x
x

x x

x

x

x+

+

+ +
+

+

+

+ +

+

+

+
+

+
+ +

+

x

+

Fig. 1. The merging process of the PNN method.

Code vectors: Data vectors:

Before cluster removal After cluster removal

Vector to be removed

Remaining vectors

Data vectors of the cluster to be removed

Other data vectors

S2

S3

S4
S5

S1

x

+

+ +
+

+
+

+

+
+

x x

x

x

x+

+

+ +
+

+

+

+ +

+

+

+

+
+

+
+ +

+

+ +
+

+
+

+
+

x x

x

x

x+

+

+ +
+

+

+

+ +

+

+

+
+

+
+ +

+

+

+

Fig. 2. The cluster removal process of iterative shrinking.

2. Pairwise nearest neighbor

Given a set of N data vectors X={x1, x2, …, xN}, clustering aims at solving the partition
P={p1, p2, …, pN }, which defines for each data vector the index of the cluster where it
belongs to. Cluster sa is defined as the set of data vectors that belong to the same
partition a:

 �s x p aa i i� � � . (1)

The clustering is then represented as the set S={s1, s2, ..., sM}. In vector quantization, the
output of the clustering is a codebook C={c1, c2, …, cM}, which is usually the set of
cluster centroids.

The most important choice in clustering is the cost function f for evaluating the
goodness of the clustering. When the data vectors belong to Euclidean space,
a commonly used function is the mean square error (MSE) between the data vectors and
their cluster centroids. Given a partition P and the codebook C, the MSE is calculated
as:

 3

 � �MSE C P
N

x ci p
i

N

i
, � � �

�

�
1 2

1
. (2)

Ward’s method [5], or the pairwise nearest neighbor (PNN) as it is known in vector
quantization [5, 6], generates the clustering hierarchically by a sequence of merge
operations as described in Fig. 3. In each step of the algorithm, the number of the
clusters is reduced by merging two nearby clusters:

 . (3) s sa a� � sb

The cost of merging two clusters sa and sb is the increase in the MSE-value caused by
the merge. It can be calculated using the following formula [5, 6]:

d

n n
n n

c ca b
a b

a b
a b, �

�

� �

2 , (4)

where na and nb are the corresponding cluster sizes. The PNN method applies a local
optimization strategy: all possible cluster pairs are considered and the one increasing
MSE least is chosen:

 , (5)
� � ji

ji
mji

dba ,,1,
minarg,
�

�

�

where m is the current number of clusters. There exist many variants of the PNN
method. A straightforward implementation recalculates all distances at each step of the
algorithm. This takes O(N3) time because there are O(N) steps in total, and O(N2) cluster
pairs to be checked at each step.

Another approach is to maintain an N�N matrix of the merge cost values. The merge
cost values are needed to be updated only for the newly merged cluster. Nevertheless,
the algorithm still requires O(N3) because the search of the minimum cluster pair takes
O(N2) time [15]. Kurita’s method [16] maintains an N�N matrix but it also utilizes
a heap structure for searching the minimum distance. The method thus runs in
O(N2

�log N) time. The storage of the matrix, however, requires O(N2) memory, which
makes these variants impractical for large data sets.

A fast implementation with linear memory consumption of the PNN method is obtained
by maintaining a pointer from each cluster to its nearest neighbor, and the corresponding
merge cost value [17]. The cluster pair to be merged can be found in O(N) time, and
only a small number (denoted by �) of the nearest neighbor needs to be updated after
each merge. The implementation takes O(�N2) time in total. Further speed-up can be
achieved by using lazy update of the merge cost values [18], and by reducing the
amount of work caused by the distance calculations [7].

All the variants cited above give either asymptotic or relative improvement in the time
complexity but they do not provide any improvements in the clustering quality. The
clustering result is therefore bounded by the fundamental restriction caused by the
merge step of the PNN method. The only way to improve the quality of the partition is
to replace the merge step by a more general solution.

 4

PNN(X, M) � S

FOR i�1 to N DO
si � {xi};

REPEAT
(sa, sb) � SearchNearestClusters(S);
Merge(sa, sb);

UNTIL |S|=M;

Fig. 3. Structure of the PNN method.

3. Iterative shrinking

Iterative Shrinking (IS) starts by assigning each data vector to its own cluster. It then
removes one cluster at a time until the desired number of clusters has been reached. The
data vectors of the removed cluster are repartitioned to the nearby clusters. The
centroids of the neighbor clusters are updated according to the changes. The general
structure of the IS algorithm is presented in Fig. 4, and the details are discussed in the
following subsections.

IS(X, M) � S

FOR i�1 to N DO
si � {xi};

REPEAT
sa � SelectClusterToBeRemoved(S);
RemoveCluster(S, sa);

UNTIL |S|=M;

Fig. 4. Structure of the IS method.

3.1. Finding secondary cluster
For the cluster removal, we need to find the second nearest cluster for each data vector
in the selected cluster. We therefore maintain the secondary partition Q={q1, q2, …, qN}
for every data vector. It can be generated in a similar manner to the primary partition but
excluding the current nearest cluster in the search:

2

1
minarg ji

pj
mj

i cxq
i

��

�

��

. (6)

The squared Euclidean distance, however, does not take into account the centroid
update, which will take place after the removal process. It is therefore more accurate to
apply the merge cost function of (4), and measure the cost of merging the data vector to
the neighbor cluster sj instead of the mere distance to the cluster centroid:

2

1 1
minarg ji

j

j

pj
mj

i cx
n

n
q

i

�

�

�

�

��

. (7)

 5

Now the cost function will put more weight on larger clusters as their centroids are less
likely to move, and less to smaller clusters.

3.2. Selecting cluster to be removed
We adopt the local optimization strategy of the PNN method and select the cluster to be
removed as the one that increases the cost function least. Because the data vectors of the
removed cluster can be divided among several neighbor clusters, we calculate the effect
of the removal cost for each data vector separately. We first determine how much the
cost function will increase if the data vector xi is merged to its secondary cluster , and
then how much it will decrease when the data vector is removed from its current cluster
s

iqs

a. The net effect of the change is the difference:

22

1 aiqi
q

q
i cxcx

n
n

D
i

i

i
���

�
�� . (8)

The removal cost of cluster sa can now be estimated as the sum of the individual move
costs of the data vectors:

�
�

��

ai sx
ia Dd . (9)

We refer this as the simple calculation of the removal cost. It gives a correct result if
every data vector moves to a different neighbor cluster. In practice, several data vectors
can move to the same neighbor cluster and they all affect on the movement of the cluster
centroid. The equation (8) is therefore not accurate because it does not take into account
the overall movement of the code vectors. Instead, it tends to over estimate the cost
function when more vectors are moving to the same destination cluster.

3.3. Exact calculation of the removal cost
To realize the exact calculation for the removal cost, we divide the data vectors xi in sa
into subclusters sa,j according to their secondary partition qi:

� �jqsxs iaija ���,
. (10)

For example, there are five data vectors of the cluster s1 divided into four subclusters in
Fig. 2. The removal is conceptually considered as a three step process: (1) remove the
vectors from the current cluster sa, (2) form the subclusters sa,j, and (3) merge the
subclusters to the neighbor clusters sj. Thus, the removal cost is composed of the three
terms corresponding to this process:

�� ��
�� ��

�

�

�

������

m

j
jaj

jaj

jaj
m

j sx
ija

sx
iaa cc

sn

sn
xcxcd

jaiai 1

2

,
,

,

1

2

,
2

,

��
��

�

�

�

�����

m

j
jaj

jaj

jaj
m

j
jaaja cc

sn
sn

ccs
1

2

,
,

,

1

2

,,
, (11)

where jas , is the size of the subcluster sa,j. The first term is the sum of the distances to
the current cluster centroid ca, i.e. the cost of the cluster before removal. The second
term is the sum of the cost values inside the subclusters, where ca,j represents the
centroid of the subcluster. The third term is the sum of the costs of merging the
subclusters sa,j to their neighbor clusters sj.

 6

The Equation (11) gives the exact removal cost, and provides the result of the local
optimization strategy as desired. The situation, however, is not as simple as this because
the optimality is restricted by the choice of the secondary partition Q. Equation (7), for
example, assumes that the vectors are moved independently from each other. The
movement of the vector, however, has an effect on the cluster centroid, and therefore,
indirectly affects the removal cost values of other data vectors, too.

The problem is that there is no way to determine the best moving sequence without
trying all possible combinations. The only reasonable choice is therefore to apply some
kind of heuristic. We content ourselves with the one given in (7), in which the partition
of all data vectors is determined independently from each other.

3.4. Partition updates
The removal of a cluster sa affects most of the data structures. The primary partition P is
updated for the vectors in the removed cluster by copying the information from the
secondary partition:

iiai qpsx ��� : . (12)

The codebook C is then updated by recalculating the centroids of the affected clusters.
As a consequence of this, there can be further changes both in the primary and
secondary partition due to the movement of the centroids. This can affect the accuracy
of the removal cost estimation if the necessary updates are not made.

We consider next different strategies for updating the secondary partition Q. For this
purpose, the clusters are classified to three categories according to the location with
respect to their removed cluster:

- Removed cluster,
- Neighbor clusters, and
- All other clusters.

A cluster sj is defined to be a neighbor cluster if any data vector from the removed
cluster sa has been reassigned to sj. The set of neighbor clusters is denoted here as Ya:

� �jqsxsY iaija ���� : . (13)

The secondary partition update of a single vector requires that we search its second
nearest cluster among all clusters. This takes O(m) distance calculations per data vector,
where m is the current number of clusters. It is therefore vital for the time complexity to
make the number of updates as small as possible. We consider three alternative update
strategies:

- Minimum update,
- Standard update, and
- Extensive update.

The data vectors that are updated in these strategies are denoted as the sets Gminimum,
Gstandard and Gextensive. The sets have an increasing amount of updates so that

. The inclusion of the vectors in these three sets is
summarized in Table 1 according to the type of the cluster in the primary and secondary
partition. The situation is also illustrated in Fig. 5.

XGGG ��� extensivestandardminimum

 7

The minimum update strategy updates the secondary partition of the vectors that is only
absolutely necessary. This includes all vectors in the removed clusters, and also some
vectors in the neighbor clusters:

� aqapxG iii ����minimum �. (14)

Firstly, a new secondary cluster must be resolved for the moved vectors (pi=a) because
they have just been reassigned according to their secondary partition, see Eq. (12).
Secondly, a vector in the neighboring cluster must be updated if its secondary cluster
was the removed one (qi=a).

The standard update includes slightly more data vectors than the minimum update:

� �aqapi YsYsxGG
ii
���� �minimumstandard . (15)

In other words, we update the secondary partition also for those vectors in the neighbor
clusters whose secondary partition is another neighbor cluster. This provides more
accurate maintenance of the secondary partition with only a moderate amount of extra
work. On the other hand, the update is not mandatory.

In addition to the previous data vectors, the extensive update strategy contains also all
data vectors that have any connection to the neighbor clusters. In other words, the
update is performed for data vector xi if either its primary or secondary partition is one
of the neighbor cluster:

� �aqapi YsYsxGG
ii
���� �standardextensive . (16)

This update strategy covers all vectors that should be updated, and it can be performed
using a reasonable amount of computation. It is expected that the number of vectors in
Gextensive is still remarkably smaller than the size of the overall data set.

Table 1. Classification of the data vectors according to the type of its primary and
secondary clusters.

Primary partition P
Removed Neighbor Other

Removed N/A Minimum update Minimum update
Neighbor Minimum update Standard update Extensive update

Secondary
partition Q

Other N/A Extensive update -

 8

Code vectors: Data vectors:

Code vector to be removed

Remaining code vectors

Data vectors of the minimum update:
Data vectors of the standard update:

S2

S3

S4
S5

S1

x
y

z
y

y

y
y

y

x x

x

x

xy
z

y y

y
z

y

y
y

y

z

z

z

z

z

z

z

yz

y

y

x

x

x

S6

S7

S8

S9

S10S11

S12

S13

xx

x

x
x

x

x x

zData vectors of the extensive update:

z
z z

z

z

z

z

z

z

z

z

z z
z

z z

z

z

+Other data vectors

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

x U
x U Uy

Fig. 5. Illustration of the vectors whose secondary partition is updated at the different

levels of the update strategy. The removed cluster is s1, and the neighbor clusters are s2,
s3, s4 and s5.

3.5. IS versus PNN
The PNN method can be seen as a special case of the IS method, as it can be simulated
by the IS method as follows. We first select the cluster to be removed as one of the two
clusters (sa and sb) selected for the merge. The merge is then performed by moving all
the vectors from sb to sa, and thus, removing sb. The centroid of sa is updated
accordingly. The result is equivalent to that of the PNN method, and it is easy to see
from Fig. 1 and Fig. 2 that some of the vector reassignments could be done better
resulting in a smaller increase in the cost function value.

The difference of the merging and removal strategies is illustrated further in Fig. 6. We
have six data vectors located symmetrically, and the task is to find a partition of two
clusters. After the first three merges, the output of the PNN and IS methods are
equivalent but in the fourth merge the PNN method is already restricted by the previous
merges and the result is suboptimal. The IS method, on the other hand, ends up with the
optimal result no matter what is the order of the previous cluster removals.

It is noted, that it is still possible (although rare) to get better result by the PNN method
than by the IS method because locally optimal steps does not necessarily lead to the
global optimum. Nevertheless, it is expected that the IS method would give better
partition than the PNN method in most cases.

PNN
After
third

merge

After
fourth
merge

IS

Fig. 6. Example of the different functions of the PNN and the IS methods.

 9

4. Complexity analysis

Detailed pseudo code of the IS method is given in Fig. 7. The initialization phase
requires O(N2) distance calculations due to the construction of the secondary partition.
For simplicity, we assume here that the size of the feature vector is constant. The main
loop of the algorithm is then repeated by N-M times. The most time consuming
operations during the iteration are the calculation of the removal costs, and the update of
the secondary partition. The simple calculation of the removal cost requires at most
O(N) time per iteration. The exact calculation requires a little bit more than that but still
no more than O(N).

IS(X, M) � C, P
m � N;
FOR � i��1, m�:

ci � xi;
pi � i;
ni � 1;

FOR � i��1, m�:
qi � FindSecondNearestCluster(C, xi);

REPEAT
CalculateRemovalCosts(C, P, Q, d);
a � SelectClusterToBeRemoved(d);
RemoveCluster(P, Q, a);
UpdateCentroids(C, P, a);
UpdateSecondaryPartitions(C, P, Q, a);
m � m - 1;

UNTIL m=M.

Fig. 7. Pseudo code of the IS method.

The update of the secondary partition requires n�m distance calculations, where n is the
number of data vectors to be updated, and m is the number of clusters. We first estimate
the number of data vectors within one cluster, and then derive the number of distance
calculations in the minimum update, standard update, and the extensive update.

The main question is the number of data vectors in a cluster. After (N-m) removal steps,
the N data vectors are divided into the m clusters so that there are N/m vectors per
cluster, on average. As the algorithm tends to remove smaller clusters, it is reasonable to
estimate that the number of vectors is no more than N/m, on average. If we sum it up
from all N-M steps, we get the total number of vectors as:

�
�

�
�
�

�
��

�
��	��

�

NMM
N

M
N

N
N

N
N 1...

1
11...

1
. (17)

For the case M=1, this gives:

 10

� NNO
N

N log1...
2
1

1
1

�	�
�

�
�
�

�
���� � . (18)

The algorithm actually iterates only N-M steps, so a more accurate upper bound is
N�(log N – log M). Thus, the average number of vectors in the cluster is approximated
by:

� �
� NO �

MN
MNN logloglog

�

�

�� . (19)

The minimum update processes only the vectors of the removed cluster, and the vectors
that were mapped to the removed cluster in their secondary partition. The number of
distance calculations per vector is not equal in all iterations but it varies from N to M,
and thus, can be approximated as follows:

� � � � NMN
M
NM

N
NN

N
NN �����

�

�� ...
1

1 . (20)

We assume that the same result applies both to the primary partition and secondary
partitions. The number of distance calculations in the minimum update variant is
therefore estimated as 2(N-M)�N = O(N2).

The standard update includes also vectors from the neighbor clusters. The number of
distance calculations can be approximated by multiplying the result in (20) by the
number of neighbor clusters |Y|. The obvious upper bound for |Y| is the number of
vectors in a single cluster as in (19). The result from this is:

� �
� �

M
NNNMN

MN
MNN logloglog 2

�����

�

�� . (21)

Thus, the number of distance calculations is O(N2
�log(N/M)).

The extensive update includes also vectors from other clusters. Suppose that we have |Y|
neighbor clusters, and assume that each of them have also |Y| neighbors. Some of the
clusters are the same but this anyway gives a simple estimation for the number of
affected clusters as |Y|2. The total number of distance calculations is therefore estimated
as O(N2

�log2N).

The overall time complexities of the different IS variants are summarized and compared
to the main PNN variants in Table 2. The IS method with minimum update is
theoretically faster than the PNN method but not necessarily so in practice. This is
because the number of updates (�) in the PNN method is relatively small, and the
removal step in the IS method is more complicated. The standard and extensive update
variants have somewhat higher time complexities but still smaller than the O(N3) that
would have been the result if all data vectors were updated at every iteration.

 11

Table 2. Summary of the time complexities of the exact PNN and the IS.
PNN Iterative shrinking

Original Fast Minimum Standard Extensive
Initialization: O(N) O(N2) O(N2) O(N2) O(N2)
Single step:
� Cluster selection
� Merge / removal
� Update

O(N2)
O(1)
O(1)

O(N)
O(1)
O(�N)

O(N)
O(N)
O(N)

O(N)
O(N)
O(N�log N/M)

O(N)
O(N)
O(N�log2N)

Algorithm in total: O(N3) O(�N2) O(N2) O(N2
�log N/M) O(N2

�log2N)

5. Generalizations of IS

We next generalize iterative shrinking approach to the case when the number of clusters
must also be determined. The method is then augmented with the genetic algorithm in
the same way as the PNN method has been applied in [10, 11]. The proposed
combination is denoted as GAIS (genetic algorithm with iterative shrinking). We
consider both the fixed and variable number of clusters.

5.1. Unknown number of clusters
In many cases, the number of clusters is not known beforehand but finding the number
of clusters is part of the problem. The simplest approach is to generate solutions for all
possible number of clusters M in a given range [Mmin, Mmax], and then select the best
partition to a suitable evaluation function f. This multiplies the computation time by
(Mmax-Mmin).

Iterative shrinking, on the other hand, produces solutions in the range [N, M] during the
same run. It is therefore enough to replace the distortion function by a suitable clustering
validity index. Among the many different indexes [19, 20, 21], it was found out in [22]
that variance-ratio F-test based on a statistical ANOVA test procedure [23] works
pretty well in the case of Gaussian clusters. Moreover, it was shown in [24] that the
same distance function can be applied with the F-test as with the MSE. Therefore, no
additional changes are required in the algorithm because of using F-test.

5.2. Genetic algorithm
The idea of a genetic algorithm (GA) is to maintain a set of solutions which make up
a population, which is iteratively improved by genetic operations such as crossover,
mutation, and by the selection principle of evolution. Several different crossover
algorithms have been considered in [10], and concluded that significantly better results
are obtained when the PNN method is used as the crossover algorithm instead a
straightforward approach of using random crossover and k-means. It is therefore logical
to consider genetic algorithm with iterative shrinking as the crossover. We refer the
method here as GAIS.

The sketch of the GAIS algorithm is outlined in Fig. 8, and it works as follows. The GA
is applied here in the problem domain by operating on the codebook and partition
(C, P). A set of random solutions are first generated by selecting M random data vectors
as the codebook, and by creating optimal partition with respect to this codebook. The
best solution survives to the next generation as such, and the rest of the population is

 12

filled by new solutions created by crossover. The process is iterated and the best
solution in the final generation is the result of the algorithm.

The crossover starts by merging the parent solutions by taking the union of their
centroids (CombineCentroids). The partition Pnew is then constructed on the basis of the
existing partitions P1 and P2 (CombinePartitions). The partition of data vector xi is
either pi

1 or pi
2. The one with smaller distance to xi is chosen. The codebook Cnew is then

updated (UpdateCentroids) with respect to the new partition Pnew. This procedure gives
a solution in which the codebook has twice the size desired. Empty clusters are next
removed (RemoveEmptyClusters), and iterative shrinking is then applied to reduce the
number of clusters from 2�M to M. Finally, the solution is fine-tuned by a few iterations
of a k-means [25]. Note that mutations are not used here as they only slow down the
convergence of the optimization process.

The number of generations (T), population size (Z), and the number of k-means
iterations (G) are the main parameters of the algorithm. Here we consider the following
two strategies:

1. GAIS short: Create new generations only as long as the best solution keeps
improving (T=*). Use a small population size (Z=10), and apply two iterations of
k-means (G=2).

2. GAIS long: Create a large number of generations (T=100) with a large population
size (Z=100) and iterate k-means relatively long (G=10).

It is expected that the short variant is good enough to compete with the other clustering
algorithms in terms of quality. The purpose of the long variant is to squeeze out the best
possible result at the cost of a very long computation time.

It is also possible to apply the GA with unknown number of clusters. In this case, we
take any initial number of clusters M0, and generate the initial population accordingly.
The new solutions in the crossover are reduced from 2M to 1 and the intermediate
partition that minimizes F-ratio is taken as the new candidate solution. The number of
clusters will be automatically determined during the optimization process of the GA.

 13

GeneticAlgorithm(X) � (C, P)
FOR i�1 TO Z DO

Ci � RandomCodebook(X);
Pi � OptimalPartition(X, Ci);

SortSolutions(C,P);

REPEAT
{C,P} � CreateNewSolutions({C,P});
SortSolutions(C,P);

UNTIL no improvement;

CreateNewSolutions({C, P}) � {Cnew, Pnew }

Cnew-1, Pnew-1 � C1, P1;
FOR i�2 TO Z DO

(a,b) � SelectNextPair;
Cnew-i, Pnew-I � Cross(Ca, Pa, Cb, Pb);
IterateK-Means(Cnew-i, Pnew-i);

Cross(C1, P1, C2, P2) � (Cnew, Pnew)
Cnew � CombineCentroids(C1, C2);
Pnew � CombinePartitions(P1, P2);
Cnew � UpdateCentroids(Cnew, Pnew);
RemoveEmptyClusters(Cnew, Pnew);
IS(Cnew, Pnew);

CombineCentroids(C1, C2) � Cnew
Cnew � C1 � C2

CombinePartitions(Cnew, P1, P2) � Pnew
FOR i�1 TO N DO

IF x c x ci p i pi i
� � �1 2

2 2
 THEN

p pi
new

i�
1

ELSE
p pi

new
i�
2

END-FOR

UpdateCentroids(C1, C2) � Cnew
FOR j�1 TO |Cnew| DO

c j
new � CalculateCentroid(Pnew, j);

Fig. 8. Pseudo code of the genetic algorithm with iterative shrinking (GAIS).

6. Experiments

We consider three image data sets (Fig. 9), four synthetically generated data sets
(Fig. 10), and the BIRCH data sets [26]. The vectors in the first set (Bridge) are 4�4
non-overlapping blocks taken from a gray-scale image, and in the second set (Miss
America) 4�4 difference blocks of two subsequent frames in video sequence. The third
data set (House) consists of color values of the RGB image. The number of clusters is
fixed to M=256. The data sets S1 to S4 are two-dimensional artificially generated data
sets with varying complexity in terms of spatial data distributions with M=15 predefined
clusters. The summary of the data sets is presented in Table 3. All tests have been
performed in Sun Enterprise 450 with 400 MHz UltraSPARC2 processor, 2 GB memory
and Solaris 7 (SunOS 5.7) operating system.

Spatial vectors: Spatial residual vectors: Color vectors:

Bridge (256�256)

K=16, N=4096
Miss America (360�288)

K=16, N=6480
House (256�256)

K=3, N=34112*

Fig. 9. Source of the data. *Duplicate data vectors are combined and frequency
information is stored.

 14

Data set S1 Data set S2 Data set S3 Data set S4

Fig. 10: Two-dimensional data sets with varying complexity in terms of spatial data
distributions. The data sets have 5000 vectors scattered around 15 predefined clusters

with a varying degrees of overlap.

Table 3. Summary of the data sets.
Data set Type of data set Number of data

vectors (N)
Number of
clusters (M)

Dimension of
data vector (K)

Bridge Gray-scale image 4086 256 16
House RGB image 34112 256 3

Miss America Residual vectors 6480 256 16
Data set S1- S4 Synthetically generated 5000 15 2

BIRCH1-BIRCH3 Synthetically generated 100000 100 2

6.1. Comparison of the IS variants
The clustering test results of the three data sets are summarized in Table 4 for all the
variants of the IS method considered here, and for the fast exact PNN method as
implemented in [17]. In all cases, the IS method produces smaller distortion but at the
cost of about 2 to 6 times slower running time. The corresponding time-distortion
performance is illustrated in Fig. 11.

The extension in the amount of updates of the secondary partition decreases the MSE
but also slows down the process. The running time of the standard update is only about
4 to 9% longer than that of the minimum update whereas the extensive update increases
the running time about 58 to 140% depending on the data set. In other words, the results
of the minimum and standard update are rather similar to each other whereas the
extensive update gives a clearer effect both in the MSE and in the running time.

The method of calculating the removal cost (simple or exact) has only a small effect on
the MSE but the exact calculation is about 10 to 40% slower than the simple method.
The time-distortion performance of the simple variant seems to be marginally better
according to Fig. 11. On the other hand, if the MSE is the primary concern, we should
use the exact calculation with the extensive update. Thus, we will fix this parameter
setup in the following tests.

 15

Table 4. The MSE values and running times (in seconds) of the PNN and IS variants for
the three data sets (M=256).

 Bridge House Miss America
 Running

time
MSE Running

time
MSE Running

time
MSE

PNN 272 168.92 4391 6.27 709 5.36
Minimum update 315 166.18 9614 6.11 824 5.24
Standard update 324 166.08 9997 6.12 874 5.23

Si
m

pl
e

IS

Extensive update 564 164.22 16043 6.10 1820 5.19
Minimum update 481 165.93 12288 6.15 1283 5.24
Standard update 499 165.44 13161 6.10 1334 5.23

Ex
ac

t
IS

Extensive update 705 163.38 19280 6.11 2290 5.19

163

164

165

166

167

168

169

170

0 200 400 600 800
Run time (in seconds)

M
S

E

PNN
IS simple
IS exact

Bridge

6.08
6.10
6.12
6.14
6.16
6.18
6.20
6.22
6.24
6.26
6.28

0 5000 10000 15000 20000 25000
Run time (in seconds)

M
SE

PNN
IS simple
IS exact

House

5.15

5.20

5.25

5.30

5.35

5.40

0 500 1000 1500 2000 2500
Run time (in seconds)

M
S

E

PNN
IS simple
IS exact

Miss America

Fig. 11. The MSE-values and running times (in seconds) of the PNN and the IS methods
for Bridge, House and Miss America (M=256). The results within a curve are from left

to right: the minimum update, standard update and extensive update.

 16

6.2. Running time
We consider next the running time of the IS method in more detail. As shown in Section
4, it depends on the size of the data set (N), and on the number of neighbor clusters,
which was approximated by the term log(N/M). We calculated the average number of
the neighbor clusters and obtained values 2.0, 2.4, 3.0 for Bridge, House and Miss
America. The number is small in the early iterations (mostly 1) because the algorithm
removes small clusters. It gradually increases during the process but remains small on
average. These numbers support the observation made in Table 4 and Fig. 11 that the
choice of the IS variant does not have radical effect on the running time. The source of
the computation is demonstrated in Table 5 in more detail.

Table 5. Total number of distance calculations made in the case of Bridge for the
different IS variants. The numbers shown are the absolute (�106) and relative values (%).

Removal
calculation:

Simple calculation Exact calculation

Update: Minimum Standard Extensive Minimum Standard Extensive

Initialization phase 16.7
18.1 %

16.7
17.1 %

16.7
9.2 %

16.7
15.6 %

16.7
14.9 %

16.7
8.6 %

Calculation of
the removal costs

31.5
33.8 %

31.5
32.1 %

31.5
17.3 %

44.6
41.5 %

44.6
39.6 %

44.4
22.7 %

Update of the
secondary partition

44.8
48.1 %

49.7
50.8 %

133.6
73.5 %

46.0
42.9 %

51.4
45.5 %

134.4
68.7 %

6.3. Unknown number of clusters
The PNN and IS methods were both applied to the S data sets using the F-ratio for
determining the number of clusters. The results for the PNN and IS methods are virtually
the same with S1 and S2 but the IS performs better with the sets S3 and S4, see Fig. 12.
The difference is significant with data set S4, for which the IS method finds the
minimum for the number of clusters (M=15) whereas the PNN method finds the
minimum in the wrong place (M=14).

 17

S3

0.000060

0.000065

0.000070

0.000075

0.000080

0.000085

0.000090

0.000095

0.000100

25 20 15 10 5
Number of clusters

F-
ra

tio

minimum
IS

PNN

S4

0.000080

0.000085

0.000090

0.000095

0.000100

0.000105

0.000110

0.000115

0.000120

25 20 15 10 5

Number of clusters

F-
ra

tio

minimum

IS

PNN

Fig. 12. Comparison of the PNN and IS methods in the search of the number of clusters.

6.4. Genetic algorithm
We test the IS method within the GA (denoted as GAIS) and the corresponding results
are demonstrated in Fig. 13 for Bridge. Comparative results are given for the GA with
PNN crossover – with and without the use of two k-means iterations. The first
observation is that the IS crossover is better than the PNN. The experiments also show
that improvement can appear during a long time but most remarkable improvement is
obtained in the first few iterations. The later improvement is more or less fine-tuning of
the solution. In the case of Bridge, the first local minimum is reached after 8 iterations
with the value of 161.59. The results for the other data sets were similar.

Next we test the GAIS method with the F-ratio allowing it dynamically change the
number of clusters. The algorithm takes any initial guess for the number of clusters; our
random number generator produced M0=205. With the S data sets, the GAIS method
converges to the correct number of clusters (M=15) in a single iteration. The
convergence with the image data sets takes a little bit longer but the number of clusters
in the best solution also settles in the first iteration, see Fig. 14. It is also worth noting
that the GAIS method is actually not much slower than the IS method because it starts

 18

process with the initial number of clusters M0, which is usually much smaller than N,
where the IS method must start from.

160

161

162

163

164

165

166

0 10 20 30 40 5
Number of Iterations

M
SE

0

IS crossover + K-means

IS crossover

PNN crossover

PNN crossover + K-means

Bridge

Fig. 13. Performance of the GA (Z=10, T=50) with different crossover methods
(with and without k-means iterations) as a function of the number of iterations.

Bridge

0.000015

0.000016

0.000017

0.000018

0.000019

0.000020

0.000021

0.000022

0.000023

0.000024

0.000025

0 1 2 3 4 5 6 7 8 9 10
Number of iterations

F-
ra

tio

Best solution

Worst solution

Fig. 14. Convergence of the GAIS method using F-ratio for unknown number of
clusters. The number of clusters is 205 in the initial population, and then varies from 3

to 4 in the following iterations.

6.5. Comparison
Finally, we compare the performance of proposed methods (IS and GAIS) to other
clustering algorithms in the minimization of the MSE. We test the following algorithms:

Random clustering, ��

��

��

��

��

��

��

��

��

K-means [25],
SOM: Self-organizing maps [27],
FCM: Fuzzy C-means [28],
Split: Iterative splitting method [29],
RLS: Randomized local search [30],
Split-and-merge [9],
SR: Stochastic relaxation [31],
PNN: Pairwise nearest neighbor [17],

 19

GKM: Global k-means [14], ��

��

��

��

��

��

IS: Iterative shrinking (proposed),
GA: Genetic algorithm with PNN crossover [10, 11],
GA: Genetic algorithm with k-means crossover [10],
GAIS: Genetic algorithm with IS crossover (proposed).
SAGA: Self-adaptive genetic algorithm [32].

In the comparison, we have included only methods that, according to our experiments,
consistently provide high quality partition, and methods that are popular due to their
simplicity or for other reasons. The hierarchical approaches are also combined with the
k-means to get further improvement whereas the other algorithms implicitly include
k-means iterations in one form or another. The best results of the algorithms are
summarized in Table 6. The Random, k-means, FCM, and SR have been repeated 10
times. The reported results are the best result found, except random is the average.

Table 6. Performance comparison of the algorithms (for M=256). The results with the S
sets have been multiplied by 108. The last column gives running times for Bridge (in
seconds).

 Image sets Birch data sets Synthetic data sets Time

 Bridge House Miss
America B1 B2 B3 S1 S2 S3 S4 Bridge

Random 251.32 12.12 8.34 14.44 35.73 8.20 78.55 72.91 55.42 47.05 <1
K-means (aver.) 179.87 7.81 5.96 5.52 7.99 2.53 20.53 20.91 21.37 16.78 5
K-means (best) 176.95 7.35 5.93 5.13 6.87 2.16 13.23 16.07 18.96 15.71 50
SOM 173.63 7.59 5.92 13.50 10.03 15.18 20.11 13.28 21.10 15.71 376
FCM 178.39 7.79 6.22 5.02 5.29 2.48 8.92 13.28 16.89 15.71 166
Split 170.22 6.18 5.40 4.81 2.29 1.91 8.95 13.33 17.50 16.01 13
Split + k-means 165.77 6.06 5.28 4.64 2.28 1.91 8.92 13.28 16.92 15.77 17
RLS 164.64 5.96 5.28 4.64 2.28 1.86 8.92 13.28 16.89 15.71 1146
Split-n-Merge 163.81 5.98 5.19 4.64 2.28 1.93 8.92 13.28 16.91 15.75 85
SR (average) 162.45 6.02 5.27 4.84 3.39 1.99 9.52 13.68 17.31 15.80 213
SR (best) 161.96 5.98 5.25 4.76 3.12 1.98 8.93 13.28 16.89 15.71 2130
PNN 168.92 6.27 5.36 4.73 2.28 1.96 8.93 13.44 17.70 17.52 272
PNN + k-means 165.04 6.07 5.24 4.64 2.28 1.88 8.92 13.28 16.89 16.87 285
GKM – fast 10 164.12 5.94 5.34 4.64 2.28 1.92 8.92 13.28 16.89 15.71 91721
IS 163.38 6.09 5.19 4.70 2.28 1.89 8.92 13.29 16.96 15.79 717
IS + k-means 162.38 6.02 5.17 4.64 2.28 1.86 8.92 13.28 16.89 15.71 719
GA (k-means) 174.91 6.61 5.54 6.58 5.96 2.45 11.66 15.99 19.22 16.14 654
GA (PNN) 162.37 5.92 5.17 4.98 2.28 1.98 8.92 13.28 16.89 15.71 404
SAGA 161.22 5.86 5.10 4.64 2.28 1.86 8.92 13.28 16.89 15.71 74554
GAIS (short) 161.59 5.92 5.11 4.64 2.28 1.86 8.92 13.28 16.89 15.72 1311
GAIS (long) 160.73 5.89 5.07 4.64 2.28 1.86 8.92 13.28 16.89 15.71 387533

The K-means, SOM and FCM are well known and popular due to their simple
implementation. Despite of this, the k-means is sensitive to the initialization and the
SOM is very sensitive to a proper parameter setup. Even a slightest change in the
parameter setup can provide noticeable improvement with one data set but turn out to
give significant weaker result with another set. With the chosen parameter setup [33]
SOM finds the best solution with S2 and S4 but with significantly weaker results for S1

 20

and S3, and for the Birch data sets. The FCM finds the best solutions for S1-S4 but does
perform worse with the image data sets. The k-means is implemented as in [34].

The Split method [29] always selects the optimal hyper plane dividing the particular
cluster along its principal axis, augmented with a local repartitioning phase at each
division step. This chosen Split variant is optimized for quality rather than speed. Faster
Split variants also exists but, depending on the variant, the results vary somewhere
between k-means and Random.

The RLS, Split-and-Merge, and SR are all competitive in terms of quality. The RLS is
the most attractive because of its easy adaptation between speed and quality, even
though Split-and-Merge sometimes gives slightly better results but with a significantly
more complex implementation. The RLS and SR are both relatively simple to implement
but the SR is more sensitive to the initialization: it works well for the image data sets but
fails to find good partition in about 10-20% of times with the easier S data sets.

Among the hierarchical variants, the PNN method works rather well in most cases but
sometimes (S3 and S4) the results are clearly inferior to that of the IS method. The
combination with the k-means makes sense because the PNN and IS methods do not do
local fine-tuning of the clusters during the process except the partition update operations
in the IS method. In particular, the IS + k-means outperforms the other variants except
the genetic algorithms.

The results of the GKM are obtained using the faster O(gNM3) algorithm with g=10, and
by using intermediate codebook of size 2�M to reduce the number of candidate vectors
considered at each step of the algorithm. This provides competitive results but with
much slower running time. The algorithm can be useful when the number of code
vectors M is small.

The proposed genetic algorithm (GAIS) gives significantly better than using k-means as
the crossover method, and slightly better results than the GA with PNN crossover. It
reaches the lowest MSE with only one exception (House), thus, effectively matching or
even outperforming the previously best known clustering algorithm SAGA. The result of
the GAIS method is also consistent on the initialization as shown in Fig. 15.

The negative side of the genetic algorithm is its slow running time, and the long variant
can take several days for the largest data sets. However, much faster convergence can be
reached by tuning the parameters of the GAIS short as follows. We use the IS algorithm
with the simple removal calculation and standard update. The GAIS method starts with a
small population Z=2, which is then increased by one up to Z=100 after every
generation. Two k-means iterations are applied (g=2). In this way, good solutions are
reached much faster but the method is still able to improve in the long run.

Time-distortion performance of the tuned GAIS algorithm is compared in Fig. 16 with
that of the k-means (repeated from new random solutions), RLS, and SAGA. The GAIS
method outperforms both the repeated k-means and RLS when more than 10 seconds is
spent in the optimization, and converges approximately to the same result as SAGA. The
method is inferior to RLS and k-means only when 10 seconds or less is used for
generating the solution.

 21

0

5

10

15

20

25

160 165 170 175 180 185 190
MSE

Fr
eq

ue
nc

y

k-meansGAIS

IS PNN

IS + k-means

Fig. 15. Histograms of the MSE-values of 50 runs of the GAIS method, and 500 runs of
the k-means. The corresponding standard deviations are � = 0.11 (GAIS) and � = 1.41

(k-means).

160

165

170

175

180

185

190

0 1 10 100 1000 10000 100000
Time (s)

M
SE

repeated
K-means

RLS

GAIS

PNN

IS

SAGA

Fig. 16. Time-distortion performance of the selected algorithms.

7. Conclusions

We have proposed the iterative shrinking (IS) method for the clustering problem. The
method generates the clustering hierarchically by removing one cluster at a time. At
each step of the algorithm, the cluster to be removed is selected optimally. The merge-
based clustering agglomerative can be considered as a special case of the proposed
approach. Experimental results show that the method achieves better results than the
comparative methods at the cost of slower speed. The time complexity of the method
varies from O(N2) to O(N2

�log2N) depending on the variant.

The proposed method can also be applied as a crossover method in the genetic
algorithm (GAIS). According to experiments, the genetic combination outperforms all
comparative algorithms in terms of minimizing the distortion. Iterative shrinking
method extends also to the case where the number of clusters must also be determined
simply by changing the optimization function. This does not add to the time complexity
as the solutions for a variable number of clusters can be found during a single run of the
algorithm.

 22

To sum up, the proposed clustering method (GAIS) is capable of providing the best
results in minimizing intra cluster variance with competitive time-distortion
performance.

Acknowledgements

This work is dedicated to the memory of our colleague Timo Kaukoranta, with whom
we had pleasure to work for many years before he suddenly passed away in 2002. His
analytical approach and the good sense of humor have inspired us to study the clustering
algorithms beyond expectations.

References

1. B.S. Everitt, Cluster Analysis (3rd edition), Edward Arnold / Halsted Press, London, 1992.
2. L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis, John Wiley Sons, New York, 1990.
3. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs,

NJ, 1988.
4. A. Gersho, R.M. Gray, Vector Quantization and Signal Compression, Kluwer Academic

Publishers, Dordrecht, 1992.
5. J.H. Ward, Hierarchical grouping to optimize an objective function, J. Amer. Statist.Assoc.

58 (1963) 236-244.
6. W.H. Equitz, A new vector quantization clustering algorithm, IEEE Trans. on Acoustics,

Speech, and Signal Processing 37 (10) (1989) 1568-1575.
7. O. Virmajoki, P. Fränti, T. Kaukoranta, Practical methods for speeding-up the pairwise

nearest neighbor method, Optical Engineering 40 (11) (2001) 2495-2504.
8. D.P. de Garrido, W.A. Pearlman, W.A. Finamore, A clustering algorithm for entropy-

constrained vector quantizer design with applications in coding image pyramids, IEEE
Trans. on Circuits and Systems for Video Technology 5 (2) (1995) 83-95.

9. T. Kaukoranta, P. Fränti, O. Nevalainen, Iterative split-and-merge algorithm for VQ
codebook generation, Optical Engineering 37 (10) (1998) 2726-2732.

10. P. Fränti, J. Kivijärvi, T. Kaukoranta, O. Nevalainen, Genetic algorithms for large scale
clustering problem, The Computer Journal 40 (9) (1997) 547-554.

11. P. Fränti, Genetic algorithm with deterministic crossover for vector quantization, Pattern
Recognition Letters 21 (1) (2000) 61-68.

12. O. Virmajoki, P. Fränti, T. Kaukoranta, Iterative shrinking method for generating
clustering, IEEE Int. Conf. on Image Processing (ICIP’02), Rochester, New York, USA,
vol. 2, 2002, pp. 685-688.

13. P. Fränti, O. Virmajoki, Genetic algorithm using iterative shrinking for solving clustering
problems, Proc. Data Mining Conf. 2003, Rio de Janeiro, Brazil, 2003, pp. 193-204.

14. A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm, Pattern
Recognition 36 (2003) 451-461.

15. J. Shanbehzadeh, P.O. Ogunbona, On the computational complexity of the LBG and PNN
algorithms, IEEE Trans. on Image Processing 6 (4) (1997) 614-616.

16. T. Kurita, An efficient agglomerative clustering algorithm using a heap, Pattern
Recognition 24 (3) (1991) 205-209.

17. P. Fränti, T. Kaukoranta, D.-F. Shen, K.-S. Chang, Fast and memory efficient
implementation of the exact PNN, IEEE Trans. on Image Processing 9 (5) (2000) 773-777.

 23

18. T. Kaukoranta, P. Fränti, O. Nevalainen, Vector quantization by lazy pairwise nearest
neighbor method, Optical Engineering 38 (11) (1999) 1862-1868.

19. J.C. Bezdek, N.R. Pal, Some new indexes of cluster validity, IEEE Trans. on Systems, Man
and Cybernetics 28 (3) (1998) 302-315.

20. D.L. Davies, D.W. Bouldin,. A cluster separation measure, IEEE Trans. on Pattern
Analysis and Machine Intelligence 1 (2) (1979) 224-227.

21. M. Sarkar, B. Yegnanarayana, D. Khemani, A clustering algorithm using an evolutionary
programming-based approach, Pattern Recognition Letters 18 (10) (1997) 975-986.

22. I. Kärkkäinen, P. Fränti, Stepwise algorithm for finding unknown number of clusters,
Advanced Concepts for Intelligent Vision Systems (ACIVS’2002), Gent, Belgium, 2002, pp.
136-143.

23. P.K. Ito, Robustness of ANOVA and MANOVA Test Procedures, in: P.R. Krishnaiah (ed),
Handbook of Statistics 1: Analysis of Variance, North-Holland Publishing Company, 1980,
pp. 199-236.

24. M. Xu, Delta-MSE dissimilarity in GLA-based vector quantization, IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, (ICASSP’04), Montreal, Canada, May 2004.

25. Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantizer design, IEEE Trans. on
Communications 28 (1) (1980) 84-95.

26. T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: A new data clustering algorithm and its
applications, Data Mining and Knowledge Discovery 1 (2) (1997) 141-182.

27. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, New York,
1988.

28. J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters, Journal of Cybernetics 3 (3) (1974) 32-57.

29. P. Fränti, T. Kaukoranta, O. Nevalainen, On the splitting method for vector quantization
codebook generation, Optical Engineering 36 (11) (1997) 3043-3051.

30. P. Fränti, J. Kivijärvi, Randomized local search algorithm for the clustering problem,
Pattern Analysis and Applications 3 (4) (2000) 358-369.

31. K. Zeger, A. Gersho, Stochastic relaxation algorithm for improved vector quantiser design,
Electronics Letters 25 (1989) 896-898.

32. J. Kivijärvi, P. Fränti, O. Nevalainen, Self-adaptive genetic algorithm for clustering,
Journal of Heuristics 9 (2) (2003) 113-129.

33. P. Fränti, On the usefulness of self-organizing maps for the clustering problem in vector
quantization, 11th Scandinavian Conf. on Image Analysis (SCIA’99), Kangerlussuaq,
Greenland, vol. 1, 1999, pp. 415-422.

34. T. Kaukoranta, P. Fränti, O. Nevalainen, A fast exact GLA based on code vector activity
detection, IEEE Trans. on Image Processing 9 (8) (2000) 1337-1342.

 24

	1.Introduction
	2. Pairwise nearest neighbor
	3.Iterative shrinking
	3.1.Finding secondary cluster
	3.2.Selecting cluster to be removed
	3.3.Exact calculation of the removal cost
	3.4.Partition updates
	3.5.IS versus PNN

	4.Complexity analysis
	
	
	REPEAT

	Iterative shrinking

	5.Generalizations of IS
	5.1.Unknown number of clusters
	5.2.Genetic algorithm

	6.Experiments
	6.1. Comparison of the IS variants
	6.2.Running time
	6.3.Unknown number of clusters
	6.4.Genetic algorithm
	6.5.Comparison

	7.Conclusions
	Acknowledgements
	References

