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Abstract: Agglomerative clustering generates the partition hierarchically by 
a sequence of merge operations. We propose an alternative to the merge-based 
approach by removing the clusters iteratively one by one until the desired number 
of clusters is reached. We apply local optimization strategy by always removing 
the cluster that increases the distortion the least. Data structures and their update 
strategies are considered. The proposed algorithm is applied as a crossover 
method in a genetic algorithm, and compared against the best existing clustering 
algorithms. The proposed method provides best performance in terms of 
minimizing intra cluster variance. 
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1. Introduction 

Clustering is an important problem that must often be solved as a part of more 
complicated tasks in pattern recognition, image analysis and other fields of science and 
engineering [1, 2, 3]. Clustering is also needed for designing a codebook in vector 
quantization [4]. The clustering problem is defined here as follows. Given a set of N 
data vectors X={x1, x2, …, xN}, partition the data set into M clusters such that a given 
distortion function f is minimized. 

Agglomerative clustering generates the partition hierarchically by a sequence of merge 
operations. The clustering starts by initializing each data vector as its own cluster. Two 
clusters are merged at each step and the process is repeated until the desired number of 
clusters is obtained. Ward’s method [5] selects the cluster pair to be merged so that it 
increases the given objective function value least. In the vector quantization context, this 
is known as the pairwise nearest neighbor (PNN) method due to [6]. In the rest of this 
paper, we denote it as the PNN method. 

The PNN is an attractive approach for clustering because of its conceptual simplicity 
and relatively good results [7]. It has also been combined with k-means clustering as 
proposed in [8], or used as a component in more sophisticated optimization methods. 
For example, the PNN method has been used in the merge phase in the split-and-merge 
algorithm [9] resulting in a good time-distortion performance, and as the crossover 
method in genetic algorithm [10], which has turned out to be the best clustering method 
among a wide variety of algorithms in terms of the minimizing the distortion [11]. 
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The main restriction of the PNN method is that the clusters are always merged as a 
whole. Once the vectors have been assigned to the same cluster, it is impossible to 
separate them later. This restriction is not significant at the early stage of the process 
when merging smaller clusters but it can deteriorate the clustering performance at the 
later stages when merging larger clusters. 

In this paper, we propose a more general approach called iterative shrinking (IS), which 
generates the partition by a sequence of cluster removal operations: clusters are removed 
one at a time by reassigning the vectors in the removed cluster to the remaining nearby 
clusters. The PNN method can be considered as a special case of the iterative shrinking, 
in which the vectors of the removed cluster are all forced to move to the same neighbor 
cluster, see Fig. 1. In the proposed approach, the vectors can be reassigned more freely 
as shown in Fig. 2. Apart from the difference in the removal operation, we follow the 
local optimality strategy of the PNN method, and always remove the cluster that 
increases the cost function value least. We also consider briefly the case where the 
number of clusters must also be determined. 

The method is also integrated within a genetic algorithm. The proposed method and its 
genetic variant are extensively compared against the best existing clustering algorithms. 
The results show that the iterative shrinking provides competitive result for all test sets, 
and the variant with the genetic algorithm gives the best result among all tested 
algorithms in terms of minimizing the intra cluster variance. The running time of the 
proposed method can be rather large but we show how the genetic variant can also be 
tuned for better time-distortion performance. The idea of iterative shrinking and its 
genetic variant have been originally presented in two conference papers [12, 13] 

Similar idea has been recently proposed for the opposite (incremental) direction in [14]. 
The method, known as Global k-means (GKM), generates the partition iteratively by 
adding one new cluster to the partition. At each step, the method considers every data 
vector as a potential location for the new cluster. It applies k-means to all candidate 
partitions, and keeps the one that decreases the objective function value most. The 
approach itself is feasible but its time complexity is rather high varying from O(gNM3) 
to O(gN2M2) depending on the variant, where g is the number of k-means iterations 
applied. 

The rest of the paper is organized as follows. In Section 2, we give formal definition of 
the clustering problem considered here, and then recall the PNN method. The new 
iterative shrinking method is then introduced in Section 3. We first present the 
definition of the secondary partition in Section 3.1. A straightforward solution for 
finding the cluster to be removed is given in Section 3.2, and its exact calculation is 
derived in Section 3.3. Update of the secondary partition is considered in Section 3.4. 
The relationship between the PNN and the IS methods is discussed in Section 3.5. The 
time complexities are summarized in Section 4. In Section 5, we apply the method 
within a genetic algorithm, and also extend the method to the case of an unknown 
number of clusters. Experimental results are reported in Section 6, and conclusions 
drawn in Section 7. 
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Fig. 1. The merging process of the PNN method. 
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Fig. 2. The cluster removal process of iterative shrinking. 

 
 
2. Pairwise nearest neighbor 

Given a set of N data vectors X={x1, x2, …, xN}, clustering aims at solving the partition 
P={p1, p2, …, pN }, which defines for each data vector the index of the cluster where it 
belongs to. Cluster sa is defined as the set of data vectors that belong to the same 
partition a: 

 �s x p aa i i� � � . (1) 

The clustering is then represented as the set S={s1, s2, ..., sM}. In vector quantization, the 
output of the clustering is a codebook C={c1, c2, …, cM}, which is usually the set of 
cluster centroids. 

The most important choice in clustering is the cost function f for evaluating the 
goodness of the clustering. When the data vectors belong to Euclidean space, 
a commonly used function is the mean square error (MSE) between the data vectors and 
their cluster centroids. Given a partition P and the codebook C, the MSE is calculated 
as: 
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Ward’s method [5], or the pairwise nearest neighbor (PNN) as it is known in vector 
quantization [5, 6], generates the clustering hierarchically by a sequence of merge 
operations as described in Fig. 3. In each step of the algorithm, the number of the 
clusters is reduced by merging two nearby clusters: 

 . (3) s sa a� � sb

The cost of merging two clusters sa and sb is the increase in the MSE-value caused by 
the merge. It can be calculated using the following formula [5, 6]: 

 
d
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where na and nb are the corresponding cluster sizes. The PNN method applies a local 
optimization strategy: all possible cluster pairs are considered and the one increasing 
MSE least is chosen: 
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where m is the current number of clusters. There exist many variants of the PNN 
method. A straightforward implementation recalculates all distances at each step of the 
algorithm. This takes O(N3) time because there are O(N) steps in total, and O(N2) cluster 
pairs to be checked at each step. 

Another approach is to maintain an N�N matrix of the merge cost values. The merge 
cost values are needed to be updated only for the newly merged cluster. Nevertheless, 
the algorithm still requires O(N3) because the search of the minimum cluster pair takes 
O(N2) time [15]. Kurita’s method [16] maintains an N�N matrix but it also utilizes 
a heap structure for searching the minimum distance. The method thus runs in 
O(N2

�log N) time. The storage of the matrix, however, requires O(N2) memory, which 
makes these variants impractical for large data sets. 

A fast implementation with linear memory consumption of the PNN method is obtained 
by maintaining a pointer from each cluster to its nearest neighbor, and the corresponding 
merge cost value [17]. The cluster pair to be merged can be found in O(N) time, and 
only a small number (denoted by �) of the nearest neighbor needs to be updated after 
each merge. The implementation takes O(�N2) time in total. Further speed-up can be 
achieved by using lazy update of the merge cost values [18], and by reducing the 
amount of work caused by the distance calculations [7]. 

All the variants cited above give either asymptotic or relative improvement in the time 
complexity but they do not provide any improvements in the clustering quality. The 
clustering result is therefore bounded by the fundamental restriction caused by the 
merge step of the PNN method. The only way to improve the quality of the partition is 
to replace the merge step by a more general solution. 
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PNN(X, M) � S 

FOR i�1 to N DO 
si � {xi}; 

REPEAT 
(sa, sb) � SearchNearestClusters(S); 
Merge(sa, sb); 

UNTIL |S|=M; 

Fig. 3. Structure of the PNN method. 

 

 
3. Iterative shrinking 

Iterative Shrinking (IS) starts by assigning each data vector to its own cluster. It then 
removes one cluster at a time until the desired number of clusters has been reached. The 
data vectors of the removed cluster are repartitioned to the nearby clusters. The 
centroids of the neighbor clusters are updated according to the changes. The general 
structure of the IS algorithm is presented in Fig. 4, and the details are discussed in the 
following subsections. 
 

IS(X, M) � S 

FOR i�1 to N DO 
si � {xi}; 

REPEAT 
sa � SelectClusterToBeRemoved(S); 
RemoveCluster(S, sa); 

UNTIL |S|=M; 

Fig. 4. Structure of the IS method. 
 
3.1. Finding secondary cluster 
For the cluster removal, we need to find the second nearest cluster for each data vector 
in the selected cluster. We therefore maintain the secondary partition Q={q1, q2, …, qN} 
for every data vector. It can be generated in a similar manner to the primary partition but 
excluding the current nearest cluster in the search: 

2

1
minarg ji

pj
mj

i cxq
i

��

�
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. (6) 

The squared Euclidean distance, however, does not take into account the centroid 
update, which will take place after the removal process. It is therefore more accurate to 
apply the merge cost function of (4), and measure the cost of merging the data vector to 
the neighbor cluster sj instead of the mere distance to the cluster centroid: 
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Now the cost function will put more weight on larger clusters as their centroids are less 
likely to move, and less to smaller clusters. 
 
3.2. Selecting cluster to be removed 
We adopt the local optimization strategy of the PNN method and select the cluster to be 
removed as the one that increases the cost function least. Because the data vectors of the 
removed cluster can be divided among several neighbor clusters, we calculate the effect 
of the removal cost for each data vector separately. We first determine how much the 
cost function will increase if the data vector xi is merged to its secondary cluster , and 
then how much it will decrease when the data vector is removed from its current cluster 
s

iqs

a. The net effect of the change is the difference: 

22

1 aiqi
q

q
i cxcx

n
n

D
i

i

i
���

�
�� . (8) 

The removal cost of cluster sa can now be estimated as the sum of the individual move 
costs of the data vectors: 

�
�

��

ai sx
ia Dd . (9) 

We refer this as the simple calculation of the removal cost. It gives a correct result if 
every data vector moves to a different neighbor cluster. In practice, several data vectors 
can move to the same neighbor cluster and they all affect on the movement of the cluster 
centroid. The equation (8) is therefore not accurate because it does not take into account 
the overall movement of the code vectors. Instead, it tends to over estimate the cost 
function when more vectors are moving to the same destination cluster. 
 
3.3. Exact calculation of the removal cost 
To realize the exact calculation for the removal cost, we divide the data vectors xi in sa 
into subclusters sa,j according to their secondary partition qi: 

� �jqsxs iaija ���,
. (10) 

For example, there are five data vectors of the cluster s1 divided into four subclusters in 
Fig. 2. The removal is conceptually considered as a three step process: (1) remove the 
vectors from the current cluster sa, (2) form the subclusters sa,j, and (3) merge the 
subclusters to the neighbor clusters sj. Thus, the removal cost is composed of the three 
terms corresponding to this process: 
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where jas ,  is the size of the subcluster sa,j. The first term is the sum of the distances to 
the current cluster centroid ca, i.e. the cost of the cluster before removal. The second 
term is the sum of the cost values inside the subclusters, where ca,j represents the 
centroid of the subcluster. The third term is the sum of the costs of merging the 
subclusters sa,j to their neighbor clusters sj. 
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The Equation (11) gives the exact removal cost, and provides the result of the local 
optimization strategy as desired. The situation, however, is not as simple as this because 
the optimality is restricted by the choice of the secondary partition Q. Equation (7), for 
example, assumes that the vectors are moved independently from each other. The 
movement of the vector, however, has an effect on the cluster centroid, and therefore, 
indirectly affects the removal cost values of other data vectors, too. 

The problem is that there is no way to determine the best moving sequence without 
trying all possible combinations. The only reasonable choice is therefore to apply some 
kind of heuristic. We content ourselves with the one given in (7), in which the partition 
of all data vectors is determined independently from each other.  
 
3.4. Partition updates 
The removal of a cluster sa affects most of the data structures. The primary partition P is 
updated for the vectors in the removed cluster by copying the information from the 
secondary partition: 

iiai qpsx ��� : . (12) 

The codebook C is then updated by recalculating the centroids of the affected clusters. 
As a consequence of this, there can be further changes both in the primary and 
secondary partition due to the movement of the centroids. This can affect the accuracy 
of the removal cost estimation if the necessary updates are not made. 

We consider next different strategies for updating the secondary partition Q. For this 
purpose, the clusters are classified to three categories according to the location with 
respect to their removed cluster: 

- Removed cluster, 
- Neighbor clusters, and 
- All other clusters. 

A cluster sj is defined to be a neighbor cluster if any data vector from the removed 
cluster sa has been reassigned to sj. The set of neighbor clusters is denoted here as Ya: 

� �jqsxsY iaija ���� : . (13) 

The secondary partition update of a single vector requires that we search its second 
nearest cluster among all clusters. This takes O(m) distance calculations per data vector, 
where m is the current number of clusters. It is therefore vital for the time complexity to 
make the number of updates as small as possible. We consider three alternative update 
strategies: 

- Minimum update, 
- Standard update, and 
- Extensive update. 

The data vectors that are updated in these strategies are denoted as the sets Gminimum, 
Gstandard and Gextensive. The sets have an increasing amount of updates so that 

. The inclusion of the vectors in these three sets is 
summarized in Table 1 according to the type of the cluster in the primary and secondary 
partition. The situation is also illustrated in Fig. 5. 

XGGG ��� extensivestandardminimum
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The minimum update strategy updates the secondary partition of the vectors that is only 
absolutely necessary. This includes all vectors in the removed clusters, and also some 
vectors in the neighbor clusters: 

� aqapxG iii ����minimum �. (14) 

Firstly, a new secondary cluster must be resolved for the moved vectors (pi=a) because 
they have just been reassigned according to their secondary partition, see Eq. (12). 
Secondly, a vector in the neighboring cluster must be updated if its secondary cluster 
was the removed one (qi=a). 

The standard update includes slightly more data vectors than the minimum update: 

� �aqapi YsYsxGG
ii
���� �minimumstandard . (15) 

In other words, we update the secondary partition also for those vectors in the neighbor 
clusters whose secondary partition is another neighbor cluster. This provides more 
accurate maintenance of the secondary partition with only a moderate amount of extra 
work. On the other hand, the update is not mandatory.  

In addition to the previous data vectors, the extensive update strategy contains also all 
data vectors that have any connection to the neighbor clusters. In other words, the 
update is performed for data vector xi if either its primary or secondary partition is one 
of the neighbor cluster: 

� �aqapi YsYsxGG
ii
���� �standardextensive . (16) 

This update strategy covers all vectors that should be updated, and it can be performed 
using a reasonable amount of computation. It is expected that the number of vectors in 
Gextensive is still remarkably smaller than the size of the overall data set. 
 
Table 1. Classification of the data vectors according to the type of its primary and 
secondary clusters. 

Primary partition P  
Removed Neighbor Other 

Removed N/A Minimum update Minimum update 
Neighbor Minimum update Standard update Extensive update 

Secondary 
partition Q 

Other N/A Extensive update - 
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Fig. 5. Illustration of the vectors whose secondary partition is updated at the different 

levels of the update strategy. The removed cluster is s1, and the neighbor clusters are s2, 
s3, s4 and s5.  

 
3.5. IS versus PNN 
The PNN method can be seen as a special case of the IS method, as it can be simulated 
by the IS method as follows. We first select the cluster to be removed as one of the two 
clusters (sa and sb) selected for the merge. The merge is then performed by moving all 
the vectors from sb to sa, and thus, removing sb. The centroid of sa is updated 
accordingly. The result is equivalent to that of the PNN method, and it is easy to see 
from Fig. 1 and Fig. 2 that some of the vector reassignments could be done better 
resulting in a smaller increase in the cost function value. 

The difference of the merging and removal strategies is illustrated further in Fig. 6. We 
have six data vectors located symmetrically, and the task is to find a partition of two 
clusters. After the first three merges, the output of the PNN and IS methods are 
equivalent but in the fourth merge the PNN method is already restricted by the previous 
merges and the result is suboptimal. The IS method, on the other hand, ends up with the 
optimal result no matter what is the order of the previous cluster removals. 

It is noted, that it is still possible (although rare) to get better result by the PNN method 
than by the IS method because locally optimal steps does not necessarily lead to the 
global optimum. Nevertheless, it is expected that the IS method would give better 
partition than the PNN method in most cases. 
 

PNN
After
third

merge

After
fourth
merge

IS

 
Fig. 6. Example of the different functions of the PNN and the IS methods. 
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4. Complexity analysis 

Detailed pseudo code of the IS method is given in Fig. 7. The initialization phase 
requires O(N2) distance calculations due to the construction of the secondary partition. 
For simplicity, we assume here that the size of the feature vector is constant. The main 
loop of the algorithm is then repeated by N-M times. The most time consuming 
operations during the iteration are the calculation of the removal costs, and the update of 
the secondary partition. The simple calculation of the removal cost requires at most 
O(N) time per iteration. The exact calculation requires a little bit more than that but still 
no more than O(N). 

 

IS(X, M) � C, P 
m � N; 
FOR � i��1, m�:  

ci � xi; 
pi � i; 
ni � 1; 

FOR � i��1, m�:  
qi � FindSecondNearestCluster(C, xi); 

REPEAT 
CalculateRemovalCosts(C, P, Q, d); 
a � SelectClusterToBeRemoved(d); 
RemoveCluster(P, Q, a); 
UpdateCentroids(C, P, a); 
UpdateSecondaryPartitions(C, P, Q, a); 
m � m - 1; 

UNTIL m=M. 

Fig. 7. Pseudo code of the IS method. 
 

The update of the secondary partition requires n�m distance calculations, where n is the 
number of data vectors to be updated, and m is the number of clusters. We first estimate 
the number of data vectors within one cluster, and then derive the number of distance 
calculations in the minimum update, standard update, and the extensive update. 

The main question is the number of data vectors in a cluster. After (N-m) removal steps, 
the N data vectors are divided into the m clusters so that there are N/m vectors per 
cluster, on average. As the algorithm tends to remove smaller clusters, it is reasonable to 
estimate that the number of vectors is no more than N/m, on average. If we sum it up 
from all N-M steps, we get the total number of vectors as: 

�
�

�
�
�

�
��

�
��	��



�

NMM
N

M
N

N
N

N
N 1...

1
11...

1
. (17) 

For the case M=1, this gives: 
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� NNO
N

N log1...
2
1

1
1

�	�
�

�
�
�

�
���� � . (18) 

The algorithm actually iterates only N-M steps, so a more accurate upper bound is 
N�(log N – log M). Thus, the average number of vectors in the cluster is approximated 
by: 

� �
� NO �

MN
MNN logloglog

�

�

�� . (19) 

The minimum update processes only the vectors of the removed cluster, and the vectors 
that were mapped to the removed cluster in their secondary partition. The number of 
distance calculations per vector is not equal in all iterations but it varies from N to M, 
and thus, can be approximated as follows: 

� � � � NMN
M
NM

N
NN

N
NN �����

�

�� ...
1

1 . (20) 

We assume that the same result applies both to the primary partition and secondary 
partitions. The number of distance calculations in the minimum update variant is 
therefore estimated as 2(N-M)�N = O(N2). 

The standard update includes also vectors from the neighbor clusters. The number of 
distance calculations can be approximated by multiplying the result in (20) by the 
number of neighbor clusters |Y|. The obvious upper bound for |Y| is the number of 
vectors in a single cluster as in (19). The result from this is: 

� �
� �

M
NNNMN

MN
MNN logloglog 2

�����

�

�� . (21) 

Thus, the number of distance calculations is O(N2
�log(N/M)).  

The extensive update includes also vectors from other clusters. Suppose that we have |Y| 
neighbor clusters, and assume that each of them have also |Y| neighbors. Some of the 
clusters are the same but this anyway gives a simple estimation for the number of 
affected clusters as |Y|2. The total number of distance calculations is therefore estimated 
as O(N2

�log2N). 

The overall time complexities of the different IS variants are summarized and compared 
to the main PNN variants in Table 2. The IS method with minimum update is 
theoretically faster than the PNN method but not necessarily so in practice. This is 
because the number of updates (�) in the PNN method is relatively small, and the 
removal step in the IS method is more complicated. The standard and extensive update 
variants have somewhat higher time complexities but still smaller than the O(N3) that 
would have been the result if all data vectors were updated at every iteration. 
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Table 2.  Summary of the time complexities of the exact PNN and the IS. 
PNN Iterative shrinking  

Original Fast Minimum Standard Extensive 
Initialization: O(N) O(N2) O(N2) O(N2) O(N2) 
Single step: 
� Cluster selection 
� Merge / removal 
� Update 

 
O(N2) 
O(1) 
O(1) 

 
O(N) 
O(1) 
O(�N) 

 
O(N) 
O(N) 
O(N) 

 
O(N) 
O(N) 
O(N�log N/M) 

 
O(N) 
O(N) 
O(N�log2N) 

Algorithm in total: O(N3) O(�N2) O(N2) O(N2
�log N/M) O(N2

�log2N) 
 
 
5. Generalizations of IS 

We next generalize iterative shrinking approach to the case when the number of clusters 
must also be determined. The method is then augmented with the genetic algorithm in 
the same way as the PNN method has been applied in [10, 11]. The proposed 
combination is denoted as GAIS (genetic algorithm with iterative shrinking). We 
consider both the fixed and variable number of clusters. 
 
5.1. Unknown number of clusters 
In many cases, the number of clusters is not known beforehand but finding the number 
of clusters is part of the problem. The simplest approach is to generate solutions for all 
possible number of clusters M in a given range [Mmin, Mmax], and then select the best 
partition to a suitable evaluation function f. This multiplies the computation time by 
(Mmax-Mmin). 

Iterative shrinking, on the other hand, produces solutions in the range [N, M] during the 
same run. It is therefore enough to replace the distortion function by a suitable clustering 
validity index. Among the many different indexes [19, 20, 21], it was found out in [22] 
that variance-ratio F-test based on a statistical ANOVA test procedure [23] works 
pretty well in the case of Gaussian clusters. Moreover, it was shown in [24] that the 
same distance function can be applied with the F-test as with the MSE. Therefore, no 
additional changes are required in the algorithm because of using F-test. 

 
5.2. Genetic algorithm 
The idea of a genetic algorithm (GA) is to maintain a set of solutions which make up 
a population, which is iteratively improved by genetic operations such as crossover, 
mutation, and by the selection principle of evolution. Several different crossover 
algorithms have been considered in [10], and concluded that significantly better results 
are obtained when the PNN method is used as the crossover algorithm instead a 
straightforward approach of using random crossover and k-means. It is therefore logical 
to consider genetic algorithm with iterative shrinking as the crossover. We refer the 
method here as GAIS. 

The sketch of the GAIS algorithm is outlined in Fig. 8, and it works as follows. The GA 
is applied here in the problem domain by operating on the codebook and partition 
(C, P). A set of random solutions are first generated by selecting M random data vectors 
as the codebook, and by creating optimal partition with respect to this codebook. The 
best solution survives to the next generation as such, and the rest of the population is 
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filled by new solutions created by crossover. The process is iterated and the best 
solution in the final generation is the result of the algorithm. 

The crossover starts by merging the parent solutions by taking the union of their 
centroids (CombineCentroids). The partition Pnew is then constructed on the basis of the 
existing partitions P1 and P2 (CombinePartitions). The partition of data vector xi is 
either pi

1 or pi
2. The one with smaller distance to xi is chosen. The codebook Cnew is then 

updated (UpdateCentroids) with respect to the new partition Pnew. This procedure gives 
a solution in which the codebook has twice the size desired. Empty clusters are next 
removed (RemoveEmptyClusters), and iterative shrinking is then applied to reduce the 
number of clusters from 2�M to M. Finally, the solution is fine-tuned by a few iterations 
of a k-means [25]. Note that mutations are not used here as they only slow down the 
convergence of the optimization process. 

The number of generations (T), population size (Z), and the number of k-means 
iterations (G) are the main parameters of the algorithm. Here we consider the following 
two strategies: 

1. GAIS short: Create new generations only as long as the best solution keeps 
improving (T=*). Use a small population size (Z=10), and apply two iterations of 
k-means (G=2). 

2. GAIS long: Create a large number of generations (T=100) with a large population 
size (Z=100) and iterate k-means relatively long (G=10). 

It is expected that the short variant is good enough to compete with the other clustering 
algorithms in terms of quality. The purpose of the long variant is to squeeze out the best 
possible result at the cost of a very long computation time. 

It is also possible to apply the GA with unknown number of clusters. In this case, we 
take any initial number of clusters M0, and generate the initial population accordingly. 
The new solutions in the crossover are reduced from 2M to 1 and the intermediate 
partition that minimizes F-ratio is taken as the new candidate solution. The number of 
clusters will be automatically determined during the optimization process of the GA. 
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GeneticAlgorithm(X) � (C, P) 
FOR i�1 TO Z DO 

Ci � RandomCodebook(X); 
Pi � OptimalPartition(X, Ci); 

SortSolutions(C,P); 

REPEAT 
{C,P} � CreateNewSolutions( {C,P} ); 
SortSolutions(C,P); 

UNTIL no improvement; 

CreateNewSolutions({C, P}) � {Cnew, Pnew } 

Cnew-1, Pnew-1 � C1, P1; 
FOR i�2 TO Z DO 

(a,b) � SelectNextPair; 
Cnew-i, Pnew-I �  Cross(Ca, Pa, Cb, Pb); 
IterateK-Means(Cnew-i, Pnew-i); 

Cross(C1, P1, C2, P2) � (Cnew, Pnew) 
Cnew � CombineCentroids(C1, C2); 
Pnew � CombinePartitions(P1, P2); 
Cnew � UpdateCentroids(Cnew, Pnew); 
RemoveEmptyClusters(Cnew, Pnew); 
IS(Cnew, Pnew); 

CombineCentroids(C1, C2) � Cnew 
Cnew � C1 � C2 

CombinePartitions(Cnew, P1, P2) � Pnew 
FOR i�1 TO N DO 

IF x c x ci p i pi i
� � �1 2

2 2
 THEN  

p pi
new

i�
1  

ELSE 
p pi

new
i�
2  

END-FOR 

UpdateCentroids(C1, C2) � Cnew 
FOR j�1 TO |Cnew| DO 

c j
new  � CalculateCentroid(Pnew, j ); 

 

Fig. 8. Pseudo code of the genetic algorithm with iterative shrinking (GAIS). 
 
 
6. Experiments 

We consider three image data sets (Fig. 9), four synthetically generated data sets 
(Fig. 10), and the BIRCH data sets [26]. The vectors in the first set (Bridge) are 4�4 
non-overlapping blocks taken from a gray-scale image, and in the second set (Miss 
America) 4�4 difference blocks of two subsequent frames in video sequence. The third 
data set (House) consists of color values of the RGB image. The number of clusters is 
fixed to M=256. The data sets S1 to S4 are two-dimensional artificially generated data 
sets with varying complexity in terms of spatial data distributions with M=15 predefined 
clusters. The summary of the data sets is presented in Table 3. All tests have been 
performed in Sun Enterprise 450 with 400 MHz UltraSPARC2 processor, 2 GB memory 
and Solaris 7 (SunOS 5.7) operating system.  

 
Spatial vectors: Spatial residual vectors: Color vectors: 

   
Bridge  (256�256) 

K=16, N=4096 
Miss America  (360�288) 

K=16, N=6480 
House  (256�256) 

K=3, N=34112* 

Fig. 9. Source of the data. *Duplicate data vectors are combined and frequency 
information is stored. 
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Data set S1 Data set S2 Data set S3 Data set S4 

Fig. 10: Two-dimensional data sets with varying complexity in terms of spatial data 
distributions. The data sets have 5000 vectors scattered around 15 predefined clusters 

with a varying degrees of overlap. 
 

Table 3. Summary of the data sets. 
Data set Type of data set Number of data 

vectors (N) 
Number of 
clusters (M) 

Dimension of 
data vector (K) 

Bridge Gray-scale image 4086 256 16 
House RGB image 34112 256 3 

Miss America Residual vectors  6480 256 16 
Data set S1- S4 Synthetically generated 5000 15 2 

BIRCH1-BIRCH3 Synthetically generated 100000 100 2 

 
6.1. Comparison of the IS variants 
The clustering test results of the three data sets are summarized in Table 4 for all the 
variants of the IS method considered here, and for the fast exact PNN method as 
implemented in [17]. In all cases, the IS method produces smaller distortion but at the 
cost of about 2 to 6 times slower running time. The corresponding time-distortion 
performance is illustrated in Fig. 11. 

The extension in the amount of updates of the secondary partition decreases the MSE 
but also slows down the process. The running time of the standard update is only about 
4 to 9% longer than that of the minimum update whereas the extensive update increases 
the running time about 58 to 140% depending on the data set. In other words, the results 
of the minimum and standard update are rather similar to each other whereas the 
extensive update gives a clearer effect both in the MSE and in the running time. 

The method of calculating the removal cost (simple or exact) has only a small effect on 
the MSE but the exact calculation is about 10 to 40% slower than the simple method. 
The time-distortion performance of the simple variant seems to be marginally better 
according to Fig. 11. On the other hand, if the MSE is the primary concern, we should 
use the exact calculation with the extensive update. Thus, we will fix this parameter 
setup in the following tests. 
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Table 4. The MSE values and running times (in seconds) of the PNN and IS variants for 
the three data sets (M=256). 

  Bridge House Miss America 
  Running 

time 
MSE Running 

time 
MSE Running 

time 
MSE 

PNN  272 168.92 4391 6.27 709 5.36
Minimum update 315 166.18 9614 6.11 824 5.24
Standard update 324 166.08 9997 6.12 874 5.23

Si
m

pl
e 

IS
 

Extensive update  564 164.22 16043 6.10 1820 5.19
Minimum update 481 165.93 12288 6.15 1283 5.24
Standard update 499 165.44 13161 6.10 1334 5.23

Ex
ac

t 
IS

 

Extensive update  705 163.38 19280 6.11 2290 5.19
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Fig. 11. The MSE-values and running times (in seconds) of the PNN and the IS methods 
for Bridge, House and Miss America (M=256). The results within a curve are from left 

to right: the minimum update, standard update and extensive update. 
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6.2. Running time 
We consider next the running time of the IS method in more detail. As shown in Section 
4, it depends on the size of the data set (N), and on the number of neighbor clusters, 
which was approximated by the term log(N/M). We calculated the average number of 
the neighbor clusters and obtained values 2.0, 2.4, 3.0 for Bridge, House and Miss 
America. The number is small in the early iterations (mostly 1) because the algorithm 
removes small clusters. It gradually increases during the process but remains small on 
average. These numbers support the observation made in Table 4 and Fig. 11 that the 
choice of the IS variant does not have radical effect on the running time. The source of 
the computation is demonstrated in Table 5 in more detail. 

 

Table 5. Total number of distance calculations made in the case of Bridge for the 
different IS variants. The numbers shown are the absolute (�106) and relative values (%). 

Removal 
calculation: 

Simple calculation Exact calculation 

Update: Minimum Standard  Extensive  Minimum Standard  Extensive  

Initialization phase 16.7 
18.1 % 

16.7 
17.1 % 

16.7 
9.2 % 

16.7 
15.6 % 

16.7 
14.9 % 

16.7 
8.6 % 

Calculation of 
the removal costs  

31.5 
33.8 % 

31.5 
32.1 % 

31.5 
17.3 % 

44.6 
41.5 % 

44.6 
39.6 % 

44.4 
22.7 % 

Update of the 
secondary partition 

44.8 
48.1 % 

49.7 
50.8 % 

133.6 
73.5 % 

46.0 
42.9 % 

51.4 
45.5 % 

134.4 
68.7 % 

 
 
 
6.3. Unknown number of clusters 
The PNN and IS methods were both applied to the S data sets using the F-ratio for 
determining the number of clusters. The results for the PNN and IS methods are virtually 
the same with S1 and S2 but the IS performs better with the sets S3 and S4, see Fig. 12. 
The difference is significant with data set S4, for which the IS method finds the 
minimum for the number of clusters (M=15) whereas the PNN method finds the 
minimum in the wrong place (M=14). 
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Fig. 12. Comparison of the PNN and IS methods in the search of the number of clusters. 

 

 
6.4. Genetic algorithm 
We test the IS method within the GA (denoted as GAIS) and the corresponding results 
are demonstrated in Fig. 13 for Bridge. Comparative results are given for the GA with 
PNN crossover – with and without the use of two k-means iterations. The first 
observation is that the IS crossover is better than the PNN. The experiments also show 
that improvement can appear during a long time but most remarkable improvement is 
obtained in the first few iterations. The later improvement is more or less fine-tuning of 
the solution. In the case of Bridge, the first local minimum is reached after 8 iterations 
with the value of 161.59. The results for the other data sets were similar. 

Next we test the GAIS method with the F-ratio allowing it dynamically change the 
number of clusters. The algorithm takes any initial guess for the number of clusters; our 
random number generator produced M0=205. With the S data sets, the GAIS method 
converges to the correct number of clusters (M=15) in a single iteration. The 
convergence with the image data sets takes a little bit longer but the number of clusters 
in the best solution also settles in the first iteration, see Fig. 14. It is also worth noting 
that the GAIS method is actually not much slower than the IS method because it starts 
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process with the initial number of clusters M0, which is usually much smaller than N, 
where the IS method must start from. 

160

161

162

163

164

165

166

0 10 20 30 40 5
Number of Iterations

M
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IS crossover

PNN crossover

PNN crossover + K-means

Bridge

 
Fig. 13. Performance of the GA (Z=10, T=50) with different crossover methods 
(with and without k-means iterations) as a function of the number of iterations. 
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Fig. 14. Convergence of the GAIS method using F-ratio for unknown number of 
clusters. The number of clusters is 205 in the initial population, and then varies from 3 

to 4 in the following iterations. 
 
6.5. Comparison 
Finally, we compare the performance of proposed methods (IS and GAIS) to other 
clustering algorithms in the minimization of the MSE. We test the following algorithms: 

Random clustering, ��

��

��

��

��

��

��

��

��

K-means [25], 
SOM: Self-organizing maps [27], 
FCM: Fuzzy C-means [28], 
Split: Iterative splitting method [29], 
RLS: Randomized local search [30], 
Split-and-merge [9], 
SR: Stochastic relaxation [31], 
PNN: Pairwise nearest neighbor [17], 
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GKM: Global k-means [14], ��

��

��

��

��

��

IS: Iterative shrinking (proposed), 
GA: Genetic algorithm with PNN crossover [10, 11], 
GA: Genetic algorithm with k-means crossover [10], 
GAIS: Genetic algorithm with IS crossover (proposed). 
SAGA: Self-adaptive genetic algorithm [32]. 

In the comparison, we have included only methods that, according to our experiments, 
consistently provide high quality partition, and methods that are popular due to their 
simplicity or for other reasons. The hierarchical approaches are also combined with the 
k-means to get further improvement whereas the other algorithms implicitly include 
k-means iterations in one form or another. The best results of the algorithms are 
summarized in Table 6. The Random, k-means, FCM, and SR have been repeated 10 
times. The reported results are the best result found, except random is the average. 

 

Table 6. Performance comparison of the algorithms (for M=256). The results with the S 
sets have been multiplied by 108. The last column gives running times for Bridge (in 
seconds). 

 Image sets Birch data sets Synthetic data sets Time 

 Bridge House Miss 
America B1 B2 B3 S1 S2 S3 S4  Bridge 

Random 251.32 12.12 8.34 14.44 35.73 8.20 78.55 72.91 55.42 47.05 <1
K-means (aver.) 179.87 7.81 5.96 5.52 7.99 2.53 20.53 20.91 21.37 16.78 5
K-means (best) 176.95 7.35 5.93 5.13 6.87 2.16 13.23 16.07 18.96 15.71 50
SOM 173.63 7.59 5.92 13.50 10.03 15.18 20.11 13.28 21.10 15.71 376
FCM 178.39 7.79 6.22 5.02 5.29 2.48 8.92 13.28 16.89 15.71 166
Split 170.22 6.18 5.40 4.81 2.29 1.91 8.95 13.33 17.50 16.01 13
Split + k-means 165.77 6.06 5.28 4.64 2.28 1.91 8.92 13.28 16.92 15.77 17
RLS 164.64 5.96 5.28 4.64 2.28 1.86 8.92 13.28 16.89 15.71 1146
Split-n-Merge 163.81 5.98 5.19 4.64 2.28 1.93 8.92 13.28 16.91 15.75 85
SR (average) 162.45 6.02 5.27 4.84 3.39 1.99 9.52 13.68 17.31 15.80 213
SR (best) 161.96 5.98 5.25 4.76 3.12 1.98 8.93 13.28 16.89 15.71 2130
PNN 168.92 6.27 5.36 4.73 2.28 1.96 8.93 13.44 17.70 17.52 272
PNN + k-means 165.04 6.07 5.24 4.64 2.28 1.88 8.92 13.28 16.89 16.87 285
GKM – fast 10 164.12 5.94 5.34 4.64 2.28 1.92 8.92 13.28 16.89 15.71 91721
IS 163.38 6.09 5.19 4.70 2.28 1.89 8.92 13.29 16.96 15.79 717
IS + k-means 162.38 6.02 5.17 4.64 2.28 1.86 8.92 13.28 16.89 15.71 719
GA (k-means) 174.91 6.61 5.54 6.58 5.96 2.45 11.66 15.99 19.22 16.14 654
GA (PNN) 162.37 5.92 5.17 4.98 2.28 1.98 8.92 13.28 16.89 15.71 404
SAGA 161.22 5.86 5.10 4.64 2.28 1.86 8.92 13.28 16.89 15.71 74554
GAIS (short) 161.59 5.92 5.11 4.64 2.28 1.86 8.92 13.28 16.89 15.72 1311
GAIS (long) 160.73 5.89 5.07 4.64 2.28 1.86 8.92 13.28 16.89 15.71 387533
 

The K-means, SOM and FCM are well known and popular due to their simple 
implementation. Despite of this, the k-means is sensitive to the initialization and the 
SOM is very sensitive to a proper parameter setup. Even a slightest change in the 
parameter setup can provide noticeable improvement with one data set but turn out to 
give significant weaker result with another set. With the chosen parameter setup [33] 
SOM finds the best solution with S2 and S4 but with significantly weaker results for S1 
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and S3, and for the Birch data sets. The FCM finds the best solutions for S1-S4 but does 
perform worse with the image data sets. The k-means is implemented as in [34]. 

The Split method [29] always selects the optimal hyper plane dividing the particular 
cluster along its principal axis, augmented with a local repartitioning phase at each 
division step. This chosen Split variant is optimized for quality rather than speed. Faster 
Split variants also exists but, depending on the variant, the results vary somewhere 
between k-means and Random. 

The RLS, Split-and-Merge, and SR are all competitive in terms of quality. The RLS is 
the most attractive because of its easy adaptation between speed and quality, even 
though Split-and-Merge sometimes gives slightly better results but with a significantly 
more complex implementation. The RLS and SR are both relatively simple to implement 
but the SR is more sensitive to the initialization: it works well for the image data sets but 
fails to find good partition in about 10-20% of times with the easier S data sets. 

Among the hierarchical variants, the PNN method works rather well in most cases but 
sometimes (S3 and S4) the results are clearly inferior to that of the IS method. The 
combination with the k-means makes sense because the PNN and IS methods do not do 
local fine-tuning of the clusters during the process except the partition update operations 
in the IS method. In particular, the IS + k-means outperforms the other variants except 
the genetic algorithms. 

The results of the GKM are obtained using the faster O(gNM3) algorithm with g=10, and 
by using intermediate codebook of size 2�M to reduce the number of candidate vectors 
considered at each step of the algorithm. This provides competitive results but with 
much slower running time. The algorithm can be useful when the number of code 
vectors M is small. 

The proposed genetic algorithm (GAIS) gives significantly better than using k-means as 
the crossover method, and slightly better results than the GA with PNN crossover. It 
reaches the lowest MSE with only one exception (House), thus, effectively matching or 
even outperforming the previously best known clustering algorithm SAGA. The result of 
the GAIS method is also consistent on the initialization as shown in Fig. 15.  

The negative side of the genetic algorithm is its slow running time, and the long variant 
can take several days for the largest data sets. However, much faster convergence can be 
reached by tuning the parameters of the GAIS short as follows. We use the IS algorithm 
with the simple removal calculation and standard update. The GAIS method starts with a 
small population Z=2, which is then increased by one up to Z=100 after every 
generation. Two k-means iterations are applied (g=2). In this way, good solutions are 
reached much faster but the method is still able to improve in the long run.  

Time-distortion performance of the tuned GAIS algorithm is compared in Fig. 16 with 
that of the k-means (repeated from new random solutions), RLS, and SAGA. The GAIS 
method outperforms both the repeated k-means and RLS when more than 10 seconds is 
spent in the optimization, and converges approximately to the same result as SAGA. The 
method is inferior to RLS and k-means only when 10 seconds or less is used for 
generating the solution. 
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Fig. 15. Histograms of the MSE-values of 50 runs of the GAIS method, and 500 runs of 
the k-means. The corresponding standard deviations are � = 0.11 (GAIS) and � = 1.41 

(k-means).  
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Fig. 16. Time-distortion performance of the selected algorithms. 

 

 
7. Conclusions 

We have proposed the iterative shrinking (IS) method for the clustering problem. The 
method generates the clustering hierarchically by removing one cluster at a time. At 
each step of the algorithm, the cluster to be removed is selected optimally. The merge-
based clustering agglomerative can be considered as a special case of the proposed 
approach. Experimental results show that the method achieves better results than the 
comparative methods at the cost of slower speed. The time complexity of the method 
varies from O(N2) to O(N2

�log2N) depending on the variant. 

The proposed method can also be applied as a crossover method in the genetic 
algorithm (GAIS). According to experiments, the genetic combination outperforms all 
comparative algorithms in terms of minimizing the distortion. Iterative shrinking 
method extends also to the case where the number of clusters must also be determined 
simply by changing the optimization function. This does not add to the time complexity 
as the solutions for a variable number of clusters can be found during a single run of the 
algorithm. 
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To sum up, the proposed clustering method (GAIS) is capable of providing the best 
results in minimizing intra cluster variance with competitive time-distortion 
performance. 
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