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Abstract: The search for nearest neighbor is the main source of computation workload 
in most clustering algorithms. A common operation is to calculate the distances to all 
candidates (full search) and select the one with the smallest distance. In this paper, we 
propose the use of nearest neighbor graph for reducing the number of candidates to be 
considered so that the number of distance calculations per search decreases. We apply 
the proposed scheme within agglomerative clustering algorithm, which is also known 
as the PNN algorithm, and show that remarkable reduction is obtained in the running 
time at the cost of slight increase in the distortion of the resulting clustering.  

Keywords: Clustering, agglomeration, vector quantization, codebook generation, 
nearest neighbor graph, PNN. 

Statistics: 25 pages, 14 figures, 10 tables, 9723 words, 48375 characters. 
 
 
1. Introduction 

Clustering is an important problem that must often be solved as a part of more complicated 
tasks in pattern recognition, image analysis and other fields of science and engineering 
[1, 2, 3, 4]. The clustering task is formalized here as a combinatorial optimization problem, in 
which the goal is to find the partition that minimizes a given distortion function. 

Agglomerative clustering is a popular method for generating the clustering hierarchically by 
a sequence of merge operations. The clustering starts by initializing each data vector as its 
own cluster. Two clusters are merged at each step and the process is repeated until the desired 
number of clusters is obtained. Ward’s method [5] selects the cluster pair to be merged that 
minimizes the increase in the distortion function value. In the vector quantization context, this 
method is known as the pairwise nearest neighbor (PNN) method due to [6].  

Agglomerative clustering is an interesting method for clustering because of its conceptual 
simplicity and good results [7]. The method can also be combined with the k-means clustering 
such as the generalized Lloyd algorithm (GLA) [8] as proposed in [9], or used as a component 
in more sophisticated optimization methods. For example, agglomerative clustering has been 
used in the merge phase in the split-and-merge algorithm [10] resulting in to a good time-
distortion performance, and as the crossover method in genetic algorithm [11], which has 
turned out to be the best clustering method among a wide variety of algorithms in terms of the 
quality of the codebook [12]. 

The main drawback of the agglomerative clustering is its slowness. The original 
implementation requires O(N3) distance calculations [13]. An order of magnitude faster 
algorithm has been introduced in [7] but the method is still lower bounded by �(N2). The 
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main source of computation originates from the search of the nearest neighbor cluster because 
the agglomerative clustering always calculates distances to all candidates when finding the 
nearest cluster. 

Another approach for clustering is to use graph theoretical methods [1], [14], [15], [16], [17], 
[18], [19], [20]. For example, by first creating a complete undirected graph where the nodes 
correspond to the data vectors and the edges correspond to vector distances according to 
a given similarity or dissimilarity measure. The resulting graph can be trimmed to a minimum 
spanning tree, which can be interpreted as one large cluster. The clustering can then be 
generated iteratively by removing longest edges from the graph. In the final graph, clusters can 
be determined by finding the separate components in the graph [14]. This algorithm can be 
seen as a variation of split-based methods with similar criterion as in the single-linkage 
agglomerative clustering.  

In this paper, we introduce fast agglomerative clustering algorithm motivated by the graph-
based approaches. In our approach, we process the data at the cluster level so that every node 
in the graph represents a cluster and not as a single vector as in the previous approaches. The 
edges of the graph represent inter cluster connections between nearby clusters. The graph 
having linear space complexity is used merely as a search structure for reducing the number of 
distance calculations. In principle, we can apply any distortion function. 

Many agglomerative clustering algorithms construct a sparse graph and then perform the 
clustering on this graph [1], [18], [19]. Two main differences between these and our approach 
are: (1) the existing methods construct an undirected graph while we construct a directed 
graph. (2) the existing methods neglect the original data after building the weighted graph 
(meaning that the weights of the new edges are determined by the weights of the current 
edges), but we still use the original data in order to compute the weights of newly formed 
edges as the agglomerative clustering goes on. 

The proposed approach has two specific problems to solve: how to generate the graph 
efficiently, and how to utilize it. For example, standard solutions for determining a minimum 
spanning tree takes O(N2) time, which would overweigh any speed-up. We propose solutions 
for the first problem by considering a KD-tree [21], divide-and-conquer [22], and projection-
based search [23]. As to the second sub-problem, we analyze out how much speed-up can be 
gained by using the graph for reducing the number of calculations in the agglomerative 
clustering. Our experimental results indicates that a relatively small neighborhood size is 
sufficient for preserving good quality clustering. It is also possible that the idea could be 
generalized to other clustering algorithms that include large number of nearest neighbor 
searches. 

The rest of the paper is organized as follows. In Section 2, we define the clustering problem 
considered here, and recall the method of agglomerative clustering. In section 3, we propose a 
new graph-based agglomerative clustering algorithm. Several solutions for creating the nearest 
neighbor graph are considered in Section 4. Experimental results are reported in Section 5, 
and conclusions drawn in Section 6. 

 

2. Agglomerative clustering 

The clustering problem is defined here as a combinatorial optimization problem. Given a set 
of N data vectors X={x1, x2, …, xN}, partition the data set into M clusters so that a given 
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distortion function is minimized. Partition P={p1, p2, …, pN} defines clustering by giving for 
each data vector the index of the cluster where it is assigned to. A cluster sa is defined as the 
set of data vectors that belong to the same partition a: 

 �s x p aa i i� � � . (1) 

Clustering is then represented as the set S={s1, s2, ..., sM}. In vector quantization, the output of 
clustering is a codebook C={c1, c2, …, cM}, which is usually the set of cluster centroids. We 
assume that the vectors belong to Euclidean space, and use the mean square error (MSE) as 
the distortion function: 
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The agglomerative clustering (PNN) [5, 6] generates clustering hierarchically using a 
sequence of merge operations. At each step two nearby clusters are merged: 

 . (3) baa sss ��

The cost of merging two clusters sa and sb is the increase in the MSE-value caused by the 
merge. It can be calculated using the following formula [5, 6]: 
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where na and nb are the corresponding cluster sizes. The agglomerative clustering applies local 
optimization strategy: all possible cluster pairs are considered and the one increasing MSE 
least is chosen: 

 
, (5) 

� � ji
ji

mji
dba ,,1,

minarg,
�

�

�

where m is the current number of clusters. There exist many variants of the agglomerative 
clustering. Straightforward implementation recalculates all distances at each step of the 
algorithm. This takes O(N3) time because there are O(N) steps in total, and O(N2) cluster pairs 
to be checked at each step. 

Another approach is to maintain an N�N matrix of the merge cost values. The merge cost 
values must be updated only for the newly merged cluster. Nevertheless, the algorithm still 
requires O(N3) because the search of the minimum cluster pair takes O(N2) time [13]. Kurita’s 
method maintains an N�N matrix but it also utilizes a heap structure for searching the 
minimum distance [24]. The method runs in O(N2

�logN) time. The storage of the matrix, 
however, requires O(N2) memory, which makes these variants impractical for large data sets. 

A fast implementation of the agglomerative clustering with linear memory consumption has 
been obtained by maintaining a pointer from each cluster to its nearest neighbor, and the 
corresponding merge cost value [7]. The cluster pair to be merged can be found in O(N) time, 
and only a small number (denoted by �) of the nearest neighbor needs to be updated after each 
merge. The implementation takes O(�N2) time in total. In the following, this method is called 
as Fast PNN. 

Further speed-up can be achieved by using lazy update of the merge cost values [25], and by 
reducing the amount of work caused by the distance calculations [26]. It has been shown that 
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in one-dimensional case (multilevel thresholding) agglomerative clustering can be performed 
efficiently in O(N�logN) time [27]. The result, however, does not generalize to higher 
dimensional data. 

 

3. Agglomerative clustering using kNN graph 

We define k-nearest neighbor graph (kNN graph) as a weighted directed graph, in which 
every node represents a single cluster, and the edges correspond to pointers to neighbor 
clusters. Every node has exactly k edges to the k nearest clusters according to a given distance 
function. The distance of clusters is defined by the merge cost function of Eq. (4). Note that 
this is not the only possible definition of the graph: other definitions have been given in [28], 
[29]. 

The proposed method is based on agglomerative clustering, but we utilize the graph structure 
in the search for the nearest neighbor clusters. In the agglomerative clustering, the search for 
the nearest neighbor cluster is repeated many times, and every search requires O(N) distance 
calculations. The graph is utilized so that the search is limited only to the clusters that are 
directly connected by the graph structure. This reduces the time complexity of every search 
from O(N) to O(k). If the number of edges (k) is small, significant speed-up can be obtained. 

3.1 Simple implementation 
The main structure of the algorithm is given in Fig. 1. The algorithm starts by initializing 
every data vector as its own clusters, and by constructing the neighborhood graph. The 
algorithm then iterates by removing nodes from the graph until the desired number of clusters 
has been reached. The graph stores the merge costs, i.e. the amount of extra distortion if the 
two neighbor clusters are merged. The edge cost values are stored in a heap structure. 

At first, the edge with the smallest weight is found, and the nodes (sa and sb) are merged. The 
algorithm creates a new node sab from the clusters sa and sb, which are removed from the 
graph. The corresponding edges are updated by calculating new cost values between the nodes 
that were connected to the merged nodes. The algorithm must also calculate cost values for 
the outgoing edges from the newly created node sab. The k nearest neighbors are found among 
the 2k neighbors of the previously merged nodes sa and sb. 

We illustrate the merge procedure in Fig. 2 when the clusters a and b are merged for a sample 
directed 2NN graph (k=2). The nearest neighbors for the merged cluster is found among the 
neighbors of a and b. In this example, they are the clusters c and e. We must also update the 
links that pointed before either to the cluster a or to the cluster b to point to the new cluster 
and update the associated cost values. In practice, the new cluster replaces a, and b is 
removed. The pointers c�b and d�b are replaced by pointers c�a and d�a, accordingly. 
A sample directed graph (k=4) is shown in Fig. 3. 
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AgglomerativeClustering(X, M) � S 

FOR i�1 to N DO 
si � {xi}; 

      FOR �  DO  � �),1;( Nisi �

Find k nearest neighbors; 

REPEAT 
(sa, sb) � GetNearestClustersInGraph(S); 
sab � Merge(sa, sb); 
Search the k nearest neighbors for sab; 
Update the nodes that had sa and sb as 
neighbors; 

UNTIL |S|=M; 

Fig. 1. Structure of the proposed agglomerative clustering method. 
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Fig. 2. Illustration of the graph (k=2) where 

a and b are to be merged. 
Fig. 3. Sample data set (black dots) and the 

corresponding directed graph (k=4). Note that 
the arrow heads are not printed for clarity. 

 

3.2 Time complexity 

The parameter k affects both the quality of the solution and the running time. It is therefore 
relevant for our complexity analysis to consider the extreme cases when k=N, and when k is 
a small constant. In the case when k=N, the algorithm produces exactly the same result as the 
full search agglomerative clustering. This claim is justified by the notion that when k=N we 
store all pairwise distances, and thus we can generate the same clustering as with the 
agglomerative clustering. The summary of the time complexity for the general case is 
presented in Table 1, where the “steps” means the total number of the steps in the loops per 
iteration, and “distances” means the total number of the distance operations calculated per 
iteration. 

Each iteration of the algorithm takes O(1) time to get the smallest distance from the top of the 
heap structure (Search nearest). The merge of the two nearest clusters takes O(2k2 + logN) 
time (Merge). The first term (2k2) originates from the selection of k neighbors by processing 
the neighbor list of the original clusters a and b separately. The second term (logN) comes 
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from the update of the heap structure. We then have to find all the clusters that have the 
merged cluster as one of its k nearest neighbors (Find neighbors). This takes O(kN) time. The 
removal of the last cluster takes O(k + 2logN) time (Remove last). 

Finally, we update the distances of the incomings pointers into the heap structure, which takes 
O(kN + (�/k)�logN) time (Update distances), where � is the indegree of the node. There are N 
clusters to be checked, of which � are to be considered, and only �/k needs to be updated in the 
heap. It has been shown in [30] that in Euclidean space, � is upper bounded by k times the 
kissing number, which is defined as number of unit hypespheres that are touching another unit 
hypersphere without any intersections. Kissing numbers are known for some dimensions, but 
unfortunately general formula is an open problem [31]. In practice, only a relatively small 
(about 2-4) number of neighbors must be updates in case of image data [7]. 

3.3 Double linked list 
There are several ways to improve the simple implementation. Even if we consider k as 
a small constant, the time complexity of the algorithm sums up to O(N2 + �N�logN). In 
general, this is too much and we therefore consider the use of a double linked list as shown in 
Fig. 4. For every node, we maintain two lists: (1) the first list contains pointers to the k nearest 
clusters; (2) the second list contains � “back pointers” to the clusters for which the current is 
one of their nearest neighbors. In this way, we can eliminate O(kN) time loops, and the time 
complexity reduces to O(�N�logN), see Table 1. 

The observed number of steps and distance calculations are reported in Tables 2, 3 and 4 for 
three image data sets. The number of distance calculations can be reduced down to a fraction 
of that of the full search (from 40 million to 47 370 in the case of Bridge) by the simple 
implementation. However, the number of steps is reduced only to about 60-75% of that of the 
full search (from 81 million to 50 million in the case of Bridge). The double linked list also 
solves this problem (in the case of Bridge, the number of steps is reduced from 81 million to 
517 905). 
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insert to head

k
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Fig. 4. Illustration of the update of the double linked list in the merge procedure of the clusters 

a and b in the neighborhood graph (k=4). The merged cluster is assigned to the place of the 
cluster a and finally the cluster b is removed.  
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Table 1: Estimated number of steps and distance calculations per iteration. 

Fast PNN Proposed (simple) Proposed (double-linked)  Steps Distances Steps Distances Steps Distances 
Search nearest  N - 1 - 1 - 
Merge N - 2 k2 + logN 2 k 2 k2 + �k + logN 2 k 
Find neighbors N - kN - �k - 
Remove last N - k + 2logN - logN - 
Update distances N (1+�) �N kN + �/k�logN  � �k + �/k�logN � 
 
 
Table 2: Observed number of the steps and distance calculations per iteration for Bridge 
(k = 3). 

Fast PNN Proposed  
(simple) 

Proposed  
(double-linked) 

 

Steps Distances Steps Distances Steps Distances 
Search nearest  8 357 760 - 3 840 - 3 840 - 
Merge 8 357 760 - 100 636 13 302 181 159 13 316 
Find neighbors 8 357 760 - 25 078 280 - 63 765 - 
Remove last 8 349 185 - 94 779 - 45 514 - 
Update distances 48 538 136 40 166 328 25 196 128 34 068 223 627 34 097 
Total 81 960 601 40 166 328 50 468 663 47 370 517 905 47 413 
 
Table 3: Observed number of the steps and distance calculations per iteration for House 
(k = 3). 

Fast PNN Proposed  
(simple) 

Proposed  
(double-linked) 

 

Steps Distances Steps Distances Steps Distances 
Search nearest  581 798 432 - 33 856 - 33 856 - 
Merge 581 798 432 - 960 410 112 923 1 245 180 112 942 
Find neighbors 581 798 432 - 1 745 395 296 - 255 519 - 
Remove last 580 354 971 - 1 026 580 - 497 511 - 
Update distances 2 237 529 292 1 655 663 346 1 746 170 412 162 850 1 313 939 163 757 
Total 4 563 279 559 1 655 663 346 3 493 586 554 275 773 3 346 005 276 699 
 

Table 4: Observed number of the steps and distance calculations per iteration for Miss America 
(k = 3). 

Fast PNN Proposed  
(simple) 

Proposed  
(double-linked) 

 

Steps Distances Steps Distances Steps Distances 
Search nearest  20 965 544 - 6 224 - 6 224 - 
Merge 20 965 544 - 172 616 25 797 273 994 25 819 
Find neighbors 20 965 544 - 62 896 632 - 81 537 - 
Remove last 20 955 451 - 160 544 - 77 194 - 
Update distances 128 322 309 107 331 780 63 078 024 44 418 326 677 44 331 
Total 212 174 392 107 331 780 126 314 040 70 215 765 626 70 150 
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4. Creation of the neighborhood graph 

Graph creation is related to the post office problem in computational geometry and in 
statistical pattern recognition, it is known as kNN classifier problem. The problem is to find 
for every data point x its closest vector from a smaller set of representative vectors. Many 
solutions exist (e.g. by solving minimum spanning tree for the special case k=1) at the cost of 
O(N�logN + M2), and with the assumption that all pairwise distances are stored in memory. In 
our case, however, we have M=N. This makes the time complexity to O(N2), which is the 
same as that of the full search. 

Efficient construction of the k nearest neighbor graph is also needed in manifold learning 
[32], [33], [34]. It uses nonlinear dimensionality reduction by mapping the input vectors into a 
smaller dimensional subspace (called manifold). If such a manifold exists, the Euclidean 
distance can be assumed to hold between nearby vectors along the surface, which reduces the 
dimensionality significantly.  

Other related problem in computational geometry is k-all-nearest-neighbors problem. The 
problem is to find for all vectors their k-nearest neighbors in the same set. Theoretical results 
can be found in [35], but we are not aware of any practical subquadratic algorithm that works 
for higher dimension K. In general, this is referred as the curse of dimensionality. 

A straightforward solution is to construct the graph by brute force by considering all pairwise 
distances but at the cost of O(N2) time. In the following, we aim at solving the problem either 
by a faster but heuristic (thus suboptimal) method, or by allowing the worst case time 
complexity become O(N2) if the algorithm works faster for typical data sets in practice. We 
consider also the following three methods: 

�� KD-tree [21] 
�� Divide-and-conquer [22, 36] 
�� Projection-based search [23, 37] 

For further information on recent algorithms for searching the nearest neighbor, see [38], [39]. 

4.1 KD-tree 
There are many algorithms using spatial data structures for fast nearest neighbor search such 
as KD-tree, ball-tree, and R-tree. For example, KD-tree [21] has been introduced already long 
time ago and it is still widely used for finding the nearest neighbor [40]. These techniques can 
be extended for creating a k nearest neighbor graph. 

The KD-tree is a generalization of a simple binary search tree, in which each node represents a 
subset of the vectors in the data set. The root of the tree represents the entire data set. Each 
non-terminal node has two children sons representing two subsets defined by the partitioning. 
The terminal nodes represent mutually exclusive small subset of the data sets, which 
collectively form a partition of the data set. These terminal subsets of vectors are called 
buckets. In K-dimensional vector space, a cluster is represented by K keys. Any of these can 
serve as the discriminator for partitioning the subset represented by a particular node in the 
tree. In the creation of the neighborhood graph, we insert every vector into the KD-tree, and 
then search for each vector its k nearest neighbors from the same tree. 

The KD-tree data structure provides an efficient mechanism for examining only those vectors 
closest to the query vector, thereby greatly reducing the computation required to find the 
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k nearest neighbors. The search algorithm is most easily described as a recursive procedure. 
The geometric boundaries of the node are determined by the partitions defined at nodes above 
it in the tree. If the node under investigation is terminal, then all the vectors in the bucket are 
examined excluding the query vector in question. A list of k nearest neighbors so far found 
and their distances to the query vector is maintained as an ordered list during the search. 
Whenever a vector is examined and found to be closer than the most distant member of this 
list, the list is updated.  

If the node under investigation is not terminal, the recursive procedure is called for the node 
representing the subset on the same side of the partition as the query vector. When the control 
returns, a test is made to determine if it is necessary to consider the vectors on the side of the 
partition opposite the query vector. This is referred to as the "bounds-overlap-ball" test. 
A "ball-with-in-bounds" test is made before returning to determine if it is necessary to 
continue the search. These tests are carried out with the distance function defined by the 
merge distortion function of the agglomerative clustering of Eq. (4). See [21] for details of the 
KD-tree algorithm.  

The goal of the optimization of the KD-tree is to minimize the expected number of vectors 
examined with the search algorithm. The parameters to be adjusted are the discriminating key, 
partition value at each nonterminal node, and the number of vectors contained in each 
terminal bucket. The prescription for optimizing the KD-tree is to choose at every nonterminal 
node the key with the largest spread in values as discriminator and to choose the median of the 
discriminator key values as the partition.  

The creation of the KD-tree takes O(KN�logN) time and each search is proportional to logN 
[21]. Thus, if we consider K as a small constant, the expected time complexity of the 
algorithm is only O(N�logN) in the case of the low dimensional data sets. Nearest neighbor 
search capabilities of KD-tree has been studied theoretically and experimentally by Yianilos 
[41]. It was concluded that for high dimensional uniformly distributed data, to achieve savings 
over exhaustive search, the search radii has to be very small. In other words, as dimensionality 
increases either the number of distance computations must be increased, or the search radii 
decreased. 

4.2 Divide-and-conquer method 
Closest pair problem [22] is stated as follows: given N points in K-dimensional space, find the 
two points whose mutual distance is minimal. The problem can be solved by divide-and-
conquer technique as follows: 

1. Divide X into X1 and X2 by the median hyperplane H normal to some axis. 
2. Recursively solve the problem for X1 and X2. 
3. Compute δ = min(δ1, δ2), where δ1 and δ2 are the found distances in X1 and X2. 
4. Let X3 be the set of points that are within δ of H. 
5. Recursively examine all pairs in X3. 

It has been shown that, in the case of 2-dimensional vector space, only a constant number of 
points can be neighbor in any cell in the set X3 [42]. Assuming that the same primary axis is 
used in the division, the points can be pre-sorted and the analysis step can be performed in 
linear time. It has been proven that the algorithm takes O(N�logN) time and the algorithm 
generalizes to multi-dimensional spaces but at the cost O(N�logK-1N) time [43], where K is the 
number of dimensions. 
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We consider next an algorithm applicable for finding k-near neighbors based on the above 
divide-and-conquer approach with the following differences [36]. Firstly, we search several 
closest pairs for every vector in the data set. Secondly, we use principal component analysis 
(PCA) for calculating the projection axis with the maximum deviation. Thirdly, we use 
a distance-based heuristic for selecting the vectors to be included in the third subset. 

The pseudo code of the algorithm is given in Fig. 5. At each step of the recursion, we divide 
the data set X into two subsets X1 and X2 of equal sizes as follows. We first calculate the 
principal axis of the data vectors in X, and then select a (K-1)-dimensional hyperplane H 
perpendicular to the principal axis. The hyperplane is selected so that approximately half of 
the vectors belong to one side of the space, and the rest to the other side. Once the dividing 
procedure has been done, the two subproblems X1 and X2 are solved recursively. Subproblems 
smaller than ck are solved by brute force search. 

 

Divide-and-Conquer(X, k, ck ) � kNN 
IF ( |X|  > ck ) THEN 

X1, X2, proj � Divide(X); 
kNN1 � Divide-and-conquer(X1, k, ck); 
kNN2 � Divide-and-conquer(X2, k, ck); 
kNN � kNN1 � kNN2; 
X3 � GenerateThirdSet(X, kNN, proj); 
kNN3 � Divide-and-conquer(S3, k, ck); 
kNN � CombineResults(kNN, kNN3); 

ELSE 
kNN � BruteForce(X, kNN, k); 

END-IF 
RETURN kNN; 

GenerateThirdSet(X, kNN, proj) � X3 
X3 � �; 
FOR i � 1 TO |X| DO 

� � ProjectionDistance(X[i], proj); 
IF c� < kNN[i,1] THEN 

X3 � X3 � X[i]; 
RETURN X3; 

Fig. 5. Sketch of the divide-and-conquer algorithm. 

After the subproblems have been solved, we generate a third subset X3 consisting of vectors 
that are closer to the dividing hyperplane H than to its nearest neighbor in the corresponding 
subset (X1 or X2). By using the control parameter c we can control the number of vectors 
chosen in the subset. Once the subset has been created, the algorithm is recursively applied to 
it. Finally, the results of the three subproblems are combined. In Fig. 6 we illustrate the 
division of the set X to three overlapping subsets (X1, X2, X3) according to the dividing 
hyperplane H. The arrows indicate the nearest neighbors of the vectors. 
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Fig. 6. Division to three overlapping subsets (X1, X2, X3) according to the dividing hyperplane 
H. The arrows indicate the nearest neighbors of the vectors. 

The time complexity of the proposed divide-and-conquer algorithm can be approximated by 
the recurrence T(N) = 3�T(N/2) + O(N�K2) assuming that the size of the third subset is less than 
equal to that of the other subsets X1 and  X2. The second term originates from the calculation 
of the principal axis. The rest of the calculations can be performed in linear time. The 
recurrence solves to O(K2

�N1.58
�logN). It might be possible to squeeze the complexity by 

selecting the dividing hyperplane by some simpler method, and by making tighter bounds for 
the third subset. Note that the size of the X3 is controlled by the parameter c, which can vary 
from c=  (X� 3 is empty) to c=0 (X3=X). The time complexity of the first case (c=� ) is 
O(N�logN). 

4.3 Projection-based search 
Mean-distance ordered partial search (MPS) was originally proposed to be used with the 
k-means clustering (GLA) in [23] but then generalized to agglomerative clustering distance 
function in [26]. Here we apply it to the search for k-nearest neighbors as proposed in [37]. 

4.3.1. Searching for nearest neighbor 

The method stores the component sums of each cluster centroid (code vector). Let sa be the 
one, for which we seek its nearest neighbors, and sj the candidate to be considered. The 
distance of their corresponding code vectors ca and cj can be approximated by the squared 
distance of their component sums: 

 . (6) � ,e c ca j ak
k

K

jk
k

K

� �
�

�
�

�

�
�

� �

� �
1 1

2

The component sums correspond to the projections of the vectors to the diagonal axis of the 
vector space. In typical data sets, the code vectors are highly concentrated along the diagonal 
axis, and therefore, the distance of their component sums highly correlate to their real 
distance. Then, given the cost function value of the best candidate found so far, vectors 
outside the radius defined by a given pre-condition can be excluded in the calculations, see 
Fig. 7. 
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In the agglomerative clustering, the cost function consists of the squared Euclidean distance 
ea,j of the code vectors (second part of Eq. 4), and the weighting factor wa,j (first part of Eq. 4), 
which can be calculated separately. The following inequality holds true (where K is the 
dimension of the data vector): 

 . (7) jajajaja ewKew ,,,, ˆ ����

It was originally shown to hold in Euclidean distances in [23], which we have then 
generalized to the cluster distances in [26]. Given the cost function value dmin of the best 
candidate found so far, the inequality (7) can be utilized in the search of nearest neighbor by 
using the following precondition: 

 . (8) jaja ewdK ,,min ˆ���

In other words, if the squared Euclidean distance of the component sums (multiplied by the 
weighting factor) exceeds the distance to the best candidate found so far (multiplied by K), the 
value cannot be smaller than dmin, according to (7). This is illustrated in Fig. 7, where the 
distance from A to B is the current minimum. All potential candidates and their projections 
must therefore lie inside the circle. 

The precondition is utilized as follows. The vectors are sorted according to their component 
sums, and then proceed in the order given by the sorting. The search starts from the cluster sa 
and proceeds bidirectionally along the projection axis. The weighting factor wa,j and the 
distance of the component sums (êa,j) are first calculated, and the precondition (8) is 
evaluated. If it holds true, the calculation of the actual cost function value can be omitted and 
the candidate cluster sj rejected. The precondition can be calculated fast in constant time as the 
component sums and weights are known. 

In k-means clustering, the search in any of the two directions can be terminated immediately 
when the precondition is met first time. In the agglomerative clustering, however, this is not 
possible because of the weighting factor. Even in the initialization, there may be weighted 
vectors as the data set can be a result of preprocessing step where duplicate vectors have been 
merged and weighted by their frequency. The search is therefore terminated only if the weight 
of the candidate cluster equals to 1. See [26] for details. 

The pseudo code of the algorithm is given in Fig. 8. For simplicity, we assume that the 
clusters have already been sorted before the call of the routine. 

 

b

A

A '

B

B '

C '

C

A

A '

B

B '

C '

C  

Fig. 7. Vectors (black dots) and their projections (white dots) according to component sums. 
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SearchNearestNeighborUsingMPS(sa, S) � nna, da; 
dmin � �; 
up � TRUE; 
down � TRUE; 
j1 � a; 
j2 � a; 
 
WHILE (up OR down) DO 

IF up THEN 
j1 � j1 + 1; 
IF j1 > N  THEN up � FALSE; 
ELSE CheckCandidate(sa, sj1, na, dmin, nn, up);

 

IF down THEN 
j2 � j2 - 1; 
IF j2 < 1 THEN down � FALSE; 
ELSE CheckCandidate(sa, sj2, na, dmin, nn, down);

 

        END-WHILE; 

RETURN nn, dmin; 

CheckCandidate(sa, sj, na, dmin, nn, direction) � nn, dmin; 
IF PreCondition(sa, sj, dmin) THEN 

IF na = 1 THEN direction � FALSE 
ELSE 

d � MergeCost(sa, sj, dmin); 
IF d < dmin THEN 

dmin � d; 
nn � j; 

RETURN nn, dmin; 

PreCondition(sa, sj, dmin) � BOOLEAN; 
w � na� nj / (na + nj); 
ê � (suma- sumj)2; 
RETURN( K�dmin < w � ê );

  
  

Fig. 8. Pseudo code of the MPS method used for the graph creation. The input of the 
algorithm are the cluster sa whose neighbor we are searching for and the entire clustering S. 
The output consists of the index and the distance of the nearest neighbor of the cluster sa. 

4.3.2 Searching for k neighbors 

We apply the MPS method for finding the k nearest clusters as follows. We relax the 
condition of the graph and find any k neighbors instead of the nearest ones. This is 
a reasonable modification because the optimality of the graph cannot be guaranteed during the 
process of the agglomerative clustering. Thus, by relaxing the definition of the k-nearest 
neighbor graph, additional speed-up can be obtained at a slight increase in the distortion 
function value. 

In particular, we use the exact MPS method for finding the nearest neighbor but stop the 
search immediately when it has been found. In addition to this, we maintain an ordered list of 
the k best candidates found so far. The rest of the neighbors are then chosen simply from the 
list of the candidates no matter whether they are actually the k-1 nearest or not. It is expected 
that the rest of the candidates are nearby vectors although not necessarily the nearest ones. 
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Even if some links were missing, vectors in the same cluster are most likely to be connected 
anyhow. 

Another way to limit the search is to set up a fixed search range. In this case, the limit must be 
chosen experimentally. We will study these two alternatives (full search MPS and limited 
search MPS) later in Section 5. 

The advantages of the MPS method are its simplicity and that it is expected to be fast on data 
sets with correlated vectors. The main disadvantage of the method is that the time complexity 
is still O(N2), which is not any better than that of the Brute force. The actual speed-up is 
expected to be smaller on data sets with uncorrelated vectors. 

4.3.3 Using PCA-projection 

Instead of using component sum in the MPS method one can perform principal-component 
analysis (PCA) on the data set. Thus, one can use the projection to first principal component 
as the index in the purpose to speed up the search. When one has better projection axis the 
binary search for k nearest is probably terminated earlier. However, the calculation of the 
principal axis for projection using the power method takes O(NK2) time. For high dimensional 
data sets it is likely that the extra work caused by the calculation of the principal axis exceeds 
the otherwise gained speed up. 

4.4 Other methods 
The other methods that can be considered for searching the k nearest neighbors include:  

�� VPT [44] 
�� AESA [39], [44]  
�� MST [14] 
�� TIEC [45]   

Vantage point trees (VPTs) build a binary tree recursively, taking any vector p as the root and 
taking the median M of the set of all distances d. Those vectors u such that d(p, u)  M are 
inserted into the left subtree, while those such that d(p, u) > M are inserted into the right 
subtree. To solve a query in this tree, one measures d=d(q, p). If d-r  M the search enters 
into the left subtree, and if d+r > M into the right subtree (with search radius r). One reports 
every vector considered that is close enough to the query. The VPT takes O(N) space and it is 
build in O(N�logN) worst case time. The query complexity is argued to be O(logN), but as 
pointed out, this is true only for very small search radii, too small to be an interesting case. 

�

�

Approximation elimination search algorithm (AESA) is experimentally shown to have O(1) 
query time. The structure is simply a matrix with the N(N-1)/2 precomputed distances among 
the vectors of the data set. At search time a vector p from the data set is selected at random 
and measure rp = d(p, q), eliminating all vectors u of the data set that do not satisfy rp – r  
d(u, p)  r

�

� p + r (with search radius r). While all the d(u, p) has been precomputed, so only 
d(p, q) must be calculated at search time. The process of taking a random pivot among the 
(not yet eliminated) vectors of the data set and eliminating more vectors from the data set is 
repeated until the candidate set is empty and the query has been satisfied. See [34] for details 
of the algorithm. The problem with the algorithm is that it needs O(N2) space and construction 
time which is unacceptably high for all but very small data sets. 

Minimum spanning tree (MST) can be constructed in O(|E| + |V|log|V|) time, where |E| is the 
number of the edges and |V| is the number of the vertices. There is a data vector at each vertex 
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of the MST, and the weight of an edge is the distance between the data vectors connected by 
the edge. In an MST, each vertex is always connected to at least one of its nearest neighbors. 
Thus, a partial ordering of the data vectors can be obtained. The MST presentation can be 
precomputed, and then stored in O(N) space.  Unfortunately, in the case for searching the k 
nearest neighbors the precomputing takes O(N2 + N�logN) time.  

The triangle inequality elimination criteria (TIEC) restrict the nearest neighbor search to a 
subsection of the data set based on the distances of the data vectors to an "anchor" vector. 
Given a fixed anchor vector, the distances between a anchor and each data vector is pre-
computed and stored in O(N) space. Those distances serve as scalar projections of the data 
vectors with respect to the anchor vector. The use of several anchor vectors can strengthen 
TIEC's ability to eliminate data vectors from consideration. However, each anchor vector 
requires O(N) space for the scalar projections, and the distances between each anchor vector 
and  the other data vector needs to be calculated. If we use N anchors the TIEC take O(N2) 
space and time. 

 
     
5. Experiments 

We consider three image data sets (Fig. 9), four synthetically generated data sets (Fig. 10), 
three BIRCH data sets [46], and six high dimensional data sets Dim032 to Dim1024. The 
vectors in the first set (Bridge) are 4�4 blocks taken from gray-scale image, and in the second 
set (Miss America) 4�4 difference blocks of two subsequent frames in video sequence. The 
third data set (House) consists of color values of the RGB image. The number of clusters is 
fixed to M=256. The data sets S1 to S4 are two-dimensional sets with varying complexity in 
terms of spatial data distributions with M=15 clusters. The data sets Dim032 to Dim1024 have 
slightly less spatial complexity but higher dimensionality varying from 32 to 1024 with 
M=256. The summary of the data sets is presented in Table 5. The algorithms are coded in 
DJGPP C Version 2.01 and are run on a 450 MHz Pentium III personal computer, in 
Microsoft Windows 98 Operating system. 

 
Spatial vectors: Spatial residual vectors: Color vectors: 

   
Bridge  (256�256) 

K=16, N=4096 
Miss America  (360�288) 

K=16, N=6480 
House  (256�256) 

K=3, N=34112* 

Fig. 9. Image data sets. *Duplicate training vectors are combined and frequency information is 
stored. Note that when duplicates vectors are merged, all distance and merge cost calculations 
must be multiplied by the frequency of the data vectors representing multiple instances of the 

original data set. 
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Data set S1 Data set S2 Data set S3 Data set S4 

Fig. 10. Two-dimensional data sets with varying complexity in terms of spatial data 
distributions. The data sets have 5000 vectors scattered around 15 predefined clusters with 

a varying degree of overlap. 

Table 5. Summary of the data sets. 
Data set Type of data set Number of data 

vectors (N) 
Number of 
clusters (M) 

Dimension of 
data vector (K) 

Bridge Gray-scale image 4086 256 16 
House RGB image 34112 256 3 

Miss America Residual vectors  6480 256 16 
Data set S1- S4 Synthetically generated 5000 15 2 

BIRCH1-BIRCH3 Synthetically generated 100000 100 2 
Dim32-1024 Synthetically generated 1000 256 32 – 1024 

 

5.1 Parameter settings 
The effect of the neighborhood size (parameter k) on the running time and quality is shown in 
Fig. 11 with the data sets Bridge, House, Miss America and BIRCH1. The results indicate that 
a very small neighborhood size such as k=3 is sufficient for obtaining high quality clustering 
for the image data sets, and larger neighborhood sizes gives only slight improvements over 
these. In the case of noisy data with overlapping clusters (sets S1 to S4), however, too a small 
neighborhood size (k=3) can create isolated subclusters. A slightly larger neighborhood size 
(k=6) is therefore recommended for these data sets. 

The running times of the agglomeration are summarized in Table 6 for the simple algorithm, 
and for the double linked algorithm in the case of the image data sets. The results show that 
the simple algorithm is useful with Bridge and Miss America, but not with the larger image set 
House. The double linked algorithm, on the other hand, works very fast (�1 second) in all 
cases. The MSE-values are virtually the same with both variants, as expected. 

The overall running times and the corresponding number of distance calculations are 
summarized in Table 7. Comparative results are given for the fast exact PNN [7], and the fast 
exact PNN with several speed-up methods as proposed in [26]. The results show that the 
proposed method is significantly faster than the fast exact PNN with all data sets. The results 
are most remarkable with the largest data set (House), for which the running time was reduced 
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down to 9 % from that of the fastest comparative variant. The corresponding numbers for 
Bridge and Miss America are 33 % and 43 %. 

The running time has linear dependency with the parameter k but the growing rate is relatively 
small, see Fig. 11. The results also indicate that the graph creation is the bottleneck of the 
algorithm. We therefore study next the effect of the graph creation in more detail. 
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Fig. 11. The running time and quality of the proposed method as a function of k. The MPS 

algorithm is used for graph creation and the double linked list approach in the agglomeration. 
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Table 6. Running times of the iterations (excluding graph creation). 
 Bridge House Miss America 
 Time MSE Time MSE Time MSE 

Simple 4 171.12 542 6.40 12 5.45 
Double linked < 1 171.11 1 6.37 < 1 5.44 

 

Table 7. Summary of running times and the number of distance calculations of the proposed 
method (with MPS graph creation) in comparison to the best full search approaches [7, 26]. 

Bridge House Miss America  
Distance 

calculations
Run 
time 

Distance 
calculations 

Run 
time 

Distance 
calculations 

Run 
time 

Fast PNN [7] 48 552 888 79 2 237 460 562 1574 128 323 740 229 
Fast PNN +  

MPS + PDS + lazy [26] 6 167 439 9 37 752 863 190 83 323 889 106 

Graph creation 2 341 547 3 19 017 163 18 32 440 442 44 
Agglomerations 47 413 < 1 276 699 1 70 150 < 1 Proposed 

Total 2 388 960 3 19 293 862 19 32 510 592 44 

5.2 Graph creation 
For the graph creation, we consider the following five algorithms from Section 4:  

�� Brute force 
�� KD-tree 
�� Divide-and-conquer (D-n-C) 
�� Projection-based (MPS) 
�� Projection-based (MPS / PCA) 

Results for the image data sets are shown in Table 8, and for the Dim data sets in Table 9 
using default parameter settings of the algorithms. For the image data sets, divide-and-
conquer works best for the 16-dimensional data sets (Bridge, Miss America) whereas KD-tree 
is the most efficient for the 3-dimensional color vectors (House). The small differences in the 
MSE-values are due to the different order of processing. 

For the higher dimensional data, the MPS method is the fastest while the MPS / PCA and the 
Divide-and-conquer becomes slower than the Brute force when the dimension grows high 
enough, see Fig. 12. These two methods calculate the principal axis for projection, which 
takes O(NK2) time and thus, has quadratic dependency on  the dimension. The KD-tree seems 
to operate reasonably fast without suffering of the curse of dimensionality. The reason might 
be that the clusters in these data sets are well separated and therefore having lower intrinsic 
dimension than representational dimension.  

Overall, no method can be said to systematically outperform the others, and the graph creation 
remains the bottleneck of the algorithm in the sense running time. We therefore next fine-tune 
the methods towards faster running time at the cost of increasing distortion. We consider the 
following two variants: 

�� Divide-and-conquer by varying the parameter c (see Section 4.2), 
�� Limited-search MPS by setting a fixed search limit (see Section 4.3.2). 
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The corresponding time-distortion performance is illustrated in Fig. 13 for House and Miss 
America. Even though the results favor the divide-and-conquer method in the case of Miss 
America, it has much narrower operative time marginal, and the limited-search MPS is better 
in the case of all other sets. The KD-tree shows the best performance in the 3-dimensional 
data set House. 

Table 8. Running times of the graph creation algorithms for the image data sets (k=3). 
Bridge House Miss America  

Time MSE Time MSE Time MSE 
Brute force 34 171.17 881 6.43 89 5.44 

KD-tree 12 170.42 5 6.36 79 5.44 
D-n-C 2 171.80 49 6.58 7 5.44 
MPS 3 171.11 18 6.37 44 5.44 

MPS / PCA 10 170.97 37 6.39 58 5.43 
 

Table 9. Running times of the graph creation algorithms for the Dim data sets (k=3). 
Dim032 Dim064 Dim128 Dim256 Dim512 Dim1024  Time MSE Time MSE Time MSE Time MSE Time MSE Time MSE 

Brute force 4 2.16 7 0.93 15 0.57 29 0.35 57 0.23 113 0.14 
KD-tree < 1 2.16 1 0.93 3 0.57 4 0.35 8 0.23 15 0.14 
D-n-C 1 2.16 2 0.93 7 0.57 28 0.35 142 0.23 426 0.14 
MPS 1 2.16 1 0.93 1 0.57 1 0.35 3 0.23 5 0.14 

MPS / PCA 1 2.16 1 0.93 2 0.57 9 0.35 42 0.23 149 0.14 
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Fig. 12. Running times of the graph creation versus the dimension of the data vector (k=3). 
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Fig. 13. Time-distortion performance of the proposed method (k=3). 
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5.3 Comparison 
Finally, the proposed method is compared against the best full search PNN variants, and 
against standard k-means algorithm. Comparative results are summarized in Table 10 for all 
data sets with the following methods included: 

�� Fast PNN [7] 
�� Proposed 
�� Proposed + k-means 
�� K-means [8] 

The Fast PNN has two variants: the fast implementation as proposed in [7] and the improved 
variant [26]. The latter one uses three speed-up techniques: PDS, MPS and Lazy evaluation of 
the distances. The k-means has two variants: the original method [8], and a faster variant, 
which uses PDS, MPS and activity detection for speed-up [47]. Results are given also for the 
proposed method + k-means, in which the data is first processed by the proposed method and 
the result is input to the k-means. The results show that the proposed method produces better 
result with an algorithm that is competitive to the k-means in speed. 

The final clustering and the neighborhood graph of the proposed method are illustrated in 
Fig. 14 for the data set S2. It shows that the proposed method achieves the correct clustering 
whereas the k-means fails to locate the clusters properly. Note that the final graph does not 
always have k=5 outgoing edges for every node although every cluster is still connected by the 
graph. With a smaller number of neighbors (k=3), however, there would have been isolated 
components and, in some cases, the algorithm degenerated to situation where there were not 
enough edges to achieve the final clustering. It is therefore recommended to use slightly larger 
neighborhood size, just in case. 

 

    
Fig. 14. Clustering of set S2 by k-means (left) showing the cluster centroids and the 

corresponding Voronoi partition of the space; clustering by the proposed method using k=5 
(right) showing the cluster centroids and the remaining neighborhood links. 
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Table 10. Comparison of the proposed method (k=5) with the existing algorithms. 
Bridge House Miss America Image data sets Time MSE Time MSE Time MSE 

Full search 79 168.92 1574 6.27 229 5.36 Fast PNN 
+PDS+MPS+Lazy 9 168.92 190 6.26 106 5.37 

Full MPS 3 170.28 19 6.33 45 5.41 Proposed 
Limited search MPS  3 170.56 14 6.51 6 5.58 

Full MPS 4 166.23 20 6.14 47 5.30 Proposed +  
k-means Limited search MPS 4 166.38 15 6.18 9 5.34 

Standard 13 179.95 23 7.77 20 5.95 K-means 
+PDS+MPS+Activity 2 180.02 3 7.80 8 5.95 

 
BIRCH1 BIRCH2 BIRCH3 Birch data sets Time MSE Time MSE Time MSE 

Full search > 9999 4.73 > 9999 2.28 > 9999 1.96 Fast PNN 
+PDS+MPS+Lazy 2397 4.73 2115 2.28 2316 1.96 

Full MPS 40 4.71 16 2.28 34 1.96 Proposed 
Limited search MPS  37 4.73 15 2.28 28 2.02 

Full MPS 44 4.64 17 2.28 51 1.87 Proposed +  
k-means Limited search MPS 41 4.64 16 2.28 44 1.90 

Standard 209 5.51 43 7.42 171 2.41 K-means 
+PDS+MPS+Activity 29 5.34 8 7.85 35 2.50 

 
S1 S2 S3 S4 Synthetic data sets Time MSE Time MSE Time MSE Time MSE 

Full search 25 8.93 25 13.44 25 17.70 25 17.52 Fast PNN 
+PDS+MPS+Lazy 3 8.93 3 13.44 3 17.70 3 17.52 

Full MPS < 1 9.07 < 1 13.41 < 1 17.21 < 1 16.69 Proposed 
Limited search MPS  < 1 9.07 < 1 13.41 < 1 17.21 < 1 16.69 

Full MPS < 1 8.92 < 1 13.28 < 1 16.89 < 1 15.71 Proposed +  
k-means Limited search MPS < 1 8.92 < 1 13.28 < 1 16.89 < 1 15.71 

Standard < 1 19.02 < 1 18.78 < 1 19.78 < 1 16.72 K-means 
+PDS+MPS+Activity <  1 18.07 < 1 16.69 < 1 18.53 < 1 16.71 
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6. Conclusions 

Fast agglomerative clustering using k nearest neighbor graph was proposed. A relatively small 
neighborhood size is sufficient to produce clustering with similar quality to that of the full 
search. At the same time, significantly fewer distance calculations and operations are needed 
and, therefore, remarkable speed-up is achieved. The running time is comparable to that of the 
k-means with a lower distortion.  
Several algorithms for graph creation algorithms are considered, of which the projection-
based heuristic (MPS) works reasonably well in most cases. The divide-and-conquer is faster 
in the case of some high dimensional image data sets, and the KD-tree in the case of 
3-dimensional color clustering. 
The proposed method has also some weaknesses. First of all, the graph creation is the 
bottleneck of the algorithm. It remains an open question whether faster method could be 
invented with better time-distortion performance than the proposed divide-and-conquer and 
the limited-search MPS algorithm.  
Secondly, no theoretical solutions are given to set-up the neighborhood size others than 
experimentally. Fortunately, no major complications arose and the results were consistently 
better than that of the k-means. However, the method was detected to fail in a similar manner 
as the k-means if the neighborhood size is set too low. One possible solution would be to use 
a variable-size neighborhood depending on the overall distance distribution, or to apply multi-
resolution approach in order to guarantee the connectivity of the graph overall. 
To sum up, we conclude that the improvement due to the neighborhood graph is significant. 
The idea could also be applicable in other clustering algorithms also. This is a topic for future 
research. 
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