
Efficient agglomerative clustering using k nearest neighbor graph
(submitted for publication 16.8.2004)

Pasi Fränti, Olli Virmajoki and Ville Hautamäki

Department of Computer Science

University of Joensuu
P.O. Box 111, FIN-80101 Joensuu, FINLAND

Email: franti@cs.joensuu.fi

Abstract: The search for nearest neighbor is the main source of computation workload
in most clustering algorithms. A common operation is to calculate the distances to all
candidates (full search) and select the one with the smallest distance. In this paper, we
propose the use of nearest neighbor graph for reducing the number of candidates to be
considered so that the number of distance calculations per search decreases. We apply
the proposed scheme within agglomerative clustering algorithm, which is also known
as the PNN algorithm, and show that remarkable reduction is obtained in the running
time at the cost of slight increase in the distortion of the resulting clustering.

Keywords: Clustering, agglomeration, vector quantization, codebook generation,
nearest neighbor graph, PNN.

Statistics: 25 pages, 14 figures, 10 tables, 9723 words, 48375 characters.

1. Introduction

Clustering is an important problem that must often be solved as a part of more complicated
tasks in pattern recognition, image analysis and other fields of science and engineering
[1, 2, 3, 4]. The clustering task is formalized here as a combinatorial optimization problem, in
which the goal is to find the partition that minimizes a given distortion function.

Agglomerative clustering is a popular method for generating the clustering hierarchically by
a sequence of merge operations. The clustering starts by initializing each data vector as its
own cluster. Two clusters are merged at each step and the process is repeated until the desired
number of clusters is obtained. Ward’s method [5] selects the cluster pair to be merged that
minimizes the increase in the distortion function value. In the vector quantization context, this
method is known as the pairwise nearest neighbor (PNN) method due to [6].

Agglomerative clustering is an interesting method for clustering because of its conceptual
simplicity and good results [7]. The method can also be combined with the k-means clustering
such as the generalized Lloyd algorithm (GLA) [8] as proposed in [9], or used as a component
in more sophisticated optimization methods. For example, agglomerative clustering has been
used in the merge phase in the split-and-merge algorithm [10] resulting in to a good time-
distortion performance, and as the crossover method in genetic algorithm [11], which has
turned out to be the best clustering method among a wide variety of algorithms in terms of the
quality of the codebook [12].

The main drawback of the agglomerative clustering is its slowness. The original
implementation requires O(N3) distance calculations [13]. An order of magnitude faster
algorithm has been introduced in [7] but the method is still lower bounded by �(N2). The

 1

mailto:franti@cs.joensuu.fi

main source of computation originates from the search of the nearest neighbor cluster because
the agglomerative clustering always calculates distances to all candidates when finding the
nearest cluster.

Another approach for clustering is to use graph theoretical methods [1], [14], [15], [16], [17],
[18], [19], [20]. For example, by first creating a complete undirected graph where the nodes
correspond to the data vectors and the edges correspond to vector distances according to
a given similarity or dissimilarity measure. The resulting graph can be trimmed to a minimum
spanning tree, which can be interpreted as one large cluster. The clustering can then be
generated iteratively by removing longest edges from the graph. In the final graph, clusters can
be determined by finding the separate components in the graph [14]. This algorithm can be
seen as a variation of split-based methods with similar criterion as in the single-linkage
agglomerative clustering.

In this paper, we introduce fast agglomerative clustering algorithm motivated by the graph-
based approaches. In our approach, we process the data at the cluster level so that every node
in the graph represents a cluster and not as a single vector as in the previous approaches. The
edges of the graph represent inter cluster connections between nearby clusters. The graph
having linear space complexity is used merely as a search structure for reducing the number of
distance calculations. In principle, we can apply any distortion function.

Many agglomerative clustering algorithms construct a sparse graph and then perform the
clustering on this graph [1], [18], [19]. Two main differences between these and our approach
are: (1) the existing methods construct an undirected graph while we construct a directed
graph. (2) the existing methods neglect the original data after building the weighted graph
(meaning that the weights of the new edges are determined by the weights of the current
edges), but we still use the original data in order to compute the weights of newly formed
edges as the agglomerative clustering goes on.

The proposed approach has two specific problems to solve: how to generate the graph
efficiently, and how to utilize it. For example, standard solutions for determining a minimum
spanning tree takes O(N2) time, which would overweigh any speed-up. We propose solutions
for the first problem by considering a KD-tree [21], divide-and-conquer [22], and projection-
based search [23]. As to the second sub-problem, we analyze out how much speed-up can be
gained by using the graph for reducing the number of calculations in the agglomerative
clustering. Our experimental results indicates that a relatively small neighborhood size is
sufficient for preserving good quality clustering. It is also possible that the idea could be
generalized to other clustering algorithms that include large number of nearest neighbor
searches.

The rest of the paper is organized as follows. In Section 2, we define the clustering problem
considered here, and recall the method of agglomerative clustering. In section 3, we propose a
new graph-based agglomerative clustering algorithm. Several solutions for creating the nearest
neighbor graph are considered in Section 4. Experimental results are reported in Section 5,
and conclusions drawn in Section 6.

2. Agglomerative clustering

The clustering problem is defined here as a combinatorial optimization problem. Given a set
of N data vectors X={x1, x2, …, xN}, partition the data set into M clusters so that a given

 2

distortion function is minimized. Partition P={p1, p2, …, pN} defines clustering by giving for
each data vector the index of the cluster where it is assigned to. A cluster sa is defined as the
set of data vectors that belong to the same partition a:

 �s x p aa i i� � � . (1)

Clustering is then represented as the set S={s1, s2, ..., sM}. In vector quantization, the output of
clustering is a codebook C={c1, c2, …, cM}, which is usually the set of cluster centroids. We
assume that the vectors belong to Euclidean space, and use the mean square error (MSE) as
the distortion function:

 � �MSE C P
N

x ci p
i

N

i
, � � �

�

�
1 2

1
. (2)

The agglomerative clustering (PNN) [5, 6] generates clustering hierarchically using a
sequence of merge operations. At each step two nearby clusters are merged:

 . (3) baa sss ��

The cost of merging two clusters sa and sb is the increase in the MSE-value caused by the
merge. It can be calculated using the following formula [5, 6]:

d

n n
n n

c ca b
a b

a b
a b, �

�

� �

2
, (4)

where na and nb are the corresponding cluster sizes. The agglomerative clustering applies local
optimization strategy: all possible cluster pairs are considered and the one increasing MSE
least is chosen:

, (5)

� � ji
ji

mji
dba ,,1,

minarg,
�

�

�

where m is the current number of clusters. There exist many variants of the agglomerative
clustering. Straightforward implementation recalculates all distances at each step of the
algorithm. This takes O(N3) time because there are O(N) steps in total, and O(N2) cluster pairs
to be checked at each step.

Another approach is to maintain an N�N matrix of the merge cost values. The merge cost
values must be updated only for the newly merged cluster. Nevertheless, the algorithm still
requires O(N3) because the search of the minimum cluster pair takes O(N2) time [13]. Kurita’s
method maintains an N�N matrix but it also utilizes a heap structure for searching the
minimum distance [24]. The method runs in O(N2

�logN) time. The storage of the matrix,
however, requires O(N2) memory, which makes these variants impractical for large data sets.

A fast implementation of the agglomerative clustering with linear memory consumption has
been obtained by maintaining a pointer from each cluster to its nearest neighbor, and the
corresponding merge cost value [7]. The cluster pair to be merged can be found in O(N) time,
and only a small number (denoted by �) of the nearest neighbor needs to be updated after each
merge. The implementation takes O(�N2) time in total. In the following, this method is called
as Fast PNN.

Further speed-up can be achieved by using lazy update of the merge cost values [25], and by
reducing the amount of work caused by the distance calculations [26]. It has been shown that

 3

in one-dimensional case (multilevel thresholding) agglomerative clustering can be performed
efficiently in O(N�logN) time [27]. The result, however, does not generalize to higher
dimensional data.

3. Agglomerative clustering using kNN graph

We define k-nearest neighbor graph (kNN graph) as a weighted directed graph, in which
every node represents a single cluster, and the edges correspond to pointers to neighbor
clusters. Every node has exactly k edges to the k nearest clusters according to a given distance
function. The distance of clusters is defined by the merge cost function of Eq. (4). Note that
this is not the only possible definition of the graph: other definitions have been given in [28],
[29].

The proposed method is based on agglomerative clustering, but we utilize the graph structure
in the search for the nearest neighbor clusters. In the agglomerative clustering, the search for
the nearest neighbor cluster is repeated many times, and every search requires O(N) distance
calculations. The graph is utilized so that the search is limited only to the clusters that are
directly connected by the graph structure. This reduces the time complexity of every search
from O(N) to O(k). If the number of edges (k) is small, significant speed-up can be obtained.

3.1 Simple implementation
The main structure of the algorithm is given in Fig. 1. The algorithm starts by initializing
every data vector as its own clusters, and by constructing the neighborhood graph. The
algorithm then iterates by removing nodes from the graph until the desired number of clusters
has been reached. The graph stores the merge costs, i.e. the amount of extra distortion if the
two neighbor clusters are merged. The edge cost values are stored in a heap structure.

At first, the edge with the smallest weight is found, and the nodes (sa and sb) are merged. The
algorithm creates a new node sab from the clusters sa and sb, which are removed from the
graph. The corresponding edges are updated by calculating new cost values between the nodes
that were connected to the merged nodes. The algorithm must also calculate cost values for
the outgoing edges from the newly created node sab. The k nearest neighbors are found among
the 2k neighbors of the previously merged nodes sa and sb.

We illustrate the merge procedure in Fig. 2 when the clusters a and b are merged for a sample
directed 2NN graph (k=2). The nearest neighbors for the merged cluster is found among the
neighbors of a and b. In this example, they are the clusters c and e. We must also update the
links that pointed before either to the cluster a or to the cluster b to point to the new cluster
and update the associated cost values. In practice, the new cluster replaces a, and b is
removed. The pointers c�b and d�b are replaced by pointers c�a and d�a, accordingly.
A sample directed graph (k=4) is shown in Fig. 3.

 4

AgglomerativeClustering(X, M) � S

FOR i�1 to N DO
si � {xi};

 FOR � DO � �),1;(Nisi �

Find k nearest neighbors;

REPEAT
(sa, sb) � GetNearestClustersInGraph(S);
sab � Merge(sa, sb);
Search the k nearest neighbors for sab;
Update the nodes that had sa and sb as
neighbors;

UNTIL |S|=M;

Fig. 1. Structure of the proposed agglomerative clustering method.

j

a b

e

f

g

k

c

d
h

i

Fig. 2. Illustration of the graph (k=2) where

a and b are to be merged.
Fig. 3. Sample data set (black dots) and the

corresponding directed graph (k=4). Note that
the arrow heads are not printed for clarity.

3.2 Time complexity

The parameter k affects both the quality of the solution and the running time. It is therefore
relevant for our complexity analysis to consider the extreme cases when k=N, and when k is
a small constant. In the case when k=N, the algorithm produces exactly the same result as the
full search agglomerative clustering. This claim is justified by the notion that when k=N we
store all pairwise distances, and thus we can generate the same clustering as with the
agglomerative clustering. The summary of the time complexity for the general case is
presented in Table 1, where the “steps” means the total number of the steps in the loops per
iteration, and “distances” means the total number of the distance operations calculated per
iteration.

Each iteration of the algorithm takes O(1) time to get the smallest distance from the top of the
heap structure (Search nearest). The merge of the two nearest clusters takes O(2k2 + logN)
time (Merge). The first term (2k2) originates from the selection of k neighbors by processing
the neighbor list of the original clusters a and b separately. The second term (logN) comes

 5

from the update of the heap structure. We then have to find all the clusters that have the
merged cluster as one of its k nearest neighbors (Find neighbors). This takes O(kN) time. The
removal of the last cluster takes O(k + 2logN) time (Remove last).

Finally, we update the distances of the incomings pointers into the heap structure, which takes
O(kN + (�/k)�logN) time (Update distances), where � is the indegree of the node. There are N
clusters to be checked, of which � are to be considered, and only �/k needs to be updated in the
heap. It has been shown in [30] that in Euclidean space, � is upper bounded by k times the
kissing number, which is defined as number of unit hypespheres that are touching another unit
hypersphere without any intersections. Kissing numbers are known for some dimensions, but
unfortunately general formula is an open problem [31]. In practice, only a relatively small
(about 2-4) number of neighbors must be updates in case of image data [7].

3.3 Double linked list
There are several ways to improve the simple implementation. Even if we consider k as
a small constant, the time complexity of the algorithm sums up to O(N2 + �N�logN). In
general, this is too much and we therefore consider the use of a double linked list as shown in
Fig. 4. For every node, we maintain two lists: (1) the first list contains pointers to the k nearest
clusters; (2) the second list contains � “back pointers” to the clusters for which the current is
one of their nearest neighbors. In this way, we can eliminate O(kN) time loops, and the time
complexity reduces to O(�N�logN), see Table 1.

The observed number of steps and distance calculations are reported in Tables 2, 3 and 4 for
three image data sets. The number of distance calculations can be reduced down to a fraction
of that of the full search (from 40 million to 47 370 in the case of Bridge) by the simple
implementation. However, the number of steps is reduced only to about 60-75% of that of the
full search (from 81 million to 50 million in the case of Bridge). The double linked list also
solves this problem (in the case of Bridge, the number of steps is reduced from 81 million to
517 905).

a
b

c

�

insert to head

k

fe

Fig. 4. Illustration of the update of the double linked list in the merge procedure of the clusters

a and b in the neighborhood graph (k=4). The merged cluster is assigned to the place of the
cluster a and finally the cluster b is removed.

 6

Table 1: Estimated number of steps and distance calculations per iteration.

Fast PNN Proposed (simple) Proposed (double-linked) Steps Distances Steps Distances Steps Distances
Search nearest N - 1 - 1 -
Merge N - 2 k2 + logN 2 k 2 k2 + �k + logN 2 k
Find neighbors N - kN - �k -
Remove last N - k + 2logN - logN -
Update distances N (1+�) �N kN + �/k�logN � �k + �/k�logN �

Table 2: Observed number of the steps and distance calculations per iteration for Bridge
(k = 3).

Fast PNN Proposed
(simple)

Proposed
(double-linked)

Steps Distances Steps Distances Steps Distances
Search nearest 8 357 760 - 3 840 - 3 840 -
Merge 8 357 760 - 100 636 13 302 181 159 13 316
Find neighbors 8 357 760 - 25 078 280 - 63 765 -
Remove last 8 349 185 - 94 779 - 45 514 -
Update distances 48 538 136 40 166 328 25 196 128 34 068 223 627 34 097
Total 81 960 601 40 166 328 50 468 663 47 370 517 905 47 413

Table 3: Observed number of the steps and distance calculations per iteration for House
(k = 3).

Fast PNN Proposed
(simple)

Proposed
(double-linked)

Steps Distances Steps Distances Steps Distances
Search nearest 581 798 432 - 33 856 - 33 856 -
Merge 581 798 432 - 960 410 112 923 1 245 180 112 942
Find neighbors 581 798 432 - 1 745 395 296 - 255 519 -
Remove last 580 354 971 - 1 026 580 - 497 511 -
Update distances 2 237 529 292 1 655 663 346 1 746 170 412 162 850 1 313 939 163 757
Total 4 563 279 559 1 655 663 346 3 493 586 554 275 773 3 346 005 276 699

Table 4: Observed number of the steps and distance calculations per iteration for Miss America
(k = 3).

Fast PNN Proposed
(simple)

Proposed
(double-linked)

Steps Distances Steps Distances Steps Distances
Search nearest 20 965 544 - 6 224 - 6 224 -
Merge 20 965 544 - 172 616 25 797 273 994 25 819
Find neighbors 20 965 544 - 62 896 632 - 81 537 -
Remove last 20 955 451 - 160 544 - 77 194 -
Update distances 128 322 309 107 331 780 63 078 024 44 418 326 677 44 331
Total 212 174 392 107 331 780 126 314 040 70 215 765 626 70 150

 7

4. Creation of the neighborhood graph

Graph creation is related to the post office problem in computational geometry and in
statistical pattern recognition, it is known as kNN classifier problem. The problem is to find
for every data point x its closest vector from a smaller set of representative vectors. Many
solutions exist (e.g. by solving minimum spanning tree for the special case k=1) at the cost of
O(N�logN + M2), and with the assumption that all pairwise distances are stored in memory. In
our case, however, we have M=N. This makes the time complexity to O(N2), which is the
same as that of the full search.

Efficient construction of the k nearest neighbor graph is also needed in manifold learning
[32], [33], [34]. It uses nonlinear dimensionality reduction by mapping the input vectors into a
smaller dimensional subspace (called manifold). If such a manifold exists, the Euclidean
distance can be assumed to hold between nearby vectors along the surface, which reduces the
dimensionality significantly.

Other related problem in computational geometry is k-all-nearest-neighbors problem. The
problem is to find for all vectors their k-nearest neighbors in the same set. Theoretical results
can be found in [35], but we are not aware of any practical subquadratic algorithm that works
for higher dimension K. In general, this is referred as the curse of dimensionality.

A straightforward solution is to construct the graph by brute force by considering all pairwise
distances but at the cost of O(N2) time. In the following, we aim at solving the problem either
by a faster but heuristic (thus suboptimal) method, or by allowing the worst case time
complexity become O(N2) if the algorithm works faster for typical data sets in practice. We
consider also the following three methods:

�� KD-tree [21]
�� Divide-and-conquer [22, 36]
�� Projection-based search [23, 37]

For further information on recent algorithms for searching the nearest neighbor, see [38], [39].

4.1 KD-tree
There are many algorithms using spatial data structures for fast nearest neighbor search such
as KD-tree, ball-tree, and R-tree. For example, KD-tree [21] has been introduced already long
time ago and it is still widely used for finding the nearest neighbor [40]. These techniques can
be extended for creating a k nearest neighbor graph.

The KD-tree is a generalization of a simple binary search tree, in which each node represents a
subset of the vectors in the data set. The root of the tree represents the entire data set. Each
non-terminal node has two children sons representing two subsets defined by the partitioning.
The terminal nodes represent mutually exclusive small subset of the data sets, which
collectively form a partition of the data set. These terminal subsets of vectors are called
buckets. In K-dimensional vector space, a cluster is represented by K keys. Any of these can
serve as the discriminator for partitioning the subset represented by a particular node in the
tree. In the creation of the neighborhood graph, we insert every vector into the KD-tree, and
then search for each vector its k nearest neighbors from the same tree.

The KD-tree data structure provides an efficient mechanism for examining only those vectors
closest to the query vector, thereby greatly reducing the computation required to find the

 8

k nearest neighbors. The search algorithm is most easily described as a recursive procedure.
The geometric boundaries of the node are determined by the partitions defined at nodes above
it in the tree. If the node under investigation is terminal, then all the vectors in the bucket are
examined excluding the query vector in question. A list of k nearest neighbors so far found
and their distances to the query vector is maintained as an ordered list during the search.
Whenever a vector is examined and found to be closer than the most distant member of this
list, the list is updated.

If the node under investigation is not terminal, the recursive procedure is called for the node
representing the subset on the same side of the partition as the query vector. When the control
returns, a test is made to determine if it is necessary to consider the vectors on the side of the
partition opposite the query vector. This is referred to as the "bounds-overlap-ball" test.
A "ball-with-in-bounds" test is made before returning to determine if it is necessary to
continue the search. These tests are carried out with the distance function defined by the
merge distortion function of the agglomerative clustering of Eq. (4). See [21] for details of the
KD-tree algorithm.

The goal of the optimization of the KD-tree is to minimize the expected number of vectors
examined with the search algorithm. The parameters to be adjusted are the discriminating key,
partition value at each nonterminal node, and the number of vectors contained in each
terminal bucket. The prescription for optimizing the KD-tree is to choose at every nonterminal
node the key with the largest spread in values as discriminator and to choose the median of the
discriminator key values as the partition.

The creation of the KD-tree takes O(KN�logN) time and each search is proportional to logN
[21]. Thus, if we consider K as a small constant, the expected time complexity of the
algorithm is only O(N�logN) in the case of the low dimensional data sets. Nearest neighbor
search capabilities of KD-tree has been studied theoretically and experimentally by Yianilos
[41]. It was concluded that for high dimensional uniformly distributed data, to achieve savings
over exhaustive search, the search radii has to be very small. In other words, as dimensionality
increases either the number of distance computations must be increased, or the search radii
decreased.

4.2 Divide-and-conquer method
Closest pair problem [22] is stated as follows: given N points in K-dimensional space, find the
two points whose mutual distance is minimal. The problem can be solved by divide-and-
conquer technique as follows:

1. Divide X into X1 and X2 by the median hyperplane H normal to some axis.
2. Recursively solve the problem for X1 and X2.
3. Compute δ = min(δ1, δ2), where δ1 and δ2 are the found distances in X1 and X2.
4. Let X3 be the set of points that are within δ of H.
5. Recursively examine all pairs in X3.

It has been shown that, in the case of 2-dimensional vector space, only a constant number of
points can be neighbor in any cell in the set X3 [42]. Assuming that the same primary axis is
used in the division, the points can be pre-sorted and the analysis step can be performed in
linear time. It has been proven that the algorithm takes O(N�logN) time and the algorithm
generalizes to multi-dimensional spaces but at the cost O(N�logK-1N) time [43], where K is the
number of dimensions.

 9

We consider next an algorithm applicable for finding k-near neighbors based on the above
divide-and-conquer approach with the following differences [36]. Firstly, we search several
closest pairs for every vector in the data set. Secondly, we use principal component analysis
(PCA) for calculating the projection axis with the maximum deviation. Thirdly, we use
a distance-based heuristic for selecting the vectors to be included in the third subset.

The pseudo code of the algorithm is given in Fig. 5. At each step of the recursion, we divide
the data set X into two subsets X1 and X2 of equal sizes as follows. We first calculate the
principal axis of the data vectors in X, and then select a (K-1)-dimensional hyperplane H
perpendicular to the principal axis. The hyperplane is selected so that approximately half of
the vectors belong to one side of the space, and the rest to the other side. Once the dividing
procedure has been done, the two subproblems X1 and X2 are solved recursively. Subproblems
smaller than ck are solved by brute force search.

Divide-and-Conquer(X, k, ck) � kNN
IF (|X| > ck) THEN

X1, X2, proj � Divide(X);
kNN1 � Divide-and-conquer(X1, k, ck);
kNN2 � Divide-and-conquer(X2, k, ck);
kNN � kNN1 � kNN2;
X3 � GenerateThirdSet(X, kNN, proj);
kNN3 � Divide-and-conquer(S3, k, ck);
kNN � CombineResults(kNN, kNN3);

ELSE
kNN � BruteForce(X, kNN, k);

END-IF
RETURN kNN;

GenerateThirdSet(X, kNN, proj) � X3
X3 � �;
FOR i � 1 TO |X| DO

� � ProjectionDistance(X[i], proj);
IF c� < kNN[i,1] THEN

X3 � X3 � X[i];
RETURN X3;

Fig. 5. Sketch of the divide-and-conquer algorithm.

After the subproblems have been solved, we generate a third subset X3 consisting of vectors
that are closer to the dividing hyperplane H than to its nearest neighbor in the corresponding
subset (X1 or X2). By using the control parameter c we can control the number of vectors
chosen in the subset. Once the subset has been created, the algorithm is recursively applied to
it. Finally, the results of the three subproblems are combined. In Fig. 6 we illustrate the
division of the set X to three overlapping subsets (X1, X2, X3) according to the dividing
hyperplane H. The arrows indicate the nearest neighbors of the vectors.

 10

Sub set X1

�

�

�

�

H

New neighbor link that w ill be
found by the analysis of X3

Sub set X2

Sub set X3

Fig. 6. Division to three overlapping subsets (X1, X2, X3) according to the dividing hyperplane
H. The arrows indicate the nearest neighbors of the vectors.

The time complexity of the proposed divide-and-conquer algorithm can be approximated by
the recurrence T(N) = 3�T(N/2) + O(N�K2) assuming that the size of the third subset is less than
equal to that of the other subsets X1 and X2. The second term originates from the calculation
of the principal axis. The rest of the calculations can be performed in linear time. The
recurrence solves to O(K2

�N1.58
�logN). It might be possible to squeeze the complexity by

selecting the dividing hyperplane by some simpler method, and by making tighter bounds for
the third subset. Note that the size of the X3 is controlled by the parameter c, which can vary
from c= (X� 3 is empty) to c=0 (X3=X). The time complexity of the first case (c=�) is
O(N�logN).

4.3 Projection-based search
Mean-distance ordered partial search (MPS) was originally proposed to be used with the
k-means clustering (GLA) in [23] but then generalized to agglomerative clustering distance
function in [26]. Here we apply it to the search for k-nearest neighbors as proposed in [37].

4.3.1. Searching for nearest neighbor

The method stores the component sums of each cluster centroid (code vector). Let sa be the
one, for which we seek its nearest neighbors, and sj the candidate to be considered. The
distance of their corresponding code vectors ca and cj can be approximated by the squared
distance of their component sums:

 . (6) � ,e c ca j ak
k

K

jk
k

K

� �
�

�
�

�

�
�

� �

� �
1 1

2

The component sums correspond to the projections of the vectors to the diagonal axis of the
vector space. In typical data sets, the code vectors are highly concentrated along the diagonal
axis, and therefore, the distance of their component sums highly correlate to their real
distance. Then, given the cost function value of the best candidate found so far, vectors
outside the radius defined by a given pre-condition can be excluded in the calculations, see
Fig. 7.

 11

In the agglomerative clustering, the cost function consists of the squared Euclidean distance
ea,j of the code vectors (second part of Eq. 4), and the weighting factor wa,j (first part of Eq. 4),
which can be calculated separately. The following inequality holds true (where K is the
dimension of the data vector):

 . (7) jajajaja ewKew ,,,, ˆ ����

It was originally shown to hold in Euclidean distances in [23], which we have then
generalized to the cluster distances in [26]. Given the cost function value dmin of the best
candidate found so far, the inequality (7) can be utilized in the search of nearest neighbor by
using the following precondition:

 . (8) jaja ewdK ,,min ˆ���

In other words, if the squared Euclidean distance of the component sums (multiplied by the
weighting factor) exceeds the distance to the best candidate found so far (multiplied by K), the
value cannot be smaller than dmin, according to (7). This is illustrated in Fig. 7, where the
distance from A to B is the current minimum. All potential candidates and their projections
must therefore lie inside the circle.

The precondition is utilized as follows. The vectors are sorted according to their component
sums, and then proceed in the order given by the sorting. The search starts from the cluster sa
and proceeds bidirectionally along the projection axis. The weighting factor wa,j and the
distance of the component sums (êa,j) are first calculated, and the precondition (8) is
evaluated. If it holds true, the calculation of the actual cost function value can be omitted and
the candidate cluster sj rejected. The precondition can be calculated fast in constant time as the
component sums and weights are known.

In k-means clustering, the search in any of the two directions can be terminated immediately
when the precondition is met first time. In the agglomerative clustering, however, this is not
possible because of the weighting factor. Even in the initialization, there may be weighted
vectors as the data set can be a result of preprocessing step where duplicate vectors have been
merged and weighted by their frequency. The search is therefore terminated only if the weight
of the candidate cluster equals to 1. See [26] for details.

The pseudo code of the algorithm is given in Fig. 8. For simplicity, we assume that the
clusters have already been sorted before the call of the routine.

b

A

A '

B

B '

C '

C

A

A '

B

B '

C '

C

Fig. 7. Vectors (black dots) and their projections (white dots) according to component sums.

 12

SearchNearestNeighborUsingMPS(sa, S) � nna, da;
dmin � �;
up � TRUE;
down � TRUE;
j1 � a;
j2 � a;

WHILE (up OR down) DO

IF up THEN
j1 � j1 + 1;
IF j1 > N THEN up � FALSE;
ELSE CheckCandidate(sa, sj1, na, dmin, nn, up);

IF down THEN
j2 � j2 - 1;
IF j2 < 1 THEN down � FALSE;
ELSE CheckCandidate(sa, sj2, na, dmin, nn, down);

 END-WHILE;

RETURN nn, dmin;

CheckCandidate(sa, sj, na, dmin, nn, direction) � nn, dmin;
IF PreCondition(sa, sj, dmin) THEN

IF na = 1 THEN direction � FALSE
ELSE

d � MergeCost(sa, sj, dmin);
IF d < dmin THEN

dmin � d;
nn � j;

RETURN nn, dmin;

PreCondition(sa, sj, dmin) � BOOLEAN;
w � na� nj / (na + nj);
ê � (suma- sumj)2;
RETURN(K�dmin < w � ê);

Fig. 8. Pseudo code of the MPS method used for the graph creation. The input of the
algorithm are the cluster sa whose neighbor we are searching for and the entire clustering S.
The output consists of the index and the distance of the nearest neighbor of the cluster sa.

4.3.2 Searching for k neighbors

We apply the MPS method for finding the k nearest clusters as follows. We relax the
condition of the graph and find any k neighbors instead of the nearest ones. This is
a reasonable modification because the optimality of the graph cannot be guaranteed during the
process of the agglomerative clustering. Thus, by relaxing the definition of the k-nearest
neighbor graph, additional speed-up can be obtained at a slight increase in the distortion
function value.

In particular, we use the exact MPS method for finding the nearest neighbor but stop the
search immediately when it has been found. In addition to this, we maintain an ordered list of
the k best candidates found so far. The rest of the neighbors are then chosen simply from the
list of the candidates no matter whether they are actually the k-1 nearest or not. It is expected
that the rest of the candidates are nearby vectors although not necessarily the nearest ones.

 13

Even if some links were missing, vectors in the same cluster are most likely to be connected
anyhow.

Another way to limit the search is to set up a fixed search range. In this case, the limit must be
chosen experimentally. We will study these two alternatives (full search MPS and limited
search MPS) later in Section 5.

The advantages of the MPS method are its simplicity and that it is expected to be fast on data
sets with correlated vectors. The main disadvantage of the method is that the time complexity
is still O(N2), which is not any better than that of the Brute force. The actual speed-up is
expected to be smaller on data sets with uncorrelated vectors.

4.3.3 Using PCA-projection

Instead of using component sum in the MPS method one can perform principal-component
analysis (PCA) on the data set. Thus, one can use the projection to first principal component
as the index in the purpose to speed up the search. When one has better projection axis the
binary search for k nearest is probably terminated earlier. However, the calculation of the
principal axis for projection using the power method takes O(NK2) time. For high dimensional
data sets it is likely that the extra work caused by the calculation of the principal axis exceeds
the otherwise gained speed up.

4.4 Other methods
The other methods that can be considered for searching the k nearest neighbors include:

�� VPT [44]
�� AESA [39], [44]
�� MST [14]
�� TIEC [45]

Vantage point trees (VPTs) build a binary tree recursively, taking any vector p as the root and
taking the median M of the set of all distances d. Those vectors u such that d(p, u) M are
inserted into the left subtree, while those such that d(p, u) > M are inserted into the right
subtree. To solve a query in this tree, one measures d=d(q, p). If d-r M the search enters
into the left subtree, and if d+r > M into the right subtree (with search radius r). One reports
every vector considered that is close enough to the query. The VPT takes O(N) space and it is
build in O(N�logN) worst case time. The query complexity is argued to be O(logN), but as
pointed out, this is true only for very small search radii, too small to be an interesting case.

�

�

Approximation elimination search algorithm (AESA) is experimentally shown to have O(1)
query time. The structure is simply a matrix with the N(N-1)/2 precomputed distances among
the vectors of the data set. At search time a vector p from the data set is selected at random
and measure rp = d(p, q), eliminating all vectors u of the data set that do not satisfy rp – r
d(u, p) r

�

� p + r (with search radius r). While all the d(u, p) has been precomputed, so only
d(p, q) must be calculated at search time. The process of taking a random pivot among the
(not yet eliminated) vectors of the data set and eliminating more vectors from the data set is
repeated until the candidate set is empty and the query has been satisfied. See [34] for details
of the algorithm. The problem with the algorithm is that it needs O(N2) space and construction
time which is unacceptably high for all but very small data sets.

Minimum spanning tree (MST) can be constructed in O(|E| + |V|log|V|) time, where |E| is the
number of the edges and |V| is the number of the vertices. There is a data vector at each vertex

 14

of the MST, and the weight of an edge is the distance between the data vectors connected by
the edge. In an MST, each vertex is always connected to at least one of its nearest neighbors.
Thus, a partial ordering of the data vectors can be obtained. The MST presentation can be
precomputed, and then stored in O(N) space. Unfortunately, in the case for searching the k
nearest neighbors the precomputing takes O(N2 + N�logN) time.

The triangle inequality elimination criteria (TIEC) restrict the nearest neighbor search to a
subsection of the data set based on the distances of the data vectors to an "anchor" vector.
Given a fixed anchor vector, the distances between a anchor and each data vector is pre-
computed and stored in O(N) space. Those distances serve as scalar projections of the data
vectors with respect to the anchor vector. The use of several anchor vectors can strengthen
TIEC's ability to eliminate data vectors from consideration. However, each anchor vector
requires O(N) space for the scalar projections, and the distances between each anchor vector
and the other data vector needs to be calculated. If we use N anchors the TIEC take O(N2)
space and time.

5. Experiments

We consider three image data sets (Fig. 9), four synthetically generated data sets (Fig. 10),
three BIRCH data sets [46], and six high dimensional data sets Dim032 to Dim1024. The
vectors in the first set (Bridge) are 4�4 blocks taken from gray-scale image, and in the second
set (Miss America) 4�4 difference blocks of two subsequent frames in video sequence. The
third data set (House) consists of color values of the RGB image. The number of clusters is
fixed to M=256. The data sets S1 to S4 are two-dimensional sets with varying complexity in
terms of spatial data distributions with M=15 clusters. The data sets Dim032 to Dim1024 have
slightly less spatial complexity but higher dimensionality varying from 32 to 1024 with
M=256. The summary of the data sets is presented in Table 5. The algorithms are coded in
DJGPP C Version 2.01 and are run on a 450 MHz Pentium III personal computer, in
Microsoft Windows 98 Operating system.

Spatial vectors: Spatial residual vectors: Color vectors:

Bridge (256�256)

K=16, N=4096
Miss America (360�288)

K=16, N=6480
House (256�256)

K=3, N=34112*

Fig. 9. Image data sets. *Duplicate training vectors are combined and frequency information is
stored. Note that when duplicates vectors are merged, all distance and merge cost calculations
must be multiplied by the frequency of the data vectors representing multiple instances of the

original data set.

 15

Data set S1 Data set S2 Data set S3 Data set S4

Fig. 10. Two-dimensional data sets with varying complexity in terms of spatial data
distributions. The data sets have 5000 vectors scattered around 15 predefined clusters with

a varying degree of overlap.

Table 5. Summary of the data sets.
Data set Type of data set Number of data

vectors (N)
Number of
clusters (M)

Dimension of
data vector (K)

Bridge Gray-scale image 4086 256 16
House RGB image 34112 256 3

Miss America Residual vectors 6480 256 16
Data set S1- S4 Synthetically generated 5000 15 2

BIRCH1-BIRCH3 Synthetically generated 100000 100 2
Dim32-1024 Synthetically generated 1000 256 32 – 1024

5.1 Parameter settings
The effect of the neighborhood size (parameter k) on the running time and quality is shown in
Fig. 11 with the data sets Bridge, House, Miss America and BIRCH1. The results indicate that
a very small neighborhood size such as k=3 is sufficient for obtaining high quality clustering
for the image data sets, and larger neighborhood sizes gives only slight improvements over
these. In the case of noisy data with overlapping clusters (sets S1 to S4), however, too a small
neighborhood size (k=3) can create isolated subclusters. A slightly larger neighborhood size
(k=6) is therefore recommended for these data sets.

The running times of the agglomeration are summarized in Table 6 for the simple algorithm,
and for the double linked algorithm in the case of the image data sets. The results show that
the simple algorithm is useful with Bridge and Miss America, but not with the larger image set
House. The double linked algorithm, on the other hand, works very fast (�1 second) in all
cases. The MSE-values are virtually the same with both variants, as expected.

The overall running times and the corresponding number of distance calculations are
summarized in Table 7. Comparative results are given for the fast exact PNN [7], and the fast
exact PNN with several speed-up methods as proposed in [26]. The results show that the
proposed method is significantly faster than the fast exact PNN with all data sets. The results
are most remarkable with the largest data set (House), for which the running time was reduced

 16

down to 9 % from that of the fastest comparative variant. The corresponding numbers for
Bridge and Miss America are 33 % and 43 %.

The running time has linear dependency with the parameter k but the growing rate is relatively
small, see Fig. 11. The results also indicate that the graph creation is the bottleneck of the
algorithm. We therefore study next the effect of the graph creation in more detail.

0
1
2
3
4
5
6
7

2 4 6 8 10 12 14 16 18 20

k

se
co

nd
s

Agglomeration

Graph creation

Bridge

167
168
169
170
171
172
173
174

2 4 6 8 10 12 14 16 18 20

k

M
SE

Bridge

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20k

se
co

nd
s

Agglomeration

Graph creation

House

6.00

6.20

6.40

6.60

6.80

7.00

2 4 6 8 10 12 14 16 18 20k

M
S

E

House

0
10
20
30
40
50
60

2 4 6 8 10 12 14 16 18 20

k

se
co

nd
s

Agglomeration

Graph creation

Miss America

5.35
5.40
5.45
5.50
5.55
5.60

2 4 6 8 10 12 14 16 18 20

k

M
S

E

Miss America

0

10

20

30

40

50

3 4 5 6 7

k

se
co

nd
s

Agglomeration

Graph creation

BIRCH1

4

5

6

7

8

3 4 5 6 7
k

M
SE

BIRCH1

Fig. 11. The running time and quality of the proposed method as a function of k. The MPS

algorithm is used for graph creation and the double linked list approach in the agglomeration.

 17

Table 6. Running times of the iterations (excluding graph creation).
 Bridge House Miss America
 Time MSE Time MSE Time MSE

Simple 4 171.12 542 6.40 12 5.45
Double linked < 1 171.11 1 6.37 < 1 5.44

Table 7. Summary of running times and the number of distance calculations of the proposed
method (with MPS graph creation) in comparison to the best full search approaches [7, 26].

Bridge House Miss America
Distance

calculations
Run
time

Distance
calculations

Run
time

Distance
calculations

Run
time

Fast PNN [7] 48 552 888 79 2 237 460 562 1574 128 323 740 229
Fast PNN +

MPS + PDS + lazy [26] 6 167 439 9 37 752 863 190 83 323 889 106

Graph creation 2 341 547 3 19 017 163 18 32 440 442 44
Agglomerations 47 413 < 1 276 699 1 70 150 < 1 Proposed

Total 2 388 960 3 19 293 862 19 32 510 592 44

5.2 Graph creation
For the graph creation, we consider the following five algorithms from Section 4:

�� Brute force
�� KD-tree
�� Divide-and-conquer (D-n-C)
�� Projection-based (MPS)
�� Projection-based (MPS / PCA)

Results for the image data sets are shown in Table 8, and for the Dim data sets in Table 9
using default parameter settings of the algorithms. For the image data sets, divide-and-
conquer works best for the 16-dimensional data sets (Bridge, Miss America) whereas KD-tree
is the most efficient for the 3-dimensional color vectors (House). The small differences in the
MSE-values are due to the different order of processing.

For the higher dimensional data, the MPS method is the fastest while the MPS / PCA and the
Divide-and-conquer becomes slower than the Brute force when the dimension grows high
enough, see Fig. 12. These two methods calculate the principal axis for projection, which
takes O(NK2) time and thus, has quadratic dependency on the dimension. The KD-tree seems
to operate reasonably fast without suffering of the curse of dimensionality. The reason might
be that the clusters in these data sets are well separated and therefore having lower intrinsic
dimension than representational dimension.

Overall, no method can be said to systematically outperform the others, and the graph creation
remains the bottleneck of the algorithm in the sense running time. We therefore next fine-tune
the methods towards faster running time at the cost of increasing distortion. We consider the
following two variants:

�� Divide-and-conquer by varying the parameter c (see Section 4.2),
�� Limited-search MPS by setting a fixed search limit (see Section 4.3.2).

 18

The corresponding time-distortion performance is illustrated in Fig. 13 for House and Miss
America. Even though the results favor the divide-and-conquer method in the case of Miss
America, it has much narrower operative time marginal, and the limited-search MPS is better
in the case of all other sets. The KD-tree shows the best performance in the 3-dimensional
data set House.

Table 8. Running times of the graph creation algorithms for the image data sets (k=3).
Bridge House Miss America

Time MSE Time MSE Time MSE
Brute force 34 171.17 881 6.43 89 5.44

KD-tree 12 170.42 5 6.36 79 5.44
D-n-C 2 171.80 49 6.58 7 5.44
MPS 3 171.11 18 6.37 44 5.44

MPS / PCA 10 170.97 37 6.39 58 5.43

Table 9. Running times of the graph creation algorithms for the Dim data sets (k=3).
Dim032 Dim064 Dim128 Dim256 Dim512 Dim1024 Time MSE Time MSE Time MSE Time MSE Time MSE Time MSE

Brute force 4 2.16 7 0.93 15 0.57 29 0.35 57 0.23 113 0.14
KD-tree < 1 2.16 1 0.93 3 0.57 4 0.35 8 0.23 15 0.14
D-n-C 1 2.16 2 0.93 7 0.57 28 0.35 142 0.23 426 0.14
MPS 1 2.16 1 0.93 1 0.57 1 0.35 3 0.23 5 0.14

MPS / PCA 1 2.16 1 0.93 2 0.57 9 0.35 42 0.23 149 0.14

1

10

100

1000

64 128 256 512 1024
Dimension

Ti
m

e
(s

ec
on

ds
)

Brute force

D-n-C

MPS

MPS/PCA

KD-tree

Fig. 12. Running times of the graph creation versus the dimension of the data vector (k=3).

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

0 10 20 30 40 50
Time (seconds)

M
SE

K-means (fast)

House

MPS

K-means

D-n-C

KD-tree 5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

0 10 20 30 40 50 60 70 80
Time (seconds)

M
SE

K-means (fast)

Miss America

MPS

K-means

D-n-C

KD-tree

Fig. 13. Time-distortion performance of the proposed method (k=3).

 19

5.3 Comparison
Finally, the proposed method is compared against the best full search PNN variants, and
against standard k-means algorithm. Comparative results are summarized in Table 10 for all
data sets with the following methods included:

�� Fast PNN [7]
�� Proposed
�� Proposed + k-means
�� K-means [8]

The Fast PNN has two variants: the fast implementation as proposed in [7] and the improved
variant [26]. The latter one uses three speed-up techniques: PDS, MPS and Lazy evaluation of
the distances. The k-means has two variants: the original method [8], and a faster variant,
which uses PDS, MPS and activity detection for speed-up [47]. Results are given also for the
proposed method + k-means, in which the data is first processed by the proposed method and
the result is input to the k-means. The results show that the proposed method produces better
result with an algorithm that is competitive to the k-means in speed.

The final clustering and the neighborhood graph of the proposed method are illustrated in
Fig. 14 for the data set S2. It shows that the proposed method achieves the correct clustering
whereas the k-means fails to locate the clusters properly. Note that the final graph does not
always have k=5 outgoing edges for every node although every cluster is still connected by the
graph. With a smaller number of neighbors (k=3), however, there would have been isolated
components and, in some cases, the algorithm degenerated to situation where there were not
enough edges to achieve the final clustering. It is therefore recommended to use slightly larger
neighborhood size, just in case.

Fig. 14. Clustering of set S2 by k-means (left) showing the cluster centroids and the

corresponding Voronoi partition of the space; clustering by the proposed method using k=5
(right) showing the cluster centroids and the remaining neighborhood links.

 20

Table 10. Comparison of the proposed method (k=5) with the existing algorithms.
Bridge House Miss America Image data sets Time MSE Time MSE Time MSE

Full search 79 168.92 1574 6.27 229 5.36 Fast PNN
+PDS+MPS+Lazy 9 168.92 190 6.26 106 5.37

Full MPS 3 170.28 19 6.33 45 5.41 Proposed
Limited search MPS 3 170.56 14 6.51 6 5.58

Full MPS 4 166.23 20 6.14 47 5.30 Proposed +
k-means Limited search MPS 4 166.38 15 6.18 9 5.34

Standard 13 179.95 23 7.77 20 5.95 K-means
+PDS+MPS+Activity 2 180.02 3 7.80 8 5.95

BIRCH1 BIRCH2 BIRCH3 Birch data sets Time MSE Time MSE Time MSE

Full search > 9999 4.73 > 9999 2.28 > 9999 1.96 Fast PNN
+PDS+MPS+Lazy 2397 4.73 2115 2.28 2316 1.96

Full MPS 40 4.71 16 2.28 34 1.96 Proposed
Limited search MPS 37 4.73 15 2.28 28 2.02

Full MPS 44 4.64 17 2.28 51 1.87 Proposed +
k-means Limited search MPS 41 4.64 16 2.28 44 1.90

Standard 209 5.51 43 7.42 171 2.41 K-means
+PDS+MPS+Activity 29 5.34 8 7.85 35 2.50

S1 S2 S3 S4 Synthetic data sets Time MSE Time MSE Time MSE Time MSE

Full search 25 8.93 25 13.44 25 17.70 25 17.52 Fast PNN
+PDS+MPS+Lazy 3 8.93 3 13.44 3 17.70 3 17.52

Full MPS < 1 9.07 < 1 13.41 < 1 17.21 < 1 16.69 Proposed
Limited search MPS < 1 9.07 < 1 13.41 < 1 17.21 < 1 16.69

Full MPS < 1 8.92 < 1 13.28 < 1 16.89 < 1 15.71 Proposed +
k-means Limited search MPS < 1 8.92 < 1 13.28 < 1 16.89 < 1 15.71

Standard < 1 19.02 < 1 18.78 < 1 19.78 < 1 16.72 K-means
+PDS+MPS+Activity < 1 18.07 < 1 16.69 < 1 18.53 < 1 16.71

 21

6. Conclusions

Fast agglomerative clustering using k nearest neighbor graph was proposed. A relatively small
neighborhood size is sufficient to produce clustering with similar quality to that of the full
search. At the same time, significantly fewer distance calculations and operations are needed
and, therefore, remarkable speed-up is achieved. The running time is comparable to that of the
k-means with a lower distortion.
Several algorithms for graph creation algorithms are considered, of which the projection-
based heuristic (MPS) works reasonably well in most cases. The divide-and-conquer is faster
in the case of some high dimensional image data sets, and the KD-tree in the case of
3-dimensional color clustering.
The proposed method has also some weaknesses. First of all, the graph creation is the
bottleneck of the algorithm. It remains an open question whether faster method could be
invented with better time-distortion performance than the proposed divide-and-conquer and
the limited-search MPS algorithm.
Secondly, no theoretical solutions are given to set-up the neighborhood size others than
experimentally. Fortunately, no major complications arose and the results were consistently
better than that of the k-means. However, the method was detected to fail in a similar manner
as the k-means if the neighborhood size is set too low. One possible solution would be to use
a variable-size neighborhood depending on the overall distance distribution, or to apply multi-
resolution approach in order to guarantee the connectivity of the graph overall.
To sum up, we conclude that the improvement due to the neighborhood graph is significant.
The idea could also be applicable in other clustering algorithms also. This is a topic for future
research.

 22

References

[1] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[2] B.S. Everitt, Cluster Analysis (3rd edition). Edward Arnold / Halsted Press, London,
1992.

[3] A. Gersho and R.M. Gray, Vector Quantization and Signal Compression. Kluwer
Academic Publishers, Dordrecht, 1992.

[4] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley Sons, New York, 1990.

[5] J.H. Ward, "Hierarchical grouping to optimize an objective function," J. Amer.
Statist.Assoc., 58, pp. 236-244, March 1963.

[6] W.H. Equitz, "A new vector quantization clustering algorithm," IEEE Trans. on
Acoustics, Speech, and Signal Processing, 37 (10), pp. 1568-1575, October 1989.

[7] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, "Fast and memory efficient
implementation of the exact PNN," IEEE Trans. on Image Processing, 9 (5), pp. 773-
777, May 2000.

[8] Y. Linde, A. Buzo and R.M. Gray, "An algorithm for vector quantizer design," IEEE
Trans. on Communications, 28 (1), pp. 84-95, January 1980.

[9] D.P. de Garrido, W.A. Pearlman and W.A. Finamore, "A clustering algorithm for
entropy-constrained vector quantizer design with applications in coding image
pyramids," IEEE Trans. on Circuits and Systems for Video Technology, 5 (2), pp. 83-95,
April 1995.

[10] T. Kaukoranta, P. Fränti and O. Nevalainen, "Iterative split-and-merge algorithm for VQ
codebook generation," Optical Engineering, 37 (10), pp. 2726-2732, October 1998.

[11] P. Fränti, J. Kivijärvi, T. Kaukoranta and O. Nevalainen, "Genetic algorithms for large
scale clustering problem," The Computer Journal, 40 (9), pp. 547-554, 1997.

[12] P. Fränti, "Genetic algorithm with deterministic crossover for vector quantization,"
Pattern Recognition Letters, 21 (1), pp. 61-68, January 2000.

[13] J. Shanbehzadeh and P.O. Ogunbona, "On the computational complexity of the LBG
and PNN algorithms," IEEE Trans. on Image Processing, 6 (4), pp. 614-616, April
1997.

[14] J.C. Gover and G.J.S. Ross, "Minimum spanning trees and single linkage cluster
analysis," Applied Statistics, 18, pp. 54-64, 1969.

[15] E. Hartuv and R. Shamir, "A clustering algorithm based on graph connectivity,"
Information Processing Letters, 76 (4-6), pp. 175-181, December 2000.

[16] G.C. Osbourn and R.F. Martinez, "Empirically defined regions of influence for cluster
analysis," Pattern Recognition, 28 (11), pp. 1793-1806, November 1995.

[17] S. Bandyopadhyay, "An automatic shape independent clustering technique," Pattern
Recognition, 37 (1), pp. 33-45, January 2004.

[18] G. Karypis, E. Han and V. Kumar, "CHAMELEON: A hierarchical clustering algorithm
using dynamic modeling," IEEE Computer, 32 (8), pp. 66-75, August 1999.

 23

[19] D. Harel and Y. Koren, "Clustering spatial data using random walks," The 7th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'01), San
Francisco, California, USA, pp. 281-286, August 2001.

[20] M.R. Brito, E.L. Chavez, A.J. Quiroz and J.E. Yukich, "Connectivity of the mutual
k-nearest-neighbor graph in clustering and outlier detection," Statistics & Probability
Letters, 35 (1), pp. 33-42, August 1997.

[21] J.L. Bentley, "Multidimensional binary search trees used for associative searching,"
Communications of the ACM, 18 (9), pp. 509-517, September 1975.

[22] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction. Springer-
Verlag, 1985.

[23] S.-W. Ra and J.K. Kim, “A fast mean-distance-ordered partial codebook search
algorithm for image vector quantization,” IEEE Trans. on Circuits and Systems, 40 (9),
pp. 576-579, September 1993.

[24] T. Kurita, "An efficient agglomerative clustering algorithm using a heap," Pattern
Recognition, 24 (3), pp. 205-209, March 1991.

[25] T. Kaukoranta, P. Fränti and O. Nevalainen, "Vector quantization by lazy pairwise
nearest neighbor method," Optical Engineering, 38 (11), pp. 1862-1868, November
1999.

[26] O. Virmajoki, P. Fränti and T. Kaukoranta, "Practical methods for speeding-up the
pairwise nearest neighbor method," Optical Engineering, 40 (11), pp. 2495-2504,
November 2001.

[27] O. Virmajoki and P. Fränti, "Fast pairwise nearest neighbor based algorithm for
multilevel thresholding," Journal of Electronic Imaging, 12 (4), pp. 648-659, October
2003.

[28] S. Arya and D.M. Mount, "Algorithm for fast vector quantization," Proceedings of Data
Compression Conference, Snowbird, Utah, pp. 381-390, 1993.

[29] A.D. Constantinou, R.D. Bull and C.N. Canagarajah, "A new class of VQ codebook
design algorithms using adjacency maps," SPIE Electronics Imaging 2000, San Jose,
3974, pp. 625-634, 2000.

[30] G.L. Miller, S-H. Teng, W. Thurston and S.A. Vavaris, "Separators for sphere-packings
and nearest neighbor graphs," Journal of the ACM, 44 (1), pp. 1-29, January 1997.

[31] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-
Verlag, New York, 1998.

[32] J.B. Tenenbaum, V. de Silva and J.C. Langford, "A global geometric framework for
nonlinear dimensionality reduction," Science, 290 (5500), pp. 2319-2323, December
2000.

[33] L.K. Saul and S.T. Roweis, "Think globally, fit locally: unsupervised learning of low
dimensional manifolds," Journal of Machine Learning Research, 4, pp. 119-155, June
2003.

[34] M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data
representation," Neural Computation, 15 (6), pp. 1373-1396, June 2003.

[35] P.B. Callahan and S.R. Kosaraju, "A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields," Journal of the
Association for Computing Machinery, 42 (1), pp. 67-90, January 1995.

 24

[36] O. Virmajoki and P. Fränti, "Divide-and-conquer algorithm for creating neighborhood
graph for clustering," Int. Conf. on Pattern Recognition (ICPR’04), Cambridge, UK, 1,
pp. 264-267, August 2004.

[37] P. Fränti, O. Virmajoki and V. Hautamäki, "Fast PNN-based clustering using k-nearest
neighbor graph," IEEE Int. Conf. on Data Mining (ICDM’03), Melbourne, Florida,
USA, pp. 525-528, November 2003.

[38] V. Ramanasubramanian and K.K. Paliwal, "Fast nearest neighbor search algorithm
based on approximation-elimination search," Pattern Recognition, 33 (9), pp. 1497-
1510, September 2000.

[39] S. Bandyopadhyay and U. Maulik, "Efficient prototype reordering in nearest neighbor
classification," Pattern Recognition, 35 (12), pp. 2791-2799, December 2002.

[40] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman and A.Y. Wu,
"An efficient k-means clustering algorithm: analysis and implementation," IEEE Trans.
on Pattern Analysis and Machine Intelligence, 24 (7), pp. 881-892, July 2002.

[41] P.N. Yianilos, "Locally lifting the curse of dimensionality for nearest neighbor search,"
Proceedings of the Eleventh ACM-SIAM Symposium on Discrete Algorithms
(SODA'00), San Francisco, California, USA, pp. 361-370, January 2000.

[42] M.I. Shamos, "Geometric complexity," Proc. 7th Annual ACM Symposium on the
Theory of Computing, pp. 224-233, Albuquerque, New Mexico, 1975.

[43] J.L. Bentley and M.I. Shamos, "Divide-and-conquer in multidimensional space,"
Proceedings of the 8th Annual ACM Symposium on the Theory of Computing, pp. 220-
230, Hershey, PA, May 1976.

[44] E. Chávez, G. Navarro, R. Baeza-Yates and J.L. Marroquín, "Searching in metric
spaces," ACM Computing Surveys, 33 (3), pp. 273-321, September 2001.

[45] W. Li and E. Salari, "A fast vector quantization encoding method for image
compression," IEEE Trans. on Circuit and Systems for Video Technology, 5 (2), pp.
119-123, April 1995.

[46] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: A new data clustering algorithm
and its applications," Data Mining and Knowledge Discovery, 1 (2), pp. 141-182, June
1997.

[47] T. Kaukoranta, P. Fränti and O. Nevalainen, "A fast exact GLA based on code vector
activity detection," IEEE Trans. on Image Processing, 9 (8), pp. 1337-1342, August
2000.

 25

	1.Introduction
	2. Agglomerative clustering
	3.Agglomerative clustering using kNN graph
	3.1Simple implementation
	3.2Time complexity
	3.3Double linked list

	4.Creation of the neighborhood graph
	KD-tree
	4.2Divide-and-conquer method
	4.3Projection-based search
	4.3.1. Searching for nearest neighbor
	4.3.2Searching for k neighbors
	4.3.3Using PCA-projection

	4.4Other methods

	5.Experiments
	5.1Parameter settings
	5.2Graph creation
	5.3Comparison

	6.Conclusions
	References

