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Abstract: We propose a method for constructing optimal clustering via 
a sequence of merge steps. We formulate the merge-based clustering as 
a minimum redundancy search tree, and then search the optimal clustering by 
a branch-and-bound technique. The result has theoretical interest and it can 
provide new insight to the problem itself. We introduce two suboptimal but 
polynomial time variants based on the proposed branch-and-bound technique. 
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1. Introduction 
Clustering is a fundamental problem that must often be solved as a part of more 
complicated tasks in pattern recognition, image analysis and other fields of science and 
engineering [1, 2, 3, 4]. Clustering is also needed for designing a codebook in vector 
quantization [4]. The clustering problem is defined here as follows. Given a set of N 
data vectors X={x1, x2, …, xN}, partition the data set into M clusters such that a given 
distortion function f is minimized. 

The clustering problem in its combinatorial form has been shown to be NP-hard [5]. 
No polynomial time algorithm is known to find the globally optimal solution, and sub-
optimal solutions are usually obtained by heuristic algorithms. Despite the known 
limitations implicated by the NP-completeness, solving the optimal clustering problem 
has theoretical interest that can provide insight to the problem itself. It might also have 
practical implications in the case of problem instances of limited size. 

Agglomerative clustering is an approach for generating the clustering hierarchically. 
The clustering starts by initializing each data vector as its own cluster. Two clusters are 
merged at each step and the process is repeated until the desired number of clusters is 
obtained. Ward’s method [6] selects the cluster pair to be merged so that it increases the 
given objective function value least. In the vector quantization context, this is known as 
the pairwise nearest neighbor (PNN) method due to [7]. In the rest of this paper, we 
denote it as the PNN method. 

The PNN method is interesting here because of its conceptual simplicity and because of 
the optimality of the single merge step. This step reduces a given clustering from m 
clusters to m-1 clusters by minimizing the optimization function value. Even though the 
step is optimal, there is no guarantee of optimality of the final clustering resulting from 
a series of locally optimal merge steps. The main idea of the PNN method, however, 
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can be generalized so that we do not optimize only a single merge but over multiple 
merge steps.  

In this paper, we present an optimal clustering algorithm derived from the PNN method. 
It is easy to see that any clustering can be produced by a series of merge operations. 
Every merge reduces the number of clusters by one. It therefore takes exactly N-M steps 
to generate a clustering with M groups from the set of N vectors. Optimal clustering can 
be found by considering all the possible merge sequences and finding the one that 
minimizes the distortion function. The idea can be implemented as a branch-and-bound 
technique that uses a search tree for finding the optimal clustering, and a suitable 
bounding criterion to cut out non-optimal branches of the tree.  

The relation of the proposed method to the PNN method is demonstrated in Fig. 1. At 
the first step, all possible merges of two vectors are generated. At the second step, the 
PNN method would continue from the locally optimal result whereas branch-and-bound 
technique will study all branches. The root of the search tree represents the case where 
all data vectors are assigned to their own clusters. At the level N-m, there are all 
possible clusterings to m clusters. The final clustering with M groups is located at the 
level N-M. All branches of the tree must be generated in order to find the optimal 
clustering. 

We consider also two sub-optimal variants that compromise the optimality but work in 
polynomial time. The first algorithm generates the search tree only down to a fixed 
limit. The best result of the fixed depth is then taken as the new starting point, and the 
same procedure is repeated until the desired number of clusters is reached. The second 
variant proceeds only one level in the tree along the path towards to the direction of the 
best solution within the search range. After this, a completely new search tree is 
generated for one level further, and the process is then repeated. 

The rest of the paper is organized as follows. In Section 2, we give formal description 
of the clustering problem, review previous literature, and recall the PNN method. The 
branch-and-bound technique is introduced in Section 3. We first study the redundancy 
of the search tree in Section 3.1, and then present a method to generate minimum 
redundancy tree in Sections 3.2 and 3.3. A bounding criterion is formalized in Section 
3.4 in order to cut irrelevant branches of the tree. Two suboptimal polynomial time 
variants are introduced in Sections 4. Experimental tests are made in Section 5, and 
conclusions drawn in Section 6. The proposed branch-and-bound method was first 
reported in a conference [8], and the polynomial time variants later in [9]. 
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Fig. 1. Illustration of the PNN method as a search tree. 

 
 
2. Pairwise nearest neighbor method 
Given a set of N data vectors X={x1, x2, …, xN}, clustering aims at solving the partition 
P={p1, p2, …, pN}, which defines for each data vector the index of the cluster where it 
belongs to. Cluster sa is defined as the set of data vectors that belong to the same 
partition a: 

 �s x p aa i i� � � .        (1) 

Clustering is then represented as the set S={s1, s2, ..., sM}. In vector quantization, the 
output of clustering is a codebook C={c1, c2, …, cM}, 

The most important choice in clustering is the cost function f for evaluating the 
goodness of clustering. When the data objects belong to the Euclidean vector space, a 
commonly used function is the mean square error between the data objects and their 
cluster centroids. Given a partition P and the cluster representatives C, it is calculated 
as: 

 � � �
�

���

N

i
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N

PCMSE
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21, .      (2) 

The choice of the function depends on the application and there is no general solution 
of which measure should be used. However, once the objective function is decided the 
clustering problem can be formulated as a combinatorial optimization problem.  

 
2.1 Optimal clustering 
Optimal solution can be solved by constructing all MN/M! possible groupings of N data 
vectors into M groups, and selecting the optimal one. This can be implemented by brute 
force by permuting all possible partitions of the data vectors. We refer this as partition-
based approach.  

This approach has been used for developing branch-and-bound technique by Koontz et 
al. [10]. They construct the partition by assigning data vectors to the clusters one by 
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one, and use a partial distortion for bounding non-optimal solutions. They have reported 
to solve problems of size N=40, and of size N=120 by compromising the optimality 
with a stronger bouncing criterion. 

Cheng [11] finds clusters in a binary matrix where the values correspond to 
files/transactions relationships, and the goal is to organize the database for minimizing 
disc access. Problem size of 45�20 matrix has been solved by the method.  

In [12], the clustering problem was formulated as a partitioning on edge-weighted 
graph, in which the goal is to minimize the sum of weights of the edges within the 
clusters [12]. Problem size of N=145 has been considered. 

Iyer and Aronson [13] proposed a parallel implementation with a linear speed-up with 
respect to the number of processors available. This increases the size of problems that is 
possible to solve by the algorithm, but only by a logarithmic factor. 

Approximation algorithms have also been considered but with a limited success. Feder 
and Greene have shown that one cannot approximate optimal cluster size for fixed 
number of clusters in polynomial time size within a factor close to 2, unless P=NP [14]. 
A solution with the time complexity of O(N log M) was then proposed. Mettu and 
Plaxton have proposed a randomized O(1)-approximation algorithm that works in 
O(NM) time  [15]. 

Polynomial time solutions are known but only for some special cases. For example, the 
clustering has been formulated as a graph problem in [16] using the assumption that the 
data set can be adequately represented by an adjacency graph. The method finds the 
partition that minimizes the maximum flow between the sub graphs (clusters) in the 
given partition. Efficient polynomial time solutions are known for this problem. The 
clustering problem involved in parallel scheduling [17] has been formulated as finding 
exact minimum makespan constrained by a tree structure.  

It is also noted that efficient algorithm exists for the 1-dimensional special case. An 
example is the scalar quantization problem, for which O(NM) solution is known [18]. 

 

2.2 Pairwise nearest neighbor method 
The pairwise nearest neighbor (PNN) method [6, 7] generates the clustering 
hierarchically using a sequence of merge operations as described in Fig. 2. In each step 
of the algorithm, the number of the clusters is reduced by merging two nearby clusters: 

 .         (3) baa sss ��

The cost of merging two clusters sa and sb is the increase in the MSE-value caused by 
the merge. It can be calculated using the following formula [7]: 

 2
, ba

ba

ba
ba cc

nn
nnd ��

�

� ,       (4) 

where na and nb denote to the sizes of the corresponding clusters sa and sb.  
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The PNN applies local optimization strategy: all possible cluster pairs are considered 
and the one increasing the distortion least is chosen: 

 .        (5) 
� � ji

ji
Nji

dba ,,1,
minarg,
�

�

�

A single merge step of the PNN is optimal but there is no guarantee of optimality of the 
final clustering resulting from a series of locally optimal merge steps. The time 
complexity of the PNN varies from O(N2) to O(N3) depending on the implementation 
and data set [19]. 

 

PNN(X, M) � S 

FOR i�1 to N DO 
si � {xi}; 

REPEAT 

(sa, sb) � SearchNearestClusters(S); 
Merge(sa, sb); 

UNTIL |S|=M; 

Fig. 2. Structure of the PNN method. 
 
 
3. Merge-based branch-and-bound technique 
We described next a branch-and-bound technique that generates optimal clustering by 
a sequence of merge operations. It is easy to see that any clustering can be produced by 
merging the data vectors into the groups one by one. Every merge operation reduces the 
number of clusters by one. It therefore takes exactly N-M steps to generate a clustering 
with M clusters, independent of the order of the merge operations. 

For example, consider the example shown in Fig. 1, in which we have five data points 
{A, B, C, D, E}. The resulting clustering can be generated by the following three merge 
operations: 

 Initial: {A} {B} {C} {D} {E} 
 Step 1: {AE} {B} {C} {D} 
 Step 2: {AE} {BC} {D} 
 Step 3: {AE} {BCD} 

All alternative merge sequences can be represented as a search tree. The root of the tree 
represents the starting point in which every data vector is assigned to its own cluster 
(N clusters), and its descendants represent all possible clusterings of N-1 clusters. In 
general, every node in the tree represents a single clustering with m clusters, and its 
children represent the clusterings that have been produced by merging any two of m 
existing clusters.  
 
3.1 Redundancy of the search tree 
The search tree includes a lot of redundancy as the same clustering can be constructed 
with many different orders of the merge operations. The clusterings are generated from 
the search tree as follows. At the first step, there are N�(N-1)/2 alternatives for the 
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merge operation, and therefore, equally many clusterings at the level (m=N-1). 
Similarly, at the second level (m=N-2) there are (N-1)�(N-2)/2 alternatives for the merge 
operation, and they are independent of the merge operation made at the previous level. 

In general, every node has (m)�(m-1)/2 children at the level with m clusters. We can 
therefore derive the total number of merge sequences, which lead to clustering of M 
clusters as follows: 

� �
� � � �

� �!1!
!1!

2
1

2
1,

1 ��

��

�

��

�
�

��

� MM
NNiiMNSequences MN

N

Mi

. (6) 

At the same time we know from [20] that the total number of different clusterings 
equals to Stirling's number of second kind [21]: 
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We can calculate for N data items the average number of sequences per different 
clusterings of size M as: 
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where N and M are nonnegative, and N M. In other words, the search tree contains 
significant amount of redundant clustering solutions. 

�
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3.2 Permuting non-redundant clusters 
We consider next a single cluster represented as a list of the data vectors, and merge 
operation as the catenation of the two lists. For example, the clustering in Fig. 1 is 
represented as the pair of lists (AE) (BCD), and their merge as (AEBCD). Using this 
representation, we can see that the same cluster has several different representations. 
The cluster (BCD), for example, has the following representations: 

(BCD) 
(BDC) 
(CBD) 
(CDB) 
(DBC) 
(DCB) 

The data vectors xi can be ordered by their index i in the data set. We therefore use the 
following condition to prevent redundant representations of the same cluster.  

Condition 1: The only valid representation for a cluster sj = {x1, x2, ..., xnj} is the 
ordered sequence (x1 x2  ... xnj).  

For example, the only valid representation for {BCD} in the previous example is then 
(BCD). When using this condition, we can still represent all possible clusterings but 
without redundant representations for a single cluster. 

The condition 1 can be applied in the Branch-and-bound algorithm using the following 
merge condition. 

Condition 2: Clusters sa and sb can be merged iff: . bjai sxsxji ���� ,

As a consequence of this merge rule, the order of the data vectors will be automatically 
retained. Yet, every possible clusters can be obtained by merging the data vectors 
starting to merge the vectors from the smallest one by one. 

For example, the cluster (ABE) is possible to obtain but only using the sequence that 
merges first (A) + (B), and then (AB) + (E). On the other hand, the cluster pair (AE) (B) 
cannot be merged because the resulting cluster (AE) + (B) = (AEB) is not a valid 
representation as the data vectors are not sorted. Furthermore, if the current clustering 
were (AE) (B)  (C)  (D), we could not merge the cluster (AE) with any other cluster any 
more and (AE) would inevitably remain as such in the final clustering. 

 
3.3 Permuting minimum redundancy search tree 
The condition 2 removes the redundancy in the case of representing a single cluster but 
it is still possible to construct the same cluster via different paths (merge sequences) in 
the search tree. For example, the cluster (BCD) can be constructed using two different 
paths: 

 Sequence 1: (B) (C) (D)  �  (BC) (D)  �  (BCD) 
 Sequence 2: (B) (C) (D)  �  (B) (CD)  �  (BCD) 

Furthermore, the clustering (AE) (BCD) can be reached by six different merge 
sequences, of which two are shown in Table 1. 
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Table 1: Example of generating clustering  
(AE) (BCD) via two different merge sequence. 

Sequence 1: Sequence 2: 

(A) (B) (C) (D) (E) (A) (B) (C) (D) (E) 
(AE) (B) (C) (D) (A) (BC) (D) (E) 
(AE) (BC) (D) (A) (BCD) (E) 
(AE) (BCD) (AE) (BCD) 

 

It is therefore not enough to limit only the intra cluster representation but we must also 
limit the permutation of the search paths in the tree. We do this by applying the 
following permutation criterion: 

Condition 3: Clusters sa and sb can be merged iff , abaa ��� 0

where a0 is the index of the first cluster in the previous merge. In other words, we force 
the algorithm to permute the cluster pairs in a predefined order so that the index of the 
first cluster is always monotonically non-decreasing during the process. So if we have 
merged clusters sa0 and sb0 at the previous level, we can consider only cluster pairs sa 
and sb such that a � a0. The second term (b > a) is induced by condition 2.  

We can see that any individual cluster sj=(sj1 sj2 sj3 ... sjn) is constructed by the 
following sequence of merge operations: (sj1) + (sj2) � (sj1 sj2) + (sj3) � (sj1 sj2 sj3) + 
(sj4), and so on. This fulfills the constraint b > a. Any clustering {s1, s2, ..., sm} can then 
be generated by constructing the clusters one by one in the order from s1 to sm. This 
fulfills the constraint a � a0. 

Furthermore, there is no other merge sequence that could construct the same clustering 
without contradicting the conditions 2 and 3. These conditions together guarantee that 
every cluster can be constructed in only one order, and the condition 2 (a � a0) that the 
clusters are constructed in a unique sequence from smallest index to largest. Thus, the 
use of the conditions 2 and 3 produces non-redundant search tree. 

In practice, the condition 2 can be too complicated to be implemented in practice. We 
therefore introduce the following condition that simplifies it. 

Condition 4: Clusters sa and sb can be merged iff a=a0 � b � b0. 

This implication says that if we merge the same cluster sa as previously, the index of 
the second cluster must be greater than that of the previously merged cluster sb0. In 
other cases (a>a0), the inequality b>a from condition 3 is sufficient to satisfy also the 
condition 2. 

The non-redundant search tree for the previous example is illustrated in Fig. 3. At the 
first level, the permutation creates the merges: (AB) (AC) (AD) (AE) (BC) (BD) (BE). 
We can see that after the merge (B)+(C), the merge (A)+(C) do not appear any more 
because of condition 3, and it already exists in the branch where (AC) was constructed 
before (BD). Furthermore, if the previous merges created clusters (AC) and (BD), the 
cluster (ACBD) does not appear any more as it has already been created by the 
sequence (A)+(B), (AB)+(C), (ABC)+(D). 
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Fig. 3. Example of non-redundant search tree. Branches that do not have any valid 

clustering have been cut out. 
 
The condition 3 removes redundant clusterings but there still exist partial branches that 
cannot be completed (resulting in too few clusters). For example, after the merge 
sequence (AB) and (CE), there would be no more valid merges left because the 
permutation criterion does not allow us to add new vectors in the cluster (AB) any 
more, and because the merge (CE)+(D) would break the intra cluster order. Such 
branches can be eliminated using rather simple bounds for the permutation loop.  

When we permute new cluster pairs for merge, we always start to permute from the 
pervious cluster sa0, and consider all potential pairs in a loop. Clusters pairs (sa, sb) to be 
considered are such that 1 � a < b � m, where m is the current number of clusters. The 
index a also indicates how many clusters have been completed by now. This is because 
they are not allowed to be included in the merge operation any more due to condition 3.  

The same applies also to the clusters that have index between a and b. Since we have 
m-M more merges to be performed, we know that there must be equally many valid 
cluster pairs. Concluding from this, we can derive the upper bound for the index a at 
any stage of the process. 

Condition 5: The first cluster index in the merge is upper limited to a � M. 

Greater values than this would lead to situation that we cannot complete the clustering 
with M clusters.  

Using the conditions 1, 3, 4 and 5, we can now present the algorithm for generating 
non-redundant search tree as the pseudo code shown in Fig. 4. 
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Branch-and-bound(X, M) � S; 

FOR i�1 to N DO 
si � {xi}; 

S, MSEbest � BB(S, 1, 2, M); 

BB(S0, a0, b0, M) � Sbest, MSEbest; 

MSEbest � �; 
IF |S0| = M THEN RETURN S0, MSE(S0); 
FOR a � a0 to M 

IF a=a0 THEN bmin � b0 
ELSE bmin � a+1 

FOR b � bmin to |S0| 
S � S0; 
S � Merge(S, sa, sb); 
S, mse  � BB(S, a, b, M); 
IF mse < MSEbest THEN 

MSEbest � mse; 
Sbest � S; 

END-IF 
END-FOR 

END-FOR 

RETURN Sbest, MSEbest; 

Fig. 4. Algorithm for generating non-redundant search  
tree for the optimal clustering. 

 
3.4 Bounding criterion 
The search can be terminated earlier when we know that the current branch cannot lead 
to a better solution than the best solution found so far. The termination is based on the 
fact that every merge operation increases the MSE-value of the solution, see Fig. 5. 
Thus, when we have generated the first solution in the search tree, we can use its 
MSE-value as the upper bound for the optimal solution. Other branches of the tree can 
then be terminated if the following condition is true: 

Bounding criterion 1: , minMSEMSEt �

where MSEt is the value of the current solution after the tth merge, and MSEmin is the 
value of the best solution found so far. We call this as a simple bounding. 

It has been shown in [22] that the merge costs of the PNN method are monotonically 
increasing if the cluster pair with minimum cost is always merged. We denote the series 
of merge costs by d1, d2, ..., dN-M, where dt is the merge cost at the tth merge. The 
monotony property implicates: 

MNddd
�

��� �21 . (9) 

The criterion has been shown to apply to the PNN method where we always select the 
merge with minimum cost. From this property, we could derive a stronger termination 
criterion for the branch-and-bound algorithm: 

Bounding criterion 2: . � � mint MSEdtMNMSE t �����

Here (N-M-t) indicates the number of forth coming merges in the algorithm, and dt is 
the previous merge cost. This bounding criterion is based on the assumption that all 
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forth-coming merge operations increase the MSE no less than the previous merge 
operation. This would allow termination of sub-optimal solution earlier than the 
criterion 1. 

The only problem of using the bounding criterion 2 is that the monotony property does 
not necessarily hold true in the algorithm of Fig. 4. In the branch-and-bound method, 
we can also perform sub-optimal merges, which can result in a non-monotonic series of 
merge costs. As a consequence, we could terminate a path to the optimal solution 
because of using the stronger criterion. 

The optimal solution can be reached via several different search paths. It is expected 
that at least one of these paths fulfills the monotony property, and therefore, termination 
of other redundant paths would not be a big problem. The algorithm in Section 3.3, 
however, generates non-redundant search tree and there is no guarantee that only path 
to the optimal solution would meet the monotony property. The consequence of this is 
that optimality cannot be guaranteed if the stronger termination criterion was used with 
the non-redundant search tree. 
 

MSE
increases

S, MSE

MSE > MSEmin
search terminated

MSEmin

 
Fig. 5. Illustration of the use of the bounding criterion. 

 
 
4. Polynomial time variants 
The time complexity of the branch-and-bound technique is exponential regardless the 
bounding criterion used. The practical usability of the method is therefore limited to 
small special cases only. We propose next two sub-optimal variants that compromise 
the optimality but work in polynomial time. 
 
4.1 Piecewise optimization 
The first method, called Piecewise optimization, divides the original problem into a 
series of smaller sub problems that are solved independently. The input at each stage of 
the algorithm is N clusters (whole data set in the beginning), and the output is the 
optimal clustering to N-Z clusters, where Z is a parameter of the algorithm. The result is 
then input to the same procedure, and the process is repeated until the desired number 
of M clusters is reached. The method is illustrated in Fig. 6, and its pseudo code given 
in Fig. 7. 

If the size of the search tree of a single sub-problem is Z, we need to repeat the 
algorithm �(N-M)/Z� times. The quality of the result depends on the parameter Z; 
greater values will give better clustering result at the cost of longer run time. The 
extreme case is when we set Z=N-M, which would result to the same algorithm as the 
branch-and-bound technique in Section 3. By setting Z=1, on the other hand, the 
method would be the same as the PNN method.  
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At the starting point of the algorithm when we have N clusters as the input, we have 
O(N2) possible merge operations to be considered. Two subsequent merge operations 
result in O(N4) different alternatives. In general, the time complexity of z subsequent 
merge operations is O(N2Z), and the overall Piecewise algorithm (N/Z)�O(N2Z) = 
O(N2Z+1/Z). The algorithm works in polynomial time if Z is small enough to be 
considered as a constant. On the other hand, the time complexity increases 
exponentially as a function of Z. The algorithm is therefore useful only with very small 
values such of Z. For example, the time complexities for Z=2 and Z=3 are O(N5) and 
O(N7), respectively. 
 

N clusters

N - Z clusters

N - 2Z clusters

N - 3Z clusters

M clusters
Final result

Z merge
steps

 
Fig. 6. Illustration of the Piecewise optimization.  

The starting points at each step are shown as white dots. 
 
 

PiecewiseOptimization(X, M, Z) � S;

FOR i�1 to N DO 
si � {xi}; 

REPEAT 

size � max(M, |S|-Z); 
S � BB(S, 1, 2, size); 

UNTIL |S| = M; 

Fig. 7. Piecewise optimization algorithm. 
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4.2 Look-ahead optimization 
The Piecewise optimization traverses the search tree through the local optima. At each 
stage of the algorithm, the last merge is the most critical because the algorithm 
considers only one level further. Slightly better (but Z times slower) variant, denoted as 
Look-ahead optimization, can be designed by the following modifications.  

As in the Piecewise optimization, we generate complete search tree to the level Z and 
search for the optimal clustering with N-Z clusters. Instead of moving to this local 
optimum at the level Z, we proceed only one level in the tree along the path towards the 
direction of the local optimum. After this, we regenerate a completely new search tree 
starting from the level N-1, and then repeat the procedure N-M times. The process is 
illustrated in Fig. 8. 

This variant is less critical for the local minima in practice. As a drawback, the time 
complexity of the algorithm is Z times that of the previous variant; that is O(N2Z+1). 
With large Z-values, we would also do unnecessary work as a part of the search tree 
would be re-generated several times. In practice, the algorithm can be realized only 
with very small Z-values. 
 

Local
minima

Final result  
Fig. 8. Illustration of the Look-Ahead optimization.  

The starting points at each step are shown as white dots. 
 
 
5. Experiments 
We consider the data sets that are summarized in Table 2. The first set (B) includes a 
randomly selected pixel blocks from a 256�256 size image Bridge. The second set (S) 
is artificially generated two-dimensional data set with varying complexity in terms of 
spatial data distributions with M=15 predefined clusters. The third set (SS2) is 
a standard clustering test problem of [20], pp. 103-104. The data set contains 89 postal 
zones in Bavaria (Germany) and their attributes are the number of self-employed 
people, civil servants, clerks and manual workers in these areas. The attributes are 
normalized to the scale [0, 1] according to their minimum and maximum values. 
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Table 2: Summary of the data sets used. 

Data set Type of data set: Number of 
vectors (N) 

Number of 
clusters (M) 

Dimensionality 

Set B Random 4�4 blocks from 
gray-scale image Bridge. 3-20 2 / 5 / 9 16 

Set S Synthetically generated. 30-120 15 2 

SS2 Attributes of postal zones in 
Bavaria, Germany. 89 7 4 

 

The results with the B sets are summarized in Fig. 9-11 with different number of 
clusters (M=2,5,9) using Pentium 450 MHz computer. Comparative results are given 
for the following methods: 

	
 Partition-based full search (implementation by Juha Kivijärvi). 
	
 Partial partition based branch-and-bound [10] 
	
 Merge-based full search 
	
 Merge-based branch-and-bound 

Proposed methods work faster when the number of clusters is small (M=2), or large 
(M=9). These correspond to situations, in which the number of possible solutions is 
smallest. The use of bounding criterion improves the full search remarkably when the 
number of clusters is large (M=5 and M=9). In these cases, the proposed merge-based 
branch-and-bound is also faster than the partition-based counter-part. In the case of 
M=2, on the other hand, the partition-based approach is superior. This is reasoned by 
the fact that the more merge steps is required the less there are clusters in the solution. 
We can also conclude that the practical usability of any of the optimal algorithms tested 
here are limited to very small size problem instances only. 

Similar results are also reported in Fig. 12 for the polynomial time variants in the case 
of set S. The polynomial time variants are faster and can process larger data sets than 
the optimal branch-and-bound technique although only small sub tree sizes (Z=2,3) 
were applied. 

The qualities of the sub-optimal variants are compared in Table 3 with other heuristic 
clustering methods. The random clustering is obtained by randomly selecting M data 
vectors and using them as cluster representatives, and then partition the data set 
optimally by minimizing Euclidean distance from the data vectors to the cluster 
representatives. K-means is an iterative clustering algorithm, which is also known as 
the GLA in vector quantization context due to [23]. The PNN is implemented as in [19], 
and the GAIS refers to the best clustering method that we have experimented [24].  

In comparison to the PNN, the polynomial time variants (Piecewise and Look-ahead) 
manage to produce better clustering in two cases (N=70, 80) but the difference is 
marginal. For the rest of the data there are no differences between the PNN and branch-
and-bound variants. The GAIS, on the other hand, gives somewhat better results than 
the PNN and BB. It is noted that the optimality of these results is not known but it is 
expected that the GAIS results are very close to optimum. 

The results for the set SS2 are summarized in Table 4. They indicate that the Piecewise 
and Look-ahead algorithms can improve over the PNN and the K-means but at the cost 
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of significant increase in run time. The results, however, are still worse than that of the 
GAIS.  
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Fig. 9. The effect of problem size to the running time (M=2) for the set B. 
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Fig. 10. The effect of problem size to the running time (M=5) for the set B. 
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Fig. 11. The effect of problem size to the running time (M=9) for the set B. 
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Fig. 12. The effect of problem size to the running time of the polynomial time variants 
(M=15) for the set S. 
 

Table 3: Performance comparison for the simulated data set (N=30..100, M=15)  
for the set S. The values are mean square errors (�109). 

Method: N=30 N=40 N=50 N=60 N=70 N=80 N=90 N=100 
Random clustering 2.996 2.914 7.093 4.181 5.399 4.940 4.545 4.062 

K-means [23] 0.948 1.081 1.108 1.541 1.647 1.614 1.628 1.837 
PNN [19] 0.396 0.573 0.992 1.181 1.246 1.225 1.274 1.373 

BB:  Piecewise (Z=2) 0.396 0.573 0.992 1.181 1.240 1.206 1.274 1.373 
BB: Look-ahead (Z=2) 0.396 0.573 0.992 1.181 1.240 1.206 1.274 1.373 

GAIS [24] 0.396 0.573 0.992 1.141 1.189 1.169 1.238 1.335 

 

Table 4: Performance comparison for the data set SS2 (N=89, M=7) from [20]. 
The values are mean square errors (�109). 

Method: Error: Time: 
Random clustering 1.760 < 1 s 

K-means [23] 1.140 < 1 s 
PNN [19] 0.336 < 1 s 

BB:  Piecewise (Z=2) 0.323 342 s 
BB:  Piecewise (Z=3) 0.336 1061 s 
BB:  Piecewise (Z=4) 0.323 4851 s 

BB: Look-ahead (Z=2) 0.323 652 s 
BB: Look-ahead (Z=3) 0.316 3129 s 

GAIS [24] 0.313 < 1 s 
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6. Conclusions 
We have introduced a merge-based branch-and-bound technique to solve optimal 
clustering. The proposed algorithm works better than the partition-based counter parts 
when the number of clusters is high. In the case of a small number of clusters, however, 
the partition-based approach works faster. Nevertheless, all variants have exponential 
time complexity, and therefore, the results are mainly of theoretical interest only.  

Two polynomial time algorithms were also introduced inspired by the proposed branch-
and-bound technique but with limited success. Further improvement could be achieved 
by using stronger bounding criteria in the polynomial time variants. 
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