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0 I ntroduction

This Recommendation | Internationa Standard, informally called JBIG2, defines a coding method for bilevel im-
ages, that is, images consisting of a single rectangular bit plane, with each pixel taking on one of just two possible
colors. It isbeing drafted by the Joint Bi-level Image Experts Group (JBIG), a“ Collaborative Team”, established
in 1988, that reports both to ISO/IEC JTC 1/SC29/WG1 and to I TU-T/SG8.

Compression of thistype of imageisalso addressed by existing facsimile standards,for example by ITU-T Rec-
ommendations T.4, T.6, T.82 (JBIG1), and T.85 (Application profile of IBIG1 for facsimile). Besides the obvious
facsimile application, JBIG2 will be useful for document storage and archiving, coding images on the World Wide
Web, wireless data transmission, print spooling, and even teleconferencing.

Astheresult of aprocess that ended in 1993, JBIG produced afirst coding standard formally designated 1 TU-
T Recommendation T.82 | International Standard | SO/IEC 11544, which is informally known as JBIG or JBIG1.
JBIGL1 has the capability of lossy, lossless, and progressive (lossy to lossless) coding. However, the lossy images
produced by JBIG1 have quite lower qualities than the original images because the number of pixelsin the lossy
image cannot exceed one quarter of those in the original image.

JBIG2 was prepared also for lossy, lossless, and lossy-to-lossless image compression. The design goal for
JBIG2 was to alow for lossless compression performance better than that of the existing standards, and to allow
for lossy compression at much higher compression ratios than the lossless ratios of the existing standards, with
almost no visible degradation of quality. In addition, JBIG2 alows both quality-progressive coding, with the pro-
gression going from lower to higher (or lossless) quality, and content-progressive coding, successively adding dif-
ferent types of image data (for example, first text, then halftones). A typical JBIG2 encoder decomposes the input
bi-level image into several regions and codes each of the regions separately using adifferent coding method. Such
content-based decomposition is very desirable especially in interactive multimedia applications. JBIG2 can aso
handle a set of images (multiple page document) in an explicit manner.

Asistypical with image compression standards, JBIG2 explicitly defines the requirements of a compliant bit-
stream, and thus defines decoder behavior. JBIG2 does not explicitly define a standard encoder, but instead is flex-
ible enough to allow sophisticated encoder design. In fact, encoder design will be a major differentiator among
competing JBIG2 implementations.

0.1 Interpretation and Use of the Requirements

This section isinformative and designed to aid in interpreting the requirements of this International Standard. The
requirements are written to be as general as possibleto allow alarge amount of implementation flexibility. Hence
the language of the requirementsis not specific about applicationsor implementations. In this section a correspon-
dence is drawn between the general wording of the requirements and the intended use of the standard in typical
applications.

0.1.1 Subject matter for JBIG2 coding

JBIG2 may be used to code bi-level documents. A bi-level document contains one or more pages. A typical page
contains some text data, that is, some characters of asmall size arranged in horizontal or vertical rows. The charac-
tersinthetext part of apage are called symbolsin JBBIG2. A page may a so contain halftone data, that is, grayscale
or color photographic images that have been dithered to produce bi-level images. In addition, a page may contain
non-text data, such as large characters, line art, and noise. Such non-text datais called generic datain JBIG2.

The JBIG2 image model treatstext data and halftone data as special cases. It isexpected that a JBIG2 encoder
will dividethe content of a pageinto a symbol region containing text, a halftone region containing halftoneimages,
and a generic region containing al other data (although in some cases it is better to consider halftones as generic
data rather than halftone data).

The various regions may overlap on the physical page. An encoder is permitted to divide a single page into
any number of regions, but often three regionswill be sufficient, one for symbols, one for halftoneimages, and the
third for text. In some cases, not al types of data may be present, and the page may consist of fewer than three
regions.

A text region consists of a number of symbols placed at specified locations on a background. The symbols
usually correspond to characters. JBIG2 obtains much of its effectiveness by using individua symbols more than
once. Toreuse asymbol, an encoder or decoder must have a succinct way of referring toit. In JBIG2, the symbols
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are collected into one or more symbol dictionaries. A symbol dictionary is a set of bitmaps of symbols, indexed
so that a symbol bitmap may be referred to by an index number.

A halftone region consists of a number of halftone patterns placed along a regular grid. The halftone patterns
usually correspond to gray-scale values. Indeed, the coding method of the halftone pattern indicesis designed as
agray-scale coder. Compression isrealized by representing the binary pixels of one grid cell by a single integer,
the rendered gray-scale value. This many-to-one mapping may have the effect that edge information present in the
original bitmap may be lost by halftone coding. For this reason, lossless or near-lossless coding of halftones will
often be better if the halftone is coded with generic coding rather than halftone coding.

0.1.2 Relationship between segments and documents

A JBIG2 file contains the information needed to decode a bi-level document. A JBIG2 file is composed of seg-
ments. A typical pageis coded using several segments. Inasimple case, there will be a page information segment,
asymbol dictionary segment, a symbol region segment, a halftone dictionary segment, a halftone region segment,
and an end-of-page segment. The page information segment provides general information about the page, such
asitssize and resolution. The dictionary segments collect bitmaps referred to in the region segments. The region
segments describe the appearance of the text and halftone regions by referencing bitmaps from a dictionary and
specifying where they should appear on the page. The end-of-page segment marks the end of the page.

0.1.3 Structureand use of segments

Each segment contains a segment header, a data header, and data. The segment header is used to convey segment
reference informationand, in the case of multi-page documents, page association information. A dataheader gives
information used for decoding the data in the segment. The data describes an image region or a dictionary, or
provides other information.

Segments are numbered sequentially. A segment may refer to alower-numbered, or earlier, segment. A region
segment is always associated with one specific page of the document. A dictionary segment may be be associated
with one page of the document, or it may be associated with the document as awhole.

A region segment may refer to one or more earlier dictionary segments. The purpose of such a reference isto
allow the decoder to identify symbolsin a dictionary segment that are present into the image.

A region segment may refer to an earlier region segment. The purpose of such a reference isto combine the
image described by the earlier segment with the current representation of the page.

A dictionary segment may refer to earlier dictionary segments. The symbols added to a dictionary segment
may be described directly, or may be described as refinements of symbols described previously, either in the same
dictionary segment or in earlier dictionary segments.

A JBIG2 filemay be organized in two ways, sequential or random access. |n the sequential organization, each
segment’s segment header immediately precedes the segment’s data header and data. In the random access orga-
nization, all the segment headers are collected together at the beginning of the file, followed by the data (including
data headers) for all the segments, in the same order. This second organization permits a decoder to determine all
segment dependencieswithout reading the entirefile. A third organization of JBI G2-encoded dataisthe embedded
organization. Inthiscase adifferent fileformat carries JBIG2 segments. The segment header, dataheader, and data
of each segment are stored together, but the embedding file format may store the segments in any order.

0.1.4 Internal representations

Decoded data must be stored. While the standard does not specify how to store it, its decoding model presumes
certain data structures, specifically buffers and dictionaries. Figure 1 illustrates major decoder components and
associated buffers. In this figure, decoding procedures are outlined in bold lines, and memory components are
outlined in non-boldlines. Also, bold arrowsindicate that one decoding procedure invokes another decoding pro-
cedure; for example, the symbol dictionary decoding procedure invokes the generic region decoding procedure
to decode the bitmaps for the symbols that it defines. Non-bold arrows indicate flow of data: the symbol region
decoding procedure reads symbols from the symbol memory, and draws them into the page buffer or an auxiliary
buffer.

A buffer isarepresentation of abitmap. A buffer isintended to hold alarge amount of data, typically the size
of apage. A buffer may contain the description of aregion or of an entire page. Even if the buffer describes only
aregion, it has information associated with it that specifies its placement on the page. Decoding a region segment
modifies the contents of a buffer.
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There is one special buffer, the page buffer. Itisintended that the decoder accumulate region data directly in
the page buffer until the page has been completely decoded; then the data can be sent to an output device or file.
Decoding an immediate region segment modifiesthe contents of the page buffer. The usual way of preparing a page
isto decode one or more immediate region segments, each one modifying the page buffer. The decoder may output
an incomplete page buffer, either as part of progressive transmission or in response to user input. Such output is
optional, and its content is not specified by the standard.

All other buffersare auxiliary buffers. It isintended that the decoder fill an auxiliary buffer, then later useit to
refine the page buffer. In an application, it will often be unnecessary to have any auxiliary buffers. Decoding an
inter mediate region segment modifies the contents of an auxiliary buffer. The decoder may use auxiliary buffers
to output pages other than those found in a complete page buffer, either as part of progressive transmission or in
response to user input. Such output is optional, and its content is not specified by the standard.

A symbol dictionary consists of an indexed set of bitmaps. The bitmaps in a dictionary are typicaly small,
approximately the size of text characters. Unlike a buffer, a bitmap in a dictionary does not have page location
information associated with it.

0.1.5 Decodingresults

Decoding a segment involves invocation of one or more decoding procedures. The decoding procedures to be
invoked are determined by the segment type.

The result of decoding a region segment is a bitmap stored in a buffer, possibly the page buffer. Decoding a
region segment may fill a new buffer, or may modify an existing buffer. In typical applications, placing the data
into a buffer involves changing pixelsfrom the background color to the foreground color, but the standard specifies
other permissible ways of changing a buffer’s pixels.

A typical page will be described by a number of one or more immediate region segments, each one resulting
in modification of the page buffer.

Just as it is possible to specify a new symbol in a dictionary by refining a previously specified symboal, it is
also possible to specify a new buffer by refining an existing buffer. However, aregion may be refined only by the
generic refinement decoding procedure. Such arefinement does not make use of theinternal structure of theregion
in the buffer being refined. After abuffer has been refined, the original buffer is no longer available.

The result of decoding a dictionary segment is a new dictionary. The symbols in the dictionary may later be
placed into a buffer by the symbol region decoder.

0.1.6 Decoding procedures

The generic region decoding procedure fills or modifies a buffer directly, pixel-by-pixel if arithmetic coding is
being used, or by runs of foreground and background pixels if MMR and Huffman coding is being used. In the
arithmetic coding case, the prediction context contains only pixels determined by data already decoded withinthe
current segment.

Thegeneric refinement region decoding procedure modifies abuffer pixel-by-pixel using arithmetic coding.
The prediction context uses pixelsdetermined by data already decoded withinthe current segment aswell as pixels
already present either in the page buffer or in an auxiliary buffer.

The symbol region decoding procedur e takes symbolsfrom one or more symbol dictionaries and places them
inabuffer. Thisprocedureisinvoked during the decoding of asymbol region segment. The symbol region segment
containsthe positionand index information for each symbol to the placed in the buffer; the bitmaps of the symbols
are taken from the symbol dictionaries.

The symbol dictionary decoding procedure creates a symbol dictionary, that is, an indexed set of symbol
bitmaps. A bitmap in thedictionary may be coded directly; it may be coded as a refinement of a symbol already in
adictionary; or it may be coded as an aggregation of two or more symbols aready in dictionaries. This procedure
isinvoked during the decoding of a symbol dictionary segment.

Thehalftoneregion decoding procedur e takes halftone symbol sfrom ahalftone dictionary and placesthemin
abuffer. Thisprocedureisinvoked during the decoding of a halftoneregion segment. The halftone region segment
containsthe positioninformationfor al the halftone symbol sto be placed inthe buffer, aswell asindex information
for the halftone symbols themselves. The halftone patterns, the fixed-size bitmaps of the halftone symbols, are
taken from the halftone dictionaries.

The halftonedictionary decoding procedure creates adictionary, that is, an indexed set of fixed-size bitmaps
(halftone patterns). The bitmapsin the dictionary are coded directly and jointly. This procedure isinvoked during
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Table 1 — Entitiesin the decoding process

JBIG2 JBIG2 Physical
Concept bitstream entity decoding entity representation
Document JBIG2file JBIG2 decoder Output medium
or device
Page Collection of segments Implicit in control Page buffer
decoding procedure
Region Region segment Region decoding Page buffer or
procedure auxiliary buffer
Dictionary Dictionary segment Dictionary decoding List of symbols
procedure
Character Field withina S. dictionary decoding Symbol bitmap
s. dictionary segment procedure
Gray-scale Field withina H. dictionary decoding Halftone pattern
value h. dictionary segment procedure

the decoding of a halftone dictionary segment.

The control decoding procedure decodes segment headers, which include segment type information. The
segment type determines which decoder must be invoked to decode the segment. The segment type al so determines
where the decoded output from the segment will be placed. The segment reference information, also present inthe
segment header and decoded by the control decoding procedure, determines which other segments must be used
to decode the current segment.

0.2 Lossy Coding

This specification does not define how to control lossy coding of bi-level images. Rather it defines how to perform
perfect reconstruction of a bitmap that the encoder has chosen to encode. If the encoder choosesto encode a bitmap
that is different than the original, the entire process becomes one of lossy coding. The different coding methods
alow for different methods of introducing loss in a profitable way.

0.21 Symbol Coding

Symbol coding providesanatural way of doinglossy coding of text regions. Theideaisto alow small differences
between the original symbol bitmap and the one indexed in the symbol dictionary. Compression gain is effected
by not having to code alarge dictionary and, afterwards, by having a cheap symbol index coding as a consequence
of the smaller dictionary. Itisup to the encoder to decide when two bitmaps are essentially the same or essentially
different. Thistechniquewasfirst described in[1].

The hazard of lossy symbol coding is to have substitution errors, that is, to have the encoder replace a bitmap
corresponding to one character by a bitmap depicting a different character, so that a human reader misreads the
character. The risk of substitutionerrors can be reduced by using intricate measures of difference between bitmaps
and/or by making sure that the critical pixels of theindexed bitmap are correct. One way to control this, described
in[6], isto index the possibly wrong symbol and then to apply refinement coding to that symbol bitmap. The idea
isto correct pixelswhich the encoder can see are sometimes black and sometimes white.

The process of beneficially introducing loss in textual regions may also take simpler forms such as removing
flyspecks from documents or regularizing edges of letters. Most likely such changes will lower the code length of
the region without affecting the general appearance of the region — possibly even improving the appearance.

0.2.2 Generic Coding

To effect near-lossless coding using generic coding, the encoder applies a preprocess to an original image and en-
codes the changed imagelosslessly. Thedifficulty isto ensurethat the changes result in alower the code length and
that the quality of the changed image is not suffering badly from the changes. Two possible preprocesses are given
in[11]. These preprocesses flip pixelsthat, when flipped, significantly lower thetotal code length of the region, but
can be flipped without seriously impairing the visual quality. The preprocesses provide for effective near-lossless
coding of periodic halftones and for a moderate gain in compression for other data types. The preprocesses are
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not well-suited for error diffused images and images dithered with blue noise as perceptually lossless compression
will not be achieved at a significantly lower rate than the lossless rate.

0.2.3 Halftonecoding

Halftone coding is the natural way to obtain very high compression for halftoned images. In contrast to lossy
generic coding as described above, halftone coding does not intend to preserve the original bitmap, although this
ispossible in specia cases.

The compression gainiseffected by not puttingall the halftone patterns of the original image into the dictionary
or by not always indexing the pattern during index coding even if it does appear in the dictionary.

For lossy coding of error diffused images and images dithered with blue noise it is advisable to use halftone
coding with asmall grid size. A reconstructed image will lack fine details and may display blockiness but will be
clearly recognizable. The blockiness may be reduced on the decoder side in a postprocess; for instance, by using
other reconstruction patterns than those that appear in the dictionary.

0.24 Consequences of I nadequate Segmentation

Using lossy symbol coding for adocument containing both symbol and halftone data will result in poor compres-
sion. Depending on the encoder, the quality of the halftone data may be good or bad. Using the form of lossy
symbol coding described in [6] the visual quality will probably not suffer.

Using lossy generic coding (using the preprocesses given in [11]) for a document containing both symbol and
halftone data usually results in good quality and moderate compression.

Line art and regions of non-typed text may be coded efficiently using generic coding, but depending on the
encoder, these types of regions can also be very effectively coded with symbol coding.
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1 Scope

This International Standard defines methods for coding bi-level images and sets of images (documents consisting
of multiple pages). It is particularly suitable for bi-level images consisting of text and dithered (halftone) data.
The methods defined permit lossless (bit-preserving) coding, lossy coding, and progressivecoding. In progres-
sive coding, the first image islossy; subsequent images may be lossy or lossless.
This International Standard also defines file formats to enclose the coded bi-level image data.
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2 Nor mative References

Thefollowing I TU-T Recommendations and I nternational Standards contain provisionswhich, throughreferences
in thistext, constitute provisions of this International Standard. At the time of publication, the editions indicated

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applyingthe most recent editionsof the Rec-

ommendations and Standards|isted below. Members of |EC and | SO maintain registers of currently valid Interna-
tional Standards. The ITU-T Telecommunication Standardization Bureau (TSB) maintains a list of the currently
valid ITU-T Recommendations.

¢ |ISO/IEC 8859-1:1987t0 SO 8859-10:1992, | nformation processing — 8-bit single byte coded graphic char-
acter sets

o ISO/IEC 10646-1:1993, Information technology — Universal multiple-octet coded character set (UCS) —
Architecture and basic multilingual plane

o ITU-T T.6 (1988), Facsimile coding schemes and coding control functionsfor group 4 facsimilie apparatus
— Termina Equipment and Protocolsfor Telematic Services (Study Group X111)
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3 Terms and Definitions

For the puposes of this International Standard, the terms and definitions given in the following apply.

31
Adaptive template pixel(s)
A special pixel(s), in atemplate, whose location is not fixed

3.2
Aggregation
A joining or merging of several individual symbolsinto a new symbol

3.3

Bit

A binary digit, representing the value O or 1
34

Bitmap

A rectangular array of bits

35
Buffer
A storage area used to hold a bitmap

3.6
Byte
Eight bits of data

3.7
Combination operator
An operator used to combine the prior contents of a bitmap with new values being drawn into that bitmap

3.8

Coordinate system

A numbering system for two-dimensional locations where locations are labelled by two numbers, the first onein-
creasing from left to right and the second one increasing from top to bottom.

3.9

Deta S

The difference in S coordinate between two successive symbol instances in a non-empty strip
3.10

DetaT

The difference in T coordinate between two successive non-empty strips

31

Decoding procedure
A component of a decoder that decodes a certain type of data

3.12
Decoding procedures

3121
Integer decoding procedure
A decoding procedure whose output is a single value

3.12.2
Arithmetic integer decoding procedure
An integer decoding procedure that uses arithmetic entropy decoding
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3.12.3
Region decoding procedure
A decoding procedure whose output is a bitmap

3.124
Generic region decoding procedure
A region decoding procedure that operates by decoding pixelsindividualy or in runs

3.125
Generic refinement region decoding procedure
A region decoding procedure that operates by modifying a reference bitmap to produce an output bitmap

3.12.6
Halftone dictionary decoding procedure
A decoding procedure whose output isa list of halftone patterns

3.12.7

Halftone region decoding procedure

A region decoding procedure that operates by drawing a set of halftone patternsinto a bitmap, placing the patterns
according to a halftone grid

3.12.8
Symbol region decoding procedure
A region decoding procedure that operates by drawing a set of symbol instances into a bitmap

3.12.9
Symbol dictionary decoding procedure
A decoding procedure whose output is alist of symbols

3.13
Decoder
An entity capable of decoding a bitstream in conformance with this International Standard

3.14
Dictionaries

3.14.1

Halftonedictionary
A list of halftone patterns

3.14.2
Symbol dictionary
A list of symbols

3.15
Export flag
A bit indicating that a symbol is on the export list of asymbol dictionary

3.16
Export list
A list of the symbolsin a symbol dictionary that may be used by referring to that symbol dictionary

3.17
Grayscaleimage
A rectangular array of non-negative integer indices

3.18
Grayscale pixel
An integer-valued element in a grayscale image
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3.19
Halftonegrid
A rectilinear grid of locations specifying where halftone patterns are to be drawn

3.20
Halftone pattern
A bitmap produced by a halftone dictionary decoding procedure

3.21
Height class
A set of symbolsinasymbol dictionary whose heightsare all equal

3.22
Height class delta height
The difference in height between two height classes

3.23
Height class delta width
The difference in width between two symbolsin a height class

3.24
Ordinal
A value used as a counter

3.25
Out-of-band value
A non-numeric value that may be produced in place of an integer

3.26
Pixel
An element with 0 or 1 asitsvaluein a bitmap

3.27
Prefix length
The length of a Huffman code followed by a fixed number of bits, together representing an integer

3.28
Range length
The length of the fixed number of bits following a Huffman prefix code

3.29
Reference bitmap
The bitmap used as the reference plane during the refinement region decoding procedure

3.30
Referred-to segment
Another segment required in order to decode the current segment

3.31

Region

A bitmap produced by a region decoding procedure

3.32

Segment

A segment header and its segment data

3.33

Strip

A full-width or full-height portion of the coordinate system of a symbol region
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3.3
Typesof strips

3.35
Empty strip
A strip containing the reference corners of no symbol instances

3.36
Non-empty strip
A strip containing the reference corner of at least one symbol instance

3.37

Strip size

The extent in pixels of the non-full dimension of a strip
3.38

Symbol
A bitmap produced by a symbol dictionary decoding procedure

3.39
Symbol ID
An integer used to identify a symbol, or to index into an array of symbolsto retrieve the symbol

3.40
Symbol instance
A symbol drawn, possibly with refinement, at a particular location in a symbol region

341

Symbol instance refinement delta height

The difference in height between a symbol instance’s reference bitmap and the bitmap produced by the generic
refinement region decoding procedure

3.42

Symbol instance refinement delta width

The difference in width between a symbol instance's reference bitmap and the bitmap produced by the generic
refinement region decoding procedure

3.43

Symbol instance refinement delta X

The difference between the X coordinates of the top left corners of a symbol instance’s reference bitmap and the
bitmap produced by the generic refinement region decoding procedure

3.44

Symbol instance refinement delta’Y

The difference between the Y coordinates of the top left corners of a symbol instance’s reference bitmap and the
bitmap produced by the generic refinement region decoding procedure

3.45
Typical prediction
Typical prediction signals that an entire row of ageneric regionisidentical to the preceding row
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4  Symbolsand Abbreviations

4.1 Abbreviations
The abbreviations used in this International Standard are listed bel ow.
AT

Adaptive template
ID Identifier
LPS Less probable symboal, i.e., less probable binary value
MMR Modified modified READ
MPS More probable symboal, i.e., more probable binary value
0ooB Out-of-band
READ Relative Element Address Designate
TP Typica prediction
TPR Typical prediction for refinement

NOTE — The “symbol” in the abbreviations L PS and MPS does not refer to the symbols (bitmaps) in the
International Standard. The LPS and MPS abbreviations are used despite this because they are
the generally-accepted terminology in arithmetic coding.

4.2 Symbol definitions

The following symbols used in this International Standard are listed below. A convention is used that parameters
to any of the decoding procedures that are used in this International Standard are indicated in emboldened letters.

A

ARRAY
A1, Az, Az, Ay
B

Bl

Bg

BM

BP

BPST

C

Chigh
Clow

CT
CURCODE
CURLEN

Probability interval

Anarray

Adaptive template pixelsin the generic region decoding procedure
Current byte of arithmetically-coded data

Byte of arithmetically-coded data following the current byte

A symbol bitmap in a symbol dictionary decoding procedure
A bitmap

Pointer to byte contained in B

Initial value of BPST

Value of bit stream in code register

High-order 16 bitsof C

Low-order 16 bitsof C

Renormalisation shift counter

The Huffman code for the current table linein a Huffman table
The current table line prefix length in a Huffman table

CURRANGELOW A variable holding the lower bound of the current table line in a Huffman table

CURS
CURT

D
DFS
DT
DW

EXFLAG

The current S coordinate in a symbol region decoding procedure

The current symbol instance’s T coordinate relative to the current strip’s T coordinate in
a symbol region decoding procedure

Decision decoded
The difference in S coordinates between the first instances of two strips
The number of empty strips between two non-empty strips

The difference of width between two symbol bitmaps in a symbol dictionary decoding
procedure

An array of export flags
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EXINDEX

Anindex for thearray EXFLAG

EXRUNLENGTH The length of arun of identical export flag values

FIRSTS
FIRSTCODE
GBATX;
GBATY;
GBAT X,
GBATY,
GBATX3
GBATYj
GBAT X4
GBATY4
GBH
GBREG
GBTEMPLATE

GBW
GRATX4

GRATY;

GRATX2

GRATY:

GRH

The first S coordinate of the current strip

Thefirst code assigned to a particular prefix length in a Huffman table

The X location of adaptive template pixel 1 in a generic region decoding procedure
The 'Y location of adaptive template pixel 1 in a generic region decoding procedure
The X location of adaptive template pixel 2 in a generic region decoding procedure
The 'Y location of adaptive template pixel 2 in a generic region decoding procedure
The X location of adaptive template pixel 3 in a generic region decoding procedure
The 'Y location of adaptive template pixel 3 in a generic region decoding procedure
The X location of adaptive template pixel 4 in a generic region decoding procedure
The'Y location of adaptive template pixel 4 in a generic region decoding procedure
The height of a generic region

The region produced by a generic region decoding procedure

A parameter indicating the number and arrangement of the pixelsin atemplate used in a
generic region decoding procedure

The width of ageneric region

The X location of adaptive template pixel 1in a generic refinement region decoding pro-
cedure

The'Y location of adaptive template pixel 1 in a generic refinement region decoding pro-
cedure

The X location of adaptive template pixel 2 in a generic refinement region decoding pro-
cedure

The'Y location of adaptive template pixel 2 in a generic refinement region decoding pro-
cedure

The height of a generic region being coded with refinement coding

GRREFERENCE The reference bitmap in a generic refinement region decoding procedure
GRREFERENCEDX The X offset of the reference bitmap with respect to the bitmap being decoded in a

generic refinement region decoding procedure

GRREFERENCEDY The Y offset of the reference bitmap with respect to the bitmap being decoded in a

GRREG
GRTEMPLATE

GRW
HCHEIGHT
HCDH

HCFIRSTSYM
Hy
HIGHPREFLEN
HO;

HTHIGH

generic refinement region decoding procedure
The region produced by a generic refinement region decoding procedure

A parameter indicating the number and arrangement of the pixelsin a template used in
decoding a generic region with refinement coding

The width of ageneric region being coded with refinement coding
The height of the current height class in a symbol dictionary decoding procedure

The difference in height between two height classes in asymbol dictionary decoding pro-
cedure

The index of thefirst symbol decoded in a height class

The height of a symbol instance bitmap

The prefix length of the upper range table linein a Huffman table

The height of the original bitmap of a symbol instance containing refinement information

Onegreater than the largest value that isrepresented by any normal tablelineinaHuffman
table
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HTLOW
HTOFFSET
HTOOB
HTPS
HTRS
HTVAL

I

IAAI

IADH

IADS

IADT

IADW

IAEX
IAFS

IAID

IARDH

IARDW

IARDX

IARDY

IARI
IAIT

1By

I1BO;

ID;

IDS

J

K
LENCOUNT
LENMAX
LNTP

The lowest value that is represented by any normal table line in a Huffman table
The range offset of atable line when decoding using a Huffman table

Whether a Huffman table can produce the out-of-band value OOB

The length of the encoded prefix field in atable linein a Huffman table

The length of the encoded range field in atable line in a Huffman table

The value decoded using a Huffman table

An array index

An arithmetic integer decoding procedure used to decode the number of symbol instances
inan aggregation

An arithmetic integer decoding procedure used to decode the difference in height between
two height classes

An arithmetic integer decoding procedure used to decode the S coordinate of the second
and subsequent symbol instancesin a strip

An arithmetic integer decoding procedure used to decode the T coordinate of the second
and subsequent symbol instancesin a strip

An arithmetic integer decoding procedure used to decode the difference in width between
two symbolsin a height class

An arithmetic integer decoding procedure used to decode export flags

An arithmeticinteger decoding procedure used to decode the S coordinate of thefirst sym-
bol instance ina strip

An arithmetic integer decoding procedure used to decode the symbol IDs of symbol in-
stances

An arithmetic integer decoding procedure used to decode the delta height of symbol in-
stance refinements

An arithmetic integer decoding procedure used to decode the delta width of symbol in-
stance refinements

An arithmetic integer decoding procedure used to decode the delta X position of symbol
instance refinements

An arithmetic integer decoding procedure used to decode the delta’Y position of symbol
instance refinements

An arithmetic integer decoding procedure used to decode the R; bit of symbol instances

An arithmetic integer decoding procedure used to decode the T coordinate of the symbol
instancesin astrip

The bitmap of a symbol instance

The original bitmap of a symbol instance containing refinement information
The symbol 1D of a symbol instance

The delta S value for a symbol instance in a symbol region decoding procedure
An array index

The ordinal for areferred-to segment

A histogram of the prefix lengthsin a Huffman table

The largest prefix length in a Huffman table

Whether the current line is coded explicitly in a generic region decoder

LOGSBSTRIPS The base-2 logarithm of the strip size used to encode a symbol region
LOWPREFLEN The prefix length of the lower range table linein a Huffman table
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MMR
NINSTANCES

Whether MMR coding is used in a generic region decoding procedure
A symbol instance counter

NSYMSDECODED The number of symbols decoded so far in a symbol dictionary decoding procedure

NTEMP

ooB

P

PREFLEN

r

R

RANGELEN
RANGELOW
RA1, RA,
RDHy

RDWy

RDXy

RDY7
REFAGGNINST
Ry
REFCORNER

S

ST
SBDSOFFSET
SBCOMBOP
SBDEFPIXEL
SBH

SBHUFF
SBHUFFDS

SBHUFFDT

SBHUFFFS
SBHUFFRDH

SBHUFFRDW

SBHUFFRDX

SBHUFFRDY

The number of table linesin a Huffman table

An out-of-band value

The page with which a segment is associated

An array of prefix lengths representing the table linesin a Huffman table

A segment retention flag

The number of segments referred to by some segment

An array of range lengths representing the table lines in a Huffman table

An array holding the lower bounds of the table linesin a Huffman table
Adaptive template pixelsin the generic refinement region decoding procedure
The delta height of a symbol instance refinement bitmap

The deltawidth of asymbol instance refinement bitmap

The X offset of a symbol instance refinement

The Y offset of a symbol instance refinement

The number of symbol instances in an aggregation

A bit indicating whether refinement information is present for a symbol instance

Which corner of a symbol instance bitmap isto be used as a reference in a symbol region
decoding procedure

One coordinate of the coordinate system used in a symbol region decoding procedure
The S coordinate of a symbol instance

An offset for the coded delta S valuesin a symbol region

The combination operator used in a symbol region decoding procedure

The default pixel of a symbol region

The height of a symbol region

Whether Huffman coding is used in a symbol region decoding procedure

The Huffman table used to decode the S coordinate of subsequent symbol instancesin a
strip

The Huffman table used to decode the difference in T coordinates between non-empty
strips

The Huffman table used to decode the S coordinate of the first symbol instance in a strip

The Huffman table used to decode the difference between asymbol’ sheight and the height
of arefinement coded symbol instance bitmap

The Huffman table used to decode the difference between a symbol’ swidth and the width
of arefinement coded symbol instance bitmap

The Huffman table used to decode the difference between a symbol instance’s X coordi-
nate and the X coordinate of arefinement coded bitmap

The Huffman table used to decode the difference between a symbol instance’s Y coordi-
nate and the Y coordinate of arefinement coded symbol instance bitmap

SBHUFFRSIZE The Huffman table used to decode the size of a symbol instance’s refinement bitmap data
SBNUMINSTANCES The number of symbol instancesin a symbol region

SBNUMSYMS

The number of symbols that may be used in a symbol region
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SBRATX;
SBRATY;
SBRAT X2
SBRATY
SBREFINE
SBRTEMPLATE

SBSTRIPS
SBSYMCODES
SBSYMS

SBW

SDAT X4

SDATY 4

SDATX.

SDATY 2

SDATX3

SDATY 3

SDAT X4

SDATY 4

SDEXSYMS
SDHUFF

The X position of the adaptive template pixel RA; inasymbol region decoding procedure
TheY position of the adaptive template pixel RA; inasymbol region decoding procedure
The X position of the adaptive template pixel RA »; inasymbol region decoding procedure
TheY position of the adaptive template pixel RA » inasymbol region decoding procedure
Whether refinement coding is used in a symbol region decoding procedure

Template identifier for refinement coding of bitmap in a symbol region decoding proce-
dure

The height of the symbol instance strips

An array of variable-length codes identifying individual symbols
An array of symbolsused inasymbol region

The width of a symbol region

The X position of the adaptive template pixel A; in asymbol dictionary decoding proce-
dure

The 'Y position of the adaptive template pixel A; in asymbol dictionary decoding proce-
dure

The X position of the adaptive template pixel A- in asymbol dictionary decoding proce-
dure

The 'Y position of the adaptive template pixel A- in asymbol dictionary decoding proce-
dure

The X position of the adaptive template pixel As in asymbol dictionary decoding proce-
dure

The 'Y position of the adaptive template pixel As in asymbol dictionary decoding proce-
dure

The X position of the adaptive template pixel A, in asymbol dictionary decoding proce-
dure

The 'Y position of the adaptive template pixel A, in asymbol dictionary decoding proce-
dure

The symbols exported from a symbol dictionary
Whether Huffman coding is used in a symbol dictionary decoding procedure

SDHUFFAGGINST The Huffman table used to decode the number of symbol instances in an aggregation

SDHUFFDH

SDHUFFDW

ina symbol dictionary decoding procedure

The Huffman table used to decode the difference in height between two height classes in
a symbol dictionary decoding procedure

The Huffman table used to decode the difference in width between two symbolsin a sym-
bol dictionary decoding procedure

SDHUFFBMSIZE The Huffman table used to decode the size of aheight class collective bitmap in asymbol

SDINSYMS
SDNEWSYMS

dictionary decoding procedure
An array of symbols used as a parameter to a symbol dictionary decoding procedure
The symbols decoded in a symbol dictionary

SDNEWSYMWIDTHS The widths of the symbols decoded in a symbol dictionary
SDNUMEXSYMS The number of symbols exported from a symbol dictionary

SDNUMINSYMS The number of symbolsin the array that is used as a parameter to a symbol dictionary

decoding procedure

SDNUMNEWSYMS The number of symbols generated in a symbol dictionary
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SDREFAGG

SDRAT X4

SDRATY;

SDRAT X4

SDRATY

Whether refinement and aggregate coding are used in a symbol dictionary decoding pro-
cedure

The X position of the adaptive template pixel RA; in a symbol dictionary decoding pro-
cedure

The Y position of the adaptive template pixel RA; in a symbol dictionary decoding pro-
cedure

The X position of the adaptive template pixel RA- in a symbol dictionary decoding pro-
cedure

The Y position of the adaptive template pixel RA- in a symbol dictionary decoding pro-
cedure

SDRTEMPLATE Templateidentifier for refinement coding of bitmapsin asymbol dictionary decoding pro-

SDTEMPLATE

SKIP
SLNTP
STRIPT
SYMWIDTH
T

TEMPC

Ty
TOTWIDTH
TPON
TPRON

TRANSPOSED

USESKIP
V1

V2

Wi

WOy

X

X

Y

cedure

The template identifier used to decode symbol bitmaps in a symbol dictionary decoding
procedure

A mask of pixelsto be skipped during the decoding of a generic region

A binary valueindicating whether the current lineis typical

The numerically smallest T coordinatein the current strip

The current bitmap width in a symbol dictionary decoding procedure.

One coordinate of the coordinate system used in a symbol region decoding procedure
A temporary register in the MQ coder

The T coordinate of a symbol instance

The total width of the bitmapsin a height class

Whether typical predictionis used in a generic region decoding procedure

Whether typical predictionisused in ageneric region decoding procedure with refinement
coding

Whether the symbol instance coordinates are transposed in a symbol region decoding pro-
cedure

Whether some pixels should be skipped in the decoding of a generic region

A binary value

A binary value

The width of a symbol instance bitmap

The width of the original bitmap of a symbol instance containing refinement information
A real number

The horizontal coordinate of a pixel in a bitmap

The vertical coordinate of a pixel in abitmap

4.3 Operator definitions
The following operators are defined

OR If V1 and V2 are two binary values, then V1 OR V2 isequa to Oif bothV1and V2 are 0. It
isequal to 1if either of V1or V2is1. If V1and V2 are two integer values, thenitistheresult
of bitwise application of OR.

AND If V1and V2 aretwo binary values, then V1 AND V2isequal to Oif either of V1or V2isO0. It
isequal to 1if bothV1and V2arel. If V1and V2 are two integer values, then it isthe result
of bitwise application of AND.
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XOR

XNOR

REPLACE
NOT

min

max

L

1

<<
>>

>>4

If V1and V2 are two binary values, then V1 XOR V2isequa to0if V1 and V2 areequal. It
isequal to 1if V1 and V2 differ. If V1 and V2 are two integer values, then it is the result of
bitwise application of XOR.

If V1and V2 are two binary values, then V1 XNOR V2isequal to 0if V1 and V2 differ. Itis
equal to 1if V1and V2 are equal.

If V1and V2 are two binary values, then V1 REPLACE V2isequa to V2.
If V1isabinary value, then NOT V1is1if V1is0O,andisOif V1is1.

If z and y are numbers then min(z, y) isthe smaller of  and y.

If z and y are numbers then max(x, y) isthe larger of = and .

If z isanumber then | 2| isthelargest integer less than or equal to .

If  isanumber then [«] isthe smallest integer greater than or equal to .

If V1 and V2 are two integers, then V1 << V2 isthe value obtained by shifting the value of
V1 leftwards by V2 bits, filling the rightmost V2 bits of the new value with O.

If V1 and V2 are two integers, then V1 >> V2 isthe value obtained by shifting the value of
V1 rightward by V2 bits, filling the leftmost V 2 bits of the new value with O.

If V1and V2 are two integers, then V1 >> 4 V2 isthe value obtained by shifting the value
of V1 rightward by V2 bits, filling the leftmost V2 bits of the new value with 0 if V1 isnon-
negativeand 1 if V1 is negative.
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5 Conventions

5.1 Typographic conventions

All field names are given in sans serif.
All parameter names are givenin bold face.

5.2 Binary notation

The two binary values are denoted as 0 and 1.

5.3 Hexadecimal notation
The prefix 0x indicates that the following value isto be interpreted as a hexadecimal number (radix 16).

EXAMPLE — Thevalue 0x6a isequa to the decimal value 106.

5.4 Integer value syntax
54.1 Bit packing

Bits are packed into bytes starting at the most significant bit. If a decoder is reading a sequence of bits out of a
bitstream, it shall first read the most significant bit of the first byte, then the next most significant bit, and so on,
then proceed to the next byte.

EXAMPLE — The sequence of bytes Ox2f 0x05 0xcl, if interpreted as a sequence of bits, is the se-
quence

001011110000010111000001

5.4.2 Multi-bytevalues

All multi-bytevalues shall be interpreted in a most-significant-first manner: thefirst byte of each valueisthe most
significant, and the last byteisthe least significant.

EXAMPLE — The sequence of bytesOx01 0x5c¢c 0x99 O0xf a, if interpreted as afour-bytevalue, rep-
resents the value 0x015¢99f a.

5.4.3 Bit numbering

The least significant bit of any value is numbered bit 0. For a one-byte value, the most significant bit is numbered
bit 7; for a two-byte value, the most significant bit is numbered bit 15; for a four-byte value, the most significant
bit is numbered bit 31.

54.4 Signedness

Unless otherwise specified, all multi-bit values shall be treated as unsigned values. When avalueisto be treated
as asigned number it shall be interpreted in two’s-complement form.

5.5 Array notation and conventions

Arrays are numbered starting from zero.

EXAMPLE — A one-dimensional array ARR containing twelve elements has elements

ARR[0], ARR[1], ..., ARR[11]
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(0,0)
Top edge

Left edge Right edge

Bitmap

Bottom edge
Figure 2 — The four edges of a bitmap

5.6 Bitmaps

A bitmap isarectangular array. Every location inthisarray hasthevalueOor 1. A locationin abitmapisreferred
toasapixe.

Theterms “left”, “right”, “top”, “bottom”, “width” and “height” are often applied to bitmaps. These terms do
not refer to any physical aspect of the bitmap: if abitmap is printed on paper, it may be printed with its“left” edge
along any edge of the paper. They are used within this standard to refer to the four edges of the bitmap as shown
in Figure 2.

A pixel inabitmapisreferred to by apair of coordinates X and Y, sometimes written asapair (X, Y). Thelo-
cation (0, 0) representsthe pixel inthe top left corner. The X coordinateincreases rightwardsand the'Y coordinate
increases downwards.

If BM isabitmap then the pixel whose coordinatesare X and Y isreferred to as BM X, Y].

NOTE — These conventions are intended to make it easier to describe operations involving bitmaps, and
are not intended to imply any physical characteristics of the image represented by the bitmap.
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6 Decoding Procedures

6.1 Introduction to Decoding Procedures

This International Standard makes use of a number of different decoding procedures for different types of data.
Each of these decoding procedures produces a certain kind of data as output. The generic region decoding pro-
cedure, generic refinement region decoding procedure, halftone region decoding procedure, and symbol region
decoding procedures all produce regions as their output. The symbol dictionary decoding procedure produces an
array of symbolsasits output. The halftone dictionary decoding procedure similarly produces an array of halftone
cell bitmaps as its output.

The various region decoding procedures operate in different manners:

o The generic region decoding procedure decodes a bitmap, treating it simply as an an array of binary pixels.

¢ The generic region refinement decoding procedure decodes a bitmap by treating it as an array of binary pix-
els, but coding each pixel with respect to some reference bitmap.

o The symbol region decoding procedure decodes abitmap by drawing acollection of symbolsintoit, possibly
applying the generic refinement region decoding procedure to each one.

¢ The halftone region decoding procedure decodes a bitmap by placing a collection of halftone patternsinto
it, at locations specified by a halftone grid.

Each decoding procedure is specified in terms of a number of parameters and a sequence of operations, which
are affected by the values of the parameters. These parameters are supplied to the decoding procedure for each
invocation, and the same decoding procedure may be invoked multiple times during the course of decoding a bit-
stream, with different parameters each time.

Some of the decoding procedure parameters are unused in certain circumstances, usually depending on the
values of other parameters. In these circumstances, no value needs to be specified for those unused parameters.

6.2 Generic Region Decoding Procedure

6.2.1 General Description

This decoding procedureis used to decode arectangular array of 0 or 1 values, which are coded one pixel at atime
(i.e., itis used to decode a bitmap using simple, generic, coding). The decoding procedure also modifies an array
of probability information which may be used by other invocations of this generic region decoding procedure.

The generic region decoding procedure may be based on sequential coding of theimage pixelsusing arithmetic
coding as specified in Annex E and a template to determine the coding state. This technique was used in ITU-T
Recommendation T.82 | ISO/IEC International Standard 11544 (JBIG). Thistype of decoding isdescribedin 6.2.5.

Alternatively, for improved speed but reduced compression the generic region decoding procedure may be
based on Huffman coding of runs of pixels. This technique was used in the MMR (Modified Modified READ)
algorithm described in ITU-T Recommendation T.6 (G4). Thistype of decoding is described in 6.2.6.

6.2.2 Input parameters

The parameters to this decoding procedure are shown in Table 2.

6.2.3 Return values

The variables whose values are the result of this decoding procedure are shown in Table 3.
6.2.4 Variablesused in decoding

The variables used by this decoding procedure are shown in Table 4.

6.2.5 Decoding using a Template and Arithmetic Coding

6.2.5.1 General Description

If MM R is0 the generic region decoding procedure is based on arithmetic coding with a template to determine the
coding state. The remainder of 6.2.5 describes this form of decoding, and only applieswhen MMR isO.
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Table 2 — Parametersfor the generic region decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)
MMR Integer 1 N Whether MMR coding is used.
GBW Integer 32 N The width of the region.
GBH Integer 32 N The height of the region.
GBTEMPLATE | Integer 2 N The template identifier. *
TPON Integer 1 N Whether typical predictionisused. *
USESKIP Integer 1 N Whether some pixels should be skipped in the decod-
ing. *
SKIP Bitmap A bitmap indicating which pixels should be skipped.
GBW pixelswide, GBH pixelshigh. ***
GBATX; Integer 8 Y The X position of the adaptive template pixel A;. *
GBATY; Integer 8 Y The Y position of the adaptive template pixel A;. *
GBATX Integer 8 Y The X position of the adaptive template pixel As. **
GBATY, Integer 8 Y The Y position of the adaptive template pixel As. **
GBATXj3 Integer 8 Y The X position of the adaptive template pixel As. **
GBATY; Integer 8 Y The Y position of the adaptive template pixel As. **
GBATX4 Integer 8 Y The X position of the adaptive template pixel A,. **
GBATY,4 Integer 8 Y The Y position of the adaptive template pixel A,. **

* Unused if MMR =

1

** Unused if MMR = 1 or GBTEMPLATE # 0
“** Unused if USESKIP =0orMMR =1

Table 3— Return values from the generic region decoding procedure.

Name Type

Size
(bits)

Signed?

Description and restrictions

GBREG | Bitmap

The decoded region bitmap.

Table4 — Variables used in the generic region decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)
LNTP Integer 1 N Whether the current image line is coded explicitly *
SLNTP Integer 1 N Whether the current line's LNTP value is different
from the previousline€ sSLNTP value *
CONTEXT | Integer 16 N The values of the pixelsin thetemplate ™
*“Unused if MMR = 1
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6.2.5.2 Coding Order and Edge Conventions

The coding agorithm iterates through the bitmap in raster scan order, that is, by rows from top to bottom, and
within each row fromleft to right. The processing for a current target pixel will reference the colors of some pixels
in fixed spatial relationship to the target pixel.

Near the edges of the bitmap, these neighbor references may not lie in the actual bitmap. The rulesto satisfy
out-of-bounds references shall be as follows:

o All pixelslying outside the bounds of the actual bitmap have the value O.

6.2.5.3 Fixed Templates

A template defines a neighborhood around a pixel to be coded. The values of the pixelsinthis neighborhood define
a context. Each context has its own adaptive probability estimate used by the arithmetic coder (see Annex E).
Although a template is a geometric pattern of pixels, the pixelsin atemplate are said to take on values when the
templateis aligned with a particular part of the image.

A4 X X X A3

A2 X X X X X Al

X X X X 1O

X I x1I x|1O

Figure 4 — Template when GBTEMPLATE=1, showingthe AT pixel at itsnominal location.

X X 1O

Figure 5— Template when GBTEMPLATE=2, showingthe AT pixel at itsnominal location.

Figure 3 shows the template which shall be used when GBTEMPLATE is 0. Figure 4 shows the template
which shall be used when GBTEMPLATE is 1. Figure 5 shows the template which shall be used when GBTEM -
PLATE is2. Figure6 showsthe template which shall be used when GBTEMPLATE is3. In each of thesefigures,
the pixel denoted by acircle correspondsto the pixel to be coded and is not part of thetemplate. The pixelsdenoted
by ‘X’ correspond to ordinary pixelsin the template. The pixelsdenoted A —A, are special pixelsinthetemplate.
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X X X X 1O

Figure 6 — Template when GBTEMPLATE=3, showingthe AT pixel at itsnominal location.

They are denoted “adaptive” or AT pixels. These pixelsare special in that their positionsare not fixed, but can be
placed at different locations. See 6.2.5.4 for a description of AT pixels. The legends A;—A 4 indicatethe AT pixels
1to 4. The pixels actual positions are specified as parameters to this decoding procedure; Figures 3— 6 show the
nominal locations of these AT pixelsfor each template.

The values of the pixelsin the template shall be combined to form a context. Each pixel in the template (in-
cluding the adaptive pixels) shall correspond to aspecific bit in the context, although the pixelsin the template may
be assigned to bitsin the context in any order. Because there are up to 16 pixelsin the template, contexts can take
on up to 65536 different values. This context shall be used to identify which adaptive probability estimate must be
used by the arithmetic coder for encoding the pixel to be coded (see Annex E).

NOTE 1 — A ruleof thumb isto use large templates for large bitmaps. Thus a full-size periodic halftone
should be coded with the 16-pixel template and tiny bitmaps such as usual symbol bitmaps
should be coded with one of the 10-pixel templates. In some cases an intermediate template is
desired, for performance or decoder memory requirements; in this case the 13-pixel template
should be used. It is also possible to generate further templates by placing one or more of the
AT pixelson top of aregular template pixel, thusfixing its value.

NOTE 2— The 10-pixel templates are those used in ITU-T Recommendation T.82 | ISO/IEC International
Standard 11544 (JBIG). Software execution speed is somewhat higher with the two-line tem-
plate than any of the three-line templates. For most images the 10-pixel, three-line template
gives higher compression than the 10-pixel, two-linetemplate.

6.2.5.4 Adaptive Template Pixels

In coding theimage, the template shall be allowed to change in the restricted way described in this clause.

The pixelsthat are allowed to change shall be called AT pixels. Their nominal positionsare indicated by ‘A’
‘A, "As’,and Ay’ inFigures 3, 4, 5 and 6. Note that some templates have fewer than four AT pixels. Ingeneral,
an AT pixel can be located anywhere in the field shown in Figure 7, not including the current pixel. Hence, there
is the possibility to use an effective template size of 15, 14, 13, 12 or 9 pixels by having the moved position of
the AT pixel overlap a regular template pixel. The actua locations of the AT pixels for any invocation of this
decoding procedure are specified as parameters to the decoding procedure. The location of the pixel 4; isgiven
by (GBATX1, GBATY). If GBTEMPLATE isOthen

o thelocation of the pixel A, isgivenby (GBATX2, GBATY?:),
o thelocation of the pixel A5 isgivenby (GBATX3, GBATY3),
¢ and thelocation of the pixel 44 isgiven by (GBATX4, GBATY,),

NOTE 1— Some profiles may restrict AT pixel locationsto asmaller range than that shown in Figure 7.
NOTE 2 — Theindex of the AT pixelsin Figure 3 correspondsto the expected goodness. Moving only one

AT pixel from its nominal position, it is advisable to move A 4. The next pixel to moveis As
and so on.



(—128,—128) R (=1,—128) | (0,—128) (1,—-128) R

(—128,—1) oo

(—128,0) R (—1,0)

Figure 7— Field to which AT pixel locationsare restricted.

(127, —128)

(127,-1)

NOTE 3— Thenominal locationsof the AT pixelsare as shownin Table 5. Theselocationsshould be used
unless other locationsimprove compression performance. Some profiles may restrict AT pixel

locationsto only these nominal locations.

NOTE 4 — If an AT pixel’s location overlaps any regular template pixel’s location, then the AT pixel’'s
value can beignored (since it duplicates another value). This can reduce the memory require-

ments of the decoder, since not all CX values can occur.

6.2.5.5 Typical Prediction (TP)

Typical prediction can be enabled or disabled with the TPON parameter. If typical predictionis enabled (TPON
is1), then beforethe first pixel of each row isdecoded, avaueindicating that arow istypical shall be decoded. If
therow istypical then each pixel of thisrow isidentical to the corresponding pixel in the row immediately above,
and so no other pixels of this row need to be decoded. If the row is not typical, then each pixel of thisrow needs

to be decoded.

Table 5— The nominal values of the AT pixel locations.

NOTE — NA means that the parameter has no nominal value.

GBTEMPLATE || GBATX1 | GBATX2 | GBATX3 | GBATX4
GBATY; | GBATY: | GBATY3 | GBATY4
0 3 -3 2 -2
-1 -1 -2 -2
1 3 NA NA NA
-1 NA NA NA
2 2 NA NA NA
-1 NA NA NA
3 2 NA NA NA
-1 NA NA NA
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6.2.5.6 Skipped Pixels

If the parameter USESKI P is 1, then the parameter SK 1P contains a GBW-by-GBH bitmap. Each pixel in SK1P
corresponds to a pixel in the bitmap being decoded; if the pixel in SK1P is 1 then the corresponding pixel in the
bitmap being decoded is 0, and does not need to be actually decoded.

6.2.5.7 Decoding the Bitmap
The decoding of the bitmap shall proceed as follows.

1. Set

LNTP = 1

2. Create ahitmap GBREG of width GBW and height GBH pixels.
3. Decode each row as follows.

(a) If dl GBH rows have been decoded then the decoding is complete; proceed to step 4.

(b) If TPON is 1 then decode a bit using the arithmetic entropy coder, where the context used to decode
thisbit varies depending on the template in use:
o If GBTEMPLATE isO0, use the context shown in Figure 8.
o If GBTEMPLATE is 1, usethe context shown in Figure 9.
o If GBTEMPLATE is 2, usethe context shown in Figure 10.
o If GBTEMPLATE is 3, usethe context shown in Figure 11.

Let SLNTP be the value of thisbit. Set

LNTP = LNTP XOR SLNTP

(c) If LNTP = Othen set every pixel of the current row of GBREG equal to the corresponding pixel of the
row immediately above.

(d) If LNTP = 1then, from l€ft to right, decode each pixel of the current row of GBREG. The procedure
for each pixel isas follows:

i. If USESKIP is 1 and the pixel in the bitmap SKIP at the location corresponding to the current

pixel is 1, then set the current pixel to O.

ii. Otherwise,

A. Place the template given by parameters GBTEMPLATE, GBATX; through GBAT X4 and
GBATY ; throughGBATY 4 sothat the current pixel isaligned withthelocation denoted by a
circleinthefigure describing the appearance of thetemplatewithidentifier GBTEM PLATE.

B. Form an integer CONTEXT by gathering the values of the image pixelsoverlaid by the tem-
plate (including AT pixels) at its current location. The order of this gathering is not standard-
ised, but must be consistent and independent of the location of the AT pixels.

C. Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set
to the value formed by concatenating the label “GB” and the 10-16 pixel values gathered in
CONTEXT. Theresult of thisinvocation isthe value of the current pixel.

EXAMPLE — If GBTEMPLATE is 2, theimage pixelsoverlaid by the template are
as shown in Figure 10, and the pixels are gathered in reading order (in
rows from top to bottom, and within each row from left to right), then
CX isset to “GB0011100101".

4. After all the rows have been decoded, the current contents of the bitmap GBREG are the results that shall
be obtained by every decoder, whether it performs this exact sequence of steps or not.
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Figure 9 — Reused context for coding the TP pseudo-pixel when GBTEMPLATE is 1.

6.2.6 Decoding using Huffman coding

If MMR is 1, the image bitmap decoding procedureis identical to an MMR (Modified Modified READ) decoder
described in ITU-T Recommendation T.6. The decoder in ITU-T Recommendation T.6 is specified as producing
pixelswhose value may be either “black” or “white”. For the purposes of thisInternational Standard, the result of
using the MMR decoder shall be interpreted as follows:

o Pixels decoded by the MMR decoder having the value “black” shall be treated as having the value 1.

o Pixels decoded by the MMR decoder having the value “white” shall be treated as having the value 0.

NOTE — MMR provides less compression than image bitmap compression based on arithmetic coding.
Image bitmap decoding using MMR is faster than image bitmap decoding based on arithmetic
coding.

6.3 Generic Refinement Region Decoding Procedure

6.3.1 General Description

Thisdecoding procedure is used to decode arectangular array of 0 or 1 values, which are coded one pixel at atime.
There is a reference bitmap known to the decoding procedure, and thisis used as part of the decoding process.
The reference bitmap is intended to resemble the bitmap being decoded, and this similarity is used to increase
compression. Each pixel is decoded using a context comprising pixels drawn from the reference bitmap as well as
previously-decoded pixels from the bitmap being decoded.

6.3.2 Input parameters

The parameters to this decoding procedure are shown in Table 6.

6.3.3 Return values

The variables whose values are the result of thisdecoding procedure are shown in Table 7.

6.3.4 Variablesused in decoding
The variables used by this decoding procedure are shown in Table 8.
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Table 6 — Parameters for the generic refinement region decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)
GRW Integer 32 N The width of the region.
GRH Integer 32 N The height of the region.
GRTEMPLATE Integer 1 N The template identifier.
GRREFERENCE Bitmap The reference bitmap.
GRREFERENCEDX | Integer 32 Y The X offset of the reference bitmap with respect tothe
bitmap being decoded.
GRREFERENCEDY | Integer 32 Y TheY offset of the reference bitmap with respect tothe
bitmap being decoded.
TPRON Integer 1 N Whether typical prediction for refinement is used.
GRAT X4 Integer 8 Y The X position of the adaptive template pixel RA;. *
GRATY; Integer 8 Y The Y position of the adaptive template pixel RA;. *
GRAT X Integer 8 Y The X position of the adaptive template pixel RA5. *
GRATY. Integer 8 Y The Y position of the adaptive template pixel RA,. *

* Unused if GRTEMPLATE # 0

Table 7— Return valuesfrom the generic refinement region decoding procedure.

Name

Type

Size
(bits)

Signed?

Description and restrictions

GRREG

Bitmap

The decoded region bitmap.

Table 8 — Variables used in the generic refinement region decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)

CONTEXT | Integer 16 N The values of the pixelsin the template

LTP Integer 1 N Whether the current image line is decoded explicitly *

SLTP Integer 1 N Whether the current line'sLTP value is different from
the previousline’'sLTP value ™

TPRPIX Integer 1 N Whether the current pixel is to be decoded implicitly
using a TPR prediction *

TPRVAL Integer 1 N Value of the TPR-predicted current pixel *

* Unused if TPRON = 0
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Figure 11 — Reused context for coding the TP pseudo-pixel when GBTEMPLATE is 3.

6.3.5 Decoding using atemplate and arithmetic coding

6.3.5.1 General description

The generic refinement region decoding procedure isbased on arithmetic coding with a template to determine the
coding state. The remainder of 6.3.5 describes this form of decoding.

6.3.5.2 Coding Order and Edge Conventions

The coding algorithm iterates through the refine bitmap being decoded, along with a reference bitmap, in raster
scan order. That is, it iterates by rows from top to bottom, and within each row from left to right. The processing
for a current target pixel will reference the colors of some pixelsin fixed spatial relationship to the target pixel.
Some of these pixelsare drawn from the reference version of the bitmap, and some of these pixels are drawn from
the already-coded pixels of the refined bitmap.

Near the edges of the bitmap, neighbor references may not lie inthe actual bitmap. The rulesto satisfy out-of -
bounds references shall be as follows:

o All pixelslying outside the bounds of the actual bitmap or the reference bitmap have the value 0.

6.3.5.3 Fixed Templates and Adaptive Templates

A template defines a neighborhood around a pixel to be coded. The values of the pixelsinthis neighborhood define
a context. Each context has its own adaptive probability estimate used by the arithmetic coder (see Annex E).
Although a template is a geometric pattern of pixels, the pixelsin atemplate are said to take on values when the
templateis aligned with a particular part of the image.

Figure 12 showsthe template which shall be used when TEM PLATE isO. Figure 13 showsthetemplate which
shall be used when TEMPLATE is 1. In each of these figures, the left-hand group indicates the pixels from the
already-coded pixels of the refined bitmap that are in the template, and the right-hand group indicates the pixels
from the reference version of the template that are in the template. Each group in each figure includes a pixel de-
noted by acircle; these pixelsall correspond to the pixel to be coded. The pixelsmarked withan ‘X’ correspond to
ordinary pixelsinthetemplate. The pixelsdenoted RA;—RA, are specia pixelsin thetemplate. They are denoted
“adaptive” or AT pixels. These pixelsare special in that their positions are alowed to change during the process
of encoding the image. See 6.3.5.4 for a description of AT pixels. The legends RA;—RA, indicate the nominal
locations of AT pixels1to 2.

The AT pixel RA; can belocated anywhereinthefield shownin Figure 7, not including the current pixel. The
AT pixel RA, can be located anywhere in the range (—128, —128) to (127, 127).
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Figure 13 — 10-pixel refinement template

The pixelsin the left hand group of each template shall be aligned with the already-decoded pixels of the bit-
map being decoded, with the pixel denoted by a circle lying on the pixel to be decoded. Let (X, Y) be the lo-
cation of this pixel. The pixels of the right hand group of each template shall be aligned with the reference hit-
map GRREFERENCE, with the pixel denoted by acircle placed at thelocation (X — GRREFERENCEDX, Y —
GRREFERENCEDY). The values of the pixelsin the template shall be combined to form a context. Each pixel
in the template (including the adaptive pixels) shall correspond to a specific bit in the context, although the pixels
inthetemplate may be assigned to bitsin the context in any order. Because there are upto 13 pixelsin thetemplate,
contexts can take on up to 8192 different values. This context shall be used to identify which adaptive probability
estimate must be used by the arithmetic coder for encoding the pixel to be coded (see Annex E).

6.3.5.4 Adaptive Template Pixels

In coding the image, the template shall be allowed to change in the restricted way described in this clause.
The pixelsthat are allowed to change shall be called AT pixels. Their standard positionsareindicated by ‘RA;’
and ‘RA,’ inFigure 12. Note that only one template has AT pixels.

6.3.5.5 Typical Prediction for Refinement (TPR)

Typical predictioncan beenabled or disabledwiththe TPRON parameter. |f typical predictionisenabled (TPRON
is 1) then beforethefirst pixel of each row isdecoded, avalueindicating whether arow can use typical prediction
shall be decoded. If therow can not use typical prediction, each pixel of the row needs to be explicitly decoded. If
the row can use typical prediction, all typically-predictable pixels can be implicitly decoded using their predicted
value, with the remainder of the pixelsstill being explicitly decoded. For apixel to be typically-predictableit must
meet certain criteriato be defined below.

6.3.5.6 Decoding therefinement bitmap
The decoding of the bitmap shall proceed as follows.

1. SetLTP=0.
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2. Create ahitmap GRREG of width GRW and height GRH pixels.

3. Decode each row as follows

(&) If dl GRH rows have been decoded then the decoding is complete; proceed to step 4
(b) If TPRON is 1 then decode a bit using the arithmetic entropy coder, where the context used to decode
thisbit vares depending on the template in use:
o If GRTEMPLATE is0, use the context shown in Figure 14.
o If GRTEMPLATE is 1, use the context shown in Figure 15.
Let SLTP be the value of this bit. Set

LTP =LTP XOR SLTP

(c) If LTP = 0 then, from left to right, explicitly decode al pixels of the current row of GRREG. The
procedure for each pixel isas follows:

Place the template given by parameters GRTEMPLATE (and GRAT X3, GRATY 1, GRATX;
and GRATY if GRTEMPLATE is 0) so that the current pixel is aligned with the location de-
noted y a circle in the figure describing the appearance of the template with identifier GRTEM -
PLATE.

ii. Form an integer CONTEXT by gathering the values of the image pixels overlaid by the template

(including AT pixels) at its current location. The order of this gathering is not standardised, but

must be consistent and independent of the location of the AT pixels.

Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set to

the value formed by concatenating the label “GR” and the 1013 pixel values gathered in CON-

TEXT. The result of thisinvocation isthe value of the current pixel.

EXAMPLE — If GRTEMPLATE is 1, the image pixels overlaid by the template are as
shown in Figure 15, and the pixels are gathered in reading order (in rows
from top to bottom, and within each row from |eft to right, with the pixels
in GRREG considered before the pixelsin GRREFERENCE), then CX is
set to “GR0000001000".

(d) If LTP = 1then, from left toright, implicitly decode certain pixels of the current row of GRREG, and
explictly decode the rest. The procedure for each pixel isas follows:

Set TPRPIX equal to 1 if
A. TPRON is1AND
B. a3 x 3 pixel array inthe reference bitmap (Figure 16), centered at the location corresponding
to the current pixel, contains pixelsall of the same value.
When TPRPIX is set to 1, set TPRVAL equal to the current pixel predicted value, which is the
common value of the nine adjacent pixelsintheabove single 3 x 3 array.

ii. If TRPPIX is1 then implicitly decode the current pixel by setting it equal to its predicted value

(TPRVAL).
Otherwise, explictly decode the current pixel using the methodology of steps 3(c)i through 3(c)iii
above.

4. After all the rows have been decoded, the current contents of the bitmap GRREG are the results that shall
be obtained by every decoder, whether it performs this exact sequence of steps or not.

6.4 Symbol Region Decoding Procedure
6.4.1 General Description

Thisdecoding procedureis used to decode a bitmap by decoding anumber of symbol instances. A symbol instance
contains a location and a symbol ID, and possibly a refinement bitmap. These symbol instances are combined to
form the decoded bitmap.

NOTE — This decoding procedure will normally be used to decode the text part of a page. The symbols

are normally single text characters from some font or al phabet.
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Figure 15 — Reused context for coding the SLTP pseudo-pixel when GRTEMPLATE is 1.

6.4.2 Input parameters

The parameters to this decoding procedure are shown in Table 9.

NOTE — The values of some of these parameters in a typical situation, where a bitmap containing text
charactersin standard English reading order isbeing decoded, and 1 istheforeground pixel value,
are

e SBDEFPIXEL isO

¢ SBCOMBOP isOR

e TRANSPOSED isO

¢ REFCORNER isBOTTOMLEFT

6.4.3 Return values

The variables whose values are the result of thisdecoding procedure are shown in Table 10.
6.4.4 Variablesused in decoding

The variables used by this decoding procedure are shown in Table 11.

6.4.5 Decodingthe Symbol Bitmap

A symbol-coded bitmap is represented by a set of symbol instances. Each symbol instance encodes a location, a
symbol D, and possibly refinement information. The location of each symbol instance comprises an S coordinate
andaT coordinate. If TRANSPOSED isO, thenthe S coordinate axis correspondsto the X axis of the bitmap, and
the T axiscorrespondstothe Y axisof the bitmap. If TRANSPOSED is 1, thenthe S coordinate axis corresponds
totheY axis of the bitmap, and the T axis corresponds to the X axis of the bitmap.

NOTE 1— Transposing the coordinate axes allows efficient coding of text running vertically. The refer-
ence corner isvariable because the most efficient coding is usually obtained when the reference
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Table 9 — Parameters for the symbol region decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)

SBHUFF Integer 1 N Whether Huffman coding is used.

SBREFINE Integer 1 N Whether refinement coding is used.

SBW Integer 32 N The width of the region.

SBH Integer 32 N The height of the region.

SBNUMINSTANCES | Integer 32 N The number of symbol instances in thisregion.

SBSTRIPS Integer 4 N The size of the symbol instance strips. May take onthe
values 1, 2,4 or 8.

SBNUMSYMS Integer 32 N The number of symbolsthat may be used inthisregion.

SBSYMCODES Array of Huffman codes | An array containing the codes for the symbolsused in
thisregion. Contains SBNUM SYM S codes. *

SBSYMCODELEN Integer | 6] N The length of the symbol codes used in IAID ****

SBSYMS Array of symbols An array containing those symbols. Contains SB-
NUMSYM S symbols.

SBDEFPIXEL Integer | 1] N The default pixel for this bitmap.

SBCOMBOP Operator The combination operator for thissymbol region. This
parameter may take onthevauesOR, AND, XOR, and
XNOR.

TRANSPOSED Integer 1 N Whether the symbol instance coordinates are
transposed.

REFCORNER Corner Which corner of a symbol instance bitmap is to be
used as a reference. This parameter may take on the
values TOPLEFT, TOPRIGHT, BOTTOMLEFT and
BOTTOMRIGHT.

SBDSOFFSET Integer | 5] Y An offset for all the delta S values.

SBHUFFFS Huffman table The Huffman table used to decode the S coordinate of
thefirst symbol instance in each strip. *

SBHUFFDS Huffman table The Huffman table used to decode the S coordinate of
subsequent symbol instancesin each strip. *

SBHUFFDT Huffman table The Huffman table used to decode the differencein T
coordinates between non-empty strips. *

SBHUFFRDW Huffman table The Huffman table used to decode the difference be-
tween a symbol’s width and the width of a refinement
coded bitmap. **

SBHUFFRDH Huffman table The Huffman table used to decode the difference be-
tween asymbol’s height and the height of a refinement
coded bitmap. **

SBHUFFRDX Huffman table The Huffman table used to decode the difference be-
tween a symbol instance’s X coordinate and the X co-
ordinate of arefinement coded bitmap. **

SBHUFFRDY Huffman table The Huffman table used to decode the difference be-
tween a symbol instance’s Y coordinate and the Y co-
ordinate of arefinement coded bitmap. **

SBHUFFRSIZE Huffman table The Huffman table used to decode the size of asymbol
instance’s refinement bitmap data. **

SBRTEMPLATE Integer 1 N Template identifier for refinement coding of symbol in-
stance bitmaps. ***

SBRAT X4 Integer 8 Y The X position of the adaptive template pixel RA,. ***

SBRATY, Integer 8 Y TheY position of the adaptive template pixel RA;. ***

SBRATX; Integer 8 Y The X position of the adaptive template pixel RA 5. ***

SBRATY . Integer 8 Y TheY position of the adaptive template pixel RA 5. ***

* Unused if SBHUFF = 0.

** Unused if SBHUFF = 0 or SBREFINE = 0.
*** Unused if SBREFINE = 0. **** Unused if SBHUFF = 1.
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Table 10 — Return values from the symbol region decoding procedure.

Name Type | Size | Signed? | Description and restrictions
(bits)
SBREG | Bitmap The decoded region bitmap.
Table 11 — Variables used in the symbol region decoding procedure.
Name Type Size | Signed? | Description and restrictions
(bits)

STRIPT Integer 32 Y The numerically smallest T coordinate in the current
strip.

FIRSTS Integer 32 Y Thefirst S coordinate of the current strip.

NINSTANCES | Integer 32 N A symbol instance counter.

DT Integer 32 Y The number of empty strips between two non-empty
strips.

DFS Integer 32 Y The difference in S coordinates between the first in-
stances of two strips.

CURS Integer 32 Y The current S coordinate.

CURT Integer 3 N The current symbol instance’s T coordinate relative to
the current strip.

St Integer 32 Y A symbol instance’s S coordinate.

Tr Integer 32 Y A symbol instance's T coordinate.

1D Integer 32 N A symbol instance’s symbol ID.

1B Bitmap A symbol instance’'s symbol bitmap.

Wi Integer 32 N The width of a symbol instance’s symbol bitmap.

Hy Integer 32 N The height of a symbol instance's symbol bitmap.

IDS Integer 32 Y The difference in S coordinates between two symbol
instances within a strip.

Ry Integer 1 N Whether a symbol instance’s symbol bitmap is coded
using refinement.

RDW; Integer 32 Y The deltawidth of a symbol instance's refinement bit-
map. *

RDHy Integer 32 Y The deltaheight of a symbol instance's refinement bit-
map. *

RDXy Integer 32 Y The delta X of asymbol instance’s refinement bitmap.

RDY7 Integer 32 Y ThedeltaY of asymbol instance’s refinement bitmap.

1BO; Bitmap A symbol instance’s original symbol bitmap. *

WOy I nteger 32 N Thewidthof IBOy;. *

HOy Integer 32 N Theheight of /BO;. *

*Unused if SBREFINE = 0.



Figure 16 — TPRB template.

corner of each symbol instance lies on atext baseline, and the text baselines may runin any di-
rection.

In order to improve compression, symbol instances are grouped into strips according to their 7'y values. This
is done according to the value of SBSTRIPS. Symbol instances having 7 values between 0 and SBSTRIPS — 1
are grouped into one strip, symbol instances having 7'y values between SBSTRIPS and 2 x SBSTRIPS — 1 into
the next, and so on. Within each strip, the symbol instances are coded in the order of increasing S coordinate.

NOTE 2— Normally the strips occur in the order of strictly increasing T coordinates, and the symbol in-
stances within each strip occur in the order of nondecreasing S coordinates. However, itispos-
siblefor negativedeltaS or deltaT valuesto occur during the decoding, meaning that the strips
and symbol instances might occur in any order.

The overall structure of the datato be decoded in order to reconstruct the symbol regionisshownin Figure 17.
The format of each strip isas shown in Figure 18. When SBREFINE is0, the format of each symbol instanceis
as shown in Figure 19. When SBREFINE is 1, the format of each symbol instanceis as shownin Figure 20.

NOTE 3— There may be some symbol instances whose reference corner lies off the top of the region. If
these are to be coded, there must be some way to have a strip that also lies above the top of
theregion. The initia value of STRIPT isthe coordinate with respect to which thefirst stripis
located.

Initial STRIPT value
First strip
Second strip

Last strip

Figure 17 — Coded structure of a symbol region.

Delta T
First symbol instance
Second symbol instance

Last symbol instance
0o0oB

Figure 18 — Structure of a strip.

The result of decoding a symbol region shall be the bitmap that is produced by the following steps.
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Symbol instance S coordinate
Symbol instance T coordinate
Symbol instance symbol ID

Figure 19 — Structure of a symbol instance when SBREFINE is 0.

Symbol instance S coordinate
Symbol instance T coordinate
Symbol instance symbol ID
Symbol instance refinement information

Figure 20 — Structure of a symbol instance when SBREFINE is 1.

1. Fill abitmap SBREG, of the size given by SBW and SBH, with the SBDEFPI XEL value.

2. Decode theinitial STRIPT value as described in 6.4.6. Negate the decoded value and assign this negated
valueto the variable STRIPT. Assign thevalue O to FIRSTS. Assign the value 0 to NINSTANCES.

3. Decode each strip asfollows.

(& If NINSTANCES is equa to SBNUMINSTANCES then there are no more strips to decode, and the
process of decoding the symbol region is complete; proceed to step 4.

(b) Decodethestrip’'sdelta T value as describedin 6.4.6. Let DT be the decoded value. Set

STRIPT = STRIPT +DT

(c) Decode each symbol instance in the strip as follows.

If the current symbol instanceisthefirst symbol instancein the strip, then decode the first symbol
instance’'sinstance S coordinate as described in 6.4.7. Let DFS be the decoded value. Set

FIRSTS = FIRSTS+ DFS
CURS = FIRSTS

Otherwise, if the current symbol instance is not the first symbol instance in the strip, decode the
symbol instance’s instance S coordinate as described in 6.4.8. If the result of this decoding is
OOB then the last symbol instance of the strip has been decoded; proceed to step 3d. Otherwise,
let IDS be the decoded value. Set

CURS = CURS+ IDS+ SBDSOFFSET

NOTE — Theintended use of SBDSOFFSET isto make the cost common value decoded
in 6.4.8 zero. The shortest codein al of thedefault tablesused in 6.4.8 isfor the
value zero.

Decode the symbol instance’s instance T coordinate as described in 6.4.9. Let CURT be the
decoded value. Set

Ty = STRIPT + CURT

Decode the symbol instance' sinstance symbol ID asdescribed in 6.4.10. Let / D; bethedecoded
value.

Determine the symbol instance’s bitmap / B as described in 6.4.11. The width and height of this
bitmap shall be denoted as W and H; respectively.
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vi. Update CURS as follows.
o If TRANSPOSED is0, and REFCORNER isTOPRIGHT or BOTTOMRIGHT, set

CURS = CURS+Wr—-1

¢ |f TRANSPOSED is1, and REFCORNER isBOTTOMLEFT or BOTTOMRIGHT, set
CURS = CURS+ Hr-—1

e Otherwise, do not change CURS in this step.
vii. Set
S = CURS

viii. Determine the location of the symbol instance bitmap with respect to SBREG as follows.
o If TRANSPOSED is0, then

— If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap / By
shall be placed at SBREG[St, T71].

— If REFCORNER isTOPRIGHT thenthetopright pixel of the symbol instance bitmap / B
shall be placed at SBREG[S;, Tr].
— |f REFCORNER isBOTTOMLEFT then the bottom left pixel of the symbol instance bit-
map IBy shall be placed at SBREG[S], T[].
— |f REFCORNER isBOTTOMRIGHT then the bottom right pixel of the symbol instance
bitmap I B; shall be placed at SBREG[St, T7].
e |f TRANSPOSED is1, then

— If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap 7 B;
shall be placed at SBREG[T7, S1].

— If REFCORNER isTOPRIGHT thenthetopright pixel of the symbol instance bitmap / B
shall be placed at SBREG[T7, S¢].
— |f REFCORNER isBOTTOMLEFT then the bottom left pixel of the symbol instance bit-
map I By shall be placed at SBREG[T}, S].
— |f REFCORNER isBOTTOMRIGHT then the bottom right pixel of the symbol instance
bitmap I B; shall be placed at SBREG[ 7}, S].
If any part of /By, when placed at thislocation, lies outside the bounds of SBREG, then ignore
thispart of 7By in step 3(c)ix.
ix. Draw [ By into SBREG. Combine each pixel of / By with the current value of the corresponding
pixel in SBREG, using the combination operator specified by SBCOM BOP. Write the results of
each combination into that pixel in SBREG.

x. Update CURS as follows.
o If TRANSPOSED is0, and REFCORNER is TOPLEFT or BOTTOMLEFT, set

CURS = CURS+Wr—1
¢ |f TRANSPOSED is1, and REFCORNER is TOPLEFT or TOPRIGHT, set
CURS = CURS+ Hr-1

e Otherwise, do not change CURS in this step.

NOTE — The CURS update rules are designed to allow the gap between adjacent symbol
instances to be encoded, rather than the distance between their reference cor-
ners; thistakes out one source of variation (the symbol instance bitmap width or
height), and allows better compression.
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Xi. Set
NINSTANCES = NINSTANCES + 1

(d) When the strip has been completely decoded, decode the next strip.

4. After dl the strips have been decoded, the current contents of SBREG are the results that shall be obtained

by every decoder, whether it performs this exact sequence of steps or not.

6.4.6 Strip delta T

If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDT and multiply the resulting

value by SBSTRIPS.

If SBHUFF is0, decode avalue using the IADT integer arithmetic decoding procedure (see A) and multiply

the resulting value by SBSTRIPS.

6.4.7 First symbol instance S coordinate

NOTE — Theinstance S coordinate valuefor athefirst symbol instance of each stripiscoded differently
from the subsequent symbol instances in each strip. This takes advantage of the beginnings of
lines being aligned.

If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFFS.
If SBHUFF is 0, decode a value using the |AFS integer arithmetic decoding procedure (see A).

6.4.8 Subsequent symbol instance S coordinate

If SBHUFF is 1, decode avalue using the Huffman table specified by SBHUFFDS.
If SBHUFF is0, decode a value using the IADS integer arithmetic decoding procedure (see A).
In either case it is possible that the result of this decoding is the out-of-band value OOB.

6.49 Symbol instance T coordinate

If SBHUFF is 1, decode avalue by reading [log, SBSTRIP S| bitsdirectly from the bitstream.
If SBHUFF is0, decode avalue using the |AIT integer arithmetic decoding procedure (see A).

6.4.10 Symbol instance symbol ID

If SBHUFF is 1, decode a value by reading one bit at a time until the resulting bit string is equal to one of the
entriesin SBSYM CODES. The resulting value, which is I Dy, isthe index of the entry in SBSY M CODES that

isread.

If SBHUFF is0, decode avalue using the |AID integer arithmetic decoding procedure (see A). Set [ Dy tothe

resulting value.

6.4.11 Symbol instance bitmap

In some cases, the symbol instance bitmap 7 By is simply the bitmap of the symbol identified by 7D;. In other
cases, however, the symbol instance bitmap is that bitmap modified by additional refinement information. The bit

indicating which of the optionsistrue for a symbol instanceiscaled R;.
If SBREFINE isO, then set R; to 0.
If SBREFINE is 1, then decode R; asfollows.

o |f SBHUFF is1, then read one bit and set R; to the value of that bit.

o If SBHUFF is 0, then decode one bit using the IARI integer arithmetic decoding procedure and set Ry to

the value of that bit.

If Ry is0then set the symbol instance bitmap 7 By to SBSYM S[Dj].
If Ry is1then determine the symbol instance bitmap as follows:

1. Decode theinstance refinement delta width as described in 6.4.11.1. Let R DV be the value decoded.

2. Decode the instance refinement delta height as described in 6.4.11.2. Let RD H; be the value decoded.
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3. Decode the instance refinement X offset as described in 6.4.11.3. Let RDX; be the value decoded.
4. Decode theinstance refinement Y offset as described in 6.4.11.4. Let RDY; be the value decoded.
5. If SBHUFF is 1, then

(a) Decode theinstance refinement bitmap data size as described in 6.4.11.5.
(b) Skip over any bitsremaining in the last byte read.

6. Let IBO; beSBSYMS[IDy]. Let WOy bethewidthof 7BO; and HO; betheheight of IBO;. The symbol
instance bitmap 7 B; isthe result of applying the generic refinement region decoding procedure described
in 6.3. Set the parameters to this decoding procedure as shown in Table 12.

Table 12 — Parameters used to decode a symbol instance's bitmap using refinement.

Name Value

GRW WOr + RDW;
GRH HO;+ RDHy
GRTEMPLATE SBRTEMPLATE

GRREFERENCE IBO;
GRREFERENCEDX | |RDW;/2| + RDX;
GRREFERENCEDY | |RDH;/2| + RDY;

TRPON 0

GRATX4 SBRATX;
GRATY; SBRATY;
GRATX2 SBRAT X2
GRATY: SBRATY

7. If SBHUFF is1, then skip over any bitsremaininginthelast byteread. Thetotal number of bytes processed
by the generic refinement bitmap decoding procedure must be equal to the value read in step 5a.
6.4.11.1 Symbol instance refinement delta width

Thisfield, and the following fields, indicate the size, location and contents of the refined symbol bitmap, as the
size may not be the same as the size of the bitmap of the symbol whose ID is given in this symbol instance; also,
the change in the size of the bitmap might extend to the left and top, not just to the right and bottom, so we need
to supply an offset as well as asize. Note that the offsets are giveninterms of X and Y, not Sand T.

If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFRDW.

If SBHUFF is 0, decode a value using the IARDW integer arithmetic decoding procedure (see A).

6.4.11.2 Symbol instance refinement delta height

If SBHUFF is 1, decode avalue using the Huffman table specified by SBHUFFRDH.
If SBHUFF is0, decode a value using the IARDH integer arithmetic decoding procedure (see A).

6.4.11.3 Symbol instance refinement X offset

If SBHUFF is 1, decode avalue using the Huffman table specified by SBHUFFRDX.
If SBHUFF is0, decode a value using the IARDX integer arithmetic decoding procedure (see A).

6.4.11.4 Symbol instance refinement Y offset

If SBHUFF is 1, decode avalue using the Huffman table specified by SBHUFFRDY .
If SBHUFF is0, decode avalue using the IARDY integer arithmetic decoding procedure (see A).

6.4.11.5 Symboal instance refinement bitmap data size
Decode a value using the Huffman table specified by SBHUFFRSI ZE.
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6.5 Symbol Dictionary Decoding Procedure

This decoding procedure is used to decode a set of symbols; these symbols can then be used by symbol region
decoding procedures, or in some cases by other symbol dictionary decoding procedures.

6.5.1 Input parameters

The parameters to this decoding procedure are shown in Table 13.

The SDREFAGG parameter determines how the symbolsinthissymbol dictionary are coded. If SDREFAGG
is 0 then each symbol bitmap is coded viadirect bitmap coding. If SDREFAGG is 1 then each symbol bitmap is
coded by refining or aggregating previously-defined symbol bitmaps. These previously-defined symbol bitmaps
may be drawn from other dictionariesand provided as input to thisdecoding procedurein SDINSYM S, or may be
defined in the current dictionary.

6.5.2 Returnvalues
The variables whose values are the result of this decoding procedure are shown in Table 14.

6.5.3 Variablesused in decoding
The variables used by this decoding procedure are shown in Table 15.

6.5.4 Decoding the Symbol Dictionary

The internal structure of a symbol dictionary is shown in Figure 21. The symbols defined in the dictionary are
ordered into height classes: a height class contains a number of symbolswhose bitmaps are the same height.

NOTE — Inmost cases, the height classes occur in the order of strictly increasing height, shortest through
talest. If SDREFAGG is 1, though, a symbol may be coded as a refinement of alarger symbol
defined inthesame dictionary. Inthiscase, the height class for that base symbol must be decoded
(and therefore must occur) before the shorter height class of the symbol that is coded by refining
it. For thisreason, height class delta heights (and symbol delta widths) may be zero or negative,
as well as positive.

First height class
Second height class

Last height class
List of exported symbols

Figure 21 — The structure of a symbol dictionary.

If SDHUFF is 1 and SDREFAGG is 0 then the format of a height classis as shown in Figure 22. Otherwise,
the format of a height class is as shown in Figure 23. The fields mentioned in those figures are described fully
below.

Height class delta height
Delta width for first symbol
Delta width for second symbol

0o0oB
Height class collective bitmap

Figure 22 — Height class coding when SDHUFF is1 and SDREFAGG isO.

The result of decoding a symbol dictionary is an array SDEXSYMS containing SDNUM EXSY M S bitmaps.
Thisarray shall bethe array produced by the following steps.

1. Create an array SDNEWSYMS of bitmaps, having SODNUMNEWSY M S entries.
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Table 13— Parameters for the symbol dictionary decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)
SDHUFF Integer 1 N Whether Huffman coding is used.
SDREFAGG Integer 1 N Whether refinement and aggregate coding are used.

SDNUMINSYMS Integer 32 N The number of symbols that are used as input to this
symbol dictionary decoding procedure.

SDINSYMS Array of symbols An array containing the symbolsthat are used as input
to this symbol dictionary decoding procedure. Con-
tains SODNUMINSYM S symbols.

SDNUMNEWSYMS | Integer 32 N The number of symbols to be defined in this symbol
dictionary.

SDNUMEXSYMS Integer 32 N The number of symbols to be exported from this sym-
bol dictionary.

SDHUFFDH Huffman table The Huffman table used to decode the difference in
height between two height classes. *

SDHUFFDW Huffman table The Huffman table used to decode the difference in
width between two symbols. *

SDHUFFBMSIZE Huffman table The Huffman table used to decode the size of a height
class collective bitmap. *

SDHUFFAGGINST | Huffman table The Huffman table used to decode the number of in-

stances in an aggregation. **

SDTEMPLATE Integer 2 N Thetemplateidentifier used to decode symbol bitmaps.
SDAT X, Integer 8 Y The X position of the adaptive template pixel A;. ***
SDATY, Integer 8 Y The Y position of the adaptive template pixel A. ***
SDAT X Integer 8 Y The X position of the adaptive template pixel A,. ***
SDATY Integer 8 Y The Y position of the adaptive template pixel A,. ***
SDAT X3 Integer 8 Y The X position of the adaptive template pixel As. ***
SDATY; Integer 8 Y The Y position of the adaptive template pixel As. ***
SDAT X4 Integer 8 Y The X position of the adaptive template pixel A4. ***
SDATY 4 Integer 8 Y The Y position of the adaptive template pixel A4. ***
SDRTEMPLATE Integer 1 N Template identifier for refinement coding of bitmaps.
SDRAT X4 Integer 8 Y The X position of the adaptive template pixel RA;.
SDRATY1 Integer 8 Y The Y position of the adaptive template pixel RA;.
SDRAT X Integer 8 Y The X position of the adaptive template pixel RA,.
SDRATY Integer 8 Y The Y position of the adaptive template pixel RA,.

* Unused if SDHUFF = 0.

** Unused if SDHUFF = 0 or SDREFAGG = 0.
*** Unused if SDHUFF = 1.

**** Unused if SDREFAGG = 0.
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Table 14 — Return values from the symboal dictionary decoding procedure.

Name Type | Size | Signed? | Description and restrictions
(bits)
SDEXSYMS | Array of symbols The symbols exported by thissymbol dictionary. Con-
tains SODNUMEXSYM S symboals.
Table 15— Variables used in the symbol dictionary decoding procedure.
Name Type Size | Signed? | Description and restrictions
(bits)
SDNEWSYMS Array of symbols The symbols defined in this symbol dictionary. Con-
tains SODNUMNEWSY M S symbols.
SDNEWSYMWIDTHS | Array of integers Thewidthsof the symbolsin SDNEWSY MS. Contains
SDNUMNEWSY M Sintegers. Each integer isa32-bit
unsigned value.
HCHEIGHT Integer 32 N Height of the current height class.
NSYMSDECODED Integer 32 N How many symbols have been decoded so far.
HCDH Integer 32 Y The difference in height between two height classes.
SYMWIDTH Integer 32 N The width of the current symbol.
TOTWIDTH Integer 32 N The width of the current height class.
HCFIRSTSYM Integer 32 N Theindex of thefirst symbol inthe current height class.
DW Integer 32 Y The difference in width between two symbols.
Bg Bitmap The current symbol’s bitmap.
By Bitmap The current height class collective bitmap.
I Integer 32 N An array index.
J Integer 32 N An array index.
REFAGGNINST Integer 32 N The number of symbol instancesin an aggregation.
EXFLAGS Array of integers The export flags for this dictionary.  Contains
SDNUMINSYMS + SDNUMNEWSYMS val-
ues. Each valueis one bit.
EXINDEX Integer 32 N An array index.
CUREXFLAG Integer 1 N The current export flag.
EXRUNLENGTH Integer 32 N The length of arun of identical export flag values.
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Figure 23 — Height class coding when SDHUFF isO or SDREFAGG is1.

2. If SDHUFF island SDREFAGG isO, create an array SDNEWSY MWIDTHS of integers, having SDNUM -
NEWSYMS entries.

3. Set

HCHEIGHT
NSYMSDECODED

4. Decode each height class as follows.

(8 If NSYMSDECODED = SDNUMNEWSY M S then all the symbols in the dictionary have been de-
coded; proceed to step 5.

(b) Decode the height class delta height as described in 6.5.5. Let HCDH be the decoded value. Set

HCHEIGHT = HCHEIGHT + HCDH
SYMWIDTH = 0
TOTWIDTH = 0
HCFIRSTSYM = NSYMSDECODED

(c) Decode each symbol within the height class as follows.

iv.

Decode the deltawidth for the symbol as described in 6.5.6. If the result of this decoding is OOB
then al the symbolsin thisheight class have been decoded; proceed to step 4d. Otherwiselet DW
be the decoded value and set

SYMWIDTH = SYMWIDTH + DW
TOTWIDTH = TOTWIDTH + SYMWIDTH

ii. If SDHUFF is0or SDREFAGG is1 then decode the symbol’shitmap as described in 6.5.7. Let

Bg bethe decoded bitmap (this bitmap has width SYMWIDTH and height HCHEIGHT). Set

SDNEWSYMS[NSYMSDECODED] = B

If SDHUFF is1 and SDREFAGG is0 then set

SDNEWSYMWIDTHS[NSYMSDECODED] = SYMWIDTH

NSYMSDECODED = NSYMSDECODED + 1
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(d) If SDHUFF is 1 and SDREFAGG is 0 then decode the height class collective bitmap as described
in6.5.8. Let B¢ bethedecoded bitmap. Thisbitmap haswidth TOTWIDTH and height HCHEIGHT.
Determinethe symbolsSDNEWSY M S[HCFI RSTSY M] through SDNEWSY MSINSY MSDECODED—
1] by breaking up the bitmap By ¢ .

B¢ containsthe NSYMSDECODED — HCFIRSTSY M symbols concatenated | eft-to-right, with no
intervening gaps. For each I between HCFIRSTSYM and NSYMSDECODED - 1,
o the width of SDNEWSYMS[7] isthe value of SDNEWSYMWIDTHS[/],
o the height of SDNEWSYMS][I] is HCHEIGHT, and
o the bitmap SDNEWSYMS[I] can be obtained by extracting the columns of By from
I-1
> SDNEWSYMWIDTHS[J]
J=HCFIRSTSYM

through

I
( S SDNEWSYMWIDTHS[J]) ~1
7=HCFIRSTSYM

EXAMPLE — Thebitmapfor SONEWSY MS[HCFIRSTSY M], thefirst symbol inthe height
class, can be obtained by copying the columns O through

SDNEWSYMWIDTHS[HCFIRSTSYM] — 1
of Bre.

5. Determine which symbol bitmaps are exported from this symbol dictionary, as described in 6.5.9. These
bitmaps can be drawn from the symbolsthat are used asinput to the symbol dictionary decoding procedure
as well as the new symbols produced by the decoding procedure.

NOTE — Not al the new symbols need to be exported; this alows the dictionary to define some a
symbol, use it via refinement/aggregate coding to build other symbols, and not actually
export the original symbol. Also, since input symbols can be exported, thisdictionary can
in effect copy symbols from other dictionaries.

6.5.5 Height class delta height

If SDHUFF is 1, decode a value using the Huffman table specified by SODPHUFFDH.
If SDHUFF is 0, decode a value using the IADH integer arithmetic decoding procedure (see A).

6.5.6 Deltawidth

If SDHUFF is 1, decode a value using the Huffman table specified by SODPHUFFDW.
If SDHUFF is0, decode a value using the IADW integer arithmetic decoding procedure (see A).
In either case it is possible that the result of this decoding is the out-of-band value OOB.

6.5.7 Bitmap
Thisfield takes one of two forms.

6.5.7.1 Direct-coded bitmap

If SDREFAGG is0then decode the symbol’ shitmap using ageneric region decoding procedure as described in 6.2.
Set the parameters to this decoder as shown in Table 16.

6.5.7.2 Refinement/aggregate-coded bitmap

If SDREFAGG is 1 thenthe symbol’sbitmapis coded by refinement and aggregation of other, previously-defined,
symbols. Decode the bitmap as follows.

First, decode the number of instances contained in the aggregation, as specified in 6.5.7.2.1. Let REFAG-
GNINST be the value decoded.

Next, decode the bitmap itself using a symbol region decoder as described in 6.4. Set the parameters to this
decoder as shownin Table 17.



Table 16 — Parameters used to decode a symbol’s bitmap using generic bitmap decoding.

Name Value

MMR 0

GBW SYMWIDTH
GBH HCHEIGHT
GBTEMPLATE | SDTEMPLATE
TPON 0

USESKIP 0

GBAT X4 SDAT X3
GBATY; SDATY;
GBAT X SDAT X
GBATY SDATY
GBAT X3 SDAT X3
GBATY 3 SDATY 3
GBAT X4 SDAT X4
GBATY4 SDATY4

Table 17 — Parameters used to decode a symbol’sbitmap using refinement/aggregate decoding.

Name Value

SBHUFF SDHUFF
SBREFINE 1

SBW SYMWIDTH
SBH HCHEIGHT
SBNUMINSTANCES | REFAGGNINST
SBSTRIPS 1
SBNUMSYMS SDNUMINSYMS + NSYMSDECODED
SBSYMCODES See6.5.7.2.2. *
SBSYMCODELEN See 6.5.7.2.2.
SBSYMS See 6.5.7.2.3.
SBDEFPIXEL 0
SBCOMBOP OR
TRANSPOSED 0
REFCORNER TOPLEFT
SBDSOFFSET 0

SBHUFFFS TableB.6*
SBHUFFDS TableB.8*
SBHUFFDT TableB.11*
SBHUFFRDW TableB.15*
SBHUFFRDH TableB.15*
SBHUFFRDX TableB.15*
SBHUFFRDY TableB.15*
SBHUFFRSIZE TableB.1*
SBRTEMPLATE SDRTEMPLATE
SBRAT X3 SDRATX;
SBRATY; SDRATY;
SBRAT X, SDRATX,
SBRATY SDRATY

* If SDHUFF = 0 then this parameter has no value
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6.5.7.2.1 Number of instancesin aggregation

If SDHUFF is 1, decode a value using the Huffman table specified by SDPHUFFAGGINST.
If SDHUFF is0, decode a value using the IAAI integer arithmetic decoding procedure (see A).

6.5.7.2.2 Setting SBSYMCODESand SBSYMCODELEN
Set SBSYMCODES to an array of SBNUM SY M S codes, where the length of each code is

max ([log, (SDNUMINSYMS + SDNUMNEWSYMS)], 1)

and the code SBSYM CODES]!] is I (for I between 0 and SBNUMSYMS — 1).

NOTE — Thissetsthe codes as equal-length codes, assigned starting from zero. The code lengths are com-
puted from the maximum number of symbolsavailablein thissymbol dictionary: al theimported
symbols and all the symbols defined here. There is some wastage in choosing this code length
and assigning these codes. However, doing it this way means that neither the code lengths nor
the actual codes assigned to each symbol changes during the process of decoding this symbol
dictionary.

Similarly, when SDHUFF is 0, SBSYM CODELEN should be set to

Mog, (SDNUMINSYMS + SODNUMNEWSYMS)]

so that thelength of the bit sringsdecoded using | A1D will not change during the decoding of thissymbol dictionary.

6.5.7.2.3 Setting SBSYMS

Set SBSYM Sto an array of SODNUMINSY M S+NSYMSDECODED symbols, formed by concatenating the array
SDINSYM S and the first NSY MSDECODED entries of the array SDNEWSYMS.

6.5.8 Height class collective bitmap

Thisfield containsthe bitmaps of al the symbolsin the height class, concatenated left to right, and MMR encoded.
Itis preceded by a count of its sizein bytes.
Thisfield is decoded as follows.

1. Read the size in bytes using the SDHUFFBM Sl ZE bitmap decoder. Let BM SIZE be the value decoded.
2. Skip over any hitsremaining in the last byte read.

3. If BMSIZE is zero, then the bitmap is stored uncompressed, and the actual size in bytesis

HCHEIGHT x [—TOTWI ;)TH + 7-‘

Decode the bitmap by reading this many bytes and treating it as HCHEIGHT rows of TOTWIDTH pixels,
each row padded out to a byte boundary with 0—7 0 bits.

4. Otherwise, decode the bitmap using a generic bitmap decoder as described in 6.2. Set the parametersto this
decoder as shown in Table 18.

Table 18 — Parameter s used to decode a height class collective bitmap.
Name | Value
MMR | 1
GBW | TOTWIDTH
GBH HCHEIGHT

5. Skip over any hitsremaining in the last byte read.
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6.5.9 Exported symbols

The symbolsthat may be exported from a given dictionary include any of the symbolsthat are input to the dictio-
nary, plusany of the symbols defined in the dictionary.

The array of symbols exported from the dictionary is produced by decoding an a bit for each of those symbols.
These bitsform an array EXFLAGS of SDNUMINSY M S+ SDNUMNEW SY M Shinary values, each one corre-
sponding to an input symbol or anewly-defined symbol. A 1 bit for asymbol indicatesthat the symbol isexported.
Exactly SDNUMEXSY M S symbols must be exported from the dictionary. The order of exported symbolsisthe
order produced by concatenating the array SDINSY M S and the array SDNEWSY MS.

The following procedure produces this array of exported symbols.

1. Set
EXINDEX =
CUREXFLAG

2. Decode avalue usingthetablegivenin Table B.1if SDHUFF is 1, or the IAEX integer arithmetic decoding
procedure if SDHUFF is0. Let EXRUNLENGTH be the decoded value.

3. Set EXFLAGSEXINDEX] through EXFLAGS[EXINDEX + EXRUNLENGTH — 1] to CUREXFLAG. If
EXRUNLENGTH = 0, then this step does not change any values.

4. Set

EXINDEX = EXINDEX + EXRUNLENGTH
CUREXFLAG = NOT(CUREXFLAG)

5. Repeat steps 2 through 4 until EXINDEX = SDNUMINSYMS + SDNUMNEWSY MS.

6. The array EXFLAGS now contains 1 for each symbol that is exported from the dictionary, and O for each
symbol that is not exported.

7. Set

8. For each value of I from 0 to SDNUMINSYMS + SDNUMNEWSYMS — 1, if EXFLAGS[I] = 1then
perform the following steps.

(@ If I < SDNUMINSYMS then set

SDEXSYMS[J] = SDINSYMS[/]
J = J+1
(b) 1f I > SDNUMINSYMS then set
SDEXSYMS[J] = SDNEWSYMS[/ — SDNUMINSYMS]

J = J+1
NOTE — Most dictionarieswill export exactly the new symbolsthat they define; they will not export any

of the symbolsin SDINSYMS. Inthiscase, thefirst SDNUMINSYM Svaluesin EXFLAGS are
0, and the remaining SDNUMNEWSYM S values are 1.
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6.6 Halftone Region Decoding Procedure

6.6.1 General Description

Thisdecoding procedureis used to decode abitmap by decoding an array of values, which are used to draw halftone
patterns into a halftone grid. These halftone patterns are combined to form the decoded bitmap.

6.6.2 Input parameters
The parameters to this decoding procedure are shown in Table 19.

Table 19 — Parameters for the halftoneregion decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)

HBW Integer 32 N The width of the region.

HBH Integer 32 N The height of the region.

HMMR Integer 1 N Whether MMR coding is used.

HTEMPLATE Integer 2 N The template identifier. *

HNUMPATS Integer 32 N The number of halftone patterns that may be used in
thisregion.

HPATS Array of halftone patterns | An array containing the halftone patterns used in this
region. Contains HNUM PAT S halftone patterns.

HDEFPIXEL Integer | 1] N The default pixel for this bitmap.

HCOMBOP Operator The combination operator for thishalftoneregion. This
parameter may take on the values REPLACE, OR,
AND, XOR, and XNOR.

HENABLESKIP | Integer 1 N Whether unneeded pixels are skipped. *

HGW Integer 32 N The width of the gray-scale image.

HGH Integer 32 N The height of the gray-scale image.

HGX Integer 32 Y 256 times the horizontal offset of the grid origin.

HGY Integer 32 Y 256 times the vertical offset of the grid origin.

HRX Integer 16 Y 256 times the horizontal component of the grid vector.

HRY Integer 16 Y 256 times the vertical component of the grid vector.

HPW Integer 8 N The width of each halftone pattern.

HPH Integer 8 N The height of each halftone pattern.

* Unused if HMMR = 1.

6.6.3 Return values
The variables whose values are the result of thisdecoding procedure are shown in Table 20.

Table 20 — Return values from the halftone region decoding procedure.
Name Type | Size | Signed? | Description and restrictions
(bits)
HTREG | Bitmap The decoded region bitmap.

6.6.4 Variablesused in decoding
The variables used by this decoding procedure are shown in Table 21.

6.6.5 Decodingthe Halftone Bitmap

A halftone-coded bitmap isrepresented by aset of halftone patterninstances. Each instance encodes a halftonepat-
tern. The location of each halftone pattern is not coded explicitly but given by a grid global to the entire halftone
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Table 21 — Variables used in the halftone region decoding procedure.

Name | Type Size | Signed? | Description and restrictions
(bits)

g Integer 32 N Horizontal index for the current gray-scale value.

my Integer 32 N Vertical index for the current gray-scale value.

x Integer 32 Y The horizontal coordinate for the pattern correspond-
ing to the current gray-scale value.

Yy Integer 32 Y Thevertical coordinatefor the pattern correspondingto
the current gray-scale value.

HSKIP | Bitmap Skip mask. HSKIPisHGW by HGH pixels. *

HBPP | Integer 32 N The number of bits per value in the array of gray-scale
values.

Gl Array Array of gray-scale values. Gl isa HGW by HGH

array, each entry of which is a HBPP bits unsigned
integer.

*Unused if HENABLESKIP = 0.

bitmap. The halftone grid originis specified by parameters HGX and HGY . The grid period is defined by param-
eters HRX and HRY (see Fig. 24). HGX, HGY, HRX and HRY are scaled by 256, which means that the grid
origin and grid period have a fractiona part of 8 hits.

The possible halftone patterns are given in adictionary. Theidentity of apatternisspecified by anindex which
will usually represent the gray-scale value of the pattern.

NOTE 1— We use the term gray-scale value for the index to illustrate the compression idea. There isno
requirement in this specification that the index does indeed correspond to the gray-scale value.

The result of decoding a halftone bitmap is the bitmap that is produced by the following steps.

1. Fill abitmap HTREG, of the size given by HBW and HBH, with the HDEFPI XEL vaue.

2. If HENABLESKIP equals 1, compute a bitmap HSKIP as shown in 6.6.5.1.

3. Set HBPPto [log,(HNUMPATS)].

4. Decode animage Gl of size HGW by HGH with HBPP bits per pixel using the gray-scale image decoding
procedure as described in Annex C. Set the parameters to this decoding procedure as shown in Table 22.

Table 22 — Parameters used to decode a halftoneregion’s gray-scale value array.

Name Value

GSMMR HMMR

GsSw HGW

GSH HGH

GSBPP HBPP
GSUSESKIP HENABLESKIP
GSSKIP HSKIP
GSTEMPLATE | HTEMPLATE

* If HENABLESKIP = 1 then this parameter has no value

Let Gl be the results of invoking this decoding procedure.

5. Place sequentially the patterns corresponding to the values in Gl into HTREG by the procedure described
in 6.6.5.2. The rendering procedure is illustrated in Figure 24. The outline of two halftone patterns are
marked by dotted boxes.
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Figure 24 — Specification of coordinate systems and grid parameters.
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6. After all the patterns have been placed on the bitmap, the current contents of the halftone-coded bitmap are
the results that shall be obtained by every decoder, whether it performs this exact sequence of steps or not.

NOTE2— IfHGX isO,HGY isO, HRX isequal to HPW x 256 and HRY isO, thenthegridissimple:
it is axis-aligned, the primary direction is horizontal, and the grid step is equal to the size of
the halftone patterns. In thiscase, it is possible to optimisethe drawing process, as none of the
halftone patterns can overlap.

6.6.5.1 ComputingHSKIP
The bitmap HSKIP contains 1 at a pixel if drawing a pattern at the corresponding location on the halftone grid does
not affect any pixelsof HTREG. It is computed as follows.

1. For each value of m, between 0 and HGH — 1, beginning from O, perform the following steps.

(8 For each value of n, between 0 and HGW — 1, beginning from O, perform the following steps.
i. Set
z = (HGX +my; x HRY 4+ n, x HRX) >>4 8
y = (HGY +my x HRX —n; x HRY) >>,4 8

ii. If (x4 HPW < 0) OR (2 > HBW) OR (y + HPH < 0) OR (y > HBH)) then set
HSKIP[m,,n,] = 1
Otherwise, set
HSKIP[m,, n,] = 0

6.6.5.2 Renderingthe halftone patterns
Draw the halftone patterns into HTREG using the following procedure.

1. For each value of m, between 0 and HGH — 1, beginning from O, perform the following steps.

(8 For each value of n, between 0 and HGW — 1, beginning from O, perform the following steps.
i. Set
z = (HGX +my; x HRY 4+ n, x HRX) >>4 8
y = (HGY +my x HRX —n; x HRY) >>,4 8

ii. Draw the halftone pattern HPAT S[GI[m,, n4]] into HTREG such that its upper left pixel isat [o-
cation (z, y) INHTREG.
A halftone pattern is drawn into HTREG as follows. Each pixel of the pattern shall be combined
with the current value of the corresponding pixel in the halftone-coded bitmap, using the combi-
nation operator specified by HCOMBOP. The results of each combination shall be written into
that pixel in the halftone-coded bitmap.
If any part of a decoded halftone pattern, when placed at location (z, y) lies outside the actual
halftone-coded bitmap, then this part of the pattern shall be ignored in the process of combining
the halftone pattern with the bitmap.

NOTE — The gray-scale image can be used by the decoder to get a good rendition of the halftone on a
multi-level output device of limited spatial resolution such as a computer screen. The use of the
gray-scale image for such purposes is outside the scope of this specification.

The gray-scaleimage is coded by bit-plane coding so the decoder will receive the gray-scaleim-
age progressively. Consequently, the decoder may render a halftoned image using the quantized
gray-scale values as indices. Such intermediate halftoned images shall not influence the final
halftone-coded bitmap.
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6.7 HalftoneDictionary Decoding Procedure

6.7.1 General Description

This decoding procedure is used to decode a set of fixed-size halftone patterns; these bitmaps can then be used by
halftone region decoding procedures.

6.7.2 Input parameters
The parameters to this decoding procedure are shown in Table 23.

Table 23 — Parameters for the halftonedictionary decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)
HDMMR Integer 1 N Whether MMR is used.
HDPW Integer 32 N The width of each halftone pattern.
HDPH Integer 32 N The height of each halftone pattern.
GRAYMAX Integer 32 N The largest gray-scale value for which a pattern is
given.
HDTEMPLATE | Integer 2 N The template used to code the halftone patterns. *

*Unused if HDMMR = 1.

6.7.3 Return values
The variables whose values are the result of this decoding procedure are shown in Table 24.

Table 24 — Return values from the halftone dictionary decoding procedure.
Name Type | Size| Signed? | Description and restrictions
(bits)
HDPATS | Array of halftone patterns | The patterns exported by thishalftonedictionary. Con-
tains GRAYMAX + 1 halftone patterns.

6.7.4 Variablesused in decoding
The variables used by this decoding procedure are shown in Table 25.

Table 25 — Variables used in the halftone dictionary decoding procedure.

Name | Type Size | Signed? | Description and restrictions
(bits)
GRAY | Integer 32 N Gray-scale index.
Brpce | Bitmap The dictionary collective bitmap.
Bg Bitmap A bitmap of size HDPW by HDPH.

6.7.5 Decodingthe HalftoneDictionary

The result of decoding a halftone dictionary isa set of halftone patterns: HDPATS[O] - - - HDPATS GRAY MAX].
These halftone patterns shall be the patterns produced by the following steps.

1. Create abitmap By pc. The height of thisbitmap is HDPH. The width of the bitmap is (GRAYMAX +
1) x HDPW. This bitmap containsall the halftone patterns concatenated |eft to right.

2. Decode the collective bitmap using a generic region decoding procedure as described in 6.2. Set the param-
eters to this decoder as shown in Table 26.
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Table 26 — Parameters used to decode a halftone dictionary’s collective bitmap.

Name Value

MMR HDMMR

GBW (GRAYMAX + 1) x HDPW
GBH HDPH
GBTEMPLATE | HDTEMPLATE *
USESKIP 0

GBATX; -HPW *

GBATY; 0*

GBAT X5 -3**

GBATY -1

GBAT X3 2%

GBATY; -2

GBATX4 -2

GBATY, -2%

* If HDMMR = 1 then this parameter has no value.
“*If HDMMR = 1 or HDTEMPLATE # 0 then this parameter has no value.
3. Set
GRAY = 0

4. While GRAY < GRAYMAX,

(a) Let the subimage of By pe consisting of HPH rows and columns HPW x GRAY through HPW x
(GRAY + 1) — 1 bedenoted Bg. Set

HDPATS[GRAY] = Bg

(b) Set

GRAY = GRAY +1
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7 Control Decoding Procedure

7.1 General description

This decoding procedure controls the invocation of all the other decoding procedure. The encoded bitstream con-
sists of a collection of segments, each containing a part of the data necessary for decoding. There are several dif-
ferent types of segments.

A segment has two parts: a segment header part and a segment data part. All types of segments use acommon
format for the segment header, but different formats for segment data.

Some segments give information about the structure of the document: start of page, end of page, and so on.
Some segments code regions, used in turn to produce the decoded image of a certain page. Some segments (“dic-
tionary segments”) do neither, but instead define resources that can be used by segments that code regions.

A segment can be associated with some page, or not associated with any page. A segment can refer to other,
preceding, segments. A segment also includes retention bits for the segment that it refers to, and for itself; these
indicate when the decoder may discard the data created by decoding a segment.

EXAMPLE — A symbol region segment may make use of symbols defined in preceding symbol dictionary
segments. Thisisindicated by the symbol region’s segment header including references to
those symbol dictionary segments.

The format of segment headers is described in 7.2. The types of segments are defined in 7.3. The syntax of
each type of segment isdefined in 7.4.

In the following, some references are made to “preceding” and “following” segments (and other indications
implying an order of segments). These terms are defined with reference to the order imposed on the segments
by their segment numbers: a segment precedes all segments whose segment numbers are larger than its segment
number.

A segment’s header part always begins and ends on a byte boundary.

A segment’ sdata part always beginsand ends on abyte boundary. Any unused bitsinthe final byte of asegment
shall contain 0, and shall not be examined by the decoder.

The segment header part and the segment data part of a segment need not occur contiguously in the bitstream
being decoded. See G for an organisation where the segment header part of a segment may be stored at some
distance from the segment data part of that segment.

This clause contains figures that describe various parts of the encoded data, such as Figures 25 and 31. These
conventions used in these figures are

o Thefirst byte encountered in the bitstream is at the left end.
o Fieldswhose sizes are fixed, and that are always present, are outlined with narrow lines.

o Fieldswhose sizes are not fixed, or that are not present in al cases, or whose structures are fully described
elsawhere, are outlined with heavy lines.

o Some figures (such as Figure 25) are divided into fields, each of which isan integral number of byteslong.
In these figures, hash marks extending down from the top of the figure denote byte boundaries, and fields
are separated by lines running the full height of the figure.

e The remaining figures are divided into fields, each of which is an integral number of bits long, making up
an integral number of bytes. In these figures, short hash marks extending up from the bottom of the figure
show bit boundaries. Fields are separated by longer hash marks extending up from the bottom of the figure.
Each bit’'s number is shown below the figure.

7.2 Segment header syntax

7.2.1 Segment header fields
A segment header contains the fields shown in Figure 25 and described below.

Segment number See 7.2.2.
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Figure 25 — Segment header structure

Segment header flags See7.2.3.

Referenced segment count and retention flags See7.2.4.

Referenced segment number fields See 7.2.5.

Segment page association See7.2.6.

Segment data length See7.2.7.

7.2.2 Segment number
This four-bytefield contains the segment’s segment number.

7.2.3 Segment header flags
Thisisa1l-bytefield. The bitsthat are defined are shown in Figure 26 and are described bel ow.

eferred  Page
P ngrr{ association Segment type
rean Il | | | |
7 6 5 4 3 2 1 0

Figure 26 — Segment header flags

Bits0-5 Segment type. See 7.3.

Bit 6 Page association field size. See 7.2.6.

Bit 7 Deferred non-retain. If thishitis 1, thissegment isflagged as retained only by itself and itsattached exten-
sion segments, and isflagged as non-retained by the last attached extension segments. An extension segment
isan attached extension segment when it refersto only one segment, and the only segments (if any) between
it and that referred-to segment are other extension segments also referring only to that referred-to segment.

NOTE — The intention of this bit is to indicate to the decoder that the segment is only referred to

by a small number of extension segments. The decoder may take some expensive actions
when segments are flagged as retained, but if this retention is only for the benefit of the
segment’s attached extension segments, these actions may not be necessary. Knowing this
in advance is helpful.

7.2.4 Referenced segment count and retention flags

This field contains one or more bytes indicating how many other segments are referenced by this segment, and
which segments contain data that is needed after this segment.

NOTE — Thedecoder’smemory requirements can bereduced by lettingit know whenitisallowedtoforget
about the data represented by some previous segment.

The number of bytesin thisfield depends onthe number of segmentsreferred to by thissegment. If thissegment
refersto four or fewer segments, then thisfield isone bytelong. If this segment refersto more than four segments,
thenthisfieldis4 + [(R+ 1) /8] byteslong where R is the number of segments that this segment refers to.
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EXAMPLE — If thissegment refers to between five and seven other segments, then the field is five bytes
long; if it refers to between eight and fifteen other segments, then thefield issix byteslong.

The three most significant bits of the first bytein thisfield determine the length of thefield. If the value of this
three-bit subfield is between 0 and 4, then the field is one byte long. If the value of thisthree-bit subfield is 7, then
thefield is at least five byteslong. Thisthree-bit subfield shall not contain values of 5 and 6.

Inthe case where thefield isone bytelong, that byteisformatted as shownin Figure 27 and as described bel ow.

Retain bit Retain bit Retain bit Retain bit Retain bit

forath  for3™  forand  for1St  forthis
| segment | segment | segment | segment | segment

Count of referred-to
segments

| |
7 6 5 4 3 2 1 0

Figure 27 — Referenced segment count and retention flags— short form

Bit 0 Retain bit for this segment.

Bit 1 Retain bit for the first referred-to segment. If this segment refers to no other segments, thisfield shall
contain O.

Bit 2 Retain bit for the second referred-to segment. If this segment refers to fewer than two other segments,
thisfield shall contain 0.

Bit 3 Retain bit for the third referred-to segment. If this segment refers to fewer than three other segments,
thisfield shall contain 0.

Bit 4 Retain bit for the fourth referred-to segment. If this segment refers to fewer than four other segments,
thisfield shall contain 0.

Bits 57 Count of referred-to segments. Thisfield may take on values between zero and four. This specifies
the number of segments that this segment refers to.

In the case where thefield isin the long format (at least five byteslong), it is composed of an initial four-byte
field, followed by a succession of one-byte fields. The initial four-byte field is formatted as follows.

Bits0-28 Count of referred-to segments. This specifies the number of segments that this segment refers to.
Bits29-31 Indication of long-form format. Thisfield shall contain the value 7.

Thefirst one-byte field following the initial four-bytefield is formatted as follows.

Bit 0 Retain bit for this segment.

Bit 1 Retain bit for the first referred-to segment.

Bit 2 Retain bit for the second referred-to segment.

Bit 3 Retain bit for the third referred-to segment.

Bit 4 Retain bit for the fourth referred-to segment.

Bit 5 Retain bit for the fifth referred-to segment. If this segment refers to fewer than five other segments, this
field shall contain 0.

Bit 6 Retain bit for the sixth referred-to segment. If this segment refersto fewer than six other segments, this
field shall contain 0.

Bit 7 Retain bit for the seventh referred-to segment. If thissegment refersto fewer than seven other segments,
thisfield shall contain 0.
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The second one-bytefield, if present, containsretain bitsfor the eighth through fifteenth referred-to segments; the
bits corresponding to any segments beyond the count of segments actually referred to shall be 0. Succeeding one-
byte fields are formatted similarly.

If theretain bit for this segment value is 0, then no segment may refer to this segment.

If the retain bit for the first referred-to segment value is 0, then no segment after this one may refer to the
first segment that this segment refers to (i.e., this segment is the last segment that refers to that other segment).
Further retain bit values have similar meanings: if theretain bit for the Kth referred-to segment valueisO0, then
no segment after thisone may refer to the Kth segment that this segment refers to.

7.25 Referred-to segment numbers

Thisfield contains the segment numbers of the segments that this segment refersto, if any. The number of values
inthisfield is determined by the Referenced segment count and retention flags field. Each value is the seg-
ment number of a segment that this segment refersto. A segment may refer to only segments with lower segment
numbers. When the current segment’s number is 256 or less, then each referred-to segment number is one byte
long. Otherwise, when the current segment’s number is 65536 or less, each referred-to segment number is two
byteslong. Otherwise, each referred-to segment number is four bytes long.

7.26 Segment page association

This field encodes the number of the page to which this segment belongs. The first page shall be numbered “1”.
Thisfield may contain a value of zero; this value indicates that this segment is not associated with any page.

A segment that has a non-zero segment page association may only be referred to by segments having the
same segment page association value asiit.

Thisfield isone bytelong if this segment’s page association field size flag bitis0, and is four byteslong if
this segment’s page association field size flag bitis 1.

NOTE — Most documents have fewer than 256 pages, so thisfield has a short form that can hold values
from 0 to 255 in a single byte. The page association field for unassociated segments can aso be
only asingle byte long.

7.2.7 Segment data length

This 4-byte field contains the length of the segment’s segment data part, in bytes.

If the segment’stypeis* Immediate generic region”, then the length field may contain the value Ox FFFFFFFF.
This value isintended to mean that the length of the segment’s data part is unknown at the time that the segment
header is written (for example in a streaming application such as facsimile). In this case, the true length of the
segment’s data part must be determined through examination of the data: if the segment uses template-based arith-
metic coding, then the segment’s data part ends with the two-byte sequence OxFF 0x ACfollowed by afour-byte
row count. If the segment uses MM R coding, then the segment’s data part ends with the two-byte sequence 0x00
0x00 followed by afour-byterow count. The form of encoding used by the segment may be determined by exam-
ining the eighteenth byte of its segment data part, and the end sequences can occur anywhere after that eighteenth
byte.

NOTE — Givenalist of segment headersin therandom-access organisation (see Figure G.2), adecoder can
build amap of therest of thefile by knowing the length of the data associated with each segment.
Thisalowsit to perform random access.

7.2.8 Segment header example
EXAMPLE 1— A segment header consisting of the sequence of bytes
0x00 0x00 0x00 0x20 0Ox86 Ox65 0x02 Oxle 0x05 0x04
is parsed as follows

0x00 0x00 0x00 0x20 Thissegment's number isOx00000020, or 32 decimal.

0x86 Thissegment’stypeis6. Itspage association field is one bytelong. It isretained
by only its attached extension segments.
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0x6b Thissegment refersto three other segments. Itisreferred to by some other segment.
Thisisthelast reference to the second of the three segments that it refersto.

0x02 Oxle 0x05 The three segments that it refersto are numbers2, 30, and 5.
0x04 This segment is associated with page number 4.

EXAMPLE 2 — A segment header consisting of the sequence of bytes

0x00 0x00 0x02 0x34 0x40 OxeO0 0x00 0x00 0x09 0x02 Oxfd
0x01 Ox00 0x00 0x02 0Ox00 Oxle 0Ox00 Ox05 0x02 0Ox00 0x02
0x01 0x02 0x02 0x02 0x03 0x02 0x04 0x00 0x00 0x04 0x01

is parsed as follows

0x00 0x00 0x02 0x34 Thissegment's number is0x00000234, or 564 decimal.
0x40 Thissegment'stypeisO. Its page association field is four bytes long.

Oxe0 0x00 0x00 0x09 Thissegment'sreferenced segment count fieldisinthelong
format. This segment refers to nine other segments.

0x02 Oxfd Thissegment isreferredtoby some other segment. Thisisthelast reference
to the first and eighth of the nine segments that it refersto.

0x01 0x00 ... 0x02 0x04 Theninesegments that it refers to are each identified
by two bytes, since this segment’s number is between 256 and 65535. The segments
that it refers to are, in decimal, numbers 256, 2, 30, 5, 512, 513, 514, 515, and 516.

0x00 0x00 0x04 0x01 Thissegment isassociated with page number 1025.

7.3 Segment types

Each segment has a certain type. This type specifies the type of the data associated with the segment. This type
restricts which other segments it may refer to, and which other segments may refer to it. These restrictions are
detailed in 7.3.1.

The segment type is a number between 0 and 63, inclusive. Not all values are allowed. The alowed list of
segment types, their full names, and where their formats are defined, are:

0 Symbol dictionary — see 7.4.2.

4 Intermediate symbol region — see 7.4.3.

6 Immediate symbol region — see 7.4.3.

7 Immediate lossless symbol region — see 7.4.3.
16 Halftone dictionary — see 7.4.4.

20 Intermediate halftone region — see 7.4.5.

22 Immediate halftone region — see 7.4.5.

23 Immediate lossless halftone region — see 7.4.5.
36 Intermediate generic region — see 7.4.6.

38 Immediate generic region — see 7.4.6.

39 Immediate lossless generic region — see 7.4.6.

40 Intermediate generic refinement region — see 7.4.7.
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42 Immediate generic refinement region — see 7.4.7.

43 Immediate |ossless generic refinement region — see 7.4.7.
48 Page information — see 7.4.8.

49 End of page — see 7.4.9.

50 End of stripe— see 7.4.10.

51 End of file— see 7.4.11.

52 Supported profiles— see 7.4.12.

53 Tables — see 7.4.13.

62 Extension — see 7.4.14.

All other segment types are reserved and shall not be used.

NOTE — These segment numbers are allocated according to the following rules. The three high-order bits
(bits 4-6) of this number specify the primary type of the segment, and the four low-order (bits
0-3) bits specify the secondary type of the segment.

The primary types are:

0 Symbol bitmap data

1 Halftone bitmap data
2 Generic bitmap data

3 Metadata

Primary types 0-2 are collectively referred to as region types.
For the region types, the interpretation of the four low-order bitsis

Bit O If thishitis 1, it indicates that the segment makes some component of the page |ossless.

Bit 1 If thishitis1, it indicatesthat the segment can be drawn immediately into the page bitmap.
If thishit is 0, it indicates that the segment is an intermediate segment. See 8.2.

Bits 2—3 These two bits define a subtype of the primary type:

O Dictionary
1 Direct Region
2 Refinement Region

For metadata, the interpretations of the four low-order bits are:

0 Page information
1 End of page

2 End of stripe

3 End of file

4 Supported profiles
5 Tables

6-13 Reserved

14 Extension

15 Reserved
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The segments of types*intermediate symbol region”, “immediate symbol region”, “immediate [ossless symbol
region”, “intermediate halftoneregion”, “immediate halftoneregion”, “immediate losslesshalftoneregion”, “inter-
mediate generic region”, “immediate generic region”, “immediate |0ssless generic region”, “intermediate generic
refinement region”, “immediate generic refinement region”, and “immediate lossless generic refinement region”
are collectively referred to as “region segments’.

The segments of types*intermediate symbol region”, “immediate symbol region”, “immediate |ossless symbol
region”, “intermediate halftone region”, “immediate halftone region”, “immediate |ossless halftone region”, “in-
termediate generic region”, “immediate generic region”, and “immediate |ossless generic region”, are collectively
referred to as “ direct region segments”.

The segments of types*intermediate symbol region”, “intermediate halftoneregion”, “intermediate generic re-
gion”, and “intermediate generic refinement region” are collectively referred to as* intermediate region segments”.

The segments of types“immediate symbol region”, “immediate lossless symbol region”, “immediate halftone
region”, “immediate lossless halftone region”, “immediate generic region”, “immediate lossless generic region”,
“immediate generic refinement region”, and “immediate |ossless generic refinement region” are collectively re-
ferred to as “immediate region segments’.

The segments of types “intermediate generic refinement region”, “immediate generic refinement region” and
“immediate lossless generic refinement region” are collectively referred to as “refinement region segments’. .

7.3.1 Rulesfor segment references
The rules for segment references are as follows.

¢ An intermediate region segment may only be referred to by one other non-extension segment; it may be
referred to by any number of extension segments.

o A segment of type “symbol dictionary” (type 0) may refer to any number of segments of type “symbol dic-
tionary” and to up to four segments of type “tables’.

o A segment of type*“intermediate symbol region”, “immediate symbol region” or “immediate | oss ess symbol
region” (type4, 6 or 7) may refer to any number of segments of type “symbol dictionary” and to up to eight
segments of type“tables’.

o A segment of type “halftone dictionary” (type 16) may not refer to any other segment.

o A segment of type“intermediate halftoneregion”, “immediate halftoneregion” or “immediatelosslesshalftone
region” (type 20, 22 or 23) shall refer to exactly one segment, and this segment shall be of type “halftone
dictionary”.

¢ A segment of type “intermediate generic region”, “immediate generic region” or “immediate |ossless generic
region” (types 36, 38 or 37) may not refer to any other segment.

o A segment of type “intermediate generic refinement region” (type 40) shall refer to exactly one other seg-
ment. This other segment shall be an intermediate region segment.

o A segment of type“immediate generic refinement region” or “immediate | ossl ess generic refinement region”
(type 42 or 43) may refer to either zero other segments or exactly one other segment. If it refers to one other
segment then that segment shall be an intermediate region segment.

o A segment of type “page information” (type 48) may not refer to any other segments.
o A segment of type“end of page” (type 49) may not refer to any other segments.

o A segment of type “end of stripe” (type 50) may not refer to any other segments.

o A segment of type “end of file (type 51) may not refer to any other segments.

o A segment of type “ supported profiles’ (type 52) may not refer to any other segments.
o A segment of type “tables’ (type 53) may not refer to any other segments.

o A segment of type “extension” (type 62) may refer to any number of segments of any type, unless the ex-
tension segment’s type imposes some restriction.
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7.3.2 Rulesfor page associations

Every region segment shall be associated with some page (i.e., have a non-zero page association field). “Page in-
formation”, “end of page” and “end of stripe” segments shall be associated with some page. “End of file” segments
may not be associated with any page. Segments of other types may be associated with a page or not.

If a segment is not associated with any page, then it may not refer to any segment that is associated with any
page.

If a segment is associated with a page, then it may refer to segments that are not associated with any page,
and to segments that are associated with the same page. It may not refer to any segment that is associated with a
different page.

7.4 Segment syntaxes

This section describes in detail the syntax of the segment data part of each type of segment, and how it isto be
decoded.

7.4.1 Region segment data header

Every region segment’s data part begins with a region segment data header; itsformat is specified here. A region
segment data header contains the following fields, as shown in Figure 28 and as described bel ow.

| | | | | | | | | | | | ;
Region segment Region segment Region segment Region segment Reg;grr:t
bitmap width bitmap height bitmap X location bitmap Y location sef?ags

Figure 28 — Region segment data header structure

Region segment bitmap width See7.4.1.1.
Region segment bitmap height See 7.4.1.2.
Region segment bitmap X location See7.4.1.3.
Region segment bitmap Y location See7.4.1.4.

Region segment flags See7.4.1.5

7411 Region segment bitmap width
Thisfour-bytefield gives the width in pixels of the bitmap encoded in this segment.

7.4.1.2 Region segment bitmap height
Thisfour-bytefield gives the height in pixels of the bitmap encoded in this segment.

7.4.1.3 Region segment bitmap X location

This four-bytefield gives the horizontal offset in pixels of the bitmap encoded in this segment relative to the page
bitmap.

7.4.1.4 Region segment bitmap Y location

This four-byte field gives the vertical offset in pixels of the bitmap encoded in this segment relative to the page
bitmap.
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Defaglt External combination

operator

Reserved ;
Must be 0 p;(
| | | | value | | |

7 6 5 4 3 2 1 0

Figure 29 — Region segment flags field structure

7.4.15 Region segment flags
This one-byte field is formatted as shown in Figure 29 and as described bel ow.

Bits0—2 External combination operator. Thisthree-bit field can take on the following values, representing one
of five possible combination operators:
0 OR
1 AND
2 XOR
3 XNOR
4 REPLACE

NOTE — These operators describe how the segment’s bitmap is to be combined with the page bit-
map. REPLACE isintended to be used by refinement regions, where the refined region
replaces theregionit'srefining. Operators such as AND can be used for masking, where a
portion of the page bitmap that already containsdataisto be cleared so that another bitmap
can be written there — think of writing a bitmap through a mask.

Bit 3 Segment default pixel value.
Bits4—7 Reserved; shall be 0.

In other words, this region segment data header describes the size and location of the bitmap encoded in this
segment.

EXAMPLE — If thesizeand locationvaluesare (in order) 100, 200, 50 and 75, then this segment describes
a bitmap 100 pixelswide, 200 pixels high, whose top left corner is 50 pixelsto the right of,
and 75 pixels below, the page’s top left corner.

7.4.2 Symbol dictionary segment syntax
7.4.2.1 Symbol dictionary data header

A symbol dictionary segment’s data part begins with a symbol dictionary data header, containing the fields shown
in Figure 30 and described below.

Syrhbol L - ' ' ! ! ! !
. Symbol dictionary | Symbol dictionary
dlcftllgsry AT flags refinement AT flags SDNUMEXSYMS SDNUMNEWSYMS

Figure 30 — Symbol dictionary data header structure

Symbol dictionary flags See 7.4.2.1.1.

Symbol dictionary AT flags See 7.4.2.1.2.

Symbol dictionary refinement AT flags See 7.4.2.1.3.
SDNUMEXSYMS See7.4.2.1.4.
SDNUMNEWSYMS See 7.4.2.1.5.
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7.4.2.1.1 Symbol dictionary flags
Thistwo-bytefield is formatted as shown in Figure 31 and as described below.

Bitmap BitmapI
Reserved  SORTEMP- SDTEMP-  coding coding MU UF SDHUFFDW SDHUFFDH SDREF-
Must be 0 LATE  LATE  contedt comext ‘smemm  weion SElection sdection | AGG YT
| ! | | | retained | used | | | | | |

| |
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

Figure 31 — Symbol dictionary flagsfield structure

Bit 0 SDHUFF

If thishitis 1, then the segment uses the Huffman encoding variant. If thishitisO, then the segment usesthe
arithmetic encoding variant. The setting of thisflag determines how the datain this segment are encoded,
and may also modify the order in which some of the data are encoded.

Bit 1 SDREFAGG

If this bit is 0, then no refinement or aggregate coding is used in this segment. If thisbitis 1, then every
symbol bitmap is refinement/aggregate coded.

Bits 2-3 SDHUFFDH selection. This two-bit field can take on one of three values, indicating which table is to
be used for SDHUFFDH.

0 TableB.4
1 TableB.5
3 User-supplied table

The value 2 is not permitted.
If SDHUFF is 0 then this field must contain the value 0.

Bits4-5 SDHUFFDW selection. This two-bit field can take on one of three values, indicating which table isto
be used for SDHUFFDW.

0 TableB.2
1 TableB.3
3 User-supplied table

The value 2 is not permitted.
If SDHUFF is 0 then this field must contain the value 0.

Bit 6 SDHUFFBM S| ZE selection.

If thisfield is O then Table B.1 isused for SODHUFFBM SIZE. If thisfield is 1 then a user-supplied table is
used for SDHUFFBM SIZE.

If SDHUFF is0 then thisfield must contain the value O.

Bit 7 SDHUFFAGGINST selection.

If thisfield is O then Table B.1 is used for SDHUFFAGGINST. If thisfield is 1 then a user-supplied table
isused for SDHUFFAGGINST.

If SDHUFF is0 then this field must contain the value O.

Bit 8 Bitmap coding context used.
If SDHUFF is 1 and SDREFAGG is0 then thisfield must contain the value O.
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Bit 9 Bitmap coding context retained.
If SDHUFF is1 and SDREFAGG is 0 then thisfield must contain the value O.

Bits10-11 SDTEMPLATE

Thisfield controlsthe template used to decode symbol bitmapsif SDHUFF isO. If SDHUFF is1, thisfield
must contain the value 0.

Bit 12 SDRTEMPLATE

Thisfield controlsthe template used to decode symbol bitmapsif SDREFAGG is 1. If SDREFAGG isO0,
thisfield must contain the value 0.

Bits 13-15 Reserved; must be 0.

7.4.2.1.2 Symbol dictionary AT flags

Thisfieldisonly present if SDHUFF isO. If SDTEMPLATE isQ, itisan eight-bytefield, formatted as shownin
Figure 32 and as described below.

SDATX1 | SDATY 1 | SDATX, [ SDATY 2 | SDAT X3 | SDATY 3 | SDATX4 | SDATY 4

Figure 32— Symbol dictionary AT flagsfield structure when SDTEMPLATE isO

Byte0 SDATX;
Bytel SDATY;,
Byte2 SDATXa
Byte3 SDATY
Byte4 SDATXj;
Byte5 SDATY 3
Byte6 SDATX4
Byte7 SDATY4

If SOTEMPLATE is1, 2 or 3, itisatwo-bytefield formatted as shown in Figure 33 and as described bel ow.

SDATX1 | SDATY

Figure 33 — Symbol dictionary AT flagsfield structure when SDTEMPLATE isnot O

Byte0 SDATX;
Bytel SDATY;

If SODTEMPLATE is1, 2 or 3thenthe values of SDAT X through SDAT X4 and SDATY 2 through SDATY 4
are dl zero.

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according to
Figure 7.
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SDRAT X1 |SDRATY 1 |SDRAT X2 |SDRATY 2

Figure 34 — Symbol dictionary refinement AT flagsfield structure

7.4.2.1.3 Symbol dictionary refinement AT flags

Thisfieldisonly presentif SDREFAGG is1and SDRTEMPLATE isO. Itisafour-bytefield, formatted as shown
in Figure 34 and as described bel ow.

Byte0 SDRATX;4
Bytel SDRATY;
Byte2 SDRATX:

Byte3 SDRATY,

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according
t06.3.5.3.

74214 SDNUMEXSYMS

This four-byte field contains the number of symbols exported from this dictionary.
It is very useful for the decoder be able to find out easily how many symbols are present — for example, it
might want to allocate an array of structures before beginning to decode the dictionary.

74215 SDNUMNEWSYMS
This four-bytefield contains the number of symbols defined in this dictionary.

NOTE — SDNUMEXSYM Sand SDNUMNEWSY M S are often, but not always, the same value. For ex-
ample, if adictionary exports some of the symbols from dictionariesthat it references, then these
copied symbols are reflected in SDNUMEXSYMS but not in SODNUMNEWSYMS. Another
possible source of difference comes from the possibility that a dictionary defines some symbols
that it does not export.

7.4.2.1.6 Symbol dictionary segment Huffman table selection

Set the values of the parameters SDHUFFDH, SDHUFFDW, SDHUFFBM SIZE and SDHUFFAGGINST ac-
cording to the selection fields shown in 7.4.2.1.1, and the tables segments referred to by this segment. More pre-
cisely, of these four Huffman tables, some may be specified to use some standard table, and some may be specified
to use a user-supplied table. The number specified to use a user-supplied table shall be equal to the number of ta-
bles segments referred to by this segment. These tables segments are matched up with the Huffman tables using
user-supplied tables according to the order in which the tables segments are referred to, and the order

1. SDHUFFDH
2. SDHUFFDW
3. SbDHUFFBMSIZE

4. SDHUFFAGGINST

If a user-specified table is used for SDHUFFDW, then this table must be capable of coding the out-of-band
value OOB. If a user-specified table is used for SODOHUFFDH, SDHUFFBM SIZE or SDHUFFAGGINST, then
thistable must not be capable of coding the out-of-band value OOB.

EXAMPLE — If SDHUFFDH and SDHUFFAGGINST are specified to use user-supplied tables, and SD-
HUFFDW and SDHUFFBM SI ZE are specified to use standard tables (Table B.2 and Ta-
ble B.1 respectively), then this segment must refer to exactly two tables segments; the tables
segment that is referred to first is used for SODOHUFFDH and the tables segment that is re-
ferred to second is used for SDHUFFAGGINST.
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7.4.

2.2 Decoding a symbol dictionary segment

A symbol dictionary segment is decoded according to the following steps.

1

2

. Interpret its header, as described in 7.4.2.1.

. Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments.

If the “bitmap coding context used” bit in the header was 1, then set the arithmetic coding context adaptive
probability val uesfor the generic region and generic refinement region decoding proceduresto theval ues that

they contained at the end of decoding thelast-referenced symbol dictionary segment. That symbol dictionary
segment’s symbol dictionary data header must have had the “ bitmap coding context retained” bit equal to 1.

If the*bitmap coding context used” bit in the header was 0, then reset all the arithmetic coding context adap-
tive probability values for the generic region and generic refinement region decoding procedures to zero.
Reset the adaptive probability values for al the contexts of al the arithmetic integer coders to zero.

Invoke the symbol dictionary decoding procedure described in 6.5, with the parameters to the symbol dic-
tionary decoding procedure set as shown in Table 27.

Table 27 — Parameters used to decode a symbol dictionary segment.

Name Value

SDHUFF Asshownin7.4.2.1.1.

SDREFAGG Asshownin7.4.2.1.1.

SDNUMINSYMS The sum of the number of exported symbols in al
the symbol dictionary segments referred to by this
segment.

SDINSYMS Concatenate the exported symbol arrays from all the
symbol dictionary segments referred to by this seg-
ment, in the order in which they are referred to.

SDNUMNEWSYMS | Asshownin7.4.2.1.5.

SDNUMEXSYMS Asshownin7.4.2.14.

SDHUFFDH See7.4.2.1.6

SDHUFFDW See7.4.2.1.6

SDHUFFBM SIZE See7.42.1.6

SDHUFFAGGINST | See7.4.2.1.6

SDTEMPLATE See7.4.21.1

SDAT X4 See7.42.1.2

SDATY; See7.42.1.2

SDAT X See7.4.21.2

SDATY See7.4.21.2

SDAT X3 See7.4.21.2

SDATY 3 See7.4.21.2

SDAT X4 See7.4.21.2

SDATY4 See7.4.21.2

SDRTEMPLATE See7.4.2.1.1

SDRAT X4 See7.4.2.1.3

SDRATY; See7.4.2.1.3

SDRAT X2 See7.4.2.1.3

SDRATY See7.4.2.1.3
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7. If the “bitmap coding context retained” bit in the header was 1, then preserve the current contents of the
arithmetic coding context adaptive probability values for the generic region and generic refinement region
decoding procedures.

NOTE — Step 3isintended to reduce the coding costs of symbol dictionaries. A side-effect of de-
coding a symbol dictionary isthat the adaptive probability values used for coding bitmaps
“learn” the approximate statistics. These two steps allow some limited re-use of these
statistics: the statisticslearned when decoding the symbol dictionary that isthe last symbol
dictionary referenced are used as a starting point for decoding this symbol dictionary.
Step 7 isexplicitly present because not every symbol dictionary’sadaptive probability val-
ues will be used by another dictionary. Knowing that they will not be used alows the de-
coder to discard them, reducing memory usage.

7.4.3 Symbol region segment syntax

The data parts of all three of the symbol region segment types (“intermediate symbol region”, “immediate symbol
region” and “immediate lossless symbol region”) are coded identically, but are acted upon differently; see 8.2. The
syntax of these segment types' data parts is specified here.

7.4.3.1 Symbol region segment data header

The data part of a symbol region segment beginswith a symbol region segment data header. This header contains
the fields shown in Figure 35 and described bel ow.

i ) Symbol region Symbol region Symbol region
Region segment Symr:g]tr?'og segment Huffman | segmentrefinee | SBNUMINSTANCES |  segmentsymbol ID
data header Seg e flags ment AT flags Huffman decoding table

Figure 35— Symbol region segment data header structure

Region segment data header See 7.4.1.

Symbol region segment flags See 7.4.3.1.1.

Symbol region segment Huffman flags See 7.4.3.1.2.

Symbol region segment refinement AT flags See 7.4.3.1.3.
SBNUMINSTANCES See7.4.3.14.

Symbol region segment symbol ID Huffman decoding table See7.4.3.1.5.

7.43.1.1 Symbol region segment flags
Thistwo-bytefield isformatted as shown in Figure 36 and as described below.

T
SBR-

TEMP- SBDSOFFSET BOEr SBCOMBOP s> REFCORNER LOGSBSTRIPS S3RE" sBHUFF
LATE
|

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

Figure 36 — Symbol region flagsfield structure

Bit 0 SBHUFF.

If thishitis 1, then the segment uses the Huffman encoding variant. If thishitisO, then the segment usesthe
arithmetic encoding variant. The setting of this flag determines how the data in this segment are encoded.
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Bit 1 SBREFINE.
If thisbit is 0, then the segment contains no symbol instance refinements. If thisbit is 1, then the segment
may contain symbol instance refinements.

Bits2-3 LOGSBSTRIPS.

Thistwo-bit field codes the base-2 |ogarithm of the strip size used to encode the segment. Thus, strip sizes
of 1, 2, 4, and 8 can be encoded.

Bits4-5 REFCORNER. The four values that thistwo-bit field can take on are

0 BOTTOMLEFT.
1 TOPLEFT.

2 BOTTOMRIGHT.
3 TOPRIGHT.

NOTE — The best compression is usually achieved when the the reference point of each symbol is
on the text baseline. Given that text can run in any of eight directions, there needs to be
some flexibility in which corner of a given symbol is used as the reference point.
Bit 6 TRANSPOSED.
If thisbitis 1, thenthe primary direction of coding istop-to-bottom. If thisbitis0, thenthe primary direction
of coding isleft-to-right. This allows for text running up and down the page.

Bits 7-8 SBCOMBOP. Thisfield has four possible values, representing one of four possible combination opera-
tors:
0 OR
1 AND
2 XOR
3 XNOR

Bit 9 SBDEFPIXEL.
This bit contains the value of any pixel that is not covered by any symbol.

Bits10-14 SBDSOFFSET.
This signed five-bit field contains the value of SBDSOFFSET — see 6.4.8.

Bit 15 SBRTEMPLATE

Thisfield controls the template used to decode symbol instance refinements if SBREFINE is 1. If SBRE-
FINE isO, thisfield must contain the value 0.

7.43.1.2 Symbol region segment Huffman flags

Thisfieldisonly present if SBHUFF is 1.
Thistwo-bytefield isformatted as shown in Figure 37 and as described below.

RMeiirtvbeg s SBHUFFRDY SBHUFFRDX SBHUFFRDH SBHUFFRDW SBHUFFDT  SBHUFFDS  SBHUFFFS

0 |se|ecti0n| selection selection selection selection selection selection selection

|
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

Figure 37 — Symbol region Huffman flagsfield structure
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Bits0-1 SBHUFFFS selection. Thistwo-bit field can take on one of three values, indicating which tableisto be
used for SBHUFFFS.
0 TableB.6
1 TableB.7
3 User-supplied table

The value 2 is not permitted.

Bits 2-3 SBHUFFDS selection. Thistwo-bit field can take on one of four values, indicating which tableisto be
used for SBHUFFDS.
0 TableB.8
1 Table B.9
2 TableB.10
3 User-supplied table
Bits4-5 SBHUFFDT selection. Thistwo-bit field can take on one of four values, indicating which tableisto be
used for SBHUFFDT.
0 TableB.11
1 TableB.12
2 TableB.13
3 User-supplied table
Bits6-7 SBHUFFRDW selection. Thistwo-bit field can take on one of three values, indicating which tableisto
be used for SBHUFFRDW.
0 TableB.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bits8-9 SBHUFFRDH selection. Thistwo-bit field can take on one of three values, indicating which tableisto
be used for SBHUFFRDH.

0 TableB.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bits 10-11 SBHUFFRDX selection. Thistwo-bit field can take on one of three values, indicating which tableis
to be used for SBHUFFRDX.

0 TableB.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bits 12-13 SBHUFFRDY selection. Thistwo-bit field can take on one of three values, indicating which tableis
to be used for SBHUFFRDY .

0 TableB.14
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1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bit 14 SBHUFFRSIZE selection. If thisfield is 0 then Table B.1 is used for SBHUFFRSIZE. If thisfieldis 1
then a user-supplied table is used for SBHUFFRSI ZE.

Bit 15 Reserved.

7.4.3.1.3 Symbol region refinement AT flags

Thisfieldisonly presentif SBREFINE is1 and SBRTEMPLATE isO. Itisafour-bytefield, formatted as shown
in Figure 38 and as described bel ow.

SBRATX1 [SBRATY1 |SBRATX2 |SBRATY 2

Figure 38 — Symbol region refinement AT flagsfield structure

Byte0 SBRATX4
Bytel SBRATY;
Byte2 SBRATX.
Byte3 SBRATY.

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according
t06.3.5.3.

7.4.3.1.4 SBNUMINSTANCES
This four-bytefield contains the number of symbol instances coded in this segment.
7.43.1.5 Symbol region segment symbol ID Huffman decoding table

Thisfield containsa coded version of the Huffman codes used to decode symbol instance IDsin the symbol region
decoding procedure. It is decoded as specified in 7.4.3.1.7. Itisonly present if SBHUFF is 1.

7.4.3.1.6 Symbol region segment Huffman table selection

Set the values of the parameters SBHUFFFS, SBHUFFDS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH, SB-
HUFFRDX, SBHUFFRDY and SBHUFFRSIZE according to the selection fields shown in 7.4.3.1.2, and the
tables segments referred to by this segment. More precisely, of these eight Huffman tables, some may be speci-
fied to use some standard table, and some may be specified to use a user-supplied table. The number specified to
use a user-supplied table shall be equal to the number of tables segments referred to by this segment. These tables
segments are matched up with the Huffman tables using user-supplied tables according to the order in which the
tables segments are referred to, and the order

1. SBHUFFFS
. SBHUFFDS
. SBHUFFDT

2
3
4. SBHUFFRDW
5. SBHUFFRDH
6

. SBHUFFRDX
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7. SBHUFFRDY
8. SBHUFFRSIZE

If auser-specified tableisused for SBHUFFDS, then thistable shall be capable of coding the out-of-band value
OOB. If auser-specified table is used for SBHUFFFS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH, SBHUF-
FRDX, SBHUFFRDY or SBHUFFRSIZE then thistable shall not be capable of coding the out-of-band value
OOB.

7.4.3.1.7 Symbol ID Huffman table decoding

Thistableisencoded as SBNUM SY M S code lengths; the actual codesin SBSY M CODES are assigned from these
code lengths using the algorithmin B.2.

The code lengths themselves are run-length coded and the runs Huffman coded. Thisis very similar to the
“zlib” coded format documented in RFC1951, though not identical. The encoding is based on the codes shown in
Table 28.

The code lengthsfor RUNCODEOQ through RUNCODE?34 are then written out, as four bitseach. These lengths
arethen processed by the algorithmin B.2 to assign Huffman codes for RUNCODEQ through RUNCODE34. Next,
further bits are read, decoded into one of the run codes, and interpreted asin Table 28 to produce code lengthsfor
the SBNUM SYM S codes. Finally, theremaining bitsin thelast byte read are discarded, so that the actual symbol
region decoding procedure begins on a byte boundary.

EXAMPLE — Suppose that SBNUM SYM Sis 32 and the code lengths for these 32 symbols are, in order,

0/0|{0|9|6|6|6|6|3|4|4|4(4|4/4/|0
719(8|7|5|5|5|5|5|5|3|6|7|4]|7|7

These code lengths might be transmitted as the sequence of bytes, in hexadecimal

0x50 0x03 0x35 0x32 0x53 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 Ox00 0Ox00 0x00 0x35 OxOF
0x8B 0x30 Ox9E 0xB8 Ox5F Ox1D 0xD2 0x83 0x00

Interpreting this sequence of bytes proceeds as follows.

1. Thefirst 17 bytes plusthefirst four bits of the 18th byte assign code lengths to the 35
run codes as follows

RUNCODEO | 5 || RUNCODE1 | O || RUNCODE2 | O || RUNCODE3 | 3
RUNCODE4 | 3 || RUNCODES | 5 || RUNCODE6 | 3 || RUNCODE7 | 2
RUNCODE8 | 5 || RUNCODEY9 | 3 || RUNCODELO0 | O || RUNCODE11 | O
RUNCODE12 | 0 || RUNCODE13 | 0 || RUNCODE14 | 0 || RUNCODE15 | 0
RUNCODE16 | 0 || RUNCODEL7 | O || RUNCODE18 | 0 | RUNCODE19 | 0
RUNCODE20 | 0 || RUNCODEZ21 | 0 || RUNCODE22 | 0 || RUNCODE23 | O
RUNCODE?24 | 0 || RUNCODE25 | 0 || RUNCODE26 | 0 | RUNCODE27 | O
RUNCODE28 | 0 || RUNCODE29 | 0 || RUNCODE30 | 0 || RUNCODE31 | O
RUNCODE32 | 3 || RUNCODES3 | 5 || RUNCODE34 | 0

Recall that codes that are not used are assigned a code length of zero.

2. Thealgorithmof B.2 assignsthe following Huffman codes to the run codes (run codes
that are not assigned Huffman codes are omitted).

RUNCODEO | 11100 || RUNCODES | 010 || RUNCODE4 | 011
RUNCODES | 11101 | RUNCODES6 | 100 || RUNCODE?7 00
RUNCODES | 11110 || RUNCODE9 | 101 || RUNCODE32 | 110
RUNCODE33 | 11111
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Table 28 — Meaning of the run codes

RUNCODEO

Code lengthisO

RUNCODE1

Codelengthis 1

RUNCODE?2

Code lengthis2

RUNCODE3

Code lengthis 3

RUNCODE4

Code lengthis4

RUNCODES

Codelengthis5

RUNCODE6

Code lengthis 6

RUNCODE7

Code lengthis7

RUNCODES8

Code lengthis 8

RUNCODES

Code lengthis9

RUNCODE10

Codelengthis 10

RUNCODE11

Code lengthis 11

RUNCODE12

Code lengthis 12

RUNCODE13

Codelengthis 13

RUNCODE14

Codelengthis 14

RUNCODE15

Codelengthis 15

RUNCODE16

Codelengthis 16

RUNCODE17

Code lengthis 17

RUNCODE18

Codelengthis 18

RUNCODE19

Codelengthis 19

RUNCODE20

Codelengthis 20

RUNCODE21

Code lengthis 21

RUNCODE22

Code lengthis 22

RUNCODE23

Codelengthis 23

RUNCODE24

Codelengthis24

RUNCODE25

Codelengthis 25

RUNCODE?26

Codelengthis 26

RUNCODE27

Code lengthis 27

RUNCODE28

Codelengthis 28

RUNCODE29

Codelengthis29

RUNCODE30

Code lengthis 30

RUNCODE31

Codelengthis 31

RUNCODE32

Copy the previouscodelength 3-6times. The next two
bits, plus 3, indicate this repeat length.

RUNCODE33

Repeat a code length of 0 for 3-10 times. The next
three bits, plus 3, indicate this repeat length.

RUNCODE34

Repeat a code length of 0 for 11-138 times. The next
seven bits, plus 11, indicate this repeat length.
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3. Theremaining part of the byte sequence is
OxF 0x8B 0x30 Ox9E 0xB8 Ox5F 0x1D 0xD2 0x83 0x00

where half of the first byte has already been consumed. Decoding this sequence using
these Huffman codes proceeds as follows

11111 000 RUNCODES33(0) (i.e., RUNCODE33 followed by three bits containing the value
0)
101 RUNCODE9
100 RUNCODE6
11000 RUNCODE32(0) (i.e., RUNCODE32 followed by two bits containing the value
0)
010 RUNCODE3
011 RUNCODE4
11010 RUNCODE32(2)
11100 RUNCODEOQO
00 RUNCODE?7
101 RUNCODE9
11110 RUNCODES8
00 RUNCODE?7
11101 RUNCODE5
11010 RUNCODE32(2)
010 RUNCODE3
100 RUNCODE6
00 RUNCODE?7
011 RUNCODE4
00 RUNCODE?7
00 RUNCODE?7
0000 Four hitsof paddingto fill the last byte.

4. After interpreting the run codes according to Table 28, the desired sequence of code
lengthsis decoded.

7.4.3.2 Decoding a symbol region segment
A symbol region segment is decoded according to the following steps.
1. Interpret its header, as described in 7.4.3.1.

2. Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments.

3. Reset dl the arithmetic coding context adaptive probability values for the generic region and generic refine-

ment region decoding procedures to zero.

4. Reset the adaptive probability values for all the contexts of all the arithmetic integer coders to zero.

5. Invoke the symbol region decoding procedure described in 6.4, with the parameters to the symbol region

decoding procedure set as shown in Table 29.

7.4.4 Halftonedictionary segment syntax
7.4.4.1 Halftonedictionary data header

A halftone dictionary segment’s data part begins with a halftone dictionary data header, formatted as shown in

Figure 39 and as described below.

Halftone dictionary flags See 7.4.4.1.1.

83



Table 29 — Parameter s used to decode a symbol region segment.

Name Value

SBHUFF Asshownin7.4.3.1.1.

SBREFINE Asshownin7.4.3.1.1.

SBDEFPIXEL Asshownin7.4.3.1.1.

SBCOMBOP Asshownin7.4.3.1.1.

TRANSPOSED Asshownin7.4.3.1.1.

REFCORNER Asshownin7.4.3.1.1.

SBDSOFFSET Asshownin7.4.3.1.1.

SBW As specified by the Region segment bitmap width in

this segment’s region segment data header.

SBH As specified by the Region segment bitmap height

in this segment’s region segment data header.

SBNUMINSTANCES

Asshownin 7.4.3.1.4.

SBSTRIPS oL OGSBSTRIPS

SBNUMSYMS The sum of the number of exported symbols in all
the symbol dictionary segments referred to by this
segment.

SBSYMCODES As specified in 7.4.3.1.7.

SBSYMCODELEN [log, SBNUMSYMS]

SBSYMS Concatenate the exported symbol arrays from al the
symbol dictionary segments referred to by this seg-
ment, in the order in which they are referred to.

SBHUFFFS See7.4.3.1.6

SBHUFFDS See7.4.3.1.6

SBHUFFDT See7.4.3.1.6

SBHUFFRDW See7.4.3.1.6

SBHUFFRDH See7.4.3.1.6

SBHUFFRDX See7.4.3.1.6

SBHUFFRDY See7.4.3.1.6

SBHUFFRSIZE See7.4.3.1.6

SBRTEMPLATE Asshownin7.4.3.1.1

SBRAT X4 See7.4.3.1.3

SBRATY, See7.4.3.1.3

SBRATX, See7.4.3.1.3

SBRATY See7.4.3.1.3

Halftone ! ! !
dictionaryl HDPW | HDPH GRAYMAX

flags

Figure 39 — Halftone dictionary header structure



HDPW See7.4.4.1.2.
HDPH See7.4.4.1.3.
GRAYMAX See7.4.4.1.4.

7.4.4.1.1 Halftonedictionary flags
This one-byte field is formatted as shown in Figure 40 and as described bel ow.

Reserved
Must be 0 | |
| | | | |
7 6 5 4 3 2 1 0

HDTEMPLATE HDMMR|

Figure 40 — Halftone dictionary flagsfield structure

Bit0 HDMMR

If thisbitis 1, then the segment uses the MMR encoding variant. If thisbit is 0, then the segment uses the
arithmetic encoding variant.

Bits1-2 HDTEMPLATE

This field controls the template used to decode halftone patternsif HDMMR is 0. If HDMMR is 1, this
field must contain the value 0.

Bits 3—7 Reserved; must be 0.

74412 HDPW

This one-byte field containsthe width of the halftone patterns defined in this halftonedictionary. Itsvalue must be
greater than zero.

74413 HDPH

This one-byte field contains the height of the halftone patterns defined in this halftone dictionary. Its value must
be greater than zero.

74414 GRAYMAX
This four-bytefield contains one less than the number of halftone patterns defined in this halftone dictionary.

7.4.4.2 Decoding a halftonedictionary segment
A halftone dictionary segment is decoded according to the following steps.

1. Interpret its header, as described in 7.4.4.1.

2. Reset dl the arithmetic coding context adaptive probability values for the generic region and generic refine-
ment region decoding procedures to zero.

3. Reset the adaptive probability values for all the contexts of al the arithmetic integer codersto zero.
4. Invokethe halftonedictionary decoding procedure described in 6.7, with the parameters to the halftone dic-
tionary decoding procedure set as shown in Table 30.

7.4.5 Halftoneregion segment syntax

Thedatapartsof al three of thehalftone region segment types (“intermediate hal ftoneregion”, “immediate hal ftone
region” and“immediate lossless halftoneregion”) are coded identically, but are acted upon differently; see8.2. The
syntax of these segment types' data parts is specified here.
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Table 30 — Parameters used to decode a halftone dictionary segment.

Name Value

HDMMR Asshownin7.4.4.1.1.
HDTEMPLATE | Asshownin7.4.4.1.1.
HDPW Asshownin7.4.4.1.2.
HDPH Asshownin7.4.4.1.3.
GRAYMAX Asshownin7.4.4.1.4.

Region segment l_:rzlgf;itgze Halfto_n_e grid Halftone grid
data header segment position step sizes
flags and size

Figure 41 — Halftone region segment data header structure

7.45.1 Halftoneregion segment data header

The datapart of a halftone region segment beginswith a halftoneregion segment data header. Thisheader contains
the fields shown in Figure 41 and described bel ow.

Region segment data header See 7.4.1.
Halftone region segment flags See 7.4.5.1.1.
Halftone grid position and size See7.4.5.1.2.
Halftone grid vector See7.4.5.1.3.

7.45.1.1 Halftoneregion segment flags
This one-byte field is formatted as shown in Figure 42 and as described bel ow.

HDEF- HENABLE-
PIXEL HCOMBOP skip HTEMPLATE HMMR

| | | | | |
7 6 5 4 3 2 1 0

Figure 42 — Halftone region segment flagsfield structure

Bit0 HMMR
If thisbitis 1, then the segment uses the MMR encoding variant. If thisbit is 0, then the segment uses the
arithmetic encoding variant.

Bits1-2 HTEMPLATE
Thisfield controlsthetemplate used to decode halftone gray-scale valuebitplanesif HMMR isO. f HMMR
is1, thisfield must contain the value O.

Bit 3 HENABLESKIP
Thisfield controlswhether gray-scale values that do not contributeto the region contents are skipped during
decoding. If HMMR is 1, thisfield must contain the value O.

Bits4-6 HCOMBOP
Thisfield has five possible values, representing one of four possible combination operators:

0 OR
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1 AND

2 XOR

3 XNOR

4 REPLACE

Bit 7 HDEFPIXEL
This bit contains the value of any pixel that is not covered by any halftone pattern.

7.45.1.2 Halftonegrid position and size

Thisfield describes the location and size of the grid of gray-scale values. See Figure 24 for an illustration of these
values. It isformatted as shown in Figure 43 and as described below.

T T T T T T T T T T T
HGW HGH HGX HGY

Figure 43 — Halftonegrid position and sizefield structure

HGW See7.45.1.2.1.
HGH See7.45.1.2.2.
HGX See7.451.23.
HGY See7.451.24.

745121 HGW

This four-bytefield contains the width of the array of gray-scale values.
745122 HGH

This four-bytefield contains the height of the array of gray-scale values.
745123 HGX

This four-bytefield contains 256 times the horizontal offset of the origin of the halftone grid.
745124 HGY

This four-bytefield contains 256 times the vertical offset of the origin of the halftone grid.

7.45.1.3 Halftonegrid vector

Thisfield describes the vector used to draw the grid of gray-scale values. See Figure 24 for anillustration of these
values. It isformatted as shown in Figure 44 and as described below.

T T T T T
HRX HRY

Figure 44 — Halftone grid vector field structure

HRX See7.4513.1
HRY See7.45.1.3.2.
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745131 HRX

This four-bytefield contains 256 times the horizontal component of the halftone grid vector.
745132 HRY

This four-bytefield contains 256 times the vertical component of the halftone grid vector.

7.45.2 Decoding a halftoneregion segment
A halftone region segment is decoded according to the following steps.

1.
2.
3.

Interpret its header, as described in 7.4.5.1.
Decode (or retrieve the results of decoding) the referred-to halftone dictionary segment.

Reset all the arithmetic coding context adaptive probability values for the generic region and generic refine-
ment region decoding procedures to zero.

Reset the adaptive probability values for al the contexts of al the arithmetic integer coders to zero.

Invoke the halftone region decoding procedure described in 6.6, with the parameters to the halftone region
decoding procedure set as shown in Table 31.

Table 31 — Parameters used to decode a halftoneregion segment.

Name Value

HBW Asspecified by the Region segment bitmap width in
this segment’s region segment data header.

HBH As specified by the Region segment bitmap height
in this segment’s region segment data header.

HMMR Asshownin7.45.1.1.

HTEMPLATE Asshownin7.4.5.1.1.

HENABLESKIP | Asshownin7.45.1.1.

HCOMBOP Asshownin7.4.5.1.1.

HDEFPIXEL Asshownin7.4.5.1.1.

HGW Asshownin7.45.1.2.1.

HGH Asshownin 7.4.5.1.2.2.

HGX Asshownin7.4.5.1.2.3.

HGY Asshownin7.4.5.1.2.4.

HRX Asshownin7.4.5.1.3.1.

HRY Asshownin7.4.5.1.3.2.

HNUMPATS The number of halftone patternsin the halftonedictio-
nary segment referred to by this segment.

HPATS The halftone patterns in the halftone dictionary seg-
ment referred to by this segment.

HPW The width, in pixels, of each of the halftone patterns
contained inHPATS.

HPH The height, in pixels, of each of the halftone patterns

contained in HPATS.

7.4.6 Genericregion segment syntax

The data parts of all three of the generic region segment types (“intermediate generic region”, “immediate generic
region” and “immediate lossless generic region”) are coded identically, but are acted upon differently; see8.2. The
syntax of these segment types' data parts is specified here.
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7.4.6.1 Genericregion segment data header

The data part of a generic region segment begins with a generic region segment data header. This header contains
the fields shown in Figure 45 and described bel ow.

. Generic Generic region
Region segment region segment
segment
data header e AT flags

Figure 45 — Generic region segment data header structure

Region segment data header See 7.4.1.
Generic region segment flags See 7.4.6.2.

Generic region segment AT flags See 7.4.6.3.

7.4.6.2 Genericregion segment flags
This one-byte field is formatted as shown in Figure 46 and as described bel ow.

Reserved
Must be 0 TPON GBTEMPLATE MMR

| | | | | | |
7 6 5 4 3 2 1 0

Figure 46 — Generic region segment flagsfield structure

Bit0 MMR

Bits1-2 GBTEMPLATE

Thisfield specifies the template used for template-based arithmetic coding. If MMR is 1 then thisfield shall
contain the value zero.

Bit 3 TPON
Bits4-7 Reserved; shall be zero.

7.4.6.3 Genericregion segment AT flags

Thisfield isonly present if MMR is0. If GBTEMPLATE isO, it is an eight-byte field, formatted as shown in
Figure 47 and as described below.

GBATX, |GBATY 1 |GBAT X2 |GBATY: |GBAT X3 |GBATY3|GBATX4 |[GBATY 4

Figure 47 — Generic region AT flagsfield structure when GBTEMPLATE isO

Byte0 GBATX4
Bytel GBATY;
Byte2 GBATX:
Byte3 GBATY;
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Byte4 GBATXs
Byte5 GBATYj;
Byte6 GBATX4
Byte7 GBATY,

If GBTEMPLATE is1, 2or 3, itisatwo-bytefield formatted as shown in Figure 48 and as described bel ow.

Figure 48 — Generic region AT flagsfield structure when GBTEMPLATE isnot 0

Byte0 GBATX4
Bytel GBATY;,

If GBTEMPLATEIs1, 2 or 3thenthevaluesof GBAT X3 throughGBAT X4 and GBATY 3 throughGBATY 4

are dl zero.

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according to

Figure 7.

GBATX: |GBATY:1

7.4.6.4 Decoding agenericregion segment
A generic region segment is decoded according to the following steps.

1. Interpret its header, as described in 7.4.6.1

2. Reset all the arithmetic coding context adaptive probability val ues for the generic region decoding procedure

to zero.

3. Invoke the generic region decoding procedure described in 6.2, with the parameters to the generic region

decoding procedure set as shown in Table 32.

Table 32 — Parameters used to decode a generic region segment.

Name Value

MMR Asshownin 7.4.6.2.

GBTEMPLATE | Asshownin7.4.6.2.

TPON Asshownin 7.4.6.2.

USESKIP 0

SBW Asspecified by the Region segment bitmap width in
this segment’s region segment data header.

SBH As specified by the Region segment bitmap height
in this segment’s region segment data header.

GBATX4 See7.4.6.3

GBATY; See7.4.6.3

GBATX; See7.4.6.3

GBATY, See7.4.6.3

GBATX3 See7.4.6.3

GBATY; See7.4.6.3

GBATX4 See7.4.6.3

GBATY4 See7.4.6.3
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Asaspecia case, asnotedin7.2.7, animmediate generic region segment may have an unknown length. Inthis
case, it isalso possible that the segment may contain fewer rows of bitmap data that are indicated in the segment’s
region segment data header.

In order for the decoder to correctly decode the segment, it must read the four-byte row count field, which is
storedinthelast four bytesof the segment’sdatapart. These four bytes can be detected without knowing the length
of thedata partin advance: if MMR is 1, they are preceded by thetwo-byte sequence 0x00 0x00;if MMRisO,
they are preceded by the two-byte sequence OXFF 0xAC. The row count field contains the actual number of rows
contained in this segment; it must be no greater than the Region segment bitmap height value in the segment’s
region segment data header.

NOTE — ThesequenceOx00 0x00 cannot occur normally withinM M R-encoded data; the sequence Ox FF
0xACcan occur only at the end of arithmetically-coded data. Thus, those sequences cannot occur
by chance in the data that is decoded to generate the contents of the generic region.

7.4.7 Genericrefinement region syntax

The dataparts of al three of the generic refinement region segment types (“intermediate generic refinement region,
“immediate generic refinement region” and “immediate | ossless generic refinement region”) are coded identically,
but are acted upon differently; see 8.2. The syntax of these segment types’ data partsis specified here.

7.4.7.1 Genericrefinement region segment data header

The data part of ageneric refinement region segment beginswith a generic refinement region segment data header.
This header contains the fields shown in Figure 49 and described bel ow.

Seneric Generic refinement
H refinement
Region segment region region segment
data header Se:?an;esnt AT flags

Figure 49 — Generic refinement region segment data header structure

Region segment data header See 7.4.1.
Generic refinement region segment flags See 7.4.7.2.

Generic refinement region segment AT flags See7.4.7.3.

7.4.7.2 Genericrefinement region segment flags
This one-byte field is formatted as shown in Figure 50 and as described bel ow.

Reserved GRTEMP
Must be 0 |TPRON LATE
| | | | |
7 6 5 4 3 2 1 0

Figure 50 — Generic refinement region segment flagsfield structure

Bit0 GRTEMPLATE
Thisfield specifies the template used for template-based arithmetic coding.

Bit 1 TPRON
Thisfield specifies whether typical prediction for refinement is used.

Bits2—7 Reserved; shall be zero.
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GRAT X1

GRATY 1 |GRATX:

GRATY

7.4.7.3 Genericregion segment AT flags
Thisfield is only present if GRTEMPLATE is 0. It isafour-bytefield, formatted as shown in Figure 51 and as

described below.

Byte0 GRATX;
Bytel GRATY;
Byte2 GRATX.
Byte3 GRATY.

Figure 51 — Generic refinement region AT flagsfield structure

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according

106.3.5.3.

7.4.7.3.1 Reference bitmap selection

If this segment refers to another region segment, then set the reference bitmap GRREFERENCE to be the current
contents of the buffer associated with the region segment that this segment refersto.

If this segment does not refer to another region segment, set GRREFERENCE to be a bitmap containing the
current contents of the page buffer (see 8), restricted to the area of the page buffer specified by thissegment’sregion

segment data header.

7.4.7.4 Decoding a generic refinement region segment
A generic refinement region segment is decoded according to the following steps.

1. Interpretits header as described in 7.4.6.1.

2. Reset dl thearithmetic coding context adaptive probability valuesfor the generic refinement region decoding
procedure to zero.

3. Determine the buffer associated with the region segment that this segment refers to.

4. Invokethe generic refinement region decoding procedure described in 6.3, withthe parametersto the generic
refinement region decoding procedure set as shown in Table 33

7.4.8 Pageinformation segment syntax
A page information segment describes a page. It contains the fields shown in Figure 52 and described bel ow.

| | |
Page bitmap width

| | |
Page bitmap height

| | |
Page X resolution

| | |
Page Y resolution

Page
segment

flags

|
Page striping
information

Figure 52 — Page infor mation segment structure

Page bitmap width See 7.4.8.1.

Page bitmap height See 7.4.8.2.

Page X resolution See7.4.8.3.
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Table 33 — Parameters used to decode a generic refinement region segment.

Name Value

GRTEMPLATE Asshownin 7.4.6.2.

TPRON Asshownin 7.4.6.2.

GRW Asspecified by the Region segment bitmap width in
this segment’s region segment data header.

GRH As specified by the Region segment bitmap height

in this segment’s region segment data header.
GRREFERENCE See 7.4.7.3.1.

GRREFERENCEDX | O

GRREFERENCEDY | O

GRATX4 See7.4.7.3
GRATX2 See7.4.7.3
GRATY; See7.4.7.3
GRATY: See7.4.7.3

Page Y resolution See7.4.8.4.
Page segment flags See 7.4.8.5.
Page striping information See 7.4.8.6.

The first segment that is associated with any page shall be a page information segment.
7.4.8.1 Page bitmap width
Thisisafour-byte value containing the width in pixels of the page's bitmap.
7.4.8.2 Page bitmap height

This is a four-byte value containing height in pixels of the page's bitmap. In some cases, this value may not be
known at the time that the page information segment iswritten. Inthiscase, thisfield shall contain Oxf f f f f f f f,
and the actual page height may be communicated later, once it is known.

7.4.8.3 Page X resolution

Thisis a four-byte field containing the resolution of the original page medium, measured in pixels/metre in the
horizontal direction. If thisvaue is unknown then thisfield shall contain 0x00000000.

7.4.84 Page Y resolution

Thisis a four-byte field containing the resolution of the original page medium, measured in pixels/metre in the
vertical direction. If thisvalueis unknown then thisfield shall contain 0x00000000.

7485 Page segment flags
Thisisaone-bytefield. Itisformatted as shown in Figure 53 and as described bel ow.

reerved Page  page default Pagelt Page  Page
i requires . .
Mugt be mg;:;agf ' aue?(iliaw comblr;tatlon xel  aman eventually
| overridden | buffers | Opell’ or | value | refmements| lossless

6 5 4 3 2 1

Figure 53 — Page segment flagsfield structure

Bit 0 Page is eventually lossless. If thishitis O, then the file does not contain a lossless representation of the
original (pre-coding) page. If thishitis1, then thefile containsenoughinformationto reconstruct the original

page.
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Bit 1 Page might contain refinements. If this bit is 0, then no refinement region segment may be associated
with the page. If thisbitis 1, then such segments may be associated with the page.

Bit 2 Page default pixel value. A value of Oindicatesthat any partsof the page bitmap not covered by any region
segment, or not drawn into by any region segment, should be 0. A value of 1 indicates that any parts of the
page bitmap not covered by any region segment, or not drawn into by any region segment, should be 1.

Bits 34 Page default combination operator. Thisfield hasfour possible values, representing one of four pos-
sible combination operators:
0 OR
1 AND
2 XOR
3 XNOR

This operator is used to merge overlapping region segments, and also to combine region segments with the
default pixel value.

Bit 5 Page requires auxiliary buffers. If thishit is0, then no region segment requiring an auxiliary buffer may
be associated with the page. If thisbit is 1, then such segments may be associated with the page.

Bit 6 Page combination operator overridden. If thishit is O, then every non-refinement region segment asso-
ciated with this page shall use the page's combination operator. If thisbit is 1, then non-refinement region
segments associated with this page may use combination operators that are different from the page's com-
bination operator.

NOTE — If al the region segments associated with a page use the same combination operator, then
it is possible to reorder them to some extent (it is not possible switch the relative order of
any refinement segment). If some of them use different combination operators, then the
decoder is unable do any such reordering. Furthermore, the decoder cannot tell from the
segment headers whether any such non-default combination operatorsare used inthe page,
so thisbit indicates that reordering may be possible, if the decoder wishesto perform it.

Bit 7 Reserved; shall be 0.

7.4.8.6 Page striping information
Thisisatwo-bytefield. It isformatted as shown in Figure 54 and as described below.

|
Pageis . L
striped Maximum stripe size

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

Figure 54 — Page striping infor mation field structure

Bits 0-14 Maximum stripesize
Bit 15 Page is striped

If the “page is striped” bitis 1, then the page may have end of stripe segments associated with it. In thiscase,
the maximum size of each stripe (the distance between an end of stripe segment’s end row and the end row of the
previous end of stripe segment, or 0 in the case of the first end of strip segment) must be no more than the page's
maximum stripe size.

If the page’s bitmap height is unknown (indicated by a page bitmap height of Oxf f f f f f f f ) then the “ page
isstriped” bit must be 1.
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7.4.9 End of page segment syntax

An end of page segment has no associated data. Its segment data length field shall be zero.

The last segment that is associated with any page shall be an end of page segment.

If apage’s height was originally unknown, then there shall be at |east one end of stripe segment associated with
the page. Inthiscase, the end row of that last stripeisthe last row of the page bitmap and no region segment may
occur between the last end of stripe segment and the end of page segment.

7.4.10 End of stripe segment syntax

An end of stripe segment states that the encoder has finished coding a portion of the current page, and will not
revisitit. It specifies the' Y coordinate of arow of the page; no segment following the end of stripe may modify
any portion of the page bitmap that lines on or above that row. Thisrow is called the “end row” of the stripe.

The end row specified by an end of stripe segment shall lie below any previous end row for that page.

A page whose height was originally unknown shall contain at least one end of stripe segment.

The segment data of an end of stripe segment consists of one four-byte value, specifying the Y coordinate of
the end row.

7.4.11 End of file segment syntax

If afile contains an end of file segment, it shall be the last segment.
An end of file segment has no associated data. Its segment data length field shall be zero.

7.4.12 Supported profiles sesgment syntax

A supported profiles segment containsalist of the profiles that a given JBIG2 data stream isin compliance with. If
any supported profiles segments are present, then the first segment shall be a supported profiles segment, and may
not be associated with any page.

A supported profiles segment begins with a four-byte field containing the number of profileslisted. Thisfield
is followed by that many four-bytefields. Each of those fields contains a profile identification number. The data
stream shall be in compliance with each of the profileslisted.

More than one supported profiles segment may be present. If more than one is present, then each one, other
than the first one, shall be associated with a page. No page may have more than one supported profiles segment
associated with it. Also, each supported profiles segment past the first one shall be more restrictive than the first
one; that is, it shal list al of the profileidentification numbers listed in the first segment, and possibly more. The
segments making up each page shall, collectively, bein compliance with each of the profileslisted in any supported
profiles segment associated with that page.

7.4.13 Codetable segment syntax
A code table segment’s syntax is described in B.

7.4.14 Extension segment syntax

An extension segment’s data begins with a extension header:

Extension type Thisisafour-byte field which contains an identification of the type of datathat are present in the
extension segment.

The three most significant bits of thisfield have special meaning:

Bit 29 Reserved. Futurerevisions of thisstandard may define extension types; extension types may also be
registered by other parties. Other parties may register only extension typeswith this bit equal to 0; al
extension types having bit 29 equal to 1 are reserved.

Bit 30 Dependent. If this bitis 1, then the coding of the data in the extension segment is dependent on
the exact encoding of the data in the segments that the extension segment refers to. Any file manip-
ulation program that modifies those referred-to segments shall modify this extension segment’s data
correspondingly; if it does not understand the extension segment (due to not recognising its extension
type), and if it isnot a necessary extension segment, then the segment should be deleted.
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Bit 31 Necessary. If thisbitis1, then any decoder that does not know how to parse extensionsof thisexten-
sion segment’s type will not be able to correctly decode the file to produce the intended decoded page
images.

The remainder of the extension segment’s data immediately follows the extension type field, and is formatted
in some way particular to the type of extension.
7.4.15 Defined extension types
The following extension types are currently defined.

0x2000000 ASCII comment. See 7.4.15.1.
0x2000001 Binary comment. See 7.4.15.2.
0x2000002 Unicode comment. See 7.4.15.3.

74151 Comment

An ASCII comment extension segment holdstextual information about some other segment, page, or the bitstream
asawhole. If it refersto no other segments, and is associated with no page, then it contains some set of comments
applyingto the entire bitstream. If it refers to no other segments, but is associated with some page, thenit contains
some set of comments applying to that page. If it refers to some segments, then it contains some set of comments
applying to those segments.

An ASCII comment segment contains anumber of (name, value) pairs. Each element of each pair isastring of
characters, and isterminated by an ASCII NUL (0x00) character. The last pair isfollowed by an additional NUL
character.

EXAMPLE — The comment containing the following pairs

Title An Illustrated H story of False Teeth
Aut hor The Bi g Cheese

is stored as the following sequence of bytes. The bytes are shown as hexadecima numbers
together with their ASCII equivaents, with “. ” indicating an unprintable byte. Note the
four-byte extension type at the start of the segment data:

20 00 00 00 54 69 74 6C 65 00 41 6E 20 49 6C 6C ... Title. An Il
75 73 74 72 61 74 65 64 20 48 69 73 74 6F 72 79 ustrated Hi story
20 6F 66 20 46 61 6C 73 65 20 54 65 65 74 68 00 of Fal se Teeth.
41 75 74 68 6F 72 00 54 68 65 20 42 69 67 20 43 Author.The Big C
68 65 65 73 65 00 00 heese. .

7.4.15.2 Binary comment

A binary comment segment may containany data. Thiscomment followsthe same format asthe PNG Zlib-compressed
comment.

7.4.15.3 Unicode comment
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8 Page Make-up

8.1 Decoder model

This section describes the result that a decoder conforming to this International Standard must produce when de-
coding a page. It doesthis by specifying a set of steps that produce the correct result; a conforming decoder need
not perform these exact steps, but must produce the same result as if the steps had been followed.

Here we describe only the steps taken to decode asingle page. A conforming decoder may operate on multiple
pages at once, as long asit produces the correct final result for each page.

In the following description, we will assume for simplicity that the decoder has a single page buffer, auxiliary
buffers to be used while decoding that page, and additional dictionary memory. Decoders with other components
are allowed, as long as they produce the same page buffer as this abstract decoder does.

At the end of the decoding process, the page buffer contains the result of decoding the page.

Each auxiliary buffer has alocation associated with it; thislocation isthe location of the buffer’stop left pixel,
relative to thetop left pixel of the page buffer. Some combinations of image segments require the use of auxiliary
buffers; others can be decoded directly into the page buffer. See 8.2 for details on how combinations of image
segments are to be interpreted.

The dictionary memory containsthe information obtained by decoding dictionary segments.

8.2 Pageimage composition

The final bitmap for each page is coded by zero or more image segments associated with that page. Each image
segment describes some of the contents of a rectangular region of the page. Since these regions may overlap, and
since some regions might be described as multiple levels of quality, it is important to define what the rules for
image segment composition are. Also, since a decoder might want to display intermediate representations of a
page, based on partial information, it is useful to suggest the interpretation of partial pages.

Each page specifies a default pixel value (0 or 1) and one of four combination operators (OR, AND, XOR,
XNOR). Every segment also specifies a combination operator of its own. The combination operators overridden
flag bit in the page information segment specifies whether any of the page’s image segments overrides the page
combination operator. If the bit is 0, then no non-refinement image segment associated with this page overrides
the page combination operator. The decoder may use this information to optimise its decoding.

The result of decoding an image segment is a bitmap. The size of this bitmap and its location with respect to
the page buffer is given in the image segment header.

The final contents of the page buffer that the decoder must produce as the final result of decoding a page are
those that would be generated by the following steps:

1. Fetch and decode the page information segment.

2. Create the page buffer, of the size given in the page information segment.

If the page size is unknown, then thisis not possible. However, in this case the page must be striped, and
the maximum stripe height specified, and the initial page buffer can be created with height intially equal to
this maximum stripe height; as each end-of-stripe segment is encountered, the page buffer’s height can be
increased, until the end-of-page segment (together with the last end-of-stripe segment) allow determination
of the page's actual height.

NOTE — Ingeneral, this discussion disregards the effects of striping.

3. Fill the page buffer with the page's default pixel value.
4. Fetch the next image segment associated with that page.
5. The following cases exist:

(8 The image segment is an immediate direct image segment. In this case, decode the image segment.
The result of decoding the image segment is a bitmayp; combine this bitmap with the current contents
of the page buffer, using the image segment’s combination operator.
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(b) The image segment is an intermediate direct image segment. In this case, alocate a new auxiliary
buffer, using the size and location specified in the segment’s image segment data header. This buffer
isinitially associated with the image segment. Decode the image segment, placing the resultsinto the
auxiliary buffer.

(c) The image segment is an immediate refinement image segment that refers to no other segments. In
this case, the image segment is acting as a refinement of the page buffer. Perform this refinement on
the region of the page buffer specified in the image segment, according to the data contained in the
refinement image segment. This replaces a part of the page buffer with arefined version.

(d) The image segment is an immediate refinement image segment that refers to another image segment.
This other image segment must be a previously occurring intermediate image segment that has not yet
had a refinement image segment refer toiit; the other image segment thushas an auxiliary buffer associ-
ated with it. Perform the refinement operation on that auxiliary buffer, according to the data contained
in the current image segment, and combine the resulting buffer with the page buffer using the current
image segment’s combination operator, at the location associated with the auxiliary buffer. Discard the
auxiliary buffer.

(e) Theimage segment is an intermediate refinement image segment. This image segment must refer to
one other image segment, which must be a previously occurring intermediate image segment that has
not yet had a refinement image segment refer to it; the other image segment thus has an auxiliary buffer
associated with it. Perform the refinement operation on that auxiliary buffer, according to the data con-
tained in the current image segment. Replace the previous contents of the auxiliary buffer with the
bitmap resulting from the refinement. Change the association of the auxiliary buffer, so that it is now
associated with the current image segment, and is no longer associated with the other image segment.

6. Repeat steps 4 and 5 until there are no more image segments associated with the page.
7. The result of decompressing that page is given by the final contents of the page buffer.

NOTE 2— Therules here are quite simple: if it'simmediate, draw it into the page buffer; if it's interme-
diate, it involvesan auxiliary buffer.

Some examples of these rulesin operation:

EXAMPLE 1— If the page contains no image segments, then the page buffer is filled entirely with the
page's default pixel value.

EXAMPLE 2 — The page information segment for page 3 specifies that the page default combination op-
erator is OR and the page default pixel value is 0. The image segments associated with
page 3 are, in order,

e Segment 7, an intermediate symbol image segment
e Segment 8, an intermediate generic bitmap image segment

¢ Segment 13, an immediate generic bitmap refinement image segment that refers to
segment 8, whose external combination operator is OR

¢ Segment 14, an immediate generic bitmap refinement image segment that refers to
segment 7, whose external combination operator is OR

e Segment 19, an immediate symbol image segment whose external combination op-
erator isOR

e Segment 22, an immediate generic bitmap image segment whose external combina-
tion operator is OR

The resulting page buffer isthe buffer that would be obtained by following the steps
1. Fill the page buffer with the value O
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2. Decode segment 7 into an auxiliary buffer
3. Decode segment 8 into an auxiliary buffer

4. Refine segment 8's auxiliary buffer, according to the refinement information in seg-
ment 13, and draw the refined buffer into the page buffer using OR

5. Refine segment 7'sauxiliary buffer, according to the refinement information in seg-
ment 14, and draw the refined buffer into the page buffer using OR

6. Decode segment 19 and draw the resulting bitmap into the page buffer using OR
7. Decode segment 22 and draw the resulting bitmap into the page buffer using OR

The correct result is aso obtained no matter what order steps 4 through 7 are performed
in; thus a conforming decoder is free to choose any order to decode these steps. In fact,
any order of steps 2 through 7 produces the correct result, as long as step 2 is performed
before step 5 and step 3 is performed before step 4.

EXAMPLE 3— If apage contains several immediate direct-coded image segments that do not override
the page’s combination operator, and an immediate refinement image segment that does
not refer to any other segments, then the resulting page buffer is the buffer that would be
obtained by

o filling the page buffer with the page’s default pixel value

o drawing al the direct-coded image segments that precede the refinement image seg-
ment

o refining the portion of the image covered by the refinement image segment

o drawing all the direct-coded image segments that follow the refinement image seg-
ment

In this case, the order of drawing does matter: all the immediate segments that precede
the refinement segment must be drawn before the refinement segment is drawn, and the
refinement segment must be drawn before any of the immediate segments that follow it.

NOTE 3— In some cases, the decoder may want to display some intermediate form of the page. For ex-
ample, it may want to provide the user with a progressive display of the page contents as the
page segments are received over some transmission medium. Any intermediate images that it
displaysare entirely up to the decoder, and are not specified by thisstandard. However, a useful
rule is for the decoder to take the current contents of the page buffer and any currently active
auxiliary buffers, combine them with the page’s combination operator, and display that to the
user. If the page combination operator is XOR or XNOR, then this combination can be done
reversibly, and so might be done into the actual page buffer, then undone after it has been dis-
played to the user. If the page combination operator is OR or AND, then this combinationis
not reversible and an extra buffer is required to hold the results of the combination.

The step-by-step description above isintended to specify only the results of the decompression. A conforming
decoder may take any stepsit desires, as long as the final page buffer is the same as would have been obtained by
following the steps.

EXAMPLE 4 — A decoder might notice that an intermediate image segment refers to a region of the page
that is not overlapped by any other image segment, and so might not actually allocate an
auxiliary buffer for that image segment, but might use the page buffer immediately. It can
do thisonly if it is sure that thiswill not change the final results of decoding the page's
image segments.
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9  Test Methods and Datastream Examples
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Annex A
(normative)
Arithmetic Integer Decoding Procedure

A.1 General Description
This International Standard uses a number of arithmetic decoding procedures to decode integer values. These are

IAAI Used to decode the number of symbol instances in an aggregation

IADH Used to decode the difference in height between two height classes

IADS Used to decode the S coordinate of the second and subsequent symbol instancesin a strip
IADT Used to decode the T coordinate of the second and subsequent symbol instancesin a strip
IADW Used to decode the difference in width between two symbolsin a height class

IAEX Used to decode export flags

IAFS Used to decode the S coordinate of the first symbol instance in a strip

IAID Used to decode the symbol IDs of symbol instances

IAIT Used to decode the T coordinate of the symbol instances in a strip

IARDH Used to decode the delta height of symbol instance refinements
IARDW Used to decode the delta width of symbol instance refinements
IARDX Used to decode the delta X position of symbol instance refinements
IARDY Used to decode the delta 'Y position of symbol instance refinements
IARI Used to decode the R; bit of symbol instances
Each of these is used to decode integer values (which may include the out-of-band value OOB). The coding
for an integer is based on a decision tree.
An invocation of an arithmetic integer decoding procedure involves decoding a sequence of bits, where each
bit is decoded using a context formed by the bits decoded previously in this invocation. Each context for each
arithmetic integer decoding procedure has its own adaptive probability estimate used by the underlying arithmetic

coder, described in Annex E. The sequence of bits decoded is interpreted to form a value.
Table A.1 isused by all the arithmetic integer decoding procedures except for IAID.

A.2 Procedurefor decoding values (except |AlD)
Theflowchart in Figure A.1 isused as part of the decoding procedure. It producestwo values, V and S. The result
of the integer arithmetic decoding procedure is equal to

e VifS=0

o —VifS=1andV >0

e OOBif S=1landV =0

Thus, V' represents the absol ute val ue of the integer value being decoded, and .S represents the sign; the otherwise-
redundant value —0 isinterpreted to mean “OOB”.

InFigureA.1, each bitisdecoded in acontext formed from the particul ar integer arithmetic decoding procedure
being invoked, and the previous bits decoded in thisinvocation of that decoding procedure. This context isformed
asfollows.

1. Set
PREV =1

2. Followtheflowchartin FigureA.1. Decode each bitwith CX equal to“IAx + PREV” where"|AX” represents
the identifier of the current arithmetic integer decoding procedure, “+” represents concatenation, and the
rightmost 9 bits of PREV are used.
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Figure A.1 — Flowchart for theinteger arithmetic decoding procedures (except | AID)
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Table A.1— Arithmeticinteger decoding procedure table

VAL Encoding

0...3 00 + VAL encoded as 2 bits

-1 1001

-3...-2 101 + (—VAL — 2) encoded as 1 hit

4...19 010+ (VAL — 4) encoded as 4 hits
-19...-4 110 + (—VAL — 4) encoded as 4 bits
20...83 0110+ (VAL — 20) encoded as 6 bits
-83...-20 1110+ (—VAL — 20) encoded as 6 hits
84...339 01110 + (VAL — 84) encoded as 8 bits
-339...-84 11110+ (—VAL — 84) encoded as 8 bits
340...4435 | 011110+ (VAL — 340) encoded as 12 bits
-4435...-340 | 111110+ (—VAL — 340) encoded as 12 hits
4436 ...0c0 011111 + (VAL — 4436) encoded as 32 hits
—0...-4436 | 111111 + (—VAL — 4436) encoded as 32 hits
OOB 1000

3. After each bitisdecoded: If PREV < 256 set
PREV = (PREV << 1) ORD

Otherwise set
PREV = (((PREV << 1) ORD) AND 511) OR 256
where D represents the value of the just-decoded bit.
Thus, PREV aways contains the values of the eight most-recently-decoded bits, plusaleading 1 bit, which
is used to indicate the number of bits decoded so far.

4. The sequence of bits decoded, interpreted according to Table A.1, gives the value that is the result of this
invocation of the integer arithmetic decoding procedure.

Note that each type of data, and each integer arithmetic decoding procedure, uses a separate set of contexts:
the contexts used for IAFS are separate from the contexts used for IADW, for example.

EXAMPLE — Aninvocation of IADW might go as follows.
o Usingtheadaptive probability estimateidentified by setting CX egual to*|ADWO000000001",
decode a bit. Suppose the value decoded is 0.
¢ Using CX = IADWO000000010, decode a bit; suppose the value decoded is 1.
¢ Using CX = IADWO000000101, decode a bit; suppose the value decoded is 0.
¢ Using CX = IADWO000001010, decode a bit; suppose the value decoded is 1.
¢ Using CX = IADWO000010101, decode a bit; suppose the value decoded is 0.
¢ Using CX = IADWO000101010, decode a bit; suppose the value decoded is 0.
¢ Using CX = IADWO001010100, decode a bit; suppose the value decoded is 0.

e The sequence of bits decoded so far is 0101000. According to Table A.1 and Fig-
ure A.1, this corresponds to the value 12 (S = 0, V' = 12), which is the result of
thisinvocation of IADW.

A context isidentified by an arithmetic integer decoding procedure name and a sequence of nine bits. Thus,
each arithmetic integer decoding procedure requires 512 bytes of storage for its context memory.
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A.3 ThelAID decoding procedure

This decoding procedure is different from all the other integer arithmetic decoding procedure. It uses fixed-length
representations of the values being decoded, and does not limit the number of previously-decoded bits used as part
of the context. The lengthis equal to SBSYM CODELEN. This decoding procedureis only invoked from within
the symbol region decoding procedure, so at the time of invocation SBSYM CODELEN is known.

The procedure for decoding an integer using the |AID decoding procedureis as follows.

1. Set

PREV = 1

2. Decode SBSYM CODELEN bitsas follows
(8) Decode abitwith CX equal to“IAID + PREV” where* +" represents concatenation, and the rightmost
SBSYMCODELEN + 1 hitsof PREV are used.

(b) After each bit is decoded, set
PREV = (PREV << 1) ORD

where D represents the value of the just-decoded bit.

Thus, PREV always containsthevalues of al the bits decoded so far, plusaleading 1 bit, whichisused
to indicate the number of bits decoded so far.

3. After SBSYM CODELEN bits have been decoded, set
PREV — PREV _ 9SBSYMCODELEN

This step has the effect of clearing the topmost (Ileading 1) bit of PREV before returningit.
4. The contentsof PREV are the result of thisinvocation of the |AID decoding procedure.

The number of contexts required is 9SBSYMCODELEN \yhjch is less than twice the maximum symbol ID.
Thus, the amount of memory needed for contexts can be calculated from the number of symbols, and is typically
no more than two bytes per symbol.

EXAMPLE — Suppose that paramSBSY MCODELEN = 3. Aninvocation of |AID might go as follows.
¢ Using theadaptive probability estimate identified setting CX equal to“1A1D0001", de-
code a bit. Suppose the value decoded is 0.
¢ Using CX = IAIDQ010, decode a hit; suppose the value decoded is 1.
¢ Using CX = IAID0101, decode a hit; suppose the value decoded is 0.

o Atthispoint, PREV = 1010. Apply Step 3; PREV isnow 010. Thus, the result of this
invocation of the IAID decoding procedureis the value 010, or (in decimal) 2.

The context identfication used here depends on the value of SBSYM CODELEN. In al cases the arithmetic
coder contextswill bereset in between changes of SBSYM CODELEN: SBSYM CODEL EN never changes dur-
ing the decoding of a single segment (but may change between segments).
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Annex B
(normative)
Huffman Table Decoder

Code tablesmay be used for encoding any type of numerical datain the Huffman variant coders. In many locations
where atable is used, the encoder has the option of using one of the standard tables, or sending its own table. A
code table segment provides the means to send such a custom table. The code table is alist of code table lines,
each describing how to encode a singlevalue, or avalue from a specified range. A table may optionally be able to
code for an OOB code, which is an out-of-band signal to the decoder using the table.

B.1 Code Table Structure

Figure B.1 shows the internal structure of an encoded Huffman table. It consists of a set of table lines, each of
which describes the encoding for a range of humerical values. There are aso, potentially, two additional table
lines that encode “open-ended” ranges. The smallest value that can be encoded in a table described according
to this specification is —2147483648 (—23') and the largest value is 2147483647 (23! — 1), so these ranges are
not really open-ended; however, they are treated specially. There is aso, potentially, an additional table line that
encodes an out-of-band value OOB.

Code table flags
Codetable lowest value
Code table highest value

First tableline

Second tableline

Last tableline
Lower range table line
Upper range tableline
Out-of-band table line

Figure B.1 — Coded structure of a Huffman table.

Each table line specifies the length of the prefix that is associated withit and the number of bitsthat follow that
prefix to encode a value.
A decoder decoding an encoded Huffman table shall decode the table that is produced by the following steps.

1. Decode the code table flags field as described in B.1.1. This sets the values HTOOB, HTPS and HTRS.
2. Decode the code table lowest value field as described in B.1.2. Let HTLOW be the value decoded.

3. Decode the code table highest value field as described in B.1.3. Let HTHIGH be the value decoded.

4. Set

CURRANGELOW = HTLOW
NTEMP = 0

5. Decode each table line as follows.

(8) Read HTPS hits. Set PREFLEN[NTEMP] to the value decoded.
(b) Read HTRS bits. Let RANGELEN[NTEMP] be the value decoded.

(c) Set
RANGELOW[NTEMP| = CURRANGELOW
NTEMP = NTEMP+ 1
CURRANGELOW = CURRANGELOW + 2RANGELENINTEMP
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(d) If CURRANGELOW > HTHIGH then proceed to step 6.

6. Read HTPS bits. Let LOWPREFLEN be the value read.

7. Set
PREFLEN[NTEMP] = LOWPREFLEN
RANGELEN[NTEMP] = 32
RANGELOW[NTEMP] = HTLOW — 1
NTEMP = NTEMP+1

Thisisthe lower range table line for thistable.

8. Read HTPS bits. Let HIGHPREFLEN be the value read.

9. Set
PREFLEN[NTEMP] = HIGHPREFLEN
RANGELENINTEMP] = 32
RANGELOW[NTEMP] = HTHIGH
NTEMP = NTEMP+ 1

Thisisthe upper range table line for thistable.
10. If HTOOB is 1, then

(8) Read HTPS hits. Let OOBPREFLEN be the value read.
(b) Set

PREFLEN[NTEMP] = OOBPREFLEN
NTEMP = NTEMP+1

Thisisthe out-of-band table line for thistable. Note that there is no range associated with this value.
11. Createthe prefix codes using the algorithm described in B.2.

B.1.1 Codetableflags
This one-byte field has the following bits defined:
Bit 0 HTOOB. If thishit is 1, the table can code for an out-of-band value.

Bits 1-3 Number of bitsused in code table line prefix size fields. The value of HTPS isthe value of thisfield plus
one.

Bits4-6 Number of bitsused in code table linerange sizefields. The value of HTRS isthe value of thisfield plus
one.

Bit 7 Reserved; must be zero.

B.1.2 Codetablelowest value
This signed four-byte field is the lower bound of thefirst table line in the encoded table.

B.1.3 Codetablehighest value
This signed four-byte field is one larger than the upper bound of the last normal table line in the encoded table.
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B.2 Assigning the Prefix codes

Giventhetable of prefix code lengths, PREFLEN, and the number of codesto be assigned, NTEMP, thisalgorithm
assigns a unique prefix code to each tableline, of the length given by PREFLEN for that tableline.
Note that the PREFLEN value 0 indicates that the table lineis never used.

1. Buildahistogram of thenumber of timeseach prefix length value occursin PREFLEN inthearray LENCOUNT.
LENCOUNT]] isthe number of timesthat the value I occursin the array PREFLEN.

2. Let LENMAX be thelargest value for which LENCOUNT[LENMAX] > 0. Set

CURLEN =
FIRSTCODE[0] =
LENCOUNTI[0]

3. While CURLEN < LENMAX, perform the following operations.
() Set

FIRSTCODE[CURLEN] = (FIRSTCODE[CURLEN — 1]+ LENCOUNT[CURLEN — 1]) x 2
CURCODE = FIRSTCODE[CURLEN]
CURTEMP = 0

(b) While CURTEMP < NTEMP, perform the following operations.
i. If PREFLEN[CURTEMP] = CURLEN, then set

CODES|CURTEMP] = CURCODE
CURCODE = CURCODE+ 1

ii. Set CURTEMP = CURTEMP + 1.
(c) Set
CURLEN = CURLEN +1

After this algorithm has executed, then table line number I has been assigned a PREFLEN|I]-bit long code,
whose valueis stored in the PREFLEN( 7] low-order bits of CODES][/], unless PREFLEN(/] was equa to zero, in
which case that table line has not been assigned any code.

B.3 Using aHuffman Table
To decode a value using a Huffman table, perform the following steps.

1. Read one bit at atime until the bit string read matches the code assigned to one of the table lines. Since no
code forms a prefix of any other code, thisis possible. Let I be the index of the table line whose code was
decoded.

2. Read RANGELEN]/] bits. Let HTOFFSET be the value read.
3. IfHTOOB is 1 for thistable, and table line I isthe out-of-band table line for thistable, then set

HTVAL=00B

4. Otherwise, if tableline I isthe lower rangetable line for thistable, then set
HTVAL = RANGELOW/[I] — HTOFFSET

5. Otherwise, set
HTVAL = RANGELOW(I] + HTOFFSET
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The value of HTVAL isthe value decoded using thistable. Note that this may be a numerical value or the special
value OOB.

EXAMPLE — The encoding for Table B.1 might be the sequence of bytes, in hexadecimal

0x42 0x00 0x00 0x00 Ox00 O0x00 0xO01
0x01 0x10 0x49 0x23 0x81 0x80

Decoding this according to the algorithm of B.1 proceeds as follows.

e Thecodetableflagsfield, 0x42. Thisfield itsalf breaksdownintothefields, inbinary,
0 100 001 0, which decode to produce the assignments

HTOOB = 0
HTPS = 2
HTRS = 5

¢ The code table lowest value field, and the value of HTLOW, 0x00000000.

¢ The code table highest valuefield, and the value of HTHIGH, 0x00010110 (which,
indecimal, is 65808).

o Threetable lines, the lower range table line and the upper range table line. These are
encoded as the sequence of bytesOx49 0x23 0x81 0x80, orinbinary, 01001001
00100011 10000001 10000000. This bitstring is further broken down into the table
linesas follows.

0100100 The first two (HTPS) bits of thistable line indicate a prefix length of 1, and the
last five (HTRS) bits of this table line indicate a range length of 4.
1001000 Thistable line has a prefix length of 2 and a range length of 8.
1110000 Thistableline has a prefix length of 3 and a range length of 16.
00 The lower range table line has a prefix length of O, indicating that thistable line
is not used.
11 The upper range table line has a prefix length of 3.
0000000 Seven bits of padding, tofill out the last byte.

After decoding thesetablelines, thevalueof NTEMPis5, and thearraysPREFLEN, RANGE-
LEN and RANGELOW are

PREFLEN 1 2 3 0 3
RANGELEN 4 8 16 32 32
RANGELOW 0 16 272 -1 65808

Applying the algorithm of B.2 to thisyieldsthe array of codes, in binary,
CODES 0 10 110 X 111

where the X indicates that the lower range table line has not been assigned a code. Thus,
the prefix code O precedes a 4-bit field encoding a value from 0 to 15; the prefix code 10
precedes an 8-hit field encoding a value from 16 to 271, and so on, as shown in Table B.1.

B.4 Standard Huffman Tables

This section presents some standard Huffman tables than may be used in the appropriate contexts without having
been previously transmitted.

Each Huffman table is presented in a form that is similar to the table transmission described above. The table
parameter HTOOB is given (HTPS, HTRS, HTLOW and HTHIGH can be derived from the values in the table),
followed by alist of tablelines, giving the range to which that table line applies, the table line prefix length, table
line range length, and the actual encoding (prefix and base value) for that table line; these table lines are followed
by a lower and upper range table line, and optionally (depending on HTOOB) an out-of-band table line. In some
cases the lower or upper range tablelines are omitted from the tables as shown, indicating that these table linesare
not used in the table (and would be assigned a PREFLEN value of zero).
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Table B.1 — Standard Huffman table A

| HTOOB | 0
VAL PREFLEN | RANGELEN | Encoding
0...15 1 4 | 0+ VAL encoded as 4 bits
16...271 2 8 | 10+ (VAL — 16) encoded as 8 bits
272...65807 3 16 | 110+ (VAL — 272) encoded as 16 bits
65808 .. .00 3 32 | 111+ (VAL — 65808) encoded as 32 hits
Table B.2 — Standard Huffman table B
[HTOOB [ 1
VAL PREFLEN | RANGELEN | Encoding
0 1 0fo0
1 2 0|10
2 3 0| 110
3...10 4 3 | 1110+ (VAL — 3) encoded as 3 bits
11...74 5 6 | 11110+ (VAL — 11) encoded as 6 bits
75...00 6 32 | 111110+ (VAL — 75) encoded as 32 bits
0o0oB 6 111111
Table B.3 — Standard Huffman table C
[ HTOOB 1
VAL PREFLEN | RANGELEN [ Encoding
—256...—1 8 8 | 11111110+ (VAL + 256) encoded as 8 bits
0 1 0(0
1 2 0|10
2 3 0 | 110
3...10 4 3 | 1110+ (VAL — 3) encoded as 3 bits
11...74 5 6 | 11110+ (VAL — 11) encoded as 6 bits
—oo...— 257 8 32 | 11111111+ (—257 — VAL) encoded as 32 hits
75...00 7 32 | 1111110+ (VAL — 75) encoded as 32 bits
0o0oB 6 111110
Table B.4 — Standard Huffman table D
| HTOOB | O
VAL PREFLEN | RANGELEN | Encoding
1 1 0|0
2 2 0|10
3 3 0 | 110
4...11 4 3 | 1110+ (VAL — 4) encoded as 3 hits
12...75 5 6 | 11110+ (VAL — 12) encoded as 6 bits
76...00 5 32 | 11111+ (VAL — 76) encoded as 32 hits
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Table B.5 — Standard Huffman table E

[ HTOOB [0 |
VAL PREFLEN | RANGELEN | Encoding
—255...0 7 8 | 1111110+ (VAL + 255) encoded as 8 bits
1 1 00
2 2 0|10
3 3 0 | 110
4...11 4 3 | 1110+ (VAL — 4) encoded as 3 bits
12...75 5 6 | 11110+ (VAL — 12) encoded as 6 bits
—00...— 256 7 32 | 1111111+ (—256 — VAL ) encoded as 32 bits
76...00 6 32 | 111110+ (VAL — 76) encoded as 32 bits
Table B.6 — Standard Huffman table F
| HTOOB | 0
VAL PREFLEN | RANGELEN | Encoding
—2048...— 1025 5 10 | 11100+ (VAL + 2048) encoded as 10 bits
—1024...-513 4 9 | 1000+ (VAL + 1024) encoded as 9 bits
—512...— 257 4 8 | 1001+ (VAL + 512) encoded as 8 bits
—256...—129 4 7 | 1010+ (VAL + 256) encoded as 7 bits
—128...—-65 5 6 | 11101+ (VAL + 128) encoded as 6 bits
—64...—33 5 5 | 11110+ (VAL + 64) encoded as 5 bits
-32...-1 4 5 | 1011+ (VAL + 32) encoded as 5 hits
0...127 2 7 | 00+ VAL encoded as 7 bits
128...255 3 7 | 010+ (VAL — 128) encoded as 7 bits
256...511 3 8 | 011+ (VAL — 256) encoded as 8 bits
512...1023 4 9 | 1100+ (VAL — 512) encoded as 9 hits
1024 ...2047 4 10 | 1101+ (VAL — 1024) encoded as 10 bits
—00...— 2049 6 32 | 111110+ (—2049 — VAL ) encoded as 32 bits
2048 .. .00 6 32 | 111111+ (VAL — 2048) encoded as 32 bits
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Table B.7 — Standard Huffman table G

[[HTOOB [0
VAL PREFLEN | RANGELEN | Encoding
—1024...-513 4 9 | 1000 + (VAL + 1024) encoded as 9 bits
—512...—257 3 8 | 000+ (VAL + 512) encoded as 8 bits
—256...—129 4 7 | 1001+ (VAL + 256) encoded as 7 bits
—128...—65 5 6 | 11010+ (VAL + 128) encoded as 6 bits
—64...— 32 5 5 | 11011+ (VAL + 64) encoded as 5 bits
-32...-1 4 5 | 1010+ (VAL + 32) encoded as 5 bits
0...31 4 5 | 1011 + VAL encoded as 5 bits
32...63 5 5 | 11100+ (VAL — 32) encoded as 5 hits
64...127 5 6 | 11101+ (VAL — 64) encoded as 6 bits
128...255 4 7 | 1100+ (VAL — 128) encoded as 7 bits
256...511 3 8 | 001+ (VAL — 256) encoded as 8 bits
512...1023 3 9 | 010+ (VAL — 512) encoded as 9 bits
1024 ...2047 3 10 | 011 + (VAL — 1024) encoded as 10 bits
—o0...— 1025 5 32 | 11110+ (—1025 — VAL) encoded as 32 hits
2048 .. .00 5 32 | 11111+ (VAL — 2048) encoded as 32 bits

Table B.8 — Standard Huffman table H

[HTOOB  [1
VAL PREFLEN | RANGELEN | Encoding
—15...-8 8 3 | 11111100+ (VAL + 15) encoded as 3 bits
—7...—6 9 1 | 111111100+ (VAL + 7) encoded as 1 bits
—5...—4 8 1 | 11111101+ (VAL + 5) encoded as 1 bits
-3 9 0 | 111111101
—2 7 0 | 1111100
-1 4 0 | 1010
0...1 2 1 | 00+ VAL encoded as 1 bits
2 5 0 | 11010
3 6 0 | 111010
4...19 3 4 | 100+ (VAL — 4) encoded as 4 bits
20...21 6 1 | 111011+ (VAL — 20) encoded as 1 bits
22...37 4 4 | 1011+ (VAL — 22) encoded as 4 hits
38...69 4 5 | 1100+ (VAL — 38) encoded as 5 hits
70...133 5 6 | 11011+ (VAL — 70) encoded as 6 bits
134...261 5 7 | 11100+ (VAL — 134) encoded as 7 bits
262...389 6 7 | 111100+ (VAL — 262) encoded as 7 bits
390...645 7 8 | 1111101+ (VAL — 390) encoded as 8 bits
646 ...1669 6 10 | 111101+ (VAL — 646) encoded as 10 bits
—00...— 16 9 32 | 111111110+ (—16 — VAL) encoded as 32 bits
1670 .. .00 9 32 | 111111111 + (VAL — 1670) encoded as 32 bits
0o0oB 2 01
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Table B.9 — Standard Huffman tablel

[ HTOOB [1
VAL PREFLEN | RANGELEN | Encoding
—31...—16 8 4 | 11111100+ (VAL + 31) encoded as 4 bits
—15...—-12 9 2 | 111111100+ (VAL + 15) encoded as 2 bits
—11...-8 8 2 | 11111101+ (VAL + 11) encoded as 2 bits
—7...—6 9 1 | 111111101+ (VAL + 7) encoded as 1 bits
—-5...—4 7 1 | 1111100+ (VAL + 5) encoded as 1 bits
-3...=2 4 1 | 1010+ (VAL + 3) encoded as 1 bits
—-1...0 3 1 | 010+ (VAL + 1) encoded as 1 bits
1...2 3 1 | 011+ (VAL — 1) encoded as 1 bits
3...4 5 1 | 11010+ (VAL — 3) encoded as 1 bits
5...6 6 1 | 111010+ (VAL — 5) encoded as 1 bits
7...38 3 5 | 100+ (VAL — 7) encoded as 5 bits
39...42 6 2 | 111011 + (VAL — 39) encoded as 2 bits
43...74 4 5 | 1011+ (VAL — 43) encoded as 5 hits
75...138 4 6 | 1100+ (VAL — 75) encoded as 6 hits
139...266 5 7 | 11011+ (VAL — 139) encoded as 7 bits
267...522 5 8 | 11100+ (VAL — 267) encoded as 8 bits
523...778 6 8 | 111100+ (VAL — 523) encoded as 8 bits
779...1290 7 9 | 1111101+ (VAL — 779) encoded as 9 bits
1291 ...3338 6 11 | 111101+ (VAL — 1291) encoded as 11 bits
—00...— 32 9 32 | 111111110+ (—32 — VAL ) encoded as 32 bits
3339...00 9 32 | 111111111+ (VAL — 3339) encoded as 32 bits
OOB 2 00
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Table B.10 — Standard Huffman table J

[ HTOOB [1
VAL PREFLEN | RANGELEN | Encoding
—21...—6 7 4 | 1111010+ (VAL + 21) encoded as 4 bits
-5 8 0 | 11111100
—4 7 0 | 1111011
-3 5 0 | 11000
-2...1 2 2 | 00+ (VAL + 2) encoded as 2 bits
2 5 0 | 11001
3 6 0 | 110110
4 7 0 | 1111100
5 8 0 | 11111101
6...69 2 6 | 01+ (VAL — 6) encoded as 6 bits
70...101 5 5 | 11010+ (VAL — 70) encoded as 5 bits
102...133 6 5 | 110111+ (VAL — 102) encoded as 5 bits
134...197 6 6 | 111000+ (VAL — 134) encoded as 6 hits
198...325 6 7 | 111001+ (VAL — 198) encoded as 7 hits
326...581 6 8 | 111010+ (VAL — 326) encoded as 8 hits
582...1093 6 9 | 111011+ (VAL — 582) encoded as 9 bits
1094...2117 6 10 | 111100+ (VAL — 1094) encoded as 10 bits
2118...4165 7 11 | 1111101+ (VAL — 2118) encoded as 11 bits
—o0. .. — 22 8 32 | 11111110+ (—22 — VAL) encoded as 32 bits
4166 .. .00 8 32 | 11111111+ (VAL — 4166) encoded as 32 hits
0o0oB 2 10
Table B.11 — Standard Huffman table K
| HTOOB |0
VAL PREFLEN | RANGELEN | Encoding
1 1 0fo0
2...3 2 1 | 10+ (VAL — 2) encoded as 1 bits
4 4 0 | 1100
5...6 4 1 | 1101+ (VAL — 5) encoded as 1 bits
7...8 5 1 | 11100+ (VAL — 7) encoded as 1 hits
9...12 5 2 | 11101+ (VAL — 9) encoded as 2 bits
13...16 6 2 | 111100+ (VAL — 13) encoded as 2 bits
17...20 7 2 | 1111010+ (VAL — 17) encoded as 2 bits
21...28 7 3 | 1111011+ (VAL — 21) encoded as 3 bits
29...44 7 4 | 1111100+ (VAL — 29) encoded as 4 bits
45...76 7 5 | 1111101+ (VAL — 45) encoded as 5 bits
77...140 7 6 | 1111110+ (VAL — 77) encoded as 6 bits
141.. .00 7 32 | 1111111+ (VAL — 141) encoded as 32 bits
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Table B.12 — Standard Huffman table L

| HTOOB | 0
VAL PREFLEN | RANGELEN | Encoding
1 1 00
2 2 0|10
3...4 3 1 | 110+ (VAL — 3) encoded as 1 bits
5 5 0 | 11100
6...7 5 1 | 11101+ (VAL — 6) encoded as 1 bits
8...9 6 1 | 111100+ (VAL — 8) encoded as 1 bits
10 7 0 | 1111010
11...12 7 1 | 1111011+ (VAL — 11) encoded as 1 bits
13...16 7 2 | 1111100+ (VAL — 13) encoded as 2 bits
17...24 7 3 | 1111101+ (VAL — 17) encoded as 3 bits
25...40 7 4 | 1111110+ (VAL — 25) encoded as 4 bits
41...72 8 5 | 11111110+ (VAL — 41) encoded as 5 bits
73...00 8 32 | 11111111+ (VAL — 73) encoded as 32 bits

Table B.13 — Standard Huffman table M

| HTOOB |0
VAL PREFLEN | RANGELEN | Encoding
1 1 0fo0
2 3 0 | 100
3 4 0 | 1100
4 5 0 | 11100
5...6 4 1 | 1101+ (VAL — 5) encoded as 1 bits
7...14 3 3 | 101+ (VAL — 7) encoded as 3 bits
15...16 6 1 | 111010+ (VAL — 15) encoded as 1 bits
17...20 6 2 | 111011 + (VAL — 17) encoded as 2 bits
21...28 6 3 | 111100+ (VAL — 21) encoded as 3 bits
29...44 6 4 | 111101+ (VAL — 29) encoded as 4 bits
45...76 6 5 | 111110+ (VAL — 45) encoded as 5 bits
77...140 7 6 | 1111110+ (VAL — 77) encoded as 6 bits
141.. .00 7 32 | 1111111+ (VAL — 141) encoded as 32 bits

Table B.14 — Standard Huffman table N

| HTOOB | 0 |
VAL PREFLEN [ RANGELEN | Encoding
-2 3 0] 100
-1 3 0| 101
0 1 00
1 3 0| 110
2 3 0| 1m
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Table B.15 — Standard Huffman table O

[HTOOB [0
VAL PREFLEN | RANGELEN | Encoding
—-24...-9 7 4 | 1111100+ (VAL + 24) encoded as 4 bits
—-8...=5 6 2 | 111100+ (VAL + 8) encoded as 2 bits
—4...-3 5 1 | 11100+ (VAL + 4) encoded as 1 bits
-2 4 0 | 1100
-1 3 0 | 100
0 1 00
1 3 0] 101
2 4 0| 1101
3...4 5 1 | 11101+ (VAL — 3) encoded as 1 bits
5...8 6 2 | 111101+ (VAL — 5) encoded as 2 bits
9...24 7 4 | 1111101+ (VAL — 9) encoded as 4 bits
—00...—25 7 32 | 1111110+ (—25 — VAL) encoded as 32 hits
25...00 7 32 | 1111111+ (VAL — 25) encoded as 32 bits
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Annex C
(normative)

Gray-scale Image Decoding Procedure

C.1 General description

This decoding procedure is used by the halftone region decoding procedure to produce an array of gray-scale val-
ues, which are then used as indexesinto a dictionary of halftone patterns.

C.2 Input parameters
The parameters to this decoding procedure are shown in Table C.1.

Table C.1 — Parametersfor the gray-scale image decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)

GSMMR Integer 1 N Specifies whether MMR is used.

GSUSESKIP Integer 1 N Specifies whether skipping of gray-scale values may
occur.

GSBPP Integer 6 N The number of bits per gray-scale value.

GSwW Integer 32 N The width of the gray-scale image.

GSH Integer 32 N The height of the gray-scale image.

GSTEMPLATE | Integer 2 N The template used to code the gray-scale bitplanes. **

GSKIP Bitmap A mask indicating which values should be skipped.
GSW pixelswide, GSH pixelshigh. *

* Unused if GSUSESKIP = 0.
** Unused if GSMMR = 1.

C.3 Returnvalues

The variables whose values are the result of thisdecoding procedure are shown in Table C.2.

Table C.2 — Return values from the gray-scale image decoding procedure.

Name Type | Size | Signed? | Description and restrictions
(bits)
GSVALS | Array The decoded gray-scale values bitmap. The array is
GSW wide, GSH high.

C.4 Variablesused in decoding
The variables used by this decoding procedure are shown in Table C.3.

Table C.3 — Variables used in the gray-scale image decoding procedure.

Name Type Size | Signed? | Description and restrictions
(bits)
GSPLANES | Array of bitmaps Bitplanes of the gray-scale image. There are GSBPP

bitplanesin GSPLANES. Each bitplaneis GSW pixels
wide, GSH pixelshigh.

Integer |

2 |

Y

Bitplane counter
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C.4.1 Decodingthegray-scaleimage

The gray-scaleimageis obtained by decoding HBPP hitplanes. These bitplanesare denoted (from least significant
to most significant) GSPLANES[0], GSPLANES[1], ..., GSPLANES[GSBPP — 1] The bitplanes are Gray-coded,
so that each bitplane’strue valueis equal toits coded value X ORed with the next-more-significant bitplane.

The gray-scale image is obtained by the following procedure:

1. Decode GSPLANES[HBPP— 1] using the generic region decoding procedure. The parametersto the generic
region decoding procedure are as shown in Table C.4.

Table C.4 — Parameter s used to decode a bitplane of the gray-scaleimage.

Name Value

MMR GSMMR

GBW GSw

GBH GSH
GBTEMPLATE | GSTEMPLATE
TPON 0

USESKIP GSUSESKIP
SKIP GSKIP
GBATX; 3if GSTEMPLATE < 1; 2if GSTEMPLATE > 2.
GBATY; -1

GBAT X5 -3

GBATY -1

GBAT X3 2

GBATY; -2

GBATX4 -2

GBATY, -2

2. Setj = GSBPP — 2.

3. While j > 0, perform the following steps.

(@

(b) Decode GSPLANES];] using the generic region decoding procedure. The parameters to the generic
region decoding procedure are as shown in Table C.4.

(c) For each pixel (x,y) in GSPLANES][;], set

GSPLANES[;][z,y] = GSPLANES[j + 1][z, y] XOR GSPLANES[][, 9]

(d) Setj=j-1
4. For each (z,y), set

GSBPP-1

GSVALS[z,y] = > GSPLANES[j][z,y] x 2/

j=0
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Annex D
(informative)
Profiles and Suggested Minimum Parameters for Free Parameters

Itisrecommended that a JBIG2 decoder either implement the entire specification, or one of the profiles described
in Table D.1.

Table D.1 — Profile descriptions

Profile Simple M edium High
Requirements Maximum Speed | Medium Maximum
Complexity Compression
and Medium
Compression
Generic and sym- | Direct No template (use | 10 pixel (O AT) or | 16 pixel (4 AT)
bol region coding | Template MMR) 13 pixel (1 AT)
Refinement No refinement 10 pixel (0 AT) 13 pixel (2 AT)
Template
Halftone coding Not available HENABLESKIP | Norestriction
=0
Numerical data Huffman (Fixed | Huffman (Adap- | Arithmetic
table) tive table) or
Arithmetic only
Resources required Stand-alone Laptop computer | Desktop
computer
Application examples Low-end fax; | WwWwW Archiving; High-
high-speed end fax; Wireless
printing WWW
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Annex E
(normative)
Arithmetic Coding

An adaptive binary arithmetic coder may be used as the entropy coder when allowed by the models. The models
used with adaptive binary arithmetic coding are defined in 6.2, 6.3 and A. InthisAnnex the basic arithmetic coding
procedures are defined.

InthisAnnex and al of its subclauses, the flow charts and tables are normative only in the sense that they are
defining an output that alternative implementations must duplicate. In E.3.8 a simple test example is given which
should be helpful in determining if a given implementation is correct.

E.1 Binary encoding

Figure E.1 shows a simple block diagram of the binary adaptive arithmetic encoder. The decision (D) and context
(CX) pairs are processed together to produce compressed data (CD) output. Both D and CX are provided by the
model unit (not shown). CX selects the probability estimate to use during the coding of D. In this International
Standard, CX isalabel for a context, formed by some character string followed by a string of bits.

ENCODER »CD

CX —

Figure E.1 — Arithmetic encoder inputsand outputs.

E.1.1 Recursiveinterval subdivision

The recursive probability interval subdivisionof Elias coding isthe basis for the binary arithmetic coding process.
With each binary decision the current probability interval issubdividedinto two sub-intervals, and the code stream
ismodified (if necessary) so that it pointsto the base (the lower bound) of the probability sub-interval assigned to
the symbol which occurred.

In the partitioning of the current interval into two sub-intervals, the sub-interval for the more probable symbol
(MPS) is ordered above the sub-interval for the less probable symbol (LPS). Therefore, when the MPS is coded,
the LPS sub-interval is added to the code stream. This coding convention requires that symbols be recognized as
either MPS or LPS, rather than 0 or 1. Consequently, the size of the LPSinterval and the sense of the MPS for each
decision must be known in order to code that decision.

Sincethe code stream alway's pointsto the base of the current interval, the decoding processisamatter of deter-
mining, for each decision, which sub-interval is pointed to by the code string. Thisis also done recursively, using
the same interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts
any interval the encoder added to the code stream. Therefore, the code stream in the decoder is a pointer into the
current interval relative to the base of the current interval. Since the coding process involves addition of binary
fractions rather than concatenation of integer code words, the more probable binary decisions can often be coded
at a cost of much less than one bit per decision.

E.1.2 Coding conventionsand approximations

The coding operations are done using fixed precisioninteger arithmetic and using an integer representation of frac-
tional valuesin which 0x8000 isequivalent todecimal 0.75. Theinterval A iskeptintherange0.75 <A < 1.5
by doubling it whenever the integer value falls below 0x8000.

The code register Cisalso doubled each time A isdoubled. Periodically - to keep C from overflowing - abyte
of dataisremoved from the high order bits of the C-register and placed in an external code string buffer. Carry-over
into the external buffer isresolved by a bit stuffing procedure.

Keeping A intherange 0.75 < A < 1.5 alows a simple arithmetic approximation to be used in the interval
subdivision. Normally, if theinterval is A and the current estimate of the L PS probability is Qe, aprecise calcula-
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tion of the sub-intervalswould require:

A—(QexA) = sub-interva forthe MPS
Qe x A = sub-interval forthe LPS

Because the value of A isof order unity, these are approximated by

A — Qe = sub-interval for the MPS
Qe = sub-interval for the LPS

Whenever the MPSis coded, the value of Qe isadded to the code register and theinterval isreduced to A — Qe.
Whenever the LPS is coded, the code register is left unchanged and the interval is reduced to Qe. The precision
range required for A isthen restored, if necessary, by renormalization of both A and C.

With the process sketched above, the approximationsin the interval subdivision process can sometimes make
the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is0.5 and A is at the mini-
mum allowed value of 0.75, the approximate scaling give 1/3rd of the interval to the MPSand 2/3rdsto the LPS.
To avoid this size inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than
the MPS interval. This MPS/LPS conditional exchange can only occur when arenormalization will be needed.

Whenever arenormalization occurs, a probability estimation processisinvoked which determines anew prob-
ability estimate for the context currently being coded. No explicit symbol countsare needed for theestimation. The
relative probabilities of renormalization after coding an LPS and MPS provide an approximate symbol counting
mechanism which is used to directly estimate the probabilities.

E.2 Description of the arithmetic encoder

The ENCODER (Figure E.2) initializes the encoder through the INITENC procedure. CX and D pairs are read
and passed on to ENCODE until all pairs have been read. The probability estimation procedures which provide
adaptive estimates of the probability for each context are imbedded in ENCODE. Bytes of compressed data are
output when no longer modifiable. When all of the CX and D pairs have been read (Finished?), FLUSH setsthe
contents of the C-register to as many 1-bits as possible and then outputs the final bytes. FLUSH also prepares the
code string for the addition of a terminating marker code at the end of the stripe.

E.2.1 Encoder coderegister conventions
The flow charts given in this subclause assume the following register structures for the encoder:

MSB LSB
C-register 0000cbbb bbbbbsss XXXXXXXX  XXXXXXXX
A-register 00000000 00000000 aaaaaaaa aaaaaaaa

The”a’ bits are the fractional bitsin the A-register (the current interval value) and the "x” bits are the fractional
bitsin the code register. The s’ bits are spacer bits which provide useful constraints on carry-over, and the "b”
bitsindicate the bit positionsfrom which the compl eted bytes of the data are removed from the C-register. The”c”
bitisacarry hit.

The detail ed description of bit stuffing and the handling of carry-over will be givenin alater part of thisAnnex.

E.22 ENCODE

The ENCODE procedure determines whether the decision D isa 0 or not. Then a CODEO or a CODEL1 procedure
is called appropriately. Often embodiments will not have an ENCODE procedure, but will call the CODEO or
CODE1 procedures directly to code a 0-decision or a 1-decision.

E.23 CODE1and CODEO

When a given binary decision is coded, one of two possibilities occurs - the symbol is either the more probable
symbol or it is the less probable symbol. CODE1 and CODEQO are sketched in Figures E.4 and E.5. In these Fig-
ures CX isthe context index — the index to the probability estimate which is to be used in the coding operations.
MPS(CX) isthe sense of the MPS for context CX.
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( ENCODER )
\ 4

INITENC

>
-

Y

Read CX, D

Y

ENCODE

No Finished?
Yes

FLUSH

A 4
( Done )

Figure E.2 — Encoder for the M Q-coder.

ENCODE

A\ 4
( Done )

Figure E.3— ENCODE procedure.
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CODE1

Y

( Done )

Figure E.4— CODE1 procedure.

CODEO

Y

( Done )

Figure E.5— CODEO procedure.
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E.24 CODEMPSand CODELPS

The CODELPS (Figure E.6) procedure normally consists of ascaling of theinterval to Qe(I(CX)), the probability
estimate of the L PS determined from theindex | stored for context CX. The upper interval isfirst calculated soit can
be compared to thelower interval to confirm that Qe hasthesmaller size. Itisalwaysfollowed by arenormalization
(RENORME). Inthe event that theinterval sizes areinverted, however, the conditional MPS/L PS exchange occurs
and the upper interval iscoded. Ineither case, the probability estimate isupdated. |f the SWITCH flag for theindex
[(CX) issat, then the MPS(CX) isinverted. A new index | issaved at CX as determined from the next L PS index

(NLPS) columnin Table E.1.
( CODELPS )
Y

A = A - Qe(I(CX))

Y

A = Qe(I(CX)) C = C+ Qe(I(CX))

Y& _“SWITCH(I(CX))

Y

MPS(CX) = 1 — MPS(CX)

>
-

Y

I(CX) = NLPS(I(CX))

( Done )

Figure E.6 — CODEL PS procedure with conditional M PS/L PS exchange.

The CODEMPS (Figure E.7) procedure normally reduces the size of the interval to the MPS subinterval and
adjusts the code register so that it points to the base of the MPS sub-interval. However, if the interval sizes are
inverted, the LPS sub-interval is coded instead. Note that the size inversion cannot occur unless arenormalization
(RENORME) isrequired after the coding of the symbol. The probability estimate update changes the index 1(CX)
according to the next MPS index (NMPS) columnin Table E.1.
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( CODEMPS )

Y

A=A —Qe(I(CX))

Y A < Qe(I(CX))?
C = C+ Qe(I(CX)) \/

Y

C = C+ Qe(I(CX))

<
<
Y

I(CX) = NMPS(I(CX))

( Done )

Figure E.7— CODEM PS procedure with conditional M PS/L PS exchange.
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E.2.5 Probability Estimation

Table E.1 shows the Qe value associated with each Qe index. The Qe values are expressed as a hexadecimal inte-
gers, as binary integers, and as decimal fractions. To convert the 15 bit integer representation of Qe to the decimal
probability, the Qe values are divided by (4/3) x (0x8000).

The estimator can be defined as a finite-state machine — a table of Qe indexes and associated next states for
each type of renormalization (i.e., new table positions) - as shown in Table E.1. The change in state occurs only
when the arithmetic coder interval register is renormalized. This must aways be done after coding the LPS, and
whenever the interval register isless than 0x8000 (0.75 in decimal notation) after coding the MPS.

After an LPS renormalization, NLPS gives the new index for the LPS probability estimate. After an MPS
renormalization, NMPS gives the new index for the MPS probability estimate. If Switch is 1, the MPS symbol
sense must be reversed.

The index to the current estimate is part of the information stored for context CX. Thisindex is used as the
index to the table of valuesin NMPS, which gives the next index for an MPS renormalization. Thisindex is saved
in the context storage at CX. MPS(CX) does not change.

The procedure for estimating the probability on the L PS renormalization path is similar to that of an MPSrenor-
malization, except that when Switch(I(CX)) is 1, the sense of MPS(CX) must be inverted.

The final index state 46 can be used to establish afixed 0.5 probability estimate.

E.2.6 Renormalization in the encoder

Renormalization is very similar in both encoder and decoder, except that in the encoder it generates compressed
bits and in the decoder it consumes compressed hits.

The RENORME procedure for the encoder renormalizationis sketched in Figure E.8. Boththeinterval register
A and the code register C are shifted, one bit at atime. The number of shifts is counted in the counter CT, and
when CT is counted down to zero, a byte of compressed data is removed from C by the procedure BY TEOUT.
Renormalization continues until A is no longer less than 0x8000.

E.27 TheBYTEOUT procedure

The BYTEOUT routine called from RENORME is sketched in Figure E.9. This routine contains the bit-stuffing
procedures which are needed to limit carry propagation into the completed bytes of coded data. The conventions
used makeit impossiblefor acarry to propagate through more than the byte most recently written to the code buffer.

The procedure in the block in the lower right section does bit stuffing after a 0x FF byte; the similar procedure
on the left isfor the case where bit stuffing is not needed.

B isthe byte pointed to by the code buffer pointer BP. If B isnot a 0x FF, the carry bit is checked. If the carry
bit is set, it is added to B and B is again checked to see if a bit must be stuffed in the next byte. After the need
for bit stuffing has been determined, the appropriate path is chosen, BP is incremented and the new value of B is
removed from the code register "b” bits.

E.2.8 Initialisation of the encoder

The INITENC procedure is used to start the arithmetic coder. The basic steps are shown in Figure E.10.

Theinterval register and code register are set to their initial values, and the bit counter is set. Setting CT = 12
reflects the fact that there are three spacer bitsin the register which must be filled before the field from which the
bytes are removed is reached. Note that BP always pointsto the byte preceding the position BPST where the first
byteisplaced. Therefore, if the preceding byteis a Ox FF, a spurious bit stuff will occur, but can be compensated
for by increasing CT. Notethat the default initialization of the statisticsbinsisSMPS = 0 and | = 0 (i.e Qe=0x5601
or decimal 0.503937).

E.2.9 Termination of coding

The FLUSH procedure shown in Figure E.11 is used to terminate the encoding operations and prepare the code
string for the addition of a marker code at the end of a stripe. The procedure guarantees that the Ox FF prefix to
the marker code overlaps the final bits of the coded data. This in turn guarantees that any marker code at the end
of the compressed data will be recognized and interpreted before decoding is compl ete.

The first part of the FLUSH procedure sets as many bits in the C-register to 1 as possible as shown in Fig-
ure E.12. The exclusive upper bound for the C-register is the sum of the C-register and the interval register. The
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Table E.1 — Qe values and praobability estimation process

Qe Vaue
(hexadecimal) (binary) (decimal)
0x5601 0101011000000001  0.503937
0x3401 0011010000000001 0.304715
0x1801 0001100000000001  0.140650
Ox0acl 0000101011000001 0.063012
0x0521 0000010100100001  0.030053
0x0221 0000001000100001 0.012474
0x5601 0101011000000001  0.503937
0x5401 0101010000000001 0.492218
0x4801 0100100000000001 0.421904
0x3801 0011100000000001 0.328153
0x3001 0011000000000001 0.281277
0x2401 0010010000000001 0.210964
0x1cO01 0001110000000001  0.164088
0x1601 0001011000000001 0.128931
0x5601 0101011000000001  0.503937
0x5401 0101010000000001 0.492218
0x5101 0101000100000001 0.474640
0x4801 0100100000000001 0.421904
0x3801 0011100000000001  0.328153
0x3401 0011010000000001 0.304715
0x3001 0011000000000001 0.281277
0x2801 0010100000000001  0.234401
0x2401 0010010000000001 0.210964
0x2201 0010001000000001  0.199245
0x1cO01 0001110000000001  0.164088
0x1801 0001100000000001  0.140650
0x1601 0001011000000001 0.128931
0x1401 0001010000000001 0.117212
0x1201 0001001000000001  0.105493
0x1101 0001000100000001  0.099634
OxO0acl 0000101011000001 0.063012
0x09c1 0000100111000001 0.057153
0x08al 0000100010100001  0.050561
0x0521 0000010100100001  0.030053
0x0441 0000010001000001  0.024926
0x02al 0000001010100001  0.015404
0x0221 0000001000100001  0.012474
0x0141 0000000101000001  0.007347
0x0111 0000000100010001  0.006249
0x0085 0000000010000101  0.003044
0x0049 0000000001001001  0.001671
0x0025 0000000000100101  0.000847
0x0015 0000000000010101  0.000481
0x0009 0000000000001001  0.000206
0x0005 0000000000000101  0.000114
0x0001 0000000000000001  0.000023
0x5601 0101011000000001  0.503937
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( RENORME )

<
d

Y

(1
Or |

(oP

<<1
<< 1
CT-1

@]

T

No

Yes

BYTEOUT

A AND 0x8000 = Q

Figure E.8 — Encoder renormalisation procedure.

127



BYTEOUT

B=B+1

No

Yes

C = C AND Ox7FFFFFF

Y
BP=BP+ 1
B=C>>19

C = C AND OX7FFFF
Cr=38

>
-

Y
BP=BP+1
B=C>>20
C = C AND OxFFFFF
Cr=7

A\ 4
( Done )

Figure E.9— BYTEOUT procedure for encoder.
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( INITENC )

Y
A = 0x8000
C=0
BP =BPST — 1
CT=12

No

Yes

CT=13

>
-

Y

( Done )

Figure E.10— Initialisation of the encoder.

low order 16 bits of C are forced to 1, and the result is compared to the upper bound. If C istoo big, the leading
1-bit isremoved, reducing C to a value which must be within the interval.

The bytein the C-register isthen completed by shifting C, and two bytes are then removed. If the second byte
isnot OXFF, another byte is added to the code stream which is guaranteed to be a Ox FF.

E.2.10 Minimization of the code stream

If desired, the code stream can be truncated after the FLUSH procedure is complete. If a sequence of 1-bitsis
generated by the arithmetic coder, bit stuffing will produce pairs of OXFF, Ox 7F bytes. These byte pairs can be
trimmed from the code string, provided that the earliest OXFF in the sequence is not removed. This remaining
Ox FF then becomes the prefix to the marker code which terminates the code stream.

Decoding is not affected by this trimming process because the convention is used in the decoder that when a
marker code is encountered, 1-bits (without bit stuffing) are supplied to the decoder until the coding interval is
complete.

E.3 Description of the arithmetic decoder

Figure E.13 shows asimple block diagram of a binary adaptive arithmetic decoder. The compressed data CD and
acontext CX from the decoder’s model unit (not shown) are input to the arithmetic decoder. The decoder’s output
isthe decision D. The encoder and decoder model units must supply exactly the same context CX for each given
decision.

The DECODER (Figure E.14) initializes the decoder through INITDEC. Contexts, CX, and bytes of com-
pressed data (as needed) are read and passed on to DECODE until al contexts have been read. The DECODE
routine decodes the binary decision D and returns a value of either O or 1. The probability estimation procedures
which provide adaptive estimates of the probability for each context are imbedded in DECODE. When all contexts
have been read (Finished?), the coded data has been decompressed.

E.3.1 Decoder coderegister conventions

The flow charts given in this section assume the following register structures for the decoder:
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BYTEOUT

Yes

Optionally remove trailing
Ox 7FFF pairsfollowing
theleading OXFF

Y

BP=BP+1
B = OXAC
BP=BP+1

Y

( Done )

Figure E.11 — FLUSH procedure.

130



( SETBITS )
i

TEMPC=C+A
C = C OR OxFFFF

No

C > TEMPC?

Yes

C=C-0x8000

>
-

Y

( Done )

Figure E.12 — Setting thefinal bitsin the C register.

CD —

DECODER — D
CX —

Figure E.13 — Arithmetic decoder inputsand outputs.
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( DECODER )

Y

INITDEC

D = DECODE

No Finished?

Return D

Figure E.14 — Decoder for the M Q-coder.
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15 0
Chigh register XXXXXXXX  XXXXXXXX
Clow register bbbbbbbb 00000000
A-register aaaaaaaa aaaaaaaa

Chighand Clow can be thought of as one 32 bit C-register in that renormalization of C shiftsabit of new datafrom
bit 15 of Clow to bit 0 of Chigh. However, the decoding comparisons use Chigh alone. New dataisinserted into
the”b” bitsof Clow one byte at atime.

The detailed description of the handling of datawith stuff-bitswill be given later in this section.

Note that the comparisons shown in the various procedures in this section assume precisions greater than 16
bits. Logical comparisons can be used with 16 bit precision.

E.3.2 The Decode procedure

The decoder decodes one binary decision at atime. After decoding the decision, the decoder subtracts any amount
from the code string that the encoder added. The amount left in the code string is the offset from the base of the
current interval to the sub-interval alocated to al binary decisions not yet decoded. In thefirst test in the Decode
procedure sketched in Figure E.15 the Chigh register is compared to the size of the LPS sub-interval. Unless a
conditional exchange isneeded, thistest determineswhether aMPSor LPSisdecoded. If Chighislogically greater
than or equal to the LPS probability estimate Qe for the current index | stored at CX, then Chigh is decremented
by that amount. If A isnot lessthan 0x8000, then the MPS sense stored at CX is used to set the decoded decision
D.

When arenormalization is needed, the MPS/LPS conditional exchange may have occurred. For the MPS path
the conditional exchange procedureis shownin Figure E.16. Aslong asthe MPS sub-interval size A calculated as
the first step in Figure E.16 is not logically less than the LPS probability estimate Qe(1(CX)), an MPS did occur
and the decision can be set from MPS(CX). Then the index 1(CX) is updated from the next MPS index (NMPS)
columnin Table E.1. If, however, the LPS sub-interval is larger, the conditional exchange occurred and an LPS
occurred. The probability update switches the MPS sense if the SWITCH column hasa”1” and updates the index
[(CX) from the next LPSindex (NLPS) columnin Table 1. Notethat the probability estimationin the decoder must
be identical to the probability estimation in the encoder.

For the L PS path of the decoder the conditional exchange procedure is given the LPS_ EXCHANGE procedure
shown in Figure E.17. The same logical comparison between the MPS sub-interval A and the LPS sub-interval
Qe(1(CX)) determinesif aconditional exchange occurred. On both pathsthenew sub-interval A isset to Qe(1(CX)).
On the left path the conditional exchange occurred so the decision and update are for the MPS case. On the right
path, the LPS decision and update are followed.

E.3.3 Renormalization in the decoder

The RENORMD procedure for the decoder renormalization is sketched in Figure E.18. A counter keeps track of
the number of compressed bitsin the Clow section of the C-register. When CT is zero, anew byteisinserted into
Clow inthe BY TEIN procedure.

Both theinterval register A and the code register C are shifted, one bit at atime, until A isno longer less than
0x8000.

E.34 TheBYTEIN procedure

The BYTEIN procedure called from RENORMD is sketched in Figure E.19. This procedure reads in one byte of
data, compensating for any stuff bits following the Ox FF in the process. It also detects the marker codes which
must occur at the end of ascan or resynchronization interval. The C-register in thisprocedureisthe concatenation
of the Chigh and Clow registers.

B isthe byte pointed to by the code buffer pointer BP. If B isnot a0x FF, BPisincremented and the new value
of B isinserted into the high order 8 bits of Clow.

If B isa0xFF, then B1 (the byte pointed to by BP+1) istested. If B1 exceeds Ox8F, B1 must be one of the
marker codes. The marker codeisinterpreted as required, and the buffer pointer remains pointed to the Ox FF prefix
of the marker code which terminates the coding interval. 1-bits are then fed to the decoder until the decoding is
complete. Thisisshown by adding OxFFOO to the C-register and setting the bit counter CT to 8.
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( DECODE )

Y

A=A - Qe(I(CX))

\ 4
Chigh = Chigh — Qe(I(CX)) \/

AND 0x8000 = 02
Ves
A\ A\

D — MPS EXCHANGE D = MPS(CX) D — LPS.EXCHANGE
Y A\
RENORMD RENORMD
A 4

( Return D )

Figure E.15— Decoding an MPS or an LPS.
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CM PS_EXCHANGE>

No Yes

Y

Y

D = MPS(CX)

1(CX) = NMPS(I(CX))

D = 1 — MPS(CX)

Y

MPS(CX) = 1 — MPS(CX) >

I(CX) = NLPS(I(CX))

Y

( Return D )

Figure E.16 — Decoder M PS path conditional exchange procedure.
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CL PS.EXCHANGE)

Yes No
Y Y
A = Qe(I(CX)) A = Qe(I(CX))
D = MPS(CX) D =1 - MPS(CX)
[(CX) = NMPS(I(CX))

Y

MPS(CX) = 1 — MPS(CX) >

I(CX) = NLPS(I(CX))

Y

( Return D )

Figure E.17 — Decoder LPS path conditional exchange procedure.
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( RENORMD )

<
d

Y

No CT = 0?

Yes

A AND 0x8000 = Q

Figure E.18 — Decoder renormalisation procedure.
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BYTEIN

No
\ 4
BP=BP+ 1
C=C+(B<<3)
B1 > Ox8F? CT=38

Y Y

BP=BP+ 1 .
C=C+(B<<9) C=C OxFFo0
CT=71 =

Y

( Done )

Figure E.19— BYTEIN procedure for decoder

If B1isnot amarker code, then BP isincremented to point to the next byte which contains a stuffed bit. The B
is added to the C-register with an alignment such that the stuff bit (which contains any carry) is added to the low
order bit of Chigh.

E.3.5 Initialisation of the decoder

The INITDEC procedure is used to start the arithmetic decoder. The basic steps are shown in Figure E.20.

BP, the pointer to the compressed data, isinitialized to BPST (pointing to the first compressed byte). Thefirst
byte of the compressed dataisshiftedintothelow order byteof Chigh, and anew byteisthenread in. The C-register
isthen shifted by 7 bitsand CT is decremented by 7, bringing the C-register into alignment with the starting value
of A. Theinterval register A is set to match the starting value in the encode.

E.3.6 Resynchronisation of the decoder

Normally, when the end of the coding interval is reached, the code string pointer BP points to the OxFF of the
terminating marker code. If for any reason the code string pointer isnot at the Ox FF byte of the marker, an resyn-
chronization procedure needs to scans the code stream until it finds the terminating marker code prefix. If asearch
of thistype is needed, itisindicative of an error condition. This error recovery procedure is not standardized.

E.3.7 Resetting statistics

At certain points during the decoding of a JBIG2 bitstream, some or all of the statistics are reset. This process
involves setting 1(CX) and MPS(CX) equal to zero for some or al values of CX.

EXAMPLE — At the start of decoding a symbol region segment, al the statistics are reset.

E.3.8 Test sequence
To be supplied.
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( INITDEC )

Y

BP = BPST
C=B<<«16

C=C<«7
CT=CT-7
A = 0x8000

Y

( Done )

Figure E.20— Initialisation of the decoder.
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Annex F
(informative)
Adaptive Entropy Software-Conventions Decoder

( INITDEC )

Y

BP = BPST
C = (BXOROxFF) << 16

C=C<«7
CT=CT-7
A = 0x8000

Y

( Done )

Figure F.1 — Initialisation of the software-conventions decoder.
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( DECODE )
i

A = A - Qe(I(CX))

Ye&S chigh< A? SNO

Y
\/ Chigh = Chigh — A
AND 0x8000 = N
Yes
Y Y
D = MPS EXCHANGE D = MPS(CX) D = LPS EXCHANGE
Y Y
RENORMD RENORMD

Y
( Return D )

Figure F.2 — Decoding an MPS or an L PSin the software-conventions decoder.

BYTEIN

Y Y

BP=BP+1 BP=BP+1
C=C+O0xFEOO — (B<< 9) C=C+ OxFF0O0 — (B << 8)
CT=r7 CT=28

A\ 4
( Done )

Figure F.3 — Inserting a new byteinto the C register in the software-conventions decoder.
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Annex G
(normative)
File Formats

There are two standal one file organi zations possible for a JBIG2 bitstream. There is also a third organization, not
intended for standalone usage, but instead to allow JBIG2-encoded data to be embedded in another file format.

G.1 Sequential organisation

Thisis astandal one file organisation. In this organisation, the file structure looks like Figure G.1. A file header is
followed by a sequence of segments. The two parts of each segment are stored together: first the segment header
then the segment data.

File header
Segment 1 header
Segment 1 data
Segment 2 header
Segment 2 data

Segment N header
Segment N data

Figure G.1 — Sequential organisation

G.2 Random-access organisation

Thisis astandal one file organisation. In this organisation, the file structure looks like Figure G.2. A file header is
follower by a sequence of segments headers; the last segment header is followed by the data for the first segment,
then the data for the second segment, and so on.

File header
Segment 1 header
Segment 2 header

Segment N header
Segment 1 data
Segment 2 data

Segment N data

Figure G.2 — Random-access or ganisation

G.3 Embedded organisation

Thisisnot a standalone file organisation, but relies on some other file format to carry the JBIG2 segments. Each
segment is stored by concatenating its segment header and segment data parts, but thereis no defined storage order
for these segments. The embedding file format is allowed to store those segments in any order, and may separate
them by arbitrary data.

Applications may wish to precede and follow JBIG2 data with a unique two-byte combination (marker) so
that the JBI G2 data can be detected within other data streams. It is suggested to use OxFF OxAA for the starting
marker and OxFF 0xAB for the ending marker. These markers are not considered to be part of the JBIG2 data. It
should be noted that thefirst byte of a segment header isunlikely to take on the value Ox FF. Note that the two-byte
sequences OXFF OxAA and OxFF 0xAB may occur by chance within JBIG2 segments.

NOTE — Theintent of the embedded organisation is that many current systems can benefit from incorpo-
rating improved bi-level image compression. However, the best way to do thisis not always to
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incorporate an entire JBIG2 bitstream as a monolithic entity, as this can conflict with other con-
straints. For example, the system might have its own ideas of how pages must be divided up,
which might not agree with JBIG2'sideas. Thus, JBIG2 is flexible in allowing the embedding
system to store JBIG2 datain whatever way is most convenient.

G.4 Fileheader syntax
A file header contains the following fields, in order.

ID string SeeG.4.1.

File header flags See G.4.2.

Number of pages See G.4.3.

G.4.1 ID string

Thisisan 8-byte sequence containing0x97 0x4A 0x42 0x32 0x0D OxOA 0Ox1A OxOA.

NOTE — Thisissimilar tothe PNG ID string. The first character is nonprintable, so that the file cannot be
mistaken for ASCII. The first character’s high bit is set, to detect passing through a 7-bit chan-
nel. The next three bytes are JB2, and are intended to allow a human looking at the header to
guessthefiletype. ThefollowingbytesareCR LF CONTROL- Z LF; any corruptionby CR/LF
translation and DOS file truncation can be detected immediately.

G.4.2 File header flags

Thisisal-bytefield. Thebitsthat are defined are

Bit O File organisation type. If thishitis O, the file uses the random-access organisation. If thisbitis 1, thefile
uses the sequential organisation.

Bit 1 Unknown number of pages. If thishitis 0, then the number of pages contained in the file is known. If
thisbitis 1, then the number of pages contained in thefile was not known at the time that the file header was
coded.

Bits2—7 Reserved; must be 0.

G.4.3 Number of pages

Thisisa4-bytefield, and is not present if the “unknown number of pages’ bit was 1. If present, it must equal the
number of pages contained in thefile.
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