
The Emerging JBIG2 Standard

Paul G. Howard1, Faouzi Kossentini2,

Bo Martins3, S�ren Forchhammer4, William J. Rucklidge5,

Fumitaka Ono6

Abstract

The Joint Bi-level Image Experts Group (jbig), an international study group

a�liated with iso/iec and itu -t, is in the process of drafting a new stan-

dard for lossy and lossless compression of bi-level images. The new standard,

informally referred to as jbig2, will support model-based coding for text and

halftones to permit compression ratios up to three times those of existing

standards for lossless compression. jbig2 will also permit lossy preprocessing

without specifying how it is to be done. In this case compression ratios up

to eight times those of existing standards may be obtained with impercepti-

ble loss of quality. It is expected that jbig2 will become an International

Standard by 2000.

1 Introduction

jbig2 is an emerging iso/iec International Standard for lossy and lossless bi-level image

compression. It is being drafted by the Joint Bi-level Image Experts Group (jbig), a \Collab-

orative Team" that reports both to iso/iec jtc 1 / sc 29 / wg 17 and to itu -t sg 88.

As the result of a process that ended in 1993, jbig as a \Collaborative Interchange" produced

1JBIG2 Editor, AT&T Labs - Research, Red Bank, NJ, pgh@research.att.com
2University of British Columbia, Vancouver, BC, faouzi@ece.ubc.ca
3Technical University of Denmark, Lyngby, Denmark, bm@tele.dtu.dk
4Technical University of Denmark, Lyngby, Denmark, sf@tele.dtu.dk
5JBIG2 Editor, Xerox Corp., Palo Alto, CA, rucklidge@parc.xerox.com
6JBIG Rapporteur, Mitsubishi Electric Corp., Kanagawa, Japan, ono@isl.melco.co.jp
7ISO is the International Organization for Standardization. IEC is the International Electrotechnical

Commission. JTC 1 is the Joint ISO/IEC Technical Committee on information technology. SC 29 is the

subcommittee responsible for coding of audio, picture, multimedia and hypermedia information. WG 1 is the

working group that deals with coding of still pictures; it includes both JBIG and JPEG, the Joint Photographic

Experts Group.
8ITU-T is the Telecommunication Standardization Sector of the International Telecommunication Union.

SG 8 is the study group that deals with characteristics of telematic systems.

1

a bi-level image coding standard formally designated itu -t Recommendation t.82 j Inter-

national Standard iso/iec 11544, and informally known as jbig or jbig1. The authors of

this paper are all active members of jbig, although among us only Dr. Ono was involved in

jbig1.

The jbig2 standard will de�ne a compression method for bi-level images, that is, images

consisting of a single rectangular bit plane, with each pixel taking on one of just two possible

colors. Compression of this type of image is addressed by existing facsimile standards [1],

in particular by itu -t Recommendations t.4, t.6, t.82 (jbig1) and t.859. Besides the

obvious facsimile application, jbig2 will be useful for document storage and archiving, images

on the World Wide Web, wireless data transmission, print spooling, and teleconferencing.

jbig2 will be the �rst international standard that provides for lossy compression of bi-level

images; the existing standards are strictly lossless. Indeed, lossy compression is one important

reason that jbig2 is being drafted. The design goal for jbig2 is to enable lossless compression

performance better than that of the existing standards, and to enable lossy compression

at much higher compression ratios than the lossless ratios of the existing standards, with

almost no degradation of quality. In addition, jbig2 will allow both quality-progressive coding

through re�nement stages, with the progression going from lower to higher (or lossless) quality,

and content-progressive coding, successively adding di�erent types of image data (for example,

�rst text, then halftones). In fact, a typical jbig2 encoder decomposes the input bi-level

image into several regions or image segments (usually based on content), and each of the

image segments is separately coded using a di�erent coding method. Such content-based

decomposition is very desirable in interactive multimedia applications.

The applications for which jbig2 will be useful have widely di�ering requirements. For

example, low-end facsimile requires high coding speed and low complexity even at the cost of

some loss of compression, while wireless transmission needs maximum compression to make

fullest use of its narrow channel. In recognition of the variety of application needs, jbig2 will

not have a baseline implementation. Instead, it will provide a toolkit of alternative standard-

ized mechanisms to be selected and used based on application requirements. Typically there

will be two mechanisms for each function, one providing high speed and good compression, the

other providing high compression and reasonable speed. In addition, there will be a number

of application pro�les that specify the recommended or required mechanisms and parameters

for speci�c applications.

As is typical with image compression standards, the jbig2 standard will explicitly de�ne

9See the Appendix for a summary of the confusing nomenclature of facsimile standards.

2

the requirements of a compliant bitstream, and will thus implicitly de�ne decoder behavior.

The standard will not explicitly de�ne a standard encoder, but instead will be
exible enough

to allow sophisticated encoder design. In fact, encoder design will be a major di�erentiator

among competing jbig2 implementations.

2 Technical description

Although the jbig2 standard is not yet �nal, many of its technical speci�cations have become

clear. It will have a control structure that allows e�cient encoding of multipage documents in

sequential or random-access mode, or embedded in another �le format. It will utilize pattern

matching techniques to allow good compression of text and some types of halftone images,

and it will allow re�nement of lossy images either to less lossy images or to lossless images.

The introduction of loss will be an encoder issue, outside the scope of the standard. In this

section we present details of the standard as we see it now; there will likely be changes before

it becomes an International Standard.

2.1 Headers and control

A jbig2 �le describes a document that consists of one or more bi-level page images. It

may be created and read in sequential or random-access mode. In sequential mode, used for

streaming applications like facsimile, it is expected that the decoder will interpret all pages

in order. In random-access mode, used for applications like document archiving, it will be

possible to access and interpret only the pages desired, in any order.

jbig2 will have a control structure that facilitates e�cient multiple-page processing by

allowing the decoder, while decoding a page, to make use of information gathered from other

pages. jbig2 �les consist of two types of data segments. Image data segments are those

that describe how the page should appear. Dictionary data segments describe the elements

that make up the page, such as the bitmaps of text characters. There are also several types

of control data segments, containing information such as page descriptors, page striping,

Hu�man tables, and so on. The dependencies between di�erent segments (usually between

image segments and dictionary segments) are expressed succinctly in segment headers, one

associated with each segment. A segment's header also indicates the segment's type, the

page, if any, to which it belongs, and the length of the data part of the segment. In sequential

mode, each segment header appears just before its associated data segment. In random-access

mode, the segment headers are gathered at the beginning of the �le, allowing the decoder to

3

construct the full dependency graph during initialization.

The data segments de�ned by jbig2 will also be able to be embedded in other �le formats,

such as spiff10, tiff11, andmrc12. When used in this fashion, the jbig2 segment headers

and data segments will be treated as data within the wrapper �le format.

One important additional aspect of jbig2 is its ability to represent multiple pages in a

single �le. This captures the structure of most documents, and can also be used to improve

compression. A character that appears on the �rst page of a document is likely to appear on

other pages; jbig2 exploits this by allowing dictionaries to be referred to by multiple pages.

Thus, the incremental cost of coding additional pages is reduced because of the dictionar-

ies generated for previous pages; this can increase the compression by a factor of two over

compressing each page independently.

2.2 Cleanup and re�nement coding

We anticipate that one of the functions of a jbig2 encoder will be to segment a page into

di�erent classes of image data, in particular textual and halftone data. Some data, such as

line art data, may not be identi�ed with one of the standard classes. Such data will be coded

by a cleanup coder, essentially a basic bitmap coder like jbig1 or one of the other itu -t

fax coders.

We also provide for the transformation of a lossy character or page image into a less lossy

or possibly lossless one. This will be done using re�nement coding : the image or character will

be re-encoded using a two-plane bitmap coder, making use of previously coded information in

both the current image and the previously coded lossy image [2]. Such coding may be used

more than once to successively re�ne a character or page image. Re�nement coding back to

the original lossless image is called residue coding. As in jbig1, it may be possible to obtain

faster processing and improved compression by applying typical prediction during re�nement

coding [3].

Textual data will be coded by pattern matching and substitution, possibly with an ad-

ditional re�nement step. Halftone data will be coded by pattern matching and substitution,

possibly with re�nement, with the patterns corresponding to grayscale values; alternatively,

it may be possible to combine halftone data with other data in the cleanup coder, although

this may reduce e�ciency.

10SPIFF, the Still Picture Interchange File Format, formally known as ITU-T Recommendation T.84 j

International Standard ISO/IEC 10918{ 4, is the ISO/IEC JTC 1 / SC 29 / WG 1 standardized �le format.
11TIFF, the Tagged Image File Format, is a trademark of Aldus Corporation.
12MRC, a standard for color images with \mixed raster content", is itu -t Recommendation t.44.

4

2.3 Model-based coding

It is widely known that the best compression results from using a model of the data that closely

matches the structure of the data itself [4]. The earlier facsimile standards use simple models

of the structure of bi-level images [1]. itu -t Recommendations t.4 and t.6 treat each

image scan line as a sequence of runs of black and white pixels. Since the strokes in individual

characters in a text image are usually several pixels wide and separated by a number of pixels

of white space, the run-length model used inmh, mr, andmmr coding13 provides reasonable

compression for images consisting mostly of text. By further taking advantage of the strong

correlation between adjacent lines, the two-dimensional run-length model used in mr and

mmr coding provides fairly good compression for text images.

The jbig1 standard treats each pixel as being predicted by some nearby neighbors in

positions de�ned by a �xed template, possibly including a single pixel (the adaptive pixel)

whose position is variable. This model captures some of the structure of individual characters,

and the adaptive pixel signi�cantly improves performance on periodic halftone images by

providing a simple model of the halftone structure. Both the run-length model and the

predictive context-based model are very general, and do not directly make use of the textual

or halftone nature of the image; however, the price of the generality is to limit the amount of

compression possible for speci�c classes of images.

In jbig2, we take advantage of our knowledge that typical bi-level images consist mainly

of textual and halftone data, and we allow the use of models designed speci�cally for those

data types. jbig2 is font independent and makes no a priori assumptions about particular

character sets (latin, kanji, etc.) or about particular halftone types (periodic dither, error

di�usion, etc.). jbig2 derives representative bitmaps for all patterns within each page, and

is thus more general and more robust than ocr or compression methods that utilize font

dictionaries.

2.4 Pattern matching for text image data

For textual images, we use character based pattern matching techniques [5]. We note that on

a typical page of text there are many repeated characters. Therefore, instead of coding all the

pixels of each occurrence of each character, we code the bitmap of one representative instance

of the character and put it into a \dictionary." Several names have been used to refer to such

bitmaps, including symbol, mark and pixel block. Henceforth, we will refer to the bitmap as a

13MH, MR, and MMR coding are described in the Appendix.

5

pixel block.

In this section, we brie
y present two encoding methods, pattern matching and substitution

(pm&s) and soft pattern matching (spm). These methods di�er substantially in how they

encode pixel blocks. The
exibility of jbig2 allows the same bitstream format to be used

to represent the output of an encoder using either method. jbig2's capabilities also allow

encoders that are hybrids of these two methods, or that use other encoding methods entirely.

2.4.1 Pattern matching and substitution

In a scanned image, two instances of the same character do not match pixel for pixel, but

they are certainly close enough that a human observer can see that they are the same. Thus,

for each character on the page, we code both a pointer to the corresponding representative

bitmap in the dictionary, and the position of the character on the page, usually relative to

another previously coded character. If there is no acceptable match, we code the pixel block

directly and add it to the dictionary.

Figure 1 shows the block diagram of a typical encoding procedure using pm&s, which

involves the following steps: 1) segmentation of the image into pixel blocks, 2) searching for

a match in the dictionary, and 3) coding of the associated numerical data if a \good" match

is found, or 4) coding of the corresponding bitmap otherwise. These steps are discussed next.

It should be emphasized that a jbig2 bitstream does not interleave the numerical and

bitmap (dictionary) data as Figure 1 implies: what the encoder actually produces is one or

more dictionary segments containing the pixel block bitmaps, and one or more image data

segments containing the numerical information on where those bitmaps should be drawn to

reconstruct the page.

Segmentation. The bi-level image is segmented into pixel blocks containing connected black

pixels using any standard segmentation technique [6]. Features (e.g., height, width, area,

position) for each pixel block are then extracted.

Dictionary search. Searching a previously coded pixel block that matches the current pixel

block can be done in following steps:

1. Prescreen the potential matching pixel block, skipping it if features such as its width,

its height, the area of its bounding box, or the number of black pixels are not close to

those of the current pixel block.

6

2. Compute a match score, and call the potential matching pixel block the best match

if its score is better than that of any other potential matching pixel block tested so

far. A simple example of a match score is the Hamming distance, that is, the count of

the number of mismatched pixels between the potential matching pixel block and the

current pixel block when they are aligned according to the geometric centers of their

bounding boxes [7]. The best match is acceptable if its score is better than a prespeci�ed

threshold; the threshold may depend on characteristics of the current pixel block like its

size.

Coding of numerical data. If an acceptable match is found, the associated numerical

data (dictionary index, position) are either bit-wise or Hu�man-based encoded. Details can

be found in [7] or [8].

Coding of bitmap. If there is no acceptable match, the bitmap of the current pixel block

is encoded using mmr or jbig1 based techniques.

This method of pattern matching and substitution (pm&s) allows high lossy compression

levels. However, use of pm&s results in infrequent but inevitable substitution errors. For

cases where such errors are unacceptable but where extra coded bits and extra coding time are

acceptable, jbig2 allows either residue coding (yielding a lossless compression level slightly

higher than that ofmmr and jbig1), or a technique called soft pattern matching (spm) [2, 9].

2.4.2 Soft pattern matching

This method di�ers from pattern matching and substitution in that, in addition to a pointer

to the dictionary and position informtion as in pm&s, we include re�nement data that can be

used to recreate the original character on the page, yielding lossless compression. Although

lossy compression can still be obtained using preprocessing techniques (discussed in the next

section), substitution errors are very unlikely.

This re�nement data consists of the pixels of the current desired character, coded mak-

ing use of pixels from both the current character and the matching character. The current

character is highly correlated with the matching character since that is the basis for the dec-

laration of a match, so that prediction of the current pixel is now more accurate. The spm

method, illustrated in Figure 2, is similar to the lossy pm&s method discussed earlier. The

only di�erence (shown in italics in the �gure) is that lossy direct substitution of the matched

character is replaced by a lossless encoding that uses the matched character in the coding

7

context. The re�ned pixel block may be identical to the original pixel block but the encoder

has the freedom to re�ne merely to a less lossy pixel block. This procedure is lossy spm.

Unlike pm&s, lossy spm does not need a very safe and intelligent matching procedure to

avoid substitution errors (though, as in any lossy technique, errors are possible).

Like the pm&s method, the �rst part of the spm method consists of the following steps:

1) segmentation of the image into pixel blocks, 2) searching for a match in the dictionary, and

3) coding of the associated numerical data if a \good" match is found, or 4) coding of the

corresponding bitmap otherwise. These steps are similar to the pm&s ones except that the

numerical data is encoded di�erently, using arithmetic coding.

The second part of the spm method consists of losslessly encoding the bitmap of the

current pixel block as follows: we align the geometric center of the current pixel block with

the center of the matching pixel block. We then encode all the pixels within the bounding

box of the current pixel block in raster scan order, using an arithmetic coder as in jbig1,

but with a di�erent template. Each pixel's template consists of a combination of some pixels

from the causal region of the current pixel block (pixels already seen and coded) and some

more pixels from the matching pixel block in the neighborhood of the pixel in the matching

pixel block that corresponds to the current pixel14. The template shown in Figure 3 is used

in the spm coder discussed in [9].

The spm method has a distinct advantage over the pm&s method. In the latter method,

a matching error can lead directly to a character substitution error. A pm&s method can

neither guarantee that there will be no mismatches nor detect them when they occur. In the

spm method, the matching pixel block is used only in the template, to improve the accuracy

of our prediction of each pixel's color. Even using a totally mismatched pixel block in the

template leads only to reduced compression e�ciency, not to any errors in the �nal recon-

structed image. If the pixel block is well-matched, we take full advantage of our knowledge of

it.

To summarize, most of the numerical data can be coded using either multi-alphabet arith-

metic coding or Hu�man coding. Moreover, the basic coding of bitmaps may be done in two

ways: either using a pixel-by-pixel context-based model with arithmetic coding, as in jbig1,

or using an mmr coder, as in t.6.

14We do not have to worry about causality in the matching pixel block since the matching pixel block is

already entirely known by the decoder.

8

2.5 Halftones

Two methods for compressing halftone images have been proposed for inclusion in jbig2.

The �rst is similar to the context-based arithmetic coding treatment used in jbig1, although

the new standard will allow the context template to include as many as 16 template pixels,

as many as 4 of which may be adaptive [10, 11]. An example of a (16; 4) template is shown

in Figure 4. The larger templates are intended to exploit speci�c types of redundancies that

exist in halftone images, usually yielding a signi�cant improvement in compression e�ciency.

The second method involves descreening the halftone image (converting it back to grayscale)

and transmitting the grayscale values. In this method, the bi-level image may be divided into

pixel blocks of mb rows and nb columns. If necessary the bi-level image can be zero-padded

at the right side and at the bottom. For a bi-level image with m rows and n columns, we

can obtain a grayscale image of dimensions mg � ng where mg = b(m + (mb � 1))=mbc and

ng = b(n + (nb � 1))=nbc. The grayscale value may be the sum of the binary pixels values in

the corresponding mb � nb block. The grayscale image will be Gray-coded and the bitplanes

will be coded using context-based arithmetic coding, as in jbig1. The grayscale values are

then used as indices of �xed-size bitmap patterns in a halftone bitmap dictionary, so the de-

coder can render the image simply by making the indexed dictionary bitmap patterns abut

each other [12]. To provide for better quality of halftones with an angled period, the bitmap

patterns corresponding to the transmitted grayscale values may also be placed along an angled

grid. The rendered halftone is de�ned by the rule for combining overlapping patterns. The

idea of using indices to represent grayscale values of mb � nb pixel blocks is similar to that of

the pm&s and spm methods, and it can often yield good compression results.

2.6 Lossy preprocessing and postprocessing

Although jbig2 provides the opportunity for lossy compression, the permissible kinds of loss

are not speci�ed in the standard. The standard speci�es how the decoder must interpret a

compliant bitstream; in e�ect, the decoder is guaranteed to be lossless with respect to the

desired image as encoded by the encoder, but not necessarily with respect to the original

image. The original image may be modi�ed by the encoder during a preprocessing phase to

increase coding e�ciency. Of course, the use of direct substitution without re�nement, after

pattern matching, introduces loss as well. Thus, the pm&s methods are inherently lossy.

Most preprocessing techniques will lower the code length of the image without a�ecting the

general appearance of the image (possible even improving the appearance). In general, loss

9

may be perceived as
ipping pixels. In the pm&s methods, pixel
ipping has conceptionally

occurred in those positions in the image where an original pixel block and its match does not

have the same color. Some possible preprocessing techniques are described next.

Quantization of o�sets. We can obtain some improvement in compression e�ciency by

quantizing the o�sets. For English text on a portrait-oriented page, character positions can

be safely quantized to about 0:015 inch in the horizontal dimension and to about 0:01 inch

in the vertical dimension; any more quantization causes noticeable distortion, but does not

seriously a�ect legibility. Unfortunately, the increase in compression e�ciency is small, on the

order of one percent, and the restored images do not look as good, so this is usually not a

useful procedure.

Noise removal and smoothing. For images consisting mainly of text at a resolution com-

mensurate with the character sizes, loss can be introduced while still maintaining a near-zero

probability of substitution errors [13]. For example, eliminating very small pixel blocks that

represent noise on the page improves compression e�ciency. We can also achieve improvement

by smoothing each pixel block (following rules designed to prevent substitution errors) before

compressing it and thus before entering it into the list of potential matching pixel blocks. One

simple smoothing that can be done is to remove single protruding pixels (white or black) along

edges within pixel blocks. Smoothing has the e�ect of standardizing local edge shapes, which

improves prediction accuracy and increases the number of matching pixels between those of

the current pixel block and those of the potential matching pixel blocks. The increase in

compression ratio is typically about ten percent.

Bit
ipping Loss may also be introduced by
ipping bi-level pixels [9, 14, 10, 15]. This

may be done in a preprocessing step at the encoder, and does not a�ect the complexity of the

decoder. The principle is simple, but it must be done in a controlled manner. Some control is

needed both to ensure that the code length actually decreases and to avoid artifacts. Flipping

a pixel not only a�ects the code length of the pixel itself but also the code length of all the

pixels for which it appears in the template. As a second order e�ect, it also slightly changes

pixel-color statistics for the rest of the image. Artifacts such as avalanche e�ects may appear

as a result of
ipping pixels. In [14], pixels are
ipped on-line such that the best tradeo�

between rate and weighted distortion is achieved. In [10, 15], a method is presented, where

a greedy rate-distortion based algorithm is used to control pixel
ipping. In the original

algorithm, statistics are �rst collected, then the e�ect of
ipping candidate pixels on the total

10

code length is calculated based on the collected statistics, and �nally pixels are
ipped such

that the highest gain in rate-distortion tradeo� is achieved. Less complex variations of the

original algorithm are also presented in [10, 15]. For large and
exible templates such as those

used in jbig2, the encoder is usually able to capture the image structure, and the artifacts

encountered are often quite small. For smaller templates or with simpler
ipping techniques,

ipping avalanches may be avoided by applying a control mechanism based on error-di�usion

[10, 15]. Pixel
ipping o�ers a continuous trade-o� of rate and distortion in the near-lossless

area up to some maximum, image-dependent, distortion. Although the above algorithms can

be applied to all bi-level material, they provide the highest improvement for halftones.

Finally, we note that postprocessing, also not speci�ed in the jbig2 standard, can also

be used to improve the quality of reconstructed bi-level images. Postprocessing is especially

bene�cial in the case of halftone images, where more visually pleasing rendered images can be

obtained, for example by tuning the reconstructed image to a particular output device.

3 Experimental Results

To illustrate the potential advantages of the emerging jbig2 standard, we present simulation

results in which a typical jbig2 compliant coder is compared against three coders achieving

some of the highest compression performance levels reported in the literature: the standard

bi-level image coder (jbig1) and the multi-level image coders, sphit[16] and tcq[17]. The

latter coder is selected as the baseline for jpeg { 2000, the next jpeg generation. In our

simulation experiments, the bi-level image s06a (also known as ccitt2 in the jpeg { 2000

test set) is used as the test image. The image s06a, shown in Figure 5, contains both text

and halftone material. Such an image allows us to demonstrate, clearly, the e�ectiveness of

the text and halftone coding methods.

Table 1 shows the lossless compression ratios achieved by jbig1, spm, jbig1-like halftone,

sphit and tcq. Notice that, because it is optimized for text, spm does not perform well in

comparison to jbig1. Moreover, the jbig1-like halftone coder achieves a 1:3 : 1 advantage

due to its use of more template pixels and more adaptive pixels. As expected, both the sphit

and tcq coders do not perform well in comparison to jbig1. The especially poor perfor-

mance of sphit, which employs wavelet �lters, indicates that wavelet �lter banks should not

be used to encode bi-level images. This fact was already discovered during the development

of the tcq coder, so the tcq coder disables the �ltering process when bi-level image data

is detected.

11

When loss is allowed, large gains in compression e�ciency can be achieved by jbig2

coders. As shown in Table 2, 15% and 53% savings in compression bits in comparison to

jbig1 are obtained for the spm and halftone coders (respectively), while the reconstructed

s06a image is indistinguishable from the original image. Since they can achieve precise bit

rate control, the sphit and tcq coders are used to lossy encode the image s06a at the same

bit rate as the one achieved by the lossy spm coder. The subjective quality of the resulting

sphit and tcq reconstructed images is, however, very poor.

Since the image s06a contains both text and di�erent types of halftone material, better

compression performance is expected if it is properly segmented, and each of the image seg-

ments is separately coded using the appropriate coding method. Indeed, we have segmented

the image s06a into 4 image segments (halftone1, halftone2, halftone3, text), and applied

several combinations of jbig2 component coders (i.e., pm&s, spm, halftone), yielding the

lossless coders jbig2-i and jbig2-ii, and the lossy coders jbig2-iii, jbig2-iv and jbig2-v.

Compression performance results for these coders are shown in Table 3.

jbig2-i consists of applying di�erent versions of the jbig1 like context-based halftone

coder to each of the halftone segments and spm to the text segment. Clearly, jbig2-i

achieves the highest lossless compression ratio of 11:4 : 1. jbig2-ii is that same coder as

jbig2-i, except that the halftone coder is also used to encode the text segment. Notice that

segmentation yields some lossless compression gains (approximately 7%) even if the same

component coder is applied to the segments.

In the lossy coders jbig2-iii, jbig2-iv and jbig2-v, a lossy halftone coder is applied to

each of the halftone segments. The corresponding compression �le sizes are shown in Table

3, and the corresponding reconstructed images are shown in Figures 6, 7, and 8. Clearly,

the reconstructed images are almost indistinguishable from the original ones, but a saving

between 30% and 50% in compression bits is achieved as compared to jbig1. The pm&s,

spm and halftone coders are applied to the text segment in jbig2-iii, jbig2-iv and jbig2-v

(respectively), with corresponding reconstructed text images shown in Figure 9. Notice that,

again, the quality of the reconstructed images is very good, while requiring slightly higher

than half the number of bits required by jbig1. It should be noted that, although current

encoders do not do this, jbig2 allows the possibility of segmenting halftone2 (Figure 7) into

the underlying halftone and the overlying white text. Using this segmentation, further gain

in compression e�ciency can be achieved.

To summarize, we conclude that 1) the quality of reconstructed text images is very good

and compression e�ciency is high if pm&s or spm based coding is used, 2) the quality

12

of reconstructed halftone images is also very good and compression e�ciency is also high

if halftone coding is used, 3) the quality of reconstructed text/halftone images is also very

good and compression e�ciency is high-to-moderate if halftone coding is used, 4) the quality of

text/halftone images is excellent and compression e�ciency is very high if a good segmentation

algorithm and the pm&s/spm/halftone coding methods are appropriately used.

4 Prospects

When adopted, the jbig2 standard will facilitate low bit rate transmission, storage and in-

teractive use of bi-level images while maintaining high reproduction quality. Compared with

mr coding, the method commonly used in fax machines, jbig2 compression applied after

preprocessing a 200 dots-per-inch textual image (introducing mild loss) can provide up to 3 to

5 times the compression (and thus requires only roughly 20 to 35 percent as many bits); for

normal type sizes (down to about 8 point) there is virtually no visible degradation of quality.

Alternatively, we can apply jbig2 compression to lossily-preprocessed higher resolution im-

ages (600 dpi); the resulting compressed bitstream (for text images) uses fewer bits than mr

coding at 100�200 dpi (a typical usage of Group 3 fax) and gives considerably higher quality.

Moreover, as illustrated in the previous section, jbig2 outperforms signi�cantly jbig1 and

the wavelet/subband sphit and tcq coders in both the lossless and lossy cases, especially

when a good segmentation algorithm is properly used.

At the time of this writing, the jbig study group is preparing a formal Working Draft for

jbig2. After the required sequence of drafts, ballots, comment periods, and dispositions of

comments, jbig2 is expected to become International Standard iso/iec 14492 by 2000.

5 Acknowledgments

The authors would like to acknowledge the contributions of Jaehan In (University of British

Columbia, bc, Canada) and those of the jbig members, in particular Ronald B. Arps (IBM

Almaden Research Center, San Jose, ca), Corneliu Constantinescu (IBM Almaden Research

Center, San Jose, ca), Dave Fernandes (DSI Datotech Systems, Inc., Vancouver, bc, Canada),

Hyung Hwa Ko (Kwangwoon University, Seoul, Korea), Istvan Sebestyen (Siemens ag, Mu-

nich, Germany), Stephen Swift (Image Power, Inc., Vancouver, bc, Canada), and Stephen

Urban (Delta Information Systems, Inc., Horsham, pa)

13

Appendix: Summary of existing facsimile standards

This appendix is included in an attempt to dispel some of the confusion surrounding facsimile

standards.

Transmission of facsimile data is standardized by a number of itu -t Recommendations

and by one iso/iec International Standard. itu -t is the Telecommunication Standardiza-

tion Sector of the International Telecommunication Union15. The itu (www.itu.int) is an

international organization within which governments and the private sector coordinate global

telecom networks and services. itu -t issues \Recommendations." iso (www.iso.ch) is

the International Organization for Standardization, a non-governmental worldwide federation

of national standards bodies. Its mission is to promote the development of standardization

to facilitate the international exchange of goods and services, and to develop cooperation in

the spheres of intellectual, scienti�c, technological and economic activity. iso collaborates

closely with the International Electrotechnical Commission (iec, www.iec.ch) on matters of

electrotechnical standardization. iso issues \International Standards."

itu -t Recommendation t.4 de�nes the mh and mr methods for facsimile coding. mh

(Modi�ed Hu�man) is a one-dimensional encoding of runs of black and white pixels, with the

run lengths coded using a two-level Hu�man code; the �rst level, used only if a run is 64 pixels

or longer, codes the number of multiples of 64 pixels in the run, and the second level codes

the number of remaining pixels after accounting for the multiples of 64 pixels. mr (Modi�ed

read16) is a two-dimensional method in which the position of each changing element on

the present line is coded relative to either a corresponding changing element on the previous

line or to the preceding changing element on the present line. In mr coding, every Kth line

(K = 1, 2, or 4) is coded using one-dimensional mh coding. There are �ll characters and an

end-of-line indicator at the end of each line, so the e�ect of transmission errors can be limited.

itu -t Recommendation t.6 de�nes the mmr method for facsimile coding. mmr (Mod-

i�ed Modi�ed read) is similar to mr, except that there are no �ll characters, no end-of-line

indication, and no one-dimensional coding. (In e�ect, K = 1 and the line above the top

image line is considered to be all white.) Since mmr is intended to be used in error-free

circumstances, it can be used in Group 4 or in Group 3 Error Correction Mode (ecm), in

which an arq error-correction facility is used in an attempt to eliminate transmission errors.

itu -t Recommendation t.82 is identical to International Standard iso/iec 11544. It

is informally known as the jbig standard; to avoid confusion with the new jbig2 standard

15The ITU was formerly known as CCITT.
16read stands for Relative Element Address Designate.

14

we recommend calling it jbig1. t.85 is the application pro�le for facsimile using t.82.

t.82 de�nes two methods for bi-level compression, progressive and non-progressive. Pro-

gressive coding, which presumes real time coding and soft copy display, is not adopted in the

current facsimile standards. In non-progressive coding, the image is coded in raster-scan or-

der. Each pixel is coded using arithmetic coding, with the probability of each of the two colors

being conditioned on a context of ten nearby pixels. Two di�erent templates are permitted

for the context, one containing pixels from the current scan line and the previous scan line,

the other containing pixels from the current scan line and the two previous scan lines. In each

template, one of the ten pixels, called the adaptive (at) pixel, may be moved from its default

position.

Group 3 and Group 4 are itu -t facsimile recommendations that de�ne coding methods

as well as other aspects of facsimile transmission, such as communication protocols. The

coding methods in Group 3 facsimile are de�ned by t.4 t.6, and t.82; mh, mr, mmr

and jbig1 coding may be used. The communication protocols for Group 3 are de�ned in

t.30. The coding methods in Group 4 facsimile are de�ned by t.6 and t.82. There are

about 10 million installed Group 3 fax machines today. Group 4 is used to a limited extent

in Japan and Europe, and as standardization of facsimile has evolved over the years most of

the functionality of Group 4 has been incorporated into Group 3.

Recently itu -t de�ned color facsimile services for both Group 3 and Group 4. Three cat-

egories are recommended. One uses jpeg coding, de�ned by itu -t recommendation t.81 j

International Standard iso/iec 10918; it is good for the transmission of natural color images.

The second uses jbig1 coding, and is good for limited color images or palletized images. The

third category is Mixed Raster Content (mrc), de�ned by itu -t Recommendation t.44.

It is good for a mixture of these two categories.

15

References

[1] R. Hunter and A. H. Robinson, \International digital facsimile coding standards," in

Proceedings of IEEE, vol. 68, pp. 854{867, July 1980.

[2] K. Mohiuddin, J. J. Rissanen, and R. Arps, \Lossless binary image compression based on

pattern matching," in Proceedings of International Conference on Computers, Systems,

and Signal Processing, (Bangalore, India), pp. 447{451, 1984.

[3] C. Constantinescu and R. Arps, \Fast residue coding for lossless textual image compres-

sion," in DCC'97, (Snowbird, Utah, USA), pp. 397{406, 97.

[4] K. Sayood, Introduction to Data Compression. San Francisco, CA: Morgan Kaufmann

Publishers, 1996.

[5] R. N. Ascher and G. Nagy, \A means for achieving a high degree of compaction on scan-

digitized printed text," IEEE Transactions on Computers, vol. C-23, pp. 1174{1179, Nov

1974.

[6] J. T. Tou and R. C. Gonzalez, Patern Recognition Principles. Reading, MA: Addison-

Wesley Publishing Company, 1974.

[7] W. K. Pratt, P. J. Capitant, W. H. Chen, E. R. Hamilton, and R. H. Walls, \Combined

symbol matching facsimile data compression system," Proceedings of the IEEE, vol. 68,

pp. 786{796, July 1980.

[8] I. H. Witten, A. Mo�at, and T. C. Bell, Managing Gigabytes: Compressing and Indexing

Documents and Images. New York: Van Nostrand Reinhold, 1994.

[9] P. G. Howard, \Text image compression using soft pattern matching," Computer Journal

40:2-3, 1997.

[10] B. Martins and S. Forchhammer, \Lossless/lossy compression of bi-level images," in

Proceedings of IS&T/SPIE Symposium on Electronic Imaging: Science and Technology,

SPIE { 3018, pp. 38{49, 1997.

[11] B. Martins and S. Forchhammer, \Tree coding of bi-level images," IEEE Trans. Image

Processing, (to appear), April 1998.

[12] S. Forchhammer and K. S. Jensen, \Data compression of scanned halftones images,"

IEEE Trans. Commun., vol. 42, pp. 1881{1893, Feb-Apr 1994.

16

[13] P. G. Howard, \Lossless and lossy compression of text images by soft pattern matching,"

in Proc. of Data Compression Conference, pp. 210{219, 1996.

[14] F. Kossentini and R. Ward, \An analysis-compression technique for black and white

documents," in IEEE Southwest Symposium on Image Analysis and Interpretation, (San

Antonio, TX, USA), pp. 141{144, Apr. 1996.

[15] B. Martins and S. Forchhammer, \Lossless, near-lossless, and re�nement coding of bi-level

images." submitted to IEEE Trans. Image Processing.

[16] A. Said and W. A. Pearlman, \A new fast and e�cient image codec based on set par-

titioning in hierarchical trees," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 6, pp. 243{250, June 1996.

[17] A. Bilgin, P. Sementilli, and M. Marcellin, \Progressive image coding using trellis coded

quantization," Submitted to IEEE Transactions on Image Processing, Nov. 1997.

17

List of Tables

1 Compression results for di�erent lossless coders. 20

2 Compression results for di�erent lossy coders. 20

3 Compression results for di�erent jbig2 coders. 20

18

List of Figures

1 Block diagram of a typical pattern matching and substitution algorithm. . . . 21

2 Block diagram of a typical soft pattern matching algorithm. 22

3 Template for re�nement coding of the current pixel block. The numbered pixels

form the context for coding the pixel marked \P". (a) Pixels taken from the

causal part of the current pixel block. (b) Pixels taken from the matching pixel

block. The pixel numbered \7" corresponds to pixel \P" when the pixel blocks

are aligned according to their centers. 23

4 3-line template for lossless and lossy coding. The pixels marked \a" are default

positions for the 4 adaptive template pixels. 23

5 Original image s06a (ccitt2) . 24

6 (a) Original image \halftone1" and (b) the reconstructed image using a lossy

halftone coder. 25

7 (a) Original image \halftone2" and (b) the reconstructed image using a lossy

halftone coder. 25

8 (a) Original image \halftone3" and (b) the reconstructed image using a lossy

halftone coder. 26

9 Original image \text" and the reconstructed images using three lossy coders

(only a fragment of each image is shown): (a) original image \text", (b) the

reconstructed image using a lossy SPM coder, (c) the reconstructed image using

a lossy halftone coder, and (d) the reconstructed image using a PM&S coder. . 27

19

Original Size JBIG1 SPM Halftone SPHIT TCQ

(lossless) (lossless) (lossless) (lossless)

s06a (ccitt2) 1671168 217252 294125 165378 815529 274071

Compression ratio 7.7:1 5.7:1 10.1:1 2:1 6.1:1

Table 1: Compression results for di�erent lossless coders.

Original Size SPM Halftone SPHIT TCQ

(lossy) (lossy) (lossy) (lossy)

s06a (ccitt2) 1671168 185499 101691 185499 185499

Compression ratio 9:1 16.4:1 9:1 9:1

Table 2: Compression results for di�erent lossy coders.

Segmented images Original size JBIG2-I JBIG2-II JBIG2-III JBIG2-IV JBIG2-V

(Lossless) (Lossless) (Lossy) (Lossy) (Lossy)

halftone1 100313 13372 (HT) 13372 (HT) 8934 (LHT) 8934 (LHT) 8934 (LHT)

halftone2 404253 51264 (HT) 51264 (HT) 30317 (LHT) 30317 (LHT) 30317 (LHT)

halftone3 224656 30161 (HT) 30161 (HT) 14654 (LHT) 14654 (LHT) 14654 (LHT)

text 1671168 51891 (SPM) 59234 (HT) 27562 (PM&S) 30636 (LSPM) 44906 (LHT)

Total 146688 154031 81467 84541 98811

Compression ratio 11.4:1 10.8:1 20.5:1 19.8:1 16.9:1

Table 3: Compression results for di�erent jbig2 coders.

20

PM&S

Segment image into

Search for aceptable

pixel blocks

Last pixel block?

Yes

No

END

match

pixel block to dictionary

matching pixel block

Next pixel block

Yes No

Encode index of Encode bitmap

Encode pixel block
position as offset

Match exists?

Directly

Add new

Figure 1: Block diagram of a typical pattern matching and substitution algorithm.

21

Segment image into

Search for aceptable

pixel blocks

Last pixel block?

Yes

No

END

match

position as offset

matching pixel block

Next pixel block

SPM

Yes No

Encode index of Encode bitmap

Encode pixel block

Encode bitmap using
matching pixel block

Match exists?

Directly

pixel block to dictionary
Conditionally add new

Figure 2: Block diagram of a typical soft pattern matching algorithm.

22

1 2 3

4 P

From current pixel block
5

6 7 8

9 10 11

From matching pixel block

(a) (b)

Figure 3: Template for re�nement coding of the current pixel block. The numbered pixels

form the context for coding the pixel marked \P". (a) Pixels taken from the causal part of

the current pixel block. (b) Pixels taken from the matching pixel block. The pixel numbered

\7" corresponds to pixel \P" when the pixel blocks are aligned according to their centers.

X X X

X X X X X

X X X

X

a

aa

a

a

?

Figure 4: 3-line template for lossless and lossy coding. The pixels marked \a" are default

positions for the 4 adaptive template pixels.

23

Figure 5: Original image s06a (ccitt2)

24

(a) (b)

Figure 6: (a) Original image \halftone1" and (b) the reconstructed image using a lossy halftone

coder.

(a) (b)

Figure 7: (a) Original image \halftone2" and (b) the reconstructed image using a lossy halftone

coder.

25

(a) (b)

Figure 8: (a) Original image \halftone3" and (b) the reconstructed image using a lossy halftone

coder.

26

(a) (b)

(c) (d)

Figure 9: Original image \text" and the reconstructed images using three lossy coders (only

a fragment of each image is shown): (a) original image \text", (b) the reconstructed image

using a lossy SPM coder, (c) the reconstructed image using a lossy halftone coder, and (d)

the reconstructed image using a PM&S coder.

27

