
Modified Greedy Delaunay Graph-Based Method
for TSP Initialization

Jimi Tuononen

School of Computing

University of Eastern Finland

Joensuu, Finland

jimi.tuononen@uef.fi

Pasi Fränti

School of Computing

University of Eastern Finland

Joensuu, Finland

franti@cs.uef.fi

Abstract— Finding an initial solution for a traveling salesman

fast and with reasonable quality is needed both by the state-of-the-

art local search and branch-and-bound optimal algorithms.

Classical heuristics require O(n2), and their quality may be

insufficient to keep the efficiency of the local search high. In this

paper, we present a modified greedy algorithm. It utilizes a

Delaunay neighborhood graph to build initial fragments until no

more connections are possible. Then it merges small fragments

with other fragments. It then connects the fragments by a two-step

process. First, the algorithm re-generates the graph and iterates

the process until the number of fragments falls below threshold

1,000. After that, it performs a full search to connect the rest of the

fragments in a greedy manner. The method achieves gaps of 2%

and 17% for Dots and selected TSPLIB datasets, and gaps of 27.4%

and 16.6% for Santa and World TSP when comparison is made to

highly optimized solutions.

Keywords—Travelling salesman problem, TSP, initial tour,

initialization, Delaunay graph, greedy

I. INTRODUCTION

Traveling salesman is a well-known NP-hard problem.

Finding optimal solutions requires exhaustive search such as

branch-and-bound, or Concorde [1] and becomes very slow for

larger problem sizes. A compromise is to find a good quality

but sub-optimal solution using local search such as Lin-

Kernighan heuristic (LKH) [2]. It is based on the so-called k-

opt operation and has been state-of-the-art for more than two

decades already. Both approaches require an initial solution to

start with.

There are many seemingly good heuristics available

including nearest neighbor, greedy, and insertion algorithm that

provide a reasonable solution [3, 4, 5]. However, their quality

may be too low for branch-and-bound, or they are too slow.

Optimal algorithms strongly depend on the quality of

initialization. The higher the quality of the initial solution, the

more branches can be cut early. One rule of thumb is that the

initial solution should have a gap of about 1% or less to the

optimal solution to achieve significant savings compared to an

exhaustive search.

The efficiency of local search also depends on the

initialization. The higher the quality of the starting solutions,

the fewer iterations are needed. Starting from random

initialization can easily multiply the running time. Moreover,

simple heuristics also require O(n2) time to run which adds to

the total processing time. It is therefore an open question about

which algorithm to use for the initialization.

Divide-and-conquer approaches have been used to address

large-scale problem instances. They divide the problem

instance into several sub-problems by clustering. However, the

results for Santa Claus data consisting of 1.4M nodes were not

any better than the state-of-the-art local search algorithm

utilizing efficient neighborhood search [6]. The key trick is to

apply a neighborhood graph to select the breaking point for the

k-opt operation in the same neighborhood. This avoids wasting

time on obviously bad trials connecting far away.

In this paper, we explore simple heuristics based on the

Delaunay graph. The neighborhood graph has already been

used in the LKH algorithm but is less studied for generating the

initial solution. The LKH software [2] includes a few faster

variants but they are not well documented and lack empirical

evidence of which one should be used. We introduce a variant

using the Delaunay graph and compare them against those

existing variants by measuring the gap to the optimal solution

(when known) and measuring the time taken.

II. EXISTING INITIALIZATION HEURISTICS

We next briefly recall the existing heuristics for solving

TSP. We consider only simple heuristics; referred to as classical

in [7]. They should be something simple but also generate fast

to serve the purpose of being an initial solution for local search.

High quality solutions would also be desirable when using them

as an initial solution for an exhaustive search like branch-and-

cut. However, this is only a secondary property and something

below O(n2) is our primary goal. We consider the following

algorithms:

• Nearest neighbor [3, 4]

• Nearest neighbor (fast) [2]

• Greedy graph [2]

• Kruskal-TSP [8]

• Moore [9]

• Sierpinski [10]

• Boruvka [11]

• Quick-Boruvka [7, 12]

• Christofides [13, 14]

• Walk [2]

• Delaunay shortest edge [15]

• Delaunay random edge [15]

• Delaunay greedy with fragment merge (new)

 The first thing to note is that straightforward

implementation of even the simplest nearest neighbor and

greedy algorithms require O(n2) time. Fortunately, the LKH

implementation has paid attention to this and utilizes a

neighborhood graph [2]. The package implements fast variants

of several of the above-mentioned heuristics.

 The nearest neighbor starts from a random node and then

continues to the nearest node until all nodes have been visited.

It would be possible to create a heap from the distances to speed

up the search to O(n log n) but the distance matrix still requires

O(n2) time to generate. A faster variant in [2] utilizes the

neighborhood graph. It considers only the neighbor nodes for

the breaking points in k-opt. This trick speeds up the method to

O(nk), where k is the number of neighbors.

 The LKH implementation includes randomization as the

most favorable edge is used only 2/3 of the time. This provides

a variation of tours which is needed for the restart of local

search. However, the path length will also be longer because

the solution will include unfavorable edges during the building

process.

 A greedy algorithm sorts the edges in increasing order and

then selects the shortest edge at each step. There are two

alternative ways to implement this. The first variant constructs

a single path by adding new nodes to its end nodes. This

corresponds to Prim’s algorithm for finding a minimum

spanning tree (MST) with the difference not allowing to create

branches. The second variant maintains a forest of multiple

trees (or paths in the case of TSP). The variants were referred

to as Prim-TSP and Kruskal-TSP in [8] according to the

corresponding MST algorithms they resemble. Here we used

the second variant.

 The greedy implementation in LKH is done slightly

differently by utilizing a neighborhood graph. The first step

calculates the nearest neighbor of each node. Each neighbor and

the corresponding shortest edge are placed into a min-heap

structure. The nodes in the heap are then processed in ascending

order. When a node is popped up from the heap, it is added to

the tour via the shortest edge stored. If the node has a degree

less than two, a new nearest neighbor is found, and the node is

reinserted back into the heap. The nearest neighbor is done by

a breadth-first search on a so-called candidate graph.

 Boruvka is another greedy approach inspired by MST. The

difference between the greedy approach and Boruvka is that the

greedy approach follows the order of the edge lengths at every

step whereas Boruvka sticks to the node order created by the

sorting. In the first step, it calculates the nearest neighbors. The

nodes are then processed in ascending order according to their

length. A node is connected to the tour if that does not create a

branch or a cycle analogous to the Boruvka MST algorithm. In

the LKH implementation, this process is repeated until all the

fragments are connected.

 Quick-Boruvka does not add the node back into the heap

but attempts to continue the tour immediately from that node;

except when the degree of the node is already two. This results

in unconnected fragments which are connected later as will be

explained in Section 3. The method compromises quality for

speed [7, 12] with mixed results with our datasets.

 Christofides [13, 14] is a famous school-book algorithm. It

uses MST as a starting point and adds supplementary edges by

optimal pairing so that all nodes would have even edges to

allow the Euler tour. The result is pruned by shortcuts based on

triangular inequality which holds for planar graphs. The

algorithm has mediocre performance compared to other MST-

based approaches [16] but is famous due to its 3/2 upper bound.

 Space-filling curves have also been considered [17]. They

divide the space into four quadrants, which are recursively

divided further until every node has its cell. The cells are

indexed, and the space-filling curve travels through the cells

according to the order created by this index. TSP path is

obtained by sorting the nodes according to their index (order in

this curve) and requires only O(n log n) time due to the sorting.

We consider the Moore curve [9] and Sierpinski curve [10] as

they are implemented in the LKH software [2].

The components of the graph-based methods are link
selection, addition, graph, and dead-end strategy as summarized
in Table 1.

Graph refers to how the candidate graph is created. LKH
includes several variants, of which we consider only the
Delaunay graph as it was found to outperform the other variants
with Santa data [6].

The Selection strategy refers to how to select the next link to
be added. The Nearest neighbor always connects to the recently
added node. Greedy allows the connection of any two nodes. It
creates multiple fragments as in Kruskal-TSP [8]. Insertion
maintains only one tour but allows the addition of nodes also in
the middle using a detour through the added node.

Multiple fragments with the limitation of the search to the
graph may lead to a dead-end situation. It happens when none of
the fragments have unused nodes in their neighborhood anymore.
Some variants may prevent this by updating the neighborhood
graph, but in general, we may need a dead-end strategy.

We consider two main strategies to resolve this: Full search
and Re-graph. Full search simply stops using the graph and finds
the remaining nodes by full search with greedy selection. Re-
graph builds a completely new neighborhood graph from the
endpoints of the fragments and iterates the original algorithm
with this new graph.

TABLE I. OVERVIEW OF FAST GRAPH-BASED INITIALIZATION METHODS

Algorithm Ref.
Selection

strategy

Multiple

fragments
Graph

Dead-end

strategy

Nearest
Neighbor

(fast)

[2] NN -
Many

options
No

Walk [2]
NN+

random
-

Many
options

No

Greedy

(graph)
[2]

Greedy
with

updates

Yes
Many

options
No

Boruvka [11] Greedy Yes
Many

options
No

Quick-
Boruvka

[7, 12] Greedy Yes
Many

options
Full

search*

Delaunay
shortest

edge

[15] Insertion - Delaunay No

Delaunay

random
edge

[15] Insertion - Delaunay No

Delaunay
greedy FM

New Greedy Yes Delaunay
Re-graph +
Full search

*See section 3.

III. MODIFIED GREEDY DELAUNAY

 A neighborhood graph has been used in [2] for speeding up

the local search. In the case of large problem instances, it is

inefficient to consider randomly selected candidates for the k-

opt operation. Connecting points located far away from each

other is mostly a waste of time and should be avoided. Instead,

the operator should only consider candidates in the same

neighborhood. This is the key component in the state-of-the-art

algorithm where the so-called alpha nearest criterion is used to

select the candidates by default [2].

 It is logical to utilize the neighborhood graph also for the

initialization as well. In the package [2], this has been done and

a few fast variants of the classical heuristics have been

implemented utilizing the alpha nearest criterion. However, in

the recent Santa Claus challenge [6], it was observed that using

the simpler Delaunay graph can improve the tour length of LKH

further from 109,284 to 108,996. While Delaunay is potentially

overwhelming in structure and time-consuming to create, this

is not the case for 2-dimensional planar graphs. Motivated by

this, we designed two simple variants based on the Delaunay

graph: Delaunay random edge and Delaunay shortest edge [15].

However, they were not as good as we wanted. In this paper,

we designed an improved, more thought-out variant of them

called Delaunay greedy.

 The implementation is made in Java, and it utilizes different

data structures to speed up computations. Edges are processed

through a priority queue and thus are obtained in ascending

order. Fragments are handled with a custom doubly linked list

implementation, which provides constant time retrieval of head

and tail nodes. The fragments are handled through a linked

hashmap to allow fast references.

 In some cases, the travel direction of the fragment needs to

be flipped to properly connect the fragments. We always flip

the smaller fragments when possible. The flip could also be

made faster (constant time) by including a reversal bit in the

implementation as done in [2], but the operations are already

fast, and we did not see the need for it. The nodes are also

presented with a custom implementation that allows attributes

such as degree, previous, next, fragment, and neighbors.

A. Delaunay graph

 The Delaunay graph is based on the Voronoi diagram which

divides the space by drawing borders between the points so that

it corresponds to the nearest neighbor mapping of every point

in the space to its nearest reference point (node). Each node

conquers its region in this space. Connecting neighboring nodes

creates so-called Delaunay triangulation and the graph created

from these connections is called the Delaunay graph. While the

size of the graph can become overwhelming in higher

dimensional spaces, it is useful and efficient to construct in O(n

log n) time in 2-D space. Some examples of Delaunay graphs

are given in Figure 1.

Figure 1. Examples of Delaunay graphs for used datasets.

 Simpler variants of Delaunay that would work better in

higher dimensional spaces are the Gabriel graph [18] and its

heuristic variant called the XNN graph [19]. It was shown in

[19] that 97% of the links in the optimal TSP path are included

in the XNN graph. This makes it a suitable data structure for

constructing TSP as we can find most links by much faster

search within the graph.

 The LKH heuristics uses the alpha-nearness criterion to

prioritize the candidate selection by default. However, the

results in [6] showed that the simple Delaunay graph with some

alpha-nearness optimization works slightly better, and it takes

only O(n log n) time in 2-D space.

B. Insertion or no insertion

 This section describes the rules used for Delaunay edges
when constructing so-called fragments [5]. Initially, every node
has a degree of 0 as they do not belong to any fragment. Nodes
with degree of 1 are the endpoints of fragments. Nodes with
degree of 2 are in the middle of a fragment.

 The edges are processed in ascending order. An edge with
endpoints A and B is added to the tour if it fulfills the rules:

• Deg(A) = 0 and Deg(B) = 0: a new fragment is created.

• Deg(A) = 0 and Deg(B) = 1: node A is connected to an
existing fragment.

• Deg(A) = 1 and Deg(B) = 1: the fragments are connected.

Where Deg refers to the degree of the node. Case 2-0 (degrees
equal to 0 and 2) corresponds to an insertion of node A by
making a detour from node B. This possibility is discarded as it
provides longer tours in our experiments. This method would
also create edges that are not included in the Delaunay graph and
use longer Delaunay edges in the earlier phases of construction.
The remaining cases 2-1 and 2-2 are not allowed as they would
create branches.

C. Connecting fragments

The initial construction will cause a forest of fragments that
need to be connected to form a tour. It is a side-effect of using
the graph and does not happen in the full search. The time
complexity of a full search would be at least O(n2logn) because
of sorting all pairwise edges, which makes it not suitable for
medium to large-scale TSP. As such, this method can be seen as
a faster variant of Kruskal-TSP [8].

The fragments can be connected in multiple ways, see
Table 2. We consider the following three approaches:

• Nearest Neighbor

• Re-Delaunay

• Full search

Nearest Neighbor is the simplest approach. It starts from a
random fragment and connects its head or tail to any other
fragment’s head or tail. It continues from the newly added node
until all the fragments are connected. Its time complexity is
O(r2), where r is the number of fragments. It is much smaller
than the full search O(n2) assuming r<<n. However, the number
of fragments in the Santa dataset [6] is somewhat large
(r=50,841) and the approach is inefficient. We therefore use it
only when the number of fragments falls below an empirically
selected threshold value of 2,000. The Re-Delaunay method is
used until the number of segments falls below this threshold.

TABLE II. OVERVIEW OF FRAGMENT CONNECTION METHODS. R REFERS

TO THE NUMBER OF FRAGMENTS.

Approach Time complexity When used

Nearest Neighbor O(r2) r<2,000

Re-Delaunay O(rlogr) Any n

Full search O(r2logr) r<1,000

Re-Delaunay creates a new Delaunay graph from the tail and
end points of the fragments and then applies the same tour
extension with this new graph. The edges are processed in
ascending order using the same ruleset of Section III-B. The
process may need to be repeated several times (usually 1-3) as
the dead-end situation may still re-occur with the new graph.

The Full search approach uses the same greedy extension
algorithm as the first step but without any graph. Instead, the
shortest distance is searched among the remaining fragments’
heads and endpoints. Compared to the nearest neighbor, it
selects the shortest edge among all remaining edges. This
requires sorting the edges in ascending order and storing them
in a priority queue. This leads to a slightly higher time
complexity, O(r2logr).

The Full search method can also be time-consuming for
large-scale TSP instances. We therefore use it only for the cases
r < 1,000. When there are more fragments, we apply the Re-
Delaunay method until the number of fragments falls below this
threshold. The motivation for this is that the fragments
connected at the latest are the costliest ones, and worth applying
full search for whereas the earlier connections can be dealt with
the re-graph heuristic. The full search approach is suitable as
standalone for medium-scale TSP instances. In the experiments,
this variant was found to be the most effective and is therefore
used as our baseline method.

Lastly, we mention the variant used in the LKH package [2].
It is a refined version of the Nearest Neighbor approach. It finds
the least costly edge for each fragment’s end nodes and uses
these edges to connect fragments in ascending order. There will
be collisions where the original edge is no longer suitable for
forming a tour. In these cases, the edge is replaced with a new
least costly nearest neighbor and placed back in a heap. This
approach was also considered, but it was found to be worse than
the full graph approach.

D. Fragment merging

Many small fragments are created during the fragment-
building process (Table 3). The idea of the fragment merging
step is to connect these small fragments to nearby fragments to
reduce the number of fragments, and to avoid more costly
fragment connections during the fragment connection step. This
is performed as the first step of connecting the fragments.

TABLE III. FRAGMENT SIZES IN THE USED DATASETS.

Dataset 1–4 5–9 10+ Total

TSPLIB 20.5 % 14.3 % 65.2% 5,460

Santa 12.4 % 11.4 % 76.3 % 50,841

World-TSP 23.0 % 14.1 % 62.9 % 91,307

 The fragment merging is implemented as a simple constant-
time operation. Using the candidate set created by the Delaunay
graph, we find the least costly edge for the fragment’s head or
tail node. This will serve as one of the connecting edges. The
node that was found will be the connecting point and the other
end of the fragment will be connected before or after this
connecting point. This will result in cutting one edge away from
the other fragment. Four different cases need to be considered
when calculating the least costly option for the edges. The small
fragment’s orientation can be flipped (head can be tail and vice
versa), and the other connecting point needs to be decided. The
fragment merging operation is demonstrated in Figure 2.

Figure 2. Example of fragment merging for a TSPLIB instance (pr76)

The effect of merging different sizes of fragments is
demonstrated in Figures 3, 4, and 5 on different datasets. The
merge value notes up to which size of fragments we are merging.
The figures also show the effectiveness of the different fragment
connection methods. The merge value 4 is consistently the best
across all tested datasets.

The reason for four being the best merge value is caused by the
simplicity of the operation. The merge is done using the two
connection points, which works best for small fragments. When
merging fragments sized 5 or higher, the detours caused by the
operation provide higher cost than letting these fragments
connect by fragment connection methods. This is illustrated in
Figure 6.

Figure 3. The behavior of fragment merging with different merge values and

fragment merging approaches on TSPLIB instances.

Figure 4. The behavior of fragment merging with different merge values and

fragment merging approaches on the Santa dataset.

Figure 5. The behavior of fragment merging with different merge values and

fragment merging approaches on the World TSP dataset.

Figure 6. The weakness of merging bigger fragments (TSPLIB instance

pcb442). Merging a bigger fragment causes a detour.

IV. RESULTS

The details of each dataset are presented in Table 4. The

TSPLIB results include 78 selected instances from the TSPLIB

library [20]. This correlates to all instances using Euclidean

distance out of the total of 111 instances.

TABLE IV. DATASETS USED IN THIS STUDY.

Dataset Type Distance Instances Sizes

Dots1 Open loop Euclidean 6,449 5-31

TSPLIB Closed loop
Euclidean/
haversine

78 51-18,512

Santa2 Closed loop Euclidean 1 1,437,195

World-TSP3 Closed loop GEOM 1 1,904,711
1 https://cs.uef.fi/o-mopsi/datasets/ 2 https://cs.uef.fi/sipu/santa/

3https://www.math.uwaterloo.ca/tsp/world/

The results of all graph-based methods are summarized in Table

5 for Dots [21] and TSPLIB datasets corresponding to small

and medium-scale TSP respectively. The results are rather

modest and do not meet the requirement of the 1% gap for

branch-and-bound but can still be useful for initialization of

local search. The results can be roughly divided into four

categories: poor (>100% gap), weak (35-45%), modest (12-

25%) and good (2-7%). The results of fully randomized

approaches such as Walk and Delaunay random edge are poor

due to their random nature. Also, the fast variant of NN has

some randomization, which causes longer paths.

The LKH package [2] provides many different graphs to use

as the candidate set. The results shown in Tables V and VI use

the Delaunay graph. LKH provides another graph based on the

https://cs.uef.fi/o-mopsi/datasets/
https://cs.uef.fi/sipu/santa/
https://www.math.uwaterloo.ca/tsp/world/

so-called alpha-nearness criterion, which originated from this

package. Computing alpha-nearness values, which form the

alpha-nearness graph, is time-consuming O(n2). However,

approximation is possible using subgradient optimization [22].

This process has been shown to eventually converge to the true

alpha values, but stopping it early is the key to high efficiency

[6]. This optimization can also be applied to the Delaunay graph

by setting a small initial period for the ascent. The parameter

INITIAL_PERIOD controls this and setting it to 100 provides

almost all the optimization. The default value of n/2 is too time-

consuming, increasing the time of the initialization methods

from around 250 ms to approximately six seconds.

TABLE V. SUMMARY OF THE RESULTS FOR DOTS AND TSPLIB

DATASETS. SIMPLE NEAREST NEIGHBOR AND LKH, WHICH CONTAINS BOTH

INITIALIZATION AND OPTIMIZATION STEPS FOR REFERENCE. THE PERCENTAGES

PRESENT THE GAP TO THE OPTIMAL SOLUTION.

Algorithm Ref.
Average gap Time (ms)

Dots TSPLIB TSPLIB

Alpha = 0

NN [3, 4] 9.25 % 24.08 % 71

LKH [2] 0.32 % 0.06 % 5440

Boruvka [11] 21.74 % 20.01 % 151

Quick-Boruvka [7, 12] 14.10 % 22.22 % 148

Greedy [2] 19.72 % 19.69 % 150

NN (fast) [2] 24.58 % 35.67 % 149

Walk [2] 44.82 % 140.23 % 148

Delaunay
shortest edge

[15] 9.87 % 32.68% 17

Delaunay

random edge
[15] 24.14 % 110.97 % 30

Delaunay

greedy FM
new 2.18 % 16.99 % 25

Alpha = 100

LKH [2] 0.01 % 0.05 % 6370

Boruvka [11] 6.53 % 12.78 % 257

Quick-Boruvka [7, 12] 6.69 % 16.17 % 255

Greedy [2] 6.56 % 12.64 % 259

NN (fast) [2] 6.74 % 21.29 % 256

Walk [2] 14.16 % 116.17 % 258

Delaunay greedy FM (FM for fragment merging) achieves the

best gap for the Dots dataset even considering the alpha-

nearness optimized Delaunay variants of LKH. The alpha = 0

variants reach around a 15% gap and alpha = 100 variants

around a 6% gap. Kruskal-TSP algorithm [8] tested in [15]

achieved the earlier best gap of 2.66% which is close to the

Delaunay greedy FM result, but it is achieved by a slower

algorithm. If the Delaunay graph is complimented with a

quadrant graph, which corresponds to using the least costly

edge in each of the four geometric quadrants [23], the greedy

and Boruvka variants achieve 1.78% and 1.94% gaps

respectively. A fully utilized alpha-nearness graph [2] reaches

below 1% results, but the graph is constructed in O(n2) time

making it not suitable for large-scale TSP and achieving nearly

identical results in TSPLIB. Finally, using the LKH package

including both initialization and optimization, a 0.01% gap is

reached with default parameters.

 The TSPLIB results (Table 5) are similar to the Dots results

with small differences. The Delaunay greedy FM approach

reaches the best gap in the alpha = 0 case at 16.99%. Other

Delaunay graph-based approaches are close at around a 20%

gap. Setting alpha to 100, these approaches improve to greedy

achieving the best 12.64% gap. This shows that the small

amount of alpha-nearness optimization has a big impact on the

result. Additionally, again complimenting the Delaunay graph

with quadrant graph edges, the best graph-based methods

achieve an 11.90% gap (Boruvka) and an 11.99% gap (Greedy).

 The results of all graph-based methods for Santa [6] and

World-TSP are summarized in Table 6 corresponding to large-

scale TSP. The optimal solutions for these instances are

unknown. The results are therefore given in the length of the

solution. Here, the Delaunay greedy FM approach is

approximately tied with Boruvka in the alpha = 0 case in both

datasets while greedy has the best solutions overall.

 Quick-Boruvka provides a longer solution in Santa but is

similar to others in World-TSP. The structure of the instance

seems to make a difference.

 Using alpha = 100 provides better results than alpha = 0 but

at the cost of somewhat more time-consuming. Considering the

time taken for the optimization step, this is still insignificant,

and the overall optimization is expected to benefit from using

alpha = 100.

 Fragment merging is most effective in the case of smaller

instances (Dots, TSPLIB) but not anymore in large-scale

instances (Santa, World-TSP).

 The new Delaunay greedy FM is fast similar to its

predecessors in [15] but with significantly shorter tours.

Moreover, it is written in Java in contrast to C used by the

competitors. We can therefore expect even further speed-up

simply by changing programming language. This is left to

future studies.

V. CONCLUSION AND FUTURE WORK

 Finding the initial solution for TSP by Greedy approaches

can be time-consuming with O(n2) time complexity. A faster

variant using the Delaunay graph was proposed. It provides

competitive performance for all datasets including large-scale

datasets Santa (1.4M) and World-TSP (1.9M).

 Alpha-nearness optimization turned out to be important for

all the graph-based approaches. The effect of merging tiny

fragments was effective only with small-scale instances but

became relatively insignificant with large-scale instances.

 As future work, we plan to compare the effect of these

initializations technique to the result after the optimization. It

was argued in [23] that tour construction heuristics improve the

performance of k-opt optimization compared to random

initialization. However, it is an open question whether a better

initial solution also implies a better final solution after the

optimization. This is left as future studies.

Nevertheless, the speed of the initialization matters. This

paper has compared several fast graph-based variants, of which

greedy heuristics in general seem the most promising when

success is measured by the initial tour length and speed.

TABLE VI. SUMMARY OF THE RESULTS FOR SANTA AND WORLD-TSP

DATASETS. THE LENGTHS OF WORLD TSP ARE IN MILLIONS OF KILOMETERS.

Algorithm Ref.
Length (km) Time (s)

Santa
World

TSP
Santa

World

TSP

Alpha = 0

NN [3, 4] - - >2h >2h

LKH [2] 109 454 7 547 3600.0 3600.0

Boruvka [11] 139 471 8 816 23.8 36.9

Quick-

Boruvka
[7, 12] 154 409 8 776 21.6 32.5

Greedy [2] 132 460 8 698 23.9 41.5

NN (fast) [2] 179 228 10 140 21.9 32.7

Walk [2] 455 729 42 790 20.9 38.4

Delaunay

shortest edge
[15] 150 957 9 944 13.6 25.5

Delaunay

random edge
[15] 310 293 15 040 16.9 30.0

Delaunay
greedy FM

new 139 270 8 781 16.6 22.2

Alpha = 100

LKH [2] 109 360 7 532 3600.0 3600.0

Boruvka [11] 128 798 8 478 495.2 512.4

Quick-

Boruvka
[7, 12] 144 222 8 473 506.0 512.2

Greedy [2] 127 038 8 416 493.2 505.9

NN (fast) [2] 158 508 9 453 488.1 502.9

Walk [2] 468 314 46 043 501.1 502.3

REFERENCES

[1] Applegate. D, Bixby. R.E, Chvátal. V, and William. J.C, “Concorde: a
code for solving traveling salesman problems,” 1999, [Online]. Available:
http://www.tsp.gatech.edu/concorde.html.

[2] Helsgaun. K, “An effective implementation of the Lin-Kernighan
traveling salesman heuristic,” Eur. J. Oper. Res, vol. 126, no. 1, pp. 106–
130, 2000, DOI:10.1016/s0377-2217(99)00284-2.

[3] Applegate. D.L, Bixby. R.E, Chavatal. V, and Cook. W.J, “The
Travelling Salesman Problem, a Computational Study,” Princeton
Univesity Press: Princeton, NJ, USA, 2006.

[4] Kizilates. G, and Nuriyeva. F, “On the nearest neighbor algorithms for the
traveling salesman problem,” Advances in Computational Science,
Engineering and Information Technology, Springer: Germany, vol. 225,
2013.

[5] Bentley J.L, “Fast Algorithms for Geometric Traveling Salesman
Problems,” ORSA Journal on Computing,vol. 4, no. 4, pp. 387-411, 1992.

[6] Mariescu-Istodor R and Fränti P, “Solving large-scale TSP problem in 1
hour: Santa Claus Challenge 2020,” Frontiers in Robotics and AI, vol. 8,
pp. 1-20, 2021.

[7] David S. Johnson and Lyle A. McGeoch, “Experimental Analysis of
Heuristics for the STSP,” Combinatorial Optimization, vol. 12, 2007.

[8] Fränti, P, and Nenonen, H, “Modifying Kruskal algorithm to solve open
loop TSP,” Multidisciplinary International Scheduling Conference
(MISTA), Ningbo, China, vol. 12–15, pp. 584–590, 2019.

[9] Moore E.H, “On certain crinkly curves,” Trans. Amer. Math. Soc. N1, pp.
72–90, 1900.

[10] Sierpinski W, and O pewnej krzywej wypetniajacej kwadrat, “Sur une
nouvelle courbe continue qui rempllt toute une aire plane,” Bulletin de
l'Acad, des Sciences de Cracovie A, pp. 463-478, 1912.

[11] Borůvka. O, and O jistém problému minimálním, “About a certain
minimal problem,” Práce Mor. Přírodověd. Spol. V Brně III (in Czech
and German), vol. 3, pp. 37–58, 1926.

[12] Applegate. D, Cook. W, and Rohe. A, “Chained Lin-Kernighan for large
traveling salesman problems,” INFORMS Journal on Computing, vol. 15,
pp. 82–92, 2003.

[13] Christofides. N, “Worst-Case Analysis of a New Heuristic for the

Travelling Salesman Problem,” Report 388, Graduate School of Industrial
Administration, CMU: Pittsburgh, PA, USA, 1976.

[14] Goodrich. M.T, and Tamassia. R, “The Christofides Approximation
Algorithm,” In Algorithm Design and Applications, Wiley: Hoboken, NJ,
USA, pp. 513–514, 2015.

[15] Tuononen. J, and Fränti, P, “Simple and fast TSP initialization by
Delaunay graph,” Int. Conf. on Image, Video Processing and Artificial
Intelligence (IVPAI 2023), Shenzhen, China, in Proc. SPIE 13074, 2024.

[16] P. Fränti, T. Nenonen and M. Yuan, “Converting MST to TSP path by
branch elimination,” Applied Sciences, vol. 11, no. 177, pp. 1-17, 2021.

[17] Platzman. L.K, and Bartholdi. J.J III, “Space filling curves and the planar
traveling salesman problem,” Journal of the Association for Computing
Machinery, vol. 36, no. 4, pp. 719–737, 1989.

[18] Gabriel. K.R, and Sokal. R.R, “New statistical approach to geographic
variation analysis,” Syst. Zool, vol. 18, pp. 259–278, 1969.

[19] Fränti P, Mariescu-Istodor R, and Zhong C, “XNN graph, Joint Int.
Workshop on Structural,” Syntactic, and Statistical Pattern Recognition
(S+SSPR 2016), Merida, Mexico, LNCS 10029, pp. 207-217.

[20] Reinelt. G, INFORMS J. Comput 3, S. Jacobs and C. P. Bean, “Fine
particles, thin films and exchange anisotropy,” in Magnetism, G. T. Rado
and H. Suhl, Eds. New York: Academic, vol. 3, pp. 271–350, 1963.

[21] Sengupta. L, Mariescu-Istodor. R, and Fränti. P, “Which local search
operator works best for the open-loop TSP,” Appl. Sci, vol. 9, no. 19, pp.
1–24, 2019.

[22] Held. M, and Karp. R, “The Traveling-Salesman Problem and Minimum
Spanning Trees: Part II,” Math. Programming 1, pp. 16–25,
DOI:10.1007/bf0158407.

[23] Johnson. D, “Local optimization and the Traveling Salesman Problem,”
In Proceedings of the International Colloquium on Automata, Languages,
and Programming, ICALP 1990, England, UK, vol. 443, pp. 72–83, July
1990.

[24] Perttunen. J, “On the Significance of the Initial Solution in Travelling
Salesman Heuristics,” J. Opt. Res. Soc, vol. 45, no. 10, pp. 1131-1140,
1997.

