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Abstract— Finding an initial solution for a traveling salesman 

fast and with reasonable quality is needed both by the state-of-the-

art local search and branch-and-bound optimal algorithms. 

Classical heuristics require O(n2), and their quality may be 

insufficient to keep the efficiency of the local search high. In this 

paper, we present a modified greedy algorithm. It utilizes a 

Delaunay neighborhood graph to build initial fragments until no 

more connections are possible. Then it merges small fragments 

with other fragments. It then connects the fragments by a two-step 

process. First, the algorithm re-generates the graph and iterates 

the process until the number of fragments falls below threshold 

1,000. After that, it performs a full search to connect the rest of the 

fragments in a greedy manner. The method achieves gaps of 2% 

and 17% for Dots and selected TSPLIB datasets, and gaps of 27.4% 

and 16.6% for Santa and World TSP when comparison is made to 

highly optimized solutions. 

Keywords—Travelling salesman problem, TSP, initial tour, 

initialization, Delaunay graph, greedy 

I. INTRODUCTION

Traveling salesman is a well-known NP-hard problem. 

Finding optimal solutions requires exhaustive search such as 

branch-and-bound, or Concorde [1] and becomes very slow for 

larger problem sizes. A compromise is to find a good quality 

but sub-optimal solution using local search such as Lin-

Kernighan heuristic (LKH) [2]. It is based on the so-called k-

opt operation and has been state-of-the-art for more than two 

decades already. Both approaches require an initial solution to 

start with. 

There are many seemingly good heuristics available 

including nearest neighbor, greedy, and insertion algorithm that 

provide a reasonable solution [3, 4, 5]. However, their quality 

may be too low for branch-and-bound, or they are too slow. 

Optimal algorithms strongly depend on the quality of 

initialization. The higher the quality of the initial solution, the 

more branches can be cut early. One rule of thumb is that the 

initial solution should have a gap of about 1% or less to the 

optimal solution to achieve significant savings compared to an 

exhaustive search. 

The efficiency of local search also depends on the 

initialization. The higher the quality of the starting solutions, 

the fewer iterations are needed. Starting from random 

initialization can easily multiply the running time. Moreover, 

simple heuristics also require O(n2) time to run which adds to 

the total processing time. It is therefore an open question about 

which algorithm to use for the initialization. 

Divide-and-conquer approaches have been used to address 

large-scale problem instances. They divide the problem 

instance into several sub-problems by clustering. However, the 

results for Santa Claus data consisting of 1.4M nodes were not 

any better than the state-of-the-art local search algorithm 

utilizing efficient neighborhood search [6]. The key trick is to 

apply a neighborhood graph to select the breaking point for the 

k-opt operation in the same neighborhood. This avoids wasting

time on obviously bad trials connecting far away.

In this paper, we explore simple heuristics based on the 

Delaunay graph. The neighborhood graph has already been 

used in the LKH algorithm but is less studied for generating the 

initial solution. The LKH software [2] includes a few faster 

variants but they are not well documented and lack empirical 

evidence of which one should be used. We introduce a variant 

using the Delaunay graph and compare them against those 

existing variants by measuring the gap to the optimal solution 

(when known) and measuring the time taken. 

II. EXISTING INITIALIZATION HEURISTICS

We next briefly recall the existing heuristics for solving 

TSP. We consider only simple heuristics; referred to as classical 

in [7]. They should be something simple but also generate fast 

to serve the purpose of being an initial solution for local search. 

High quality solutions would also be desirable when using them 

as an initial solution for an exhaustive search like branch-and-

cut. However, this is only a secondary property and something 

below O(n2) is our primary goal. We consider the following 

algorithms: 

• Nearest neighbor [3, 4]

• Nearest neighbor (fast) [2]

• Greedy graph [2]

• Kruskal-TSP [8]

• Moore [9]

• Sierpinski [10]

• Boruvka [11]



• Quick-Boruvka [7, 12] 

• Christofides [13, 14] 

• Walk [2] 

• Delaunay shortest edge [15] 

• Delaunay random edge [15] 

• Delaunay greedy with fragment merge (new) 

 The first thing to note is that straightforward 

implementation of even the simplest nearest neighbor and 

greedy algorithms require O(n2) time. Fortunately, the LKH 

implementation has paid attention to this and utilizes a 

neighborhood graph [2]. The package implements fast variants 

of several of the above-mentioned heuristics. 

 The nearest neighbor starts from a random node and then 

continues to the nearest node until all nodes have been visited. 

It would be possible to create a heap from the distances to speed 

up the search to O(n log n) but the distance matrix still requires 

O(n2) time to generate. A faster variant in [2] utilizes the 

neighborhood graph. It considers only the neighbor nodes for 

the breaking points in k-opt. This trick speeds up the method to 

O(nk), where k is the number of neighbors.  

 The LKH implementation includes randomization as the 

most favorable edge is used only 2/3 of the time. This provides 

a variation of tours which is needed for the restart of local 

search. However, the path length will also be longer because 

the solution will include unfavorable edges during the building 

process. 

 A greedy algorithm sorts the edges in increasing order and 

then selects the shortest edge at each step. There are two 

alternative ways to implement this. The first variant constructs 

a single path by adding new nodes to its end nodes. This 

corresponds to Prim’s algorithm for finding a minimum 

spanning tree (MST) with the difference not allowing to create 

branches. The second variant maintains a forest of multiple 

trees (or paths in the case of TSP). The variants were referred 

to as Prim-TSP and Kruskal-TSP in [8] according to the 

corresponding MST algorithms they resemble. Here we used 

the second variant. 

 The greedy implementation in LKH is done slightly 

differently by utilizing a neighborhood graph. The first step 

calculates the nearest neighbor of each node. Each neighbor and 

the corresponding shortest edge are placed into a min-heap 

structure. The nodes in the heap are then processed in ascending 

order. When a node is popped up from the heap, it is added to 

the tour via the shortest edge stored. If the node has a degree 

less than two, a new nearest neighbor is found, and the node is 

reinserted back into the heap. The nearest neighbor is done by 

a breadth-first search on a so-called candidate graph. 

 Boruvka is another greedy approach inspired by MST. The 

difference between the greedy approach and Boruvka is that the 

greedy approach follows the order of the edge lengths at every 

step whereas Boruvka sticks to the node order created by the 

sorting. In the first step, it calculates the nearest neighbors. The 

nodes are then processed in ascending order according to their 

length. A node is connected to the tour if that does not create a 

branch or a cycle analogous to the Boruvka MST algorithm. In 

the LKH implementation, this process is repeated until all the 

fragments are connected.  

 Quick-Boruvka does not add the node back into the heap 

but attempts to continue the tour immediately from that node; 

except when the degree of the node is already two. This results 

in unconnected fragments which are connected later as will be 

explained in Section 3. The method compromises quality for 

speed [7, 12] with mixed results with our datasets. 

 Christofides [13, 14] is a famous school-book algorithm. It 

uses MST as a starting point and adds supplementary edges by 

optimal pairing so that all nodes would have even edges to 

allow the Euler tour. The result is pruned by shortcuts based on 

triangular inequality which holds for planar graphs. The 

algorithm has mediocre performance compared to other MST-

based approaches [16] but is famous due to its 3/2 upper bound. 

 Space-filling curves have also been considered [17]. They 

divide the space into four quadrants, which are recursively 

divided further until every node has its cell. The cells are 

indexed, and the space-filling curve travels through the cells 

according to the order created by this index. TSP path is 

obtained by sorting the nodes according to their index (order in 

this curve) and requires only O(n log n) time due to the sorting. 

We consider the Moore curve [9] and Sierpinski curve [10] as 

they are implemented in the LKH software [2]. 

The components of the graph-based methods are link 
selection, addition, graph, and dead-end strategy as summarized 
in Table 1. 

Graph refers to how the candidate graph is created. LKH 
includes several variants, of which we consider only the 
Delaunay graph as it was found to outperform the other variants 
with Santa data [6]. 

The Selection strategy refers to how to select the next link to 
be added. The Nearest neighbor always connects to the recently 
added node. Greedy allows the connection of any two nodes. It 
creates multiple fragments as in Kruskal-TSP [8]. Insertion 
maintains only one tour but allows the addition of nodes also in 
the middle using a detour through the added node. 

Multiple fragments with the limitation of the search to the 
graph may lead to a dead-end situation. It happens when none of 
the fragments have unused nodes in their neighborhood anymore. 
Some variants may prevent this by updating the neighborhood 
graph, but in general, we may need a dead-end strategy.  

We consider two main strategies to resolve this: Full search 
and Re-graph. Full search simply stops using the graph and finds 
the remaining nodes by full search with greedy selection. Re-
graph builds a completely new neighborhood graph from the 
endpoints of the fragments and iterates the original algorithm 
with this new graph. 



TABLE I.  OVERVIEW OF FAST GRAPH-BASED INITIALIZATION METHODS 

Algorithm Ref. 
Selection 

strategy 

Multiple 

fragments 
Graph 

Dead-end 

strategy 

Nearest 
Neighbor 

(fast) 

[2] NN - 
Many 

options 
No 

Walk [2] 
NN+ 

random 
- 

Many 
options 

No 

Greedy 

(graph) 
[2] 

Greedy 
with 

updates 

Yes 
Many 

options 
No 

Boruvka [11] Greedy Yes 
Many 

options 
No 

Quick-
Boruvka 

[7, 12] Greedy Yes 
Many 

options 
Full 

search* 

Delaunay 
shortest 

edge 

[15] Insertion - Delaunay No 

Delaunay 

random 
edge 

[15] Insertion - Delaunay No 

Delaunay 
greedy FM 

New Greedy Yes Delaunay 
Re-graph + 
Full search 

*See section 3.  

III. MODIFIED GREEDY DELAUNAY 

 A neighborhood graph has been used in [2] for speeding up 

the local search. In the case of large problem instances, it is 

inefficient to consider randomly selected candidates for the k-

opt operation. Connecting points located far away from each 

other is mostly a waste of time and should be avoided. Instead, 

the operator should only consider candidates in the same 

neighborhood. This is the key component in the state-of-the-art 

algorithm where the so-called alpha nearest criterion is used to 

select the candidates by default [2]. 

 It is logical to utilize the neighborhood graph also for the 

initialization as well. In the package [2], this has been done and 

a few fast variants of the classical heuristics have been 

implemented utilizing the alpha nearest criterion. However, in 

the recent Santa Claus challenge [6], it was observed that using 

the simpler Delaunay graph can improve the tour length of LKH 

further from 109,284 to 108,996. While Delaunay is potentially 

overwhelming in structure and time-consuming to create, this 

is not the case for 2-dimensional planar graphs. Motivated by 

this, we designed two simple variants based on the Delaunay 

graph: Delaunay random edge and Delaunay shortest edge [15]. 

However, they were not as good as we wanted. In this paper, 

we designed an improved, more thought-out variant of them 

called Delaunay greedy. 

 The implementation is made in Java, and it utilizes different 

data structures to speed up computations. Edges are processed 

through a priority queue and thus are obtained in ascending 

order. Fragments are handled with a custom doubly linked list 

implementation, which provides constant time retrieval of head 

and tail nodes. The fragments are handled through a linked 

hashmap to allow fast references.  

 In some cases, the travel direction of the fragment needs to 

be flipped to properly connect the fragments. We always flip 

the smaller fragments when possible. The flip could also be 

made faster (constant time) by including a reversal bit in the 

implementation as done in [2], but the operations are already 

fast, and we did not see the need for it. The nodes are also 

presented with a custom implementation that allows attributes 

such as degree, previous, next, fragment, and neighbors. 

A. Delaunay graph 

 The Delaunay graph is based on the Voronoi diagram which 

divides the space by drawing borders between the points so that 

it corresponds to the nearest neighbor mapping of every point 

in the space to its nearest reference point (node). Each node 

conquers its region in this space. Connecting neighboring nodes 

creates so-called Delaunay triangulation and the graph created 

from these connections is called the Delaunay graph. While the 

size of the graph can become overwhelming in higher 

dimensional spaces, it is useful and efficient to construct in O(n 

log n) time in 2-D space. Some examples of Delaunay graphs 

are given in Figure 1. 

 

Figure 1. Examples of Delaunay graphs for used datasets. 

 Simpler variants of Delaunay that would work better in 

higher dimensional spaces are the Gabriel graph [18] and its 

heuristic variant called the XNN graph [19]. It was shown in 

[19] that 97% of the links in the optimal TSP path are included 

in the XNN graph. This makes it a suitable data structure for 

constructing TSP as we can find most links by much faster 

search within the graph. 

 The LKH heuristics uses the alpha-nearness criterion to 

prioritize the candidate selection by default. However, the 

results in [6] showed that the simple Delaunay graph with some 

alpha-nearness optimization works slightly better, and it takes 

only O(n log n) time in 2-D space. 

B. Insertion or no insertion 

 This section describes the rules used for Delaunay edges 
when constructing so-called fragments [5]. Initially, every node 
has a degree of 0 as they do not belong to any fragment. Nodes 
with degree of 1 are the endpoints of fragments. Nodes with 
degree of 2 are in the middle of a fragment. 



 The edges are processed in ascending order. An edge with 
endpoints A and B is added to the tour if it fulfills the rules: 

• Deg(A) = 0 and Deg(B) = 0: a new fragment is created. 

• Deg(A) = 0 and Deg(B) = 1: node A is connected to an 
existing fragment. 

• Deg(A) = 1 and Deg(B) = 1: the fragments are connected. 

Where Deg refers to the degree of the node. Case 2-0 (degrees 
equal to 0 and 2) corresponds to an insertion of node A by 
making a detour from node B. This possibility is discarded as it 
provides longer tours in our experiments. This method would 
also create edges that are not included in the Delaunay graph and 
use longer Delaunay edges in the earlier phases of construction. 
The remaining cases 2-1 and 2-2 are not allowed as they would 
create branches. 

C. Connecting fragments 

The initial construction will cause a forest of fragments that 
need to be connected to form a tour. It is a side-effect of using 
the graph and does not happen in the full search. The time 
complexity of a full search would be at least O(n2logn) because 
of sorting all pairwise edges, which makes it not suitable for 
medium to large-scale TSP. As such, this method can be seen as 
a faster variant of Kruskal-TSP [8]. 

The fragments can be connected in multiple ways, see 
Table 2. We consider the following three approaches: 

• Nearest Neighbor 

• Re-Delaunay  

• Full search  

Nearest Neighbor is the simplest approach. It starts from a 
random fragment and connects its head or tail to any other 
fragment’s head or tail. It continues from the newly added node 
until all the fragments are connected. Its time complexity is 
O(r2), where r is the number of fragments. It is much smaller 
than the full search O(n2) assuming r<<n. However, the number 
of fragments in the Santa dataset [6] is somewhat large 
(r=50,841) and the approach is inefficient. We therefore use it 
only when the number of fragments falls below an empirically 
selected threshold value of 2,000. The Re-Delaunay method is 
used until the number of segments falls below this threshold. 

TABLE II.  OVERVIEW OF FRAGMENT CONNECTION METHODS. R REFERS 

TO THE NUMBER OF FRAGMENTS. 

Approach Time complexity When used 

Nearest Neighbor O(r2) r<2,000 

Re-Delaunay O(rlogr) Any n 

Full search O(r2logr) r<1,000 

 

Re-Delaunay creates a new Delaunay graph from the tail and 
end points of the fragments and then applies the same tour 
extension with this new graph. The edges are processed in 
ascending order using the same ruleset of Section III-B. The 
process may need to be repeated several times (usually 1-3) as 
the dead-end situation may still re-occur with the new graph. 

The Full search approach uses the same greedy extension 
algorithm as the first step but without any graph. Instead, the 
shortest distance is searched among the remaining fragments’ 
heads and endpoints. Compared to the nearest neighbor, it 
selects the shortest edge among all remaining edges. This 
requires sorting the edges in ascending order and storing them 
in a priority queue. This leads to a slightly higher time 
complexity, O(r2logr). 

The Full search method can also be time-consuming for 
large-scale TSP instances. We therefore use it only for the cases 
r < 1,000. When there are more fragments, we apply the Re-
Delaunay method until the number of fragments falls below this 
threshold. The motivation for this is that the fragments 
connected at the latest are the costliest ones, and worth applying 
full search for whereas the earlier connections can be dealt with 
the re-graph heuristic. The full search approach is suitable as 
standalone for medium-scale TSP instances. In the experiments, 
this variant was found to be the most effective and is therefore 
used as our baseline method. 

Lastly, we mention the variant used in the LKH package [2]. 
It is a refined version of the Nearest Neighbor approach. It finds 
the least costly edge for each fragment’s end nodes and uses 
these edges to connect fragments in ascending order. There will 
be collisions where the original edge is no longer suitable for 
forming a tour. In these cases, the edge is replaced with a new 
least costly nearest neighbor and placed back in a heap. This 
approach was also considered, but it was found to be worse than 
the full graph approach.  

D. Fragment merging 

Many small fragments are created during the fragment-
building process (Table 3). The idea of the fragment merging 
step is to connect these small fragments to nearby fragments to 
reduce the number of fragments, and to avoid more costly 
fragment connections during the fragment connection step. This 
is performed as the first step of connecting the fragments. 

TABLE III.  FRAGMENT SIZES IN THE USED DATASETS. 

Dataset 1–4 5–9 10+ Total 

TSPLIB 20.5 % 14.3 % 65.2% 5,460 

Santa 12.4 % 11.4 % 76.3 % 50,841 

World-TSP 23.0 % 14.1 % 62.9 % 91,307 

 

 The fragment merging is implemented as a simple constant-
time operation. Using the candidate set created by the Delaunay 
graph, we find the least costly edge for the fragment’s head or 
tail node. This will serve as one of the connecting edges. The 
node that was found will be the connecting point and the other 
end of the fragment will be connected before or after this 
connecting point. This will result in cutting one edge away from 
the other fragment. Four different cases need to be considered 
when calculating the least costly option for the edges. The small 
fragment’s orientation can be flipped (head can be tail and vice 
versa), and the other connecting point needs to be decided. The 
fragment merging operation is demonstrated in Figure 2. 



Figure 2. Example of fragment merging for a TSPLIB instance (pr76) 

The effect of merging different sizes of fragments is 
demonstrated in Figures 3, 4, and 5 on different datasets. The 
merge value notes up to which size of fragments we are merging. 
The figures also show the effectiveness of the different fragment 
connection methods. The merge value 4 is consistently the best 
across all tested datasets. 

The reason for four being the best merge value is caused by the 
simplicity of the operation. The merge is done using the two 
connection points, which works best for small fragments. When 
merging fragments sized 5 or higher, the detours caused by the 
operation provide higher cost than letting these fragments 
connect by fragment connection methods. This is illustrated in 
Figure 6. 

Figure 3. The behavior of fragment merging with different merge values and 

fragment merging approaches on TSPLIB instances. 

Figure 4. The behavior of fragment merging with different merge values and 

fragment merging approaches on the Santa dataset. 

Figure 5. The behavior of fragment merging with different merge values and 

fragment merging approaches on the World TSP dataset. 

Figure 6. The weakness of merging bigger fragments (TSPLIB instance 

pcb442). Merging a bigger fragment causes a detour. 

IV. RESULTS

The details of each dataset are presented in Table 4. The 

TSPLIB results include 78 selected instances from the TSPLIB 

library [20]. This correlates to all instances using Euclidean 

distance out of the total of 111 instances. 

TABLE IV. DATASETS USED IN THIS STUDY. 

Dataset Type Distance Instances Sizes 

Dots1 Open loop Euclidean 6,449 5-31 

TSPLIB Closed loop 
Euclidean/ 
haversine 

78 51-18,512 

Santa2 Closed loop Euclidean 1 1,437,195 

World-TSP3 Closed loop GEOM 1 1,904,711 
1 https://cs.uef.fi/o-mopsi/datasets/   2 https://cs.uef.fi/sipu/santa/ 

3https://www.math.uwaterloo.ca/tsp/world/ 

The results of all graph-based methods are summarized in Table 

5 for Dots [21] and TSPLIB datasets corresponding to small 

and medium-scale TSP respectively. The results are rather 

modest and do not meet the requirement of the 1% gap for 

branch-and-bound but can still be useful for initialization of 

local search. The results can be roughly divided into four 

categories: poor (>100% gap), weak (35-45%), modest (12-

25%) and good (2-7%). The results of fully randomized 

approaches such as Walk and Delaunay random edge are poor 

due to their random nature. Also, the fast variant of NN has 

some randomization, which causes longer paths. 

The LKH package [2] provides many different graphs to use 

as the candidate set. The results shown in Tables V and VI use 

the Delaunay graph. LKH provides another graph based on the 

https://cs.uef.fi/o-mopsi/datasets/
https://cs.uef.fi/sipu/santa/
https://www.math.uwaterloo.ca/tsp/world/


so-called alpha-nearness criterion, which originated from this 

package. Computing alpha-nearness values, which form the 

alpha-nearness graph, is time-consuming O(n2). However, 

approximation is possible using subgradient optimization [22]. 

This process has been shown to eventually converge to the true 

alpha values, but stopping it early is the key to high efficiency 

[6]. This optimization can also be applied to the Delaunay graph 

by setting a small initial period for the ascent. The parameter 

INITIAL_PERIOD controls this and setting it to 100 provides 

almost all the optimization. The default value of n/2 is too time-

consuming, increasing the time of the initialization methods 

from around 250 ms to approximately six seconds. 

TABLE V.  SUMMARY OF THE RESULTS FOR DOTS AND TSPLIB 

DATASETS. SIMPLE NEAREST NEIGHBOR AND LKH, WHICH CONTAINS BOTH 

INITIALIZATION AND OPTIMIZATION STEPS FOR REFERENCE. THE PERCENTAGES 

PRESENT THE GAP TO THE OPTIMAL SOLUTION. 

Algorithm Ref. 
Average gap Time (ms) 

Dots TSPLIB TSPLIB 

Alpha = 0 

NN [3, 4] 9.25 % 24.08 % 71 

LKH [2] 0.32 % 0.06 % 5440 

Boruvka [11] 21.74 % 20.01 % 151 

Quick-Boruvka [7, 12] 14.10 % 22.22 % 148 

Greedy [2] 19.72 % 19.69 % 150 

NN (fast) [2] 24.58 % 35.67 % 149 

Walk [2] 44.82 % 140.23 % 148 

Delaunay 
shortest edge 

[15] 9.87 % 32.68% 17 

Delaunay 

random edge 
[15] 24.14 % 110.97 % 30 

Delaunay 

greedy FM 
new 2.18 % 16.99 % 25 

Alpha = 100 

LKH [2] 0.01 % 0.05 % 6370 

Boruvka [11] 6.53 % 12.78 % 257 

Quick-Boruvka [7, 12] 6.69 % 16.17 % 255 

Greedy [2] 6.56 % 12.64 % 259 

NN (fast) [2] 6.74 % 21.29 % 256 

Walk [2] 14.16 % 116.17 % 258 

  

Delaunay greedy FM (FM for fragment merging) achieves the 

best gap for the Dots dataset even considering the alpha-

nearness optimized Delaunay variants of LKH. The alpha = 0 

variants reach around a 15% gap and alpha = 100 variants 

around a 6% gap. Kruskal-TSP algorithm [8] tested in [15] 

achieved the earlier best gap of 2.66% which is close to the 

Delaunay greedy FM result, but it is achieved by a slower 

algorithm. If the Delaunay graph is complimented with a 

quadrant graph, which corresponds to using the least costly 

edge in each of the four geometric quadrants [23], the greedy 

and Boruvka variants achieve 1.78% and 1.94% gaps 

respectively. A fully utilized alpha-nearness graph [2] reaches 

below 1% results, but the graph is constructed in O(n2) time 

making it not suitable for large-scale TSP and achieving nearly 

identical results in TSPLIB. Finally, using the LKH package 

including both initialization and optimization, a 0.01% gap is 

reached with default parameters. 

 The TSPLIB results (Table 5) are similar to the Dots results 

with small differences. The Delaunay greedy FM approach 

reaches the best gap in the alpha = 0 case at 16.99%. Other 

Delaunay graph-based approaches are close at around a 20% 

gap. Setting alpha to 100, these approaches improve to greedy 

achieving the best 12.64% gap. This shows that the small 

amount of alpha-nearness optimization has a big impact on the 

result. Additionally, again complimenting the Delaunay graph 

with quadrant graph edges, the best graph-based methods 

achieve an 11.90% gap (Boruvka) and an 11.99% gap (Greedy). 

 The results of all graph-based methods for Santa [6] and 

World-TSP are summarized in Table 6 corresponding to large-

scale TSP. The optimal solutions for these instances are 

unknown. The results are therefore given in the length of the 

solution. Here, the Delaunay greedy FM approach is 

approximately tied with Boruvka in the alpha = 0 case in both 

datasets while greedy has the best solutions overall. 

 Quick-Boruvka provides a longer solution in Santa but is 

similar to others in World-TSP. The structure of the instance 

seems to make a difference. 

 Using alpha = 100 provides better results than alpha = 0 but 

at the cost of somewhat more time-consuming. Considering the 

time taken for the optimization step, this is still insignificant, 

and the overall optimization is expected to benefit from using 

alpha = 100. 

 Fragment merging is most effective in the case of smaller 

instances (Dots, TSPLIB) but not anymore in large-scale 

instances (Santa, World-TSP).  

 The new Delaunay greedy FM is fast similar to its 

predecessors in [15] but with significantly shorter tours. 

Moreover, it is written in Java in contrast to C used by the 

competitors. We can therefore expect even further speed-up 

simply by changing programming language. This is left to 

future studies. 

V. CONCLUSION AND FUTURE WORK 

 Finding the initial solution for TSP by Greedy approaches 

can be time-consuming with O(n2) time complexity. A faster 

variant using the Delaunay graph was proposed. It provides 

competitive performance for all datasets including large-scale 

datasets Santa (1.4M) and World-TSP (1.9M). 

 Alpha-nearness optimization turned out to be important for 

all the graph-based approaches. The effect of merging tiny 

fragments was effective only with small-scale instances but 

became relatively insignificant with large-scale instances. 

 As future work, we plan to compare the effect of these 

initializations technique to the result after the optimization. It 

was argued in [23] that tour construction heuristics improve the 

performance of k-opt optimization compared to random 

initialization. However, it is an open question whether a better 



initial solution also implies a better final solution after the 

optimization. This is left as future studies. 

Nevertheless, the speed of the initialization matters. This 

paper has compared several fast graph-based variants, of which 

greedy heuristics in general seem the most promising when 

success is measured by the initial tour length and speed. 

TABLE VI.  SUMMARY OF THE RESULTS FOR SANTA AND WORLD-TSP 

DATASETS. THE LENGTHS OF WORLD TSP ARE IN MILLIONS OF KILOMETERS. 

Algorithm Ref. 
Length (km) Time (s) 

Santa 
World 

TSP 
Santa 

World 

TSP 

Alpha = 0 

NN [3, 4] - - >2h >2h 

LKH [2] 109 454 7 547 3600.0 3600.0 

Boruvka [11] 139 471 8 816 23.8 36.9 

Quick-

Boruvka 
[7, 12] 154 409 8 776 21.6 32.5 

Greedy [2] 132 460 8 698 23.9 41.5 

NN (fast) [2] 179 228 10 140 21.9 32.7 

Walk [2] 455 729 42 790 20.9 38.4 

Delaunay 

shortest edge 
[15] 150 957 9 944 13.6 25.5 

Delaunay 

random edge 
[15] 310 293 15 040 16.9 30.0 

Delaunay 
greedy FM 

new 139 270 8 781 16.6 22.2 

Alpha = 100 

LKH [2] 109 360 7 532 3600.0 3600.0 

Boruvka [11] 128 798 8 478 495.2 512.4 

Quick-

Boruvka 
[7, 12] 144 222 8 473 506.0 512.2 

Greedy [2] 127 038 8 416 493.2 505.9 

NN (fast) [2] 158 508 9 453 488.1 502.9 

Walk [2] 468 314 46 043 501.1 502.3 
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