Master’s thesis in Computer Science, 173315, 15 cu

Morphological reconstruction of semantic
layers in map images

Student: Alexey Podlasov
153329

apodla@cs.joensuu.fi

Supervisor: Dr. Eugene Ageenko

ageenko@cs.joensuu.fi

Department of Computer Science
University of Joensuu
December 2003



TABLE OF CONTENTS

AB ST RACT e b et E bt et R h R R R R R R e R R Rt bt bt et n b e rs 4
1 INTRODUCTION .. ..ot et r e s et r e nr e nr e ne e n e 5
1.1  DIGITAL SPATIAL LIBRARIES .. .tttiititiiiitesite sttt sttt stee e siee e st e stbe s snbeesbeesssbe e sbseesnbessnbeeessbessnseeensnens 5
1.2 SEMANTIC LAYERS AND THEIR CORRUPTION ...ocitiiitiiitieitiesiieesteesieesieesieesssesstessteessessseessnesssesssesssenns 6
1.3 IMAGE FILTERING ...iiittti ittt e stee sttt e stte e s teeesteaessteeastaeeasteeaseeeanteeesaeeessteeantaaeasteeaseeesneeesnteeesnreeanneeennes 10
1.4 COMPRESSION TECHNIQUES .....uttiititeiieeesteeesieeesttessteeasseeesstesessseesssessssesesssessssssesssessnsesssssessnsensnses 12
1.5 PROBLEM DEFINITION Liiittiiitteititesttte sttt asieeessteesssaessstesssssessssesssssessssessssesssssesssssessssesssesssssessnsessnsns 15
1.6 STRUCTURE OF THE THESIS ...iiitiiiititeiiteteitieestee s stee e steeasteeesnteessaeeesnsaeantaaessteeaseeesnseesnsesesssessnsenensns 15
2 MATHEMATICAL MORPHOLOGY — THE BACKGROUND.........cccoiiiiiiicinee e 16
2.1 CLASSIC MORPHOLOGY ..uuttiiutitaittteitetessseesstesssssesssesssssessstesssssessssessssssesssesssssesssessssssesssesssssessnsessns 16
2.1.1  BASIC DEFINITIONS ...utiieiuiieiteeestteesteeessteesstesessseessesessseesssessssseesssesessssesssesssssessssssansesessesssssessnsenans 16
2.1.2 PRINCIPLES OF MORPHOLOGICAL TRANSFORMATION ....ccuttiiitireiiieesieeesiteesstneesseesansenessnnssssseesseesns 17
2.1.3  MORPHOLOGICAL OPERATORS .....vtittesteesttesttessteasteesteesiesssesssseasesssesssesssessssesssesssesssesssesssesasesssesses 18
2.1.4  DILATION AND EROSION OPERATORS ... .utiitieeittreiteeestteesteesssasessesassssesssessssssesssssansesesssesssssessnseeans 19
2.1.5 MATHERON REPRESENTATION THEOREM......cciittiiitueeitueesieeessueesteeasseeesssesssssesssessssesesssnsssssessnsesans 22
2.2  CONDITIONAL AND SOFT MORPHOLOGY ....uvtiiitiieiiieesteeesteeassseessesassesesssesssssesssssssnsesessesssssessnsesans 23
2.2.1  RANK OPERATOR ...utiiititeitee ittt e sttt e siteeestteessbeeastteeabeeessseessbeeessbeeaateeeseeeasbeeessbeeasseeanteeessseeesssesanseeans 23
2.2.2  CONDITIONAL DILATION L.ttiitieeittreiiteeesteessteeestteesstesessseessseessssesssssessssesssessssseesssssansesesssesssssessnseeans 24
2.2.3  SOFT MORPHOLOGY ..uttiiiutteitetasittessteteststesstesasssesssessssseesssesssssesssessssssesssesssssessssessnsenesssesssssessssessns 26
3 FORMAL PROBLEM DEFINITION......ccciiiiiiiii i 29
3.1 MULTI-LAYER MAP CONCEPT .ottittittesteestte sttt sttt asteesteesteesteesseeate s sbeesbeesbeessbessbeesbeesbeesbeesbeaaneesnseses 29
K A O 0 11V 1 11N 1 [0 SRS 29
3.3 DECOMPOSITION .. ttttittteiuteeeteeestteeateeesseeessteeessteeatesessseessteeeasteeanseeeaseeeasteeessseesssesanseeesnseeessseesnsenans 30
3.4 PROPERTIES OF COMPOSITION AND DECOMPOSITION. ..cueiiiiiiiiaiiesieesteesiiessneasieeniessiesssessseesnesnes 30
3.5 RESTORATION . .uiiiittie ittt e sttt e ettt e stte e et e e st e e st e e st e e e teeesseeesnteeeasteeanteeeseeeanteeesseeeansaeansaeeansneesneeeannnenns 31
0N T 1Y/ 11 SRR SUSR 31
4 RECONSTRUCTION OF SOLID REGIONS ...t 33
4.1 THE BASIC ALGORITHM ..iiiiittiieeiittite e iitieee s sttt e s s stte e e e s stbe e e s astbe e e e s stbe e e e st beeeeasbeeeeasbeeeeasbeeeeansbeeeeansres 33
4.2  CONDITIONAL DILATION ..tttiitieeiteeesiteesstteessteesstesessesessesassssesssessssseesssessnsesesssesassesessseesssesessessnsesans 35
4.3 CONDITIONAL DILATION WITH MASK EROSION. ... .0ttititiiiiesiiessireesiessieesssressssesssssessssesssssessnseesns 37
4.4 OBJIECT SMOOTHING ..itutiiitteteesteesttestteaite e teesbeesbeesbeesseesseeasbeesbeesbeesaeesbeesbbeasbeenbeebeesbeesbeeaneeanteeeeenee 41
A5 SUMMARY ..oiite ittt ettt e ettt st e e et e e tae e s ate e e st aeessteeaateeeasteeastee e seeeaRbe e e aRteeante e e ReeeaREeeeneeeaneeeanreeeanreeanreeans 44
4.6  ALGORITHM MODIFICATIONS ...eititeittteeitteesteestesesseeeatesessseesstessssseesssessssesssssesassesesssnesssesssssessnsesans 46
5 RESTORATION OF ELEVATION LINES.......ccooiiiiiii e 48
5.1 PROBLEM ANALYSIS ...utiieiite it e ittt e sttt e stteesteeestteeateaessseesnteeassaeeanseeaaseeessteeessseesssasaseeesnsesesssessnsenans 48



6 REMOVING A SINGLE LAYER FROM A MAP .....ooiiiiiiiiiii s 52

6.1  TASK DEFINITION ...uuiiiiiteiititeitee ettt e sttt e ssteeesteeessteeasteeeasteeasteeessteeasseeessseessteeessseesssaeasseessteeasseeensneeas 52
T2 T | U o SR RURSTR 52
7 IMPLEMENTATION ASPECTS ... .o s 56
7.1 IMPLEMENTING MATHEMATICAL CONCEPTS....uttiititeitieiteeesiteesieeesiseesireesssseesiseesneesssnesssseesssneens 56
% 00 A 17X = o ][] = = OSSR 56
7.1.2 REPRESENTATION OF A STRUCTURING ELEMENT ...uviiivieiiieesireesieeesineesineesssseessseesneesssnessnsessssnnens 57
7.1.3 IMPLEMENTATION ASPECTS OF MORPHOLOGICAL OPERATORS. ...ccvieiieitiesieesieesiessieesieesiesssnessnens 57
7.2  SOFTWARE IMPLEMENTATION ..utiiiititi ittt e sttt e ste e s stteesateesteeestteessteeestseessteesssaeesataeanseeessbeeenseeensneens 58
T.2.1  IMAGEJ IN GENERAL .. .ttiiititeitiie st e stteessteeasiteesstessstsessstesssbeeessbeesbeeessseesnbeessbaeessbeeanbeeensbeeanbeeensneens 59
T.2.2  PLUGINS ... ttte ittt ettt ettt et e e st e e et e e st e e e st e e e e tb e e eate e e s teeesabe e e beeeaseeesnbeeesseeeanteeenteeeanbeeenseeansneeas 59
7.2.3  IMPLEMENTING RANK OPERATOR ...c.uttiitieeitteesteeestteessseeastesassseesssesassseesssesssssessssssssssesssessnsesessnsens 59
T7.2.4  DEVELOPED PLUGINS .....ccittteitieetttestttessteeesseeesstesassseesssesastesessseesssesessseesssesssssessnsesansesesssessnsesasnnes 61
8 EVALUATION ..ot r et nr et r e nreane e e nreene s 62
8.1 OBJIECTIVES OF EVALUATION.....ctittittettesttesteeatteateasteesteesteesssesstessbeesbeessesssessssesssesssesssessssesssessnens 62
8.2 RESTORATION ALGORITHMS ....iiiitiiiitieeiiteeeitteesteeestteesseesteeessteesssesessseessessssseessesassesesssesassesesneens 62
S TR TR =S T = SRR OURSTR 64
8.4 IMAGE DIFFERENCE MEASURES .....ccittiititaitttesittesstttesstesstesssstessssesssssessssesssssessssessssesssssessnsesssnsens 64
8.5 QUALITATIVE EVALUATION ..uiiiiiitiitteiteesteesteesieeatesstessteesteestaesstessbeesbessbesssessseesssesssesssessssesssesssens 65
8.6 COMPRESSION RESULTS . ...uttteiutieitteestttessteeessesesstessssseesssesasesesssessssesessseessesssssesssesansesesssessnsesessnnes 69
8.6.1 RESULTSPER RECONSTRUCTED LAYER ...cttiitiiiiitiieaiteesteesteesitesstessteesteessessseesseessesssesssesssesssnessnens 69
8.6.2 TOTALS PER COMPRESSION METHODS .....ceeiuiieitieeitieesieeaieeassteesssesessseesssessssseesnssssssssesssessnsesesneens 73
8.0.3  TOTAL RESULTS .t ittteiitieiitieesstee ettt e stteessteeesseeessteeasssaessteeasteeessteeaseeesseeesnteeessseesnseeanseeesnteeensneensnnens 75
8.7  COMBINED ALGORITHM ...utiiiiiiiiiieestiee sttt e sttt e ssteesstteesstesasteeessteesssesessseesstessssseesssesssesesssessnsesensnnens 76
8.8 IMAGE DIFFERENCE ...ciutttiituteittiesietastteessteeessaessstessstseesstesssteeassbeesbeeesssesssbeessbsesssteesnbeeessbessnsnesnsnnens 77
O CONCLUSION ...ttt r b r e r e s s Rt s et aR e e e r e s e nnenne e s e nreene s 78
10 FUTURE WORK . ...t 80
11 LIST OF SYMBOLS ... e e 81
12 REFERENQGES ...ttt bbb bt b e ne e 82
APPENDIX. ILLUSTRATION OF LAYER REMOVAL. ..ot 86



Abstract

Digital spatial library is an electronic archive of geographic imagery data such as multi-
layer map images. The real-time or mobile imaging application provides user with view of
geographic map in the real time. The map image is retrieved from a remote server via
network or served from the data base located on the user’s mobile device. The main
problem in digital spatial libraries is the huge storage size of the images, which affects
equally storage and transmission performance. It has been shown that the best compression
results for map images can be achieved if the images are decomposed into binary semantic
layers, which are consequently compressed by the algorithm designed to handle binary
data (e.g. JBIG). There is no problem if semantic layers forming the map image are
originally available. However, when the map exists only as a color raster image, the
semantic layers can be obtained only through the separation process. The separation leads
to appearance of severe artifacts in places when one layer overlaps another. These artifacts
affect statistical properties and consistency of the layers and result in degraded visual

quality and compression performance.

In the current work, we design the technique to restore semantic layers of the map images
by removing or suppressing the artifacts caused by layer separation process. We restrict
our technique in such a way that when the restored layers will be again combined into a
color map image, it will be identical to the original. Because of possible applications in the
mobile devices with restricted computational and memory resource, we must also restrict
ourselves with the complexity of the algorithms. Therefore we chose Mathematical

Morphology as the base tool for the design of restoration technique.

The designed restoration technique provides better performance for the compression of
reconstructed layers instead of corrupted ones with popular lossless compression
algorithms (ITU Group 4, PNG, and JBIG). Besides that, reconstructed layers have good
visual appearance, which is especially important in applications where some layers must be

removed (or in opposite, extracted) from the map image.



1 Introduction

1.1 Digital Spatial Libraries

Real-time cartography imaging applications provide user with the view of geographic map
for the area surrounding the user’s location. The user’s location can be obtained using GPS
(Global Positioning Service) or MPS (Mobile Positioning Service) services. The geographical
map image is obtained from Digital Spatial Library and transmitted via network to user’s
mobile device such as pocket computer (PDA) or a mobile phone. Digital Spatial Library is
an electronic archive of geographic imagery data [F+95, S89].

The images forming the archive are the color (or grayscale) raster images or multi-layer
map images. The multi-layer map images consist of the set of semantic layers, each
containing the data with distinct semantic content, e.g. roads, elevation lines, state
boundaries, water areas, etc. The layers are combined and displayed to the user as a
generated color image, in which the data of each type is usually depicted using its own
color. For example, let us consider the topographic images from the NLS topographic
database, in particular basic map series 1:20,000 [NLS]. These images consist of the
following semantic layers: Basic (roads, contours, labels and other topographic data),
Elevation lines (thin lines representing elevations levels), Waters (solid regions and
poly-lines representing water areas and ways), Fields (solid polygonal regions), see Figure
1.
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Figure 1: Illustration of a multi-layer map image from NLS Topographic database. The shown fragment has
dimensions of 1000 x 1000 pixels.



Semantic layers can be generated from the vector database spawning large territories up to
the entire country. Generated raster images are often easier to transmit and handle on a
client side since vector database require significant computing resources. Raster images are
also often used for digital publishing on CD ROM, or in the web. Even though the DSL may

operate on vector database, the raster images are often served to the user.

The main problem of DSL is the huge storage size of the images. Especially it is apparent in
applications requiring the use of mobile hardware such as mobile phones or pocket
computers. For example, a single map sheet of 10x10 km? is represented by a single map
image of 5000x5000 pixels. The image requires about 12 Mb of storage space. In
comparison, the typical portable devices have usually only about 32 Mb of the storage
space, which can be expanded by about 96 Mb. Even though during the last decade the
technology demonstrated significant progress in the development of hardware, mobile
devices are still hardly restricted in memory and computational resources. The necessity of
compression for saving storage space is therefore obvious. It has been shown that the best
compression results for the map images can be achieved if the images are decomposed into
binary semantic layers, which are consequently compressed by the algorithm designed to
handle binary data (e.g. JBIG) [AF00, FKAOQ2].

Another problem resultant of large image sizes is the image transmission. Larger image
size takes longer to transmit and/or require faster (expensive) transmission channels as well
as appropriate hardware equipment. For example, 10 seconds transmission via GPRS on
45kb/sec transfers up to 54kB of image data, which is about 500x500 pixels map image in
case of 4-layer maps and 1:20 compression rate (which is very optimistic). This data is

sufficient to represent a map fragment that covers only 1 km? of territory.

1.2 Semantic layers and their corruption

In the case of multi-layer map images, when semantic data is available, the map images are
stored as a set of binary layers each containing different semantic layer. The layers are
represented as binary images, which are separately compressed and transmitted to the
user, see Figure 2. The user application can reproduce map by plotting each layer in its own
color overlapping each other in a given order. Layer separation allows utilizing more
efficient context-base compression techniques which benefits in high compression
performance. Separation also gives the ability to select specific layers at the time of viewing
[FAKGBO02, FKV02].
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Figure 2: Operation on multi-layer map images.

Often though, the original vector or semantic data are not available. This is possible if the
map image is digitized directly from the paper or received from the third party source. In
such (still prevailing) situations we have only raster color image as the original map. The
semantic layers must be obtained from the color image through the color separation process.
The map image is divided into binary layers so that each layer represents one color in the
original image [FKAOQ2]. Figure 3 illustrates operation on digital map images using color
separation. The part after the transmission is essentially the same as in Figure 2 and is

therefore skipped for the sake of the space.
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Figure 3: Operation on map images using color separation.

This color separation process however leads to appearance of severe artifacts in places
when information in one layer overlaps another. These artifacts affect statistical properties
and consistency of the layers and resulting in degraded visual quality and compression

performance. A proper image restoration technique shall be therefore applied.

To illustrate the problem, let’s look at a small fragment of a map, shown in Figure 4.

Figure 4: The fragment of multi-layer map image.

The map image could be easily separated into a stack of binary layers: roads, heights,

waters, fields and background.



The Figure 5 shows that during separation overlapping layers produce artifacts on
underlying layers and cause their corruption. The remains of letters over the fields or

breaches on elevation lines are examples of such corruption.
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Figure 5: Original and corrupted layers.



Corruption of semantic layers increases the amount of noise in the layer and introduces
irregularities into its statistical properties. This increases the entropy ratio for the image,

and consequently reduces performance of compression algorithms.

Secondary problem arises in situations when some of the layers must be extracted or,
opposite, removed from the image. Lower layers in hierarchy will suffer more from
degradation as well as top-level layers will cause more degradation on under-laying

imagery data if being removed.

Therefore, a kind of restoration or filtering technique must be developed for improving the

compression and visual performances of decomposed layers.

1.3 Image filtering

In the early development of signal and image processing, linear filters were the primary
tools. However, linear filters have poor performance in the presence of noise as well as the
problems where system nonlinearities are encountered. For such reasons, nonlinear

tiltering techniques for signal/image processing were considered as early as 1958 [W58].

In the early sixties investigations of Matheron and Serra led to a new quantitative approach
in image analysis, nowadays known as mathematical morphology [S82, M75]. The central
idea of mathematical morphology is to examine the geometrical structure of an image by
matching it with small patterns at various locations in the image. By varying the size and
the shape of the matching patterns, called structuring elements, one can obtain useful
information about the shape of the different parts of the image and their interrelations. In
general the procedure results in nonlinear image operators which are well-suited for the

analysis of the geometrical and topological structure of an image.

Further, mathematical morphology was significantly developed and achieved a status of a
powerful tool for image processing, which is applied in various disciplines such as
mineralogy, medical diagnostics, machine vision, pattern recognition, granulometry and
the lot of others [DEO03].

One of the primary applications of morphology is noise removal, which is restoration of the
original image content from the noisy environment. Noise removal is established in the
classical works on mathematical morphology such as [S82, M75], and continues to develop
nowadays [PV90, D92, H94, DA97].

It has been found that morphological processing of the image as well as noise removal
decreases the entropy of the image, and therefore increases the compression performance.
The idea of using nonlinear filters for improving compression performance of the image is

known as image enhancement and was investigated in [TP80, M75, W86, ZD96]
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The mathematical morphology has been continued to develop during last decade. So called
alternating sequential filters (ASF) originally proposed by Sternberg in 1986 [S86] were
proved to be optimal in environments with additive noise in the sense of the least mean
difference [SG91]. Further Heijmans in his works [H95] extended the class of AFS filters by

using so called over- and under-filters.

Sarca et al. [SDA99] proposed the method of so called two-stage optimized binary filter design.
Such filters are advantageous since they are fully optimal with respect to certain subsets of

the filter window.

Jin et al [J95] proposed a new class of morphological operators for binary images, it is the
domain operators. The basic idea is taken from ranked-order filters, but generalized with the

incorporation of the fuzzy index function in weight representation.

The standard (so called “crisp”) morphology has been also extended to ‘soft” morphology,
which is more tolerant to noise and has advantages in image filtering [KA94]. Kuosmainen
et al. [KK95] considered Shape Preservation Criteria and studied the optimality of Soft
Morphological  filtering. Zmuda and Tamburino [ZT96] developed efficient soft

morphological algorithms used in filtering.

Several methods have been considered for image processing by analyzing the local pixel
neighborhood defined by a filtering template. Techniques have been proposed based on the
analysis of the context information [PL00, RS01, ZK01].

Ping et al. [PLO0] proposed two algorithms for binary images filtering. The first algorithm
called Modified Directional Morphological Filter (MDMF) is introduced with dual
properties for eliminating document salt-and-pepper noise and for remedying eroded
character stroke distortion. For eliminating larger noise, another algorithm called Image
Geometric Structure Filter (IGSF) is proposed based on the geometric stroke information of

characters.

Randolph and Smith [RS01] used a binary angular filter banks for directional decomposition
to enhance fax documents. The filter banks provide representations that delineate the
directional components in the text letters enabling edges and contours to be smoothed
appropriately.

In [ZKO01] morphological degradation model was proposed for binary images. According the
model, the probability of a pixel flipping from foreground to background, or vice-versa, is
an exponential function of its distance from the nearest boundary point. Based on the
model they offered restoration algorithm, which includes two stages: a training stage to
define parameters of the model, and a restoration stage. The training stage includes joint
analysis of degraded and the correspondent ideal image by computing the conditional

distribution between the noise pattern pairs.

11



However, mathematical morphology is not a universal tool because morphological
operators manage within the local window and can not take into account global properties
of the image. Other methods utilizing global (semantic) and statistical properties were
developed. The statistical approach was considered in [AF00b], where two context-based
tiltering methods, namely Simple Context Filters and Gain-Loss Filters, were proposed for the
enhancement of document images. They used the 10- and 20-pixel causal templates to
collect statistics during the analyzing phase. Then, in the filtering phase all rare pixels in

low entropy contexts are flipped.

Semantic properties of the image also could be utilized for image enhancement. For
example Franti et al. [FAKKO02] used Hough Transform (HT) for extracting vector features
from binary image. A feature image is reconstructed from the extracted linear segments and
it is utilized in the filtering phase. The filtering is based on noise removal procedure using
the original and feature images. The noise-filtering algorithm was used to improve quality
of context-based compression algorithm. The drawback of this approach is that the HT-
based feature extraction phase dominates the processing time in the compression phase and

makes it an order of magnitude slower than JBIG compression procedure

Some of these methods are not directly applicable to the context of map images, others (as
in the case of latter techniques) require significant computational or memory resources

which are not available for mobile devices.

Also we must take into account that traditional filtering techniques (and some of reviewed
above) improve compression performance by degrading the image. The most common
effect is smoothing of the image. However, in our task we can not use that kind of
enhancement techniques because we agreed that the content of the map image is critically
important and can not be degraded. Therefore, we decided to develop restoration
technique dedicated for the map images. The main restriction on that technique is that map

image must be prevented from any corruption caused by filtering.

1.4 Compression techniques

As long as we restricted ourselves with lossless restoration, the compression techniques
which we are going to use in our research also must be lossless. We will use the following
compression techniques and correspondingly image file formats in our evaluation: PNG,
ITU Group 4 (TIFF), and JBIG.

PNG

Portable Network Graphic (PNG) is a file format for the use in computer networks and

Internet [PNG]. PNG uses Deflate data compression algorithm [D96] based on a dictionary

12



based LZH compression scheme [LMO00]. The main idea of dictionary based data
compression is to extract common sequences of symbols, called phrases, from the source
data and replace them by the dictionary indices. To achieve compression, the indices must
be built in a manner so that their representation takes less space than the original phrases.
Ziv-Lempel base algorithm, known as LZ77, builds dictionary adaptively using a part of the
previously encoded data (called sliding window) as a dictionary [ZL77]. The sliding
window contains two: the sequence of already encoded symbols used as a dictionary, and
the lookahead buffer. Idea of the algorithm is to look for the longest match between the
sequence in the buffer and the dictionary. The matched phrase is encoded using a pair (i, j),
where i is the offset from the beginning of the buffer, and j is a match. After the encoding,
the window is slid j+1 symbols forward and the process is repeated. The LZSS modification
of the LZ77 algorithm adds a one-bit flag f to the encoded data indicating whether this is an
index for the phrase or non-encoded symbol from the source [SS82]. This technique allows
for combining together the source symbols and indices in the encoded data stream, thus
gaining the advantage in situations when the indices would have longer data size than the
original sequence. The LZH is a modification of LZSS described in [B87]. LZH uses
dynamic Huffman algorithm use the encoding of offsets and match lengths [V87].

ITU Group 4

The ITU Group 4 (formerly known as CCITT Group 4) standard incorporates simple data
compression techniques based on run-length coding, prefix coding, and differential coding
to utilize line-to-line coherence [HR80]. The standard specifies two coding methods: a one-
dimensional scheme that treats each line independently, and a two-dimensional one that
exploits coherence between successive lines. The one-dimensional scheme is used at the
beginning of the image (or image stripe in ITU Group 3 method). In this, a line is
represented by coding the length of each run (the sequence of pixels with same color) using
a pre-specified non-adaptive prefix code. The code table is optimized for a particular set of
test documents. For the rest of image lines, the two-dimensional method known as relative
element address designate (READ) is applied. The READ algorithm identifies the positions
along each line at which image changes from black to white and vice versa, and codes them
in respect to a nearby change position (of the same color) on the previous reference line. If
there is no nearby change within three pixels on the reference line, the ordinary one-
dimensional code is used. Originally designed for use in facsimile communication as ITU
Group 3 [ITU T.4] the method has been expanded for encoding monochrome image in

digital networks, and is incorporated as an option for TIFF image file format.

13



JBIG

Context-based statistical modeling and arithmetic coding are implemented in the latest
international standard for compression of binary images, |BIG (Joint Bilevel Image Experts
Group) [JBIG]. To distinguish it from the emerging JBIG2 standard, we will refer to it as to
JBIGL.

JBIG (Joint Bilevel Image Experts Group) is an International Standard for compression of bi-
level images in communications [JBIG]. The standard defines two methods for bi-level
compression, progressive and sequential. In sequential coding, the image is coded in raster
scan order using a context-based probability model [RL81] and adaptive arithmetic coder namely
the QM-coder [PM93]. The idea of context-based modeling is to obtain the statistical model
of the image by conditioning the probability distribution of the pixels on the context. The
context is determined by the combination of the pixels in the local neighborhood, which is
defined by the template. The probability distribution of the black and white pixels is
conditioned on the context, which is defined by the combination of already coded
neighboring pixels. A three-line ten-pixel template is used by default. Both encoder and
decoder estimate the model dynamically during the compression. The estimation starts
from scratch and adapts the model to the input data. The probability estimation in the QM-
coder is derived from the arithmetic coder renormalization and is based on the Bayesian
estimation concept [PM88, PMLASS].

The emerging standard JBIG2 improves the compression of text images using pattern
matching technique for extracting symbols from the image. This enhancement, however, is
of limited direct usage in the case of map images, as they do not contain large number of

non-overlapping text regions.

JBIG contains also several different options that are not discussed in this thesis. Among
these options are: decomposition of the image into stripes which are independently
encoded, deterministic prediction mode, typical prediction mode, etc as defined in the
JBIG1 standard. In our experiment we use a default option combination of the option as
provided by the “nconvert” image conversion software: stripe size is 128 lines,
deterministic and typical prediction is on. JBIG has also possibility to encode multi-bit
(such as color-palette or grayscale) images directly by decomposing the images into bit-
planes using binary- or gray-code values. However, according to [FKV02] higher

compression results are achieved by decomposing the images into the semantic layers.
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1.5 Problem definition

Now we can formulate the problem:

Our task is to design a proper technique to restore semantic layers in the map images resulting
from the decomposition of the image using color separation process. Restoration technique has
to provide better compression performance for reconstructed layers than for corrupted ones
when using popular compression algorithms (ITU Group 4, PNG, |BIG). Reconstructed layers
have to perform good visual appearance, which is useful for removal or extraction of layers

from the original map image for further processing.

To solve a given problem a big variety of restoration techniques could be proposed. But
when designing algorithms for use in real-time cartography, one should take into account
the capabilities of modern mobile devices. The technical level of the mobile terminals at the
moment represents the processing power of the computers in the nineties. Therefore the
complexity and memory requirements of the algorithms must be as less as possible to make
algorithm applicable and we have to restrict our research with that factors. Thus we
decided to avoid too complicated techniques of restoration and chose Mathematical
Morphology as a base tool to construct our restoration technique. In order to find an optimal
set of parameters we performed an empirical investigation of different morphological

filters, evaluate results and chose the best one.

1.6 Structure of the thesis

This thesis is organized as follows. Section 1.1 gives an introduction to basic concepts of
mathematical morphology. In Section 3 we use morphological notations for defining the
problem under investigation. Section 4 is devoted to reconstruction of solid regions
represented by Waters and Fields layers. Restoration algorithm is proposed and its
modifications are considered. Section 5 investigates the problem of restoration of Elevation
layer. The application of proposed algorithm is discussed. Section 6 tackles the problem of
removing a layer from multi-layer map. Algorithm of removing is proposed and
illustrations of its performance are presented. Section 7 discusses the implementation of
proposed algorithms and concepts. In Section 8 experimental results are evaluated and
studied. Section 9 summarizes results and makes final conclusions. Section 10 is devoted to

perspectives of future research.

15



2 Mathematical morphology — the background

Morphological image processing has become a standard part of the imaging scientist’s
toolbox and today is applied daily to a wide range of industrial applications, including
(and certainly not limited to) inspection, biomedical imaging, document processing, pattern
recognition, metallurgy, microscopy, and robot vision. Because the morphological
operations can serve as a universal language for image processing, their application is only
limited by the ability to design effective algorithms and efficient computational

implementation.

Mathematical morphology refers to a branch of nonlinear image processing and analysis
developed initially by Georges Matheron [M75] and Jean Serra [S82] that concentrates on
the geometric structure within an image. That structure may be of a macro nature, where
the goal is the analysis of shapes such as a tools or printed characters, or may be of a micro
nature, where one might be interested in particle distributions or textures generated by
small primitives. The main idea is to analyze the shapes of objects in an image by “probing”
the image with a small geometric template (e.g. line segment, disc, square) known as the
structuring element. The choice of the appropriate structuring element strongly depends on
the particular application at hand. This however should not be viewed as a limitation, since

it usually leads to additional flexibility in algorithm design.

Today mathematical morphology is an established discipline in the areas of image and
signal processing, filtering, segmentation and image and signal coding, among others. It
has strong links with more recent theories such as scale-space and level set methods. On the
practical level most introductory books in image analysis and most available commercial

imaging software include at least few morphological operators.

In this section we consider basic notations and terminology of mathematical morphology.

2.1 Classic morphology

2.1.1 Basic definitions

Consider E is an Abel group and E=E" is the d-dimensional product Ex..xE. In
practical cases E=7Z or R with the additive group structure, and E is a discrete or

Euclidian space.
Then we denote by P(E) the power set of E comprising all subsets of E. In that case

P(E") is a Boolean algebra and have following properties:

e P(E)-isacomplete lattice over E°.
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Complete lattice — is a set £ such as any subset K < £ has its infimum VK
and supremum AK. Supremum of £ is called maximal element and denoted as

| . Infimum is called minimal element and denoted by O.
e P(E) is distributive:
XuiYuzZ)=(XuY)n(XuZz), vX,Y,ZeP(E)
e P(E) is complementary, i.e. for each set X € P(X) exists its complement X =E\X,
such that:
X*UX=E,and XNnX_ =9
In case of discrete binary images E is defined as E =7’ and binary image X - as a set
XckE:
X={z|f(z)=L2=(i,j)eZ?

Note that notations Ac E and AeP(E) are equal. The function f is called characteristic
function of X . It may take only two values: 1 and 0, and it separate the foreground pixels
(ones that form the image X) from the background pixels. Foreground image pixels are

usually shown in black. The background pixels belong to X°.

2.1.2 Principles of morphological transformation

Foraset Ac E and element h € E we define the translate of A along the vector h as
A ={a+hlacA}.

The main principle of mathematical morphology is to analyze of geometrical and
topological structure of the image X by “probing” that image with another small set A
called structuring element. By the “probing” we understand applying the structuring
element A at every pixel location heE and determining the cardinal value

card(X N A)) that is the number of elements of X coinciding with elements of A translated

along h. In this way structuring element defines the location of analyzed pixels relatively
to a given pixel location h. Coinciding of pixels within the structuring element is illustrated

on the following Figure 6.
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Figure 6. Probing the image with the structuring element.

We define morphological transformation y,(X) as some transformation of the image using
the information retrieved with “probing” of X with structuring element A.

The performance of a morphological transformation depends on two factors: the
structuring element A and the choice of transformation y,(X). There exists a great variety

of structuring elements, but they can be decomposed to the simplest ones (as will be shown

later). Their choice depends on the particular task. The transformation function y,(X) also

can have variety of different properties.

2.1.3 Morphological operators
Let’s give some basic definitions:
Operator y : P(E) > P(E) is called morphological operator if it is:
o Increasing, if X cY = w(X)cw(Y), for VX,Y (further consider X,Y e P(E))

If increasing operator is applied to the subset X of some set Y, then the result

w(X) must also be a subset of y(Y).
o Translation invariant, if w(X,) =[w(X)],, for ¥X,h
The application of translation invariant operator to the translated set X causes

equal translation of the result y(X). In other words, translation invariant

operator is “independent” of the location of set X and the magnitude of

translation. One can translate the set X and then apply operator  or do it in

reverse order — the result remains the same.
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The negative of an operator v is the operator i~ defined as
v (X) =l
An operator y : P(E) —» P(E) is called:

Self-dual, if " =y

— this operator affects foreground and background equally.
o Idempotent, if y* =y

— the result of applying that kind of operator more than once is equal to the

result of single applying.
e Identity operator y =id if y(X)=X.
e Filter if it is increasing and idempotent.
— thus morphological filter is idempotent morphological operator.
o Extensive, if w(X)2 X.
— extensive operator “increases” X.
o Anti-extensive, if w(X)c X.
— anti-extensive operator “decreases” X.

The following establishes the ordering between two operators. Given two operators ¢ and
v, the notation ‘¢ <y’ means that ¢(X )g y/(X) for every X e P(E).By ¢ Ay and ¢v iy
we denote the infimum and supremum, respectively, of ¢ and w. That is
(@ A p)(X)=p(X) Ny (X) and (v y)(X) = $(X) Wy (X), forevery X e E.

2.1.4 Dilation and erosion operators

Given two sets X, Ac E, the Minkowski addition and subtraction are respectively defined as
X ®A={x+a|xeX,vaeA
X©A={h|a+heX,vae Al

Note that X ® A= A® X . These operations are the basic ingredients of mathematical
morphology.

Given a fixed set Ac E called in morphology the structuring element, we define the dilation
of X by A, denoted by 5,(X), as an operator on P(E) such as

o0, (X)=XadA.
The erosion by A, denoted by &, (X)), is the operator

e (X)=X OA.
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Two alternative, but equivalent formulas are:

Su(X)=JX,={heE|A N X =2}

aeA

e (X) =X, =fh<E| A = X}.

acA

Here K:—A:{—a|ae A} — is the reflectance of A with respect to the origin. For the

symmetric structuring element holds

A=A.

Further we shall use the following structuring elements (see Figure 7). The A sign points to

the location of the origin.

[ ] [ ] [ ] [ ]
o o o o o o
o o o °
Block 3x3 Cross 3x3

Figure 7: Structuring elements

Dilation and erosion with Block 3x3 are illustrated on the following Figure 8:

& '

L

T,

Original image Dilated with Block 3x3 Eroded with block 3x3

Figure 8: Illustration of dilation and erosion

Compare the results shown above with the same image dilated and eroded with another

structuring element Cross 3x3 as illustrated on the Figure 9:
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Dilated with Cross 3x3 Eroded with Cross 3x3

Figure 9: Dilation and erosion with Cross 3x3

The following properties of dilation hold for any X,Y,A Bc E,heE and reE:
e Translation invariance:
X®A),=X,BA
e Decomposition of structuring element:
(X®eA)dB=Xd(A®B)
e Dilation is an increasing operator:
XcY=XBACYDA
e Dilation is invariant under scaling;:
IX@erA=r(X o A)
For erosion, similar properties hold.
e Translation invariance:
(Xeh),=X,SA
e Decomposition of structuring element:
(XeAoB=Xo(AcB)
e Dilation is an increasing operator:
XcY=XsSAcCYSA
e Dilation is invariant under scaling;:
IXerA=r(XoA)

Decomposition of structuring element property is very important for practical
implementation. It means that we do not need a very complicated structuring element, i.e.
if structuring element could be decomposed, then we replicate original morphological

operation with the sequence of morphological operations with the decomposed parts of the
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original structuring element. Take a look at the following examples. Figure 10 illustrates the

decomposition of structuring element “circle” into three more simple structuring elements.

e o o
e o o o o ° )
e o o o o = o ([ e o o ([ o o o
e o o o o ° °

e o o

Figure 10: Decomposition of structuring element "circle"

Figure 11 illustrates the decomposition of element “block 5x5” into two “block 3x3”

e o o o o e o o e o o
e o o o o = o o o ([ o o o
e o o o o e o o e o o

e o o o o
Figure 11: Decomposition of structuring element "block 5x5"

Dilation and erosion are dual morphological operators. It holds that
(XDA =X"OA
(XOA =X"DA
forall X,Y,AcE.
Dilation and erosion are dual operators in sense that they satisfy the adjunction relation:
YOAc XY XoA,forall X,Y,AcE
As it has been shown in [M75, S82, H94], adjunction relation is one of the basic concepts in

mathematical morphology.

2.1.5 Matheron representation theorem

Matheron [M75] has shown that dilations and erosions are the consistent parts of

mathematical morphology. To give a formal statement we need the following definition.

The kernel V() of an operator  on P(E") is defined by

V(y)={AcE" |0y (A}
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Matheron representation theorem

For any morphological operator y holds

y(X)= |J XeA= ) XaA.

AeV(y) AcV(y")

The theorem states that any morphological operator could be represented as the union of

erosions or intersection of dilations.
2.2 Conditional and soft morphology

2.2.1 Rank operator
By using the convention that [S]=1 is statement S is true and 0 if it is false consider the

rank function T, (ul, .. un)

rs(Ul,---'Un)=LZ:ui > s]

Consider a set X and its characteristic function, i.e., we write X(h)=1if he X and X(h)
if heg X.

0

Assume that A is a structuring element containing n elements a,,...a,, and assume that b is

a Boolean function of n variables.

Define the translation invariant operator y/,:

o = DX (3, + ) X (3, + ) =1).
For example:

o If b(u,..,U,)=U,*..%U_, then y, (X) = X S A.
o If b(U,...,U,) =U; +...+U,, then y,, (X)= X G A.

If we take b(uy,...,u,) =T, (U;,...,U,) than the resulting operator, denoted by p,, is called
rank operator.
One finds that he p, (X) if and only if X N A contains at least 1 points. That means that

operator sets the pixel to the foreground if amount of pixels on the image in a
neighborhood defined by the structuring element is greater than s. Otherwise pixel is set to
be background. Figure 12 illustrates rank operator performance. Image on the left is the
original binary image; image in the middle is the result of applying rank operator with rank
parameter equal to 4; right image is the result of rank operator with rank parameter equal
to 6.
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Original image Rank operator s=4, A=Block 3x3 Rank operator s=6, A=Block 3x3

Figure 12: Illustration of rank operator performance
The operator P cuq(ay2 1S called median operator.

From Matheron’s representation theorem follows that rank operator can be treated as the

base operator of mathematical morphology. In particular,
X &A= Pai ( X )
and,

X oA=p,,(X).

Also it holds, that p, = Pacard(nysi, Where card(A) is a cardinal value (a number of

elements) of a set A.

2.2.2 Conditional dilation

If an image is dilated by a structuring element containing the origin, it is expanded, and the
manner of the expansion depends only on the shape of the structuring element. If the
dilation is successively repeated, the original image grows without bound. Sometimes it is

important to restrict the growth. This can be accomplished by conditioning the dilation.

A common form of conditioning restricts the union-forming translations to a superset of the
input image: if image A is a subimage of T, and B is a structuring element, then the
conditional dilation of A by B relative to T is defined by restricting the translations to T,

the result being
Ss(AIT)=JB,NT

acA
Where notation J;(A|T) instead of Jz(A) indicates there is conditioning. Keep in mind
that to appreciate the meaning of J;(A|T) in any particular context, one must recognize

the type of conditioning being employed. Figure 13 illustrates conditioning principles. Left

picture represents an image A, and right picture represents the conditioning mask T.



a
216

Original image Conditioning mask

Figure 13: Image and conditioning mask

Going further, the Figure 14 illustrates conditional dilation. On the left picture image and
the conditioning mask are represented together: original image with black pixels and
conditioning mask with gray. Right image represents original image three times
conditionally dilated with block 3x3.

-

hN

*y

"y
y
R

Original image and mask Dilated 3 times

Figure 14: Conditional dilation

A sequence of n conditional dilations of S relative to T using the structuring element B is

called size-n geodesic dilation:
(55(S1T))" =05 (S5 (55(SIT)IT)...|T)

Viewing S as a marker, reconstruction of T from S is accomplished by repeating the
geodesic dilation until stability is reached. In this case, the geodesic dilation is denoted by

TagS and we have

TagS=(55(S|T))”
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An illustration of reconstruction using geodesic dilation is shown in Figure 15. Here left
image represents original and right represents geodesic dilation. Black pixels are binary

image pixels and lighter pixels are conditioning mask pixels.
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Original image Geodesic dilation

Figure 15: Geodesic dilation

A drawback of the conditional-dilation approach to morphological reconstruction is that it
can be time consuming; indeed, it is possible for the number of conditional dilations to
equal the number of pixels in the input image. There are, however, very efficient

reconstruction algorithms that work recursively and require only a few image scans [DE03].

2.2.3 Soft morphology

Mathematical morphology is based on set theory with transformations exhibiting all-or-
nothing precision of pure logic and therefore such transformations could be sensitive to
image noise. Sometimes this logic-based paradigm is referred as standard or crisp
morphology. Soft morphology is an alternative approach that is more tolerant to noise than
standard morphology, yet has many of the desirable characteristics present in the
traditional morphological operators [H94, GW02, DE03]. Algorithm designers often use
only crisp morphology, leaving noise issues to be handled in other parts of their system. A
more effective approach is to process the images using transformations that are tolerant of

noise, such as soft morphology.

Standard morphological operators are based on local maximum and minimum operations
while soft morphological operations are based on more general weighted order statistics.
This makes soft morphological filters to be less sensitive to additive noise and small
variations in the shapes of the object to be filtered than standard morphological filters. The
definitions of the soft morphological operators are similar to crisp operators but

incorporate a factor, r, of how well the structuring element fits within the image.
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Given a fixed set Ac E called the structuring element and a number r called a factor (or

rank parameter), define the soft dilation by A with factor r, denoted by 0,(X,r), as an operator

on P(E") defined by an expression
5A(X,r)={h|card(x AA)> r}.
The soft erosion by A with factor r, denoted by &€,(X,r), is the operator given by
ex(X,r)={h|card(X N A))>card(A)-r}.

The factor r represents the minimum acceptable overlap between X and the displaced
structuring element A. Standard (crisp) erosion and dilation are special cases of their soft

counterparts:
5,(X)=8,(X.)
gx(X)=¢,(X.1).
These operators can also be represented using rank operator as follows:
Sa(X.1)=pz,(X)
ea(X.r)= PAcard(A)-r (X)

Figure 16 illustrates the performance of soft dilation operator with r=2 (right image)

comparing to standard (crisp) dilation (left image) using structuring element Block 3x3.

& *Iﬂ

o,

Original image Standard (crisp) dilation Soft dilation

Figure 16: Crisp and soft dilation

Figure 17 illustrates the performance of soft erosion with r =2 (right image) comparing to

the standard (crisp) erosion (left image) using structuring element Block 3x3:
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Original image Standard (crisp) erosion Soft erosion

Figure 17: Crisp and soft erosion

You can see that parameter r regulates the amount of shrinking (in case of erosion) or

expanding (in case of dilation) of objects with the image.
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3 Formal problem definition

In the following chapter we define the problem of map image reconstruction using

established mathematical formalism.
3.1 Multi-layer map concept

The binary image space E is defined as E = Z (the space of all possible image pixel locations),

and the binary image X — as a set X < E of foreground pixel locations:
X :{ h| X (h) = foreground, h=(Gi, j)eZZ}.

X (h) is a characteristic function X (h):E — {foreground,background} separating foreground
from background. By N-layer map we define a set M ={L..Ly} of N binary images
L,...Ly € E, where L; c E is called a j-th layer and j is called an index of a layer.

We define a gray-scale (or color) image as a pair

CcE
Mz )
c:Z° >N

where C is a set of pixel locations (a binary image) and c(h) is intensity (or color) function

which yield a gray value or an index into a color palette.

3.2 Combination

Even though the multi-layer map consists of binary layers, the layers must be combined
into a single map image before that image can be served to a user. Such operation is called
layer combination and is denoted by 91— M. It takes a multi-layer map 901 as an input

and generate color image M as follows

N
c=UL

k=1 .
c(h)= min k

vklhely

The resulting image M is called combined map image.

Here C is computed as the union of all layers, and c(h) is a minimal index among layers
that contain pixel at location . This means that if there is a pixel location, which belongs to
several layers simultaneously, than it will be colored to a color of a layer with smallest
index. This way layers overlap other layers if they contain pixels at the same locations. For
example if Basic layer has index less than Water layer, then contours and city names on the

Basic layer will appear to the user “above” the water.
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Observe the difference in the definitions: by the multi-layer map we understand a set of

layers; and by the combined map image — their combination, which is served to the user.

3.3 Decomposition

When semantic layers are not available and all we got is a color raster image, we need to
decompose it to layers before the compression using color separation process as described

in Section 1.2.

Let us define decomposition as the process M—2— 9 of splitting N-color map image
CcE
M= )
C:Z°—>N

M ={L,...L} (a set of binary layers),

into N-layer map

as follows
L ={heC|c(h)=k},k=1.N.

Decomposition separates pixels to different layers by their color value.
3.4 Properties of composition and decomposition.

Proposition 1:

Multi-layer map once composed into a gray-scale image could not be reconstructed back.
vom, ={L,,... Ly }——o> M—5M, ={L,,..., L= M,.

The proposition states, that composition and further decomposition are lossy processes.

Proof:

When we use notation
m, ={L,... Lle M ={L,.. L/},
we understand that
LcL,L cl,,.., L, cL,.

To prove the proposition, let’s recall that in composition process c(h) = vmirg k, therefore
Sl

pixels at position & on layers with level greater than c(h) (greater than minimum) will be

overlapped in composition and lost in decomposition.

For alayer L, asetof pixels A ={heL, [J] <k:hel,;} will be overlapped and lost.
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Therefore L]: U A, =L, and, obviously, L]; clL.oo
Further we shall callaset A, ={he L, |Jj <k:hel,} asetofartifacts for a layer k.

A set of artifacts contains pixels that will be lost in composition-decomposition process.

Further we will denote corrupted layers by L, and original layers by L, .

Proposition 2:

The combined map image once decomposed into a multi-layer map could be safely

reconstructed back.

YM—LoM M =M.

The proposition state, that decomposition and further composition are lossless processes.

Proof:
Decomposition process separates pixels to layers by their color, and therefore layers created

this way will not intersect i.e. L’; mLI =,Vj,k=1.N. As layers not intersect, no

information will be lost in composition process o.

3.5 Restoration

The task of restoration of multi-layer map after composition-decomposition process is the

problem of reconstruction of artifacts A, for every layer. But we cannot reconstruct A, for

every layer completely, we can only suppose its structure. Therefore the task of restoration

of layer L, is to construct an operator y(L,) such that
w(L): P(E) > P(E)
(o L L= M, .
L, .wL),. . .LI}—>M =M

In other words a composition of a set of layers where some layer was reconstructed by

operator ¥ has to be equal to the composition of non-restored layers. It is natural to protect

original gray-scale (color) map image from any degradation because of its great semantic

importance.

3.6 Masking

Restoration could be maintained by conditioning an operator y(L,) with a mask T, . As it

had been discussed in section 2.2.2, mask is a binary image defining an area where changes

of the layer content are allowed.
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Keep in mind that composition of binary semantic layers must be preserved unchanged.
Therefore restoration operator cannot remove pixels, which are already present on the

corrupted layer. It can only a ixels to a layer, which means that L .
pted lay ly add pixel lay hich hat Lcyw (L |T,)

Naturally, pixels could be added to those areas of a layer, which will be overlapped during

the composition process. Let’s define a set
T, ={h|EIjSk:heL*j}

or, equally,

This set contains all pixel locations, which will be overlapped in composition process by

upper laying layers.
Also, note that A cT, — a set of artifacts is a subset of mask T,. Therefore A could be

reconstructed. The efficiency of reconstruction depends of the chose of operator .

Proposition 3:

Operator w(L, |T,)=@(L)NT, satisfies the condition proposed in 3.5 for any operator
(L)

The proposition states, any modification of semantic layer performed in area defined by T,

will not affect the combination of layers.

Proof:
Obviously, any modifications that made in L’; within T, will be overlapped by upper

layerso.
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4 Reconstruction of solid regions

In this chapter we tackle the problem of reconstructing the layers containing solid regions.
In our map image examples these regions are represented by Waters and Fields layers. First
we give the description of the basic restoration algorithm. Then, possible algorithm

modifications are considered.

4.1 The basic algorithm

In our research we have considered the map image M(L,L,,L;,L,), which is combination
of 4-layers (see Figure 4),
e L, — Basics layer
e L, — Elevation lines layer
e L, — Waters layer
e L, —Fields layer
The task of restoration consists of the following stages.
First we have to decompose combined map image in to a set of corrupted layers

M—Lom(L,..., L)

Then we have to form a conditioning mask for conditioning the restoration operator to
keep the combination of restored layers untouched. The mask is formed using the

following formula:

This formula defines a mask with respect to the assumption that layers in multi-layer map
are situated one over another in a predefined order. But in our case we can simplify it by
taking into account the nature of objects represented on the map. For example, we can
expect that Waters and Field layers could not overlap in reality, and therefore could not
overlap on a combined map image. But the concept of multi-layer map enforces that layers
must be composed in a predefined order one over another. This enforces Waters areas to be
included into the mask for Fields. That means that the algorithm will try “to find a field
overlapped by the water” which is nonsense semantically. So, when implementing our

particular case, we can exclude that kind of layers from the conditioning mask T;. This

adds sense to the concept of conditioning and reduces the size of the mask.

Taking aforesaid into account we can revise formulas defining masks for Waters and Fields:
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T,=LulLul
T,=Lulul

The Figure 18 illustrates the creation of conditioning mask.

Semantic layers

ST

Figure 18: Mask creation

The result of applying that algorithm is illustrated on the Figure 19. Here black pixels
represent objects, light pixels are mask and white are background which is restricted for

changing. Any restoration of black objects could be done only in a light masking area.

“

R

4l“%

il )

Waters and its mask Fields and its mask

Figure 19: Waters and Fields with a mask. Objects are black, mask is in light color and background is white.

Following step of the algorithm is the actual reconstruction of the layers. On this step we

have to apply some operator  conditioned on the mask and to build the reconstruction

L =w (L |T,) of layer L;.
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The framework of restoration algorithms could be represented in the following way:

Decompose combined map image into a set of Binary layers
For each Binary layer do
Create Mask
EndFor
For each Binary layer and Mask do
Apply reconstruction operator
EndFor

The problem of restoration is therefore the problem of choosing the operator .

A big variety of different approaches could be proposed to perform such a restoration. For
example, the most obvious is to apply conditional dilation operator (see 2.2.2). However, it
produces a lot of inappropriate artifacts and cause layer corruption comparable to
corruption caused by combination. Therefore, more sophisticated techniques should be

designed.

In our work, we have studied variety of different approaches to restoration and developed
a restoration operator called dilation with mask erosion (see 4.3). This operator is based on the
conditional dilation but it avoids from the most its disadvantages (see 4.2). We choose that
algorithm to be the basic algorithm for our experiments. In following subchapters we will
discuss and illustrate disadvantages of conditional dilation operator and explain the
reasons why dilation with mask erosion operator was considered. Also other modifications

of the basic algorithm will be proposed.

4.2 Conditional dilation

Waters and Fields are of the similar morphological structure. Mostly, the restoration is
needed inside objects where inner artifacts have to be filled. Therefore it was natural to try

to apply conditional dilation operator

w(L)=0,(L|T,)

to reconstruct waters, and
w(L,)=0a(L|T,)
to reconstruct fields.

The algorithm of applying conditional dilation operator is illustrated on Figure 20.
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Figure 20. Conditional dilation.

Here we see that mask is not changing during the process of dilation. That causes the
appearance of artifacts on the borders of objects and significantly reduces visual

performance. Figure 21 and Figure 22 illustrate operator §,(X |T) applied once (left image)
and 4 times (right image) for Waters and Fields respectively with A= block 3x3 (see Figure 7).

~

\ \

{

Once dilated with block 3x3 Waters Four times dilated Waters

Figure 21. Once and four times dilated with block 3x3 Waters.
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Once dilated with block 3x3 Fields Four times dilated Fields

Figure 22. Once and four times dilated with block 3x3 Fields.

You can see that operator §,(X |T) successfully fills artifacts inside objects (right images).
The problem is that operator also unacceptably corrupts objects on its borders. The
restriction over amount of iterations does not solve the problem, because in that case we
cannot guarantee confident filling of inner artifacts. Left images show that borders of
objects are smooth but inner artifacts on the Fields layer were not filled and Waters layer
was not reconstructed well because single iteration of dilation is not enough for confident
reconstruction. We conclude that conditional dilation is not applicable for layer

reconstruction and we have to develop more sophisticated restoration technique.

4.3 Conditional dilation with mask erosion

When observing map images from a test set, we have noticed that border artifacts are
typically small areas or thin lines within a mask, which object fills while expanding during
dilation. For designing a proper restoration technique, we have to find a way to prevent the
expansion of objects to those areas. A simple way to exclude thin areas from the mask is to
apply erosion operator. It will erase a lot of thin details, and if those areas will be removed
from the mask, as a result they will be removed from the process of conditional dilation. Of
course, we have to guarantee that mask will remain to be a superimage of a layer after the
erosion. This could be reached by concatenating the result of erosion with the layer itself.

The eliminating of thin details from the mask is illustrated on the following Figure 23.
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Original mask for Waters Eroded mask for Waters

Figure 23: Erosion of the mask

You can see that erosion immediately removes small areas. We can establish an iterative
process for sequential removing that kind of areas from the mask starting from small ones
to bigger ones. Simultaneously, we can dilate objects to perform the restoration. Formally

this forms an iterative process:

Repeat
Layer = Dilate( Layer, Mask )
Mask = Erode( Mask )
Mask = Union( Mask, Layer )
Until Restoration is complete

Or mathematically,

Xi =0a(Xi4 |Ti)

T' =g (T UX,

n=1..number _of _iterations
Where X; is a layer image and T' is a mask on the i-th step of iteration process, A and B
are structuring elements of dilation and erosion.
At the first step X, = L5, T* =T, for waters and X, =L,,T" =T, for fields.
Objects first dilate over the original mask, and then mask erodes. On the second step
objects dilate over the eroded mask and so on. Concatenation of the mask with the current

layer is necessary because mask must remain to be the superimage of a layer. Figure 24

illustrates the algorithm.
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Figure 24: Dilation with mask erosion algorithm

Results of iterative application of conditional dilation with mask erosion operator are
illustrated in Figure 25. There are: original image, the result of one iteration, and results of

two and five iterations. Objects are shown in black and mask in light color.
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Figure 25: Dilation with mask erosion

Visually the final result is much better that the result of ordinary conditional dilation. It is

free from artifacts on object borders and inner artifacts are totally filled.

Compare 5-iterational results of ordinary conditioned dilation and of conditioned dilation

with mask erosion for Waters and Fields on a Figure 26. There first column represents layers

restored by the conditioned dilation operator and the second column represents same

layers reconstructed by conditioned dilation with mask erosion.
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Waters. 5 dilated result Waters. 5 dilated with mask erosion

/

Fields. 5 dilated result Fields. 5 dilated with mask erosion

Figure 26: Comparison of conditioned dilation and conditioned dilation with mask erosion

Although the result of conditioned dilation with mask erosion is not absolutely free from

artifacts, it performs significantly better visual appearance and object consistency.

4.4 Object Smoothing

In order to improve quality of restoration, we again can investigate the nature of objects
under restoration. We know that we are trying to restore waters and fields. These objects
typically do not have sharp edges or thin, one or two-pixel details. Therefore, we can try to

design some morphological operator to smooth borders of objects.

Small and sharp artifacts could be removed using such operators as structural opening or

closing, or using morphological rank operator. For our experiments we chose rank operator
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because of its simplicity, which is important property for devices with low computing

power.

We expect that restoration algorithm will restore original objects completely and then
produce its own artifacts. It means that rank operator have to perform a kind of cleaning
over the objects. Therefore, we propose so called "Subtractive ranking” operator, which can
only remove pixels from a layer, but not those which originate from the original corrupted

layer. Formally,
w(X) = (pe, (X) N X)UL

Here X is a layer restored using dilation with mask erosion technique (see Figure 24), L is
an original corrupted layer, C is a structuring element of rank operator and k is a rank
parameter. We use that operator on every step of iterative process of reconstruction to

smooth borders of objects. The algorithm is modified the following way:

Repeat
Layer = Dilate( Layer, Mask )
Mask = Erode( Mask )
Mask = Union( Mask, Layer )
Layer Intersection( Layer, Rank(Layer) )
Layer Union( Layer, CorruptedLayer )
Until Restoration is complete

Steps 5 and 6 perform smoothing of objects. Figure 27 illustrates restoration with object

smoothing algorithm.
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Figure 27: Base algorithm with object smoothing

In Figure 28 you can compare layer restored by dilation with mask erosion operator with
the results of smoothing with different rank parameter (4, 5 and 6 respectively) applied to

this restored layer.
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Layer restored by dilation with mask erosion Smoothed with rank 4

b

Smoothed with rank 5 Smoothed with rank 6

Figure 28: Object smoothing by ranking.

You can see that the value of ranking parameter regulates how efficiently objects will be

smoothed.

4.5 Summary

Let’s illustrate principles of restoration discussed above. In Figure 29 you can compare
restored layers (last row) with the original (non-corrupted, middle row) and examine the

efficiency of restoration comparing to corrupted layers (first row).
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Figure 29: Corrupted, original and restored layer fragments.
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You can see that restoration significantly improves the consistency and visual appearance
of objects. All inner artifacts (holes made by text and other symbols) were completely filled.
Borders of objects smoothed and became more natural. Restored layer is very close visually

to the original.

4.6 Algorithm modifications

If we take a look into details of algorithm we can see that there are parameters which could
be modified. They are: the criterion controlling the amount of iterations in a process; the
structuring element of erosion and dilation operator; dilation and erosion operators could

be replaced by other (similar) operators (e.g. soft dilation and erosion).

Criterion of iterations

Criterion of iterations determines how long iterative process should be performed. There
are two approaches: Iterate until stability and Iterate fixed amount of times.

First approach assumes that iterative process will continue until layer (and a mask) stops
changing. Erosion of the mask sequentially decreases the mask: T' 2 &, (T')U X, =T"*. But
each erosion is concatenated with the current restored image X,. Therefore we can be sure
that iterative process has its limit: In>0: T'=T",Vi>n.Moreover, T" = X, . Therefore we
can iterate the process until layer (and a mask) stops changing.

Second approach assumes that we can restrict the amount of iterations with a fixed
number. We can determine average size of artifacts to be restored. Therefore, if we know
that, for example, average artifact size is 4 pixels, we can be sure that 2 or 3 dilations with

block 3x3 are enough for restoration.

Using alternative structuring elements

There are two structuring elements in our algorithm: in objects dilation and in mask
erosion. By changing the first element we can control how fast objects expand over the

mask. Changing of the second allows controlling how fast mask shrinks.
Recall the formula of iterative process:

X; =X, IT")

T =T HUX,

n=1..number _of _iterations

Essential thing is the relation between speeds of dilation and erosion. For our analysis we

can select following cases

J Objects dilating faster that mask eroding.
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A=block 3x3, B=cross 3x3.
o Objects dilating slower than mask eroding.
A=cross 3x3, B=block 3x3.
. Equal speed case
A=block 3x3, B=block 3x3 or A=cross 3x3, B=cross 3x3.

Further, basic algorithm modification with A=cross 3x3, B=cross 3x3 will be referred as Basic

algorithm.

Using soft erosion and dilation

Dilation and erosion operators could be replaced with their soft counterparts (see 2.2.3).
They are relaxed versions of their crisp analogues, and therefore can manage with objects
and mask more smoothly. Also, by varying the factor parameter of soft dilation and erosion
we can control the speed of expanding and shrinking. Further, that modification will be

referred as Soft algorithm.

Varying rank parameter in smoothing

As it had been shown above, varying of ranking parameter allows controlling the accuracy
of smoothing (see Section 4.4). Smoothness has an influence to the object consistency and
therefore such modifications also have to be considered. Further we will refer to them as

Smooth-1 and Smooth-2 modifications.
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5 Restoration of elevation lines

Following chapter is devoted to the solution of the same layer reconstruction problem
considered in 1.5 but applying to elevation lines layer. Reconstruction of elevation lines is
separated into a single chapter because of a significant difference in morphological
structure between elevation lines layer and “solid region” layers such as waters and fields.
Therefore morphological operators presenting good results on solid layers are not
appropriate when restoring that one. The most natural approach when reconstructing that
kind of layer is to design some heuristic algorithm constructing vector approximation of
elevation lines, corrupted by overlapping artifacts (e.g. [FAKKO02]). But we restricted
ourselves with low-complexity algorithms and chose mathematical morphology as a tool.
Approximation algorithms and other that kind of techniques are typically much more
complex than it is possible when using in mobile devices or other devises restricted in
computing power. Therefore we decided to continue using mathematical morphology as a
tool and to try to design an algorithm, which of course can not be better than complicated
heuristics, but which is based on simple morphological operators and appropriate for using

on devices considered above.

5.1 Problem analysis

As it was predicted, the most of modifications of basic algorithm designed above (see 4)
presented unacceptable results. Following Figure 30 illustrates results of restoration of
elevation lines layer with 4 modifications of base algorithm (Figure 24). Here we varied
Cross and Block (see Figure 7) structuring elements of erosion and dilation in different

combinations.
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Figure 30: Restoration of elevation lines with variations of base algorithm

Basic algorithm significantly deteriorates visual performance of the layer. Algorithm
version with objects smoothing (see Figure 27) performs better results. Following Figure 31
illustrates results of that algorithm. First row represents elevation lines restored with
Smooth-2 restoration (see 4.4), where smoothing rank parameter equal to 6 (left image) and
5 (right image) respectively. Second row contains results of Smooth-1 restoration where

rank parameter equal to 6 (left image) and 5 (right image) respectively.
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Figure 31: Restoration of elevation lines with object smoothing

You can see that though elevation lines were not restored completely, restoration algorithm
does not corrupt visual appearance of the layer. Best results were archived by Smooth-2
algorithm with rank parameter 5 which succeeds in several restoration of the layer. Further

we will refer to that algorithm modification as Contours algorithm.

Experiments with sample images showed that proposed morphology-based technique does
not reconstruct structure of the layer effectively. Restoration algorithms which were
effective when applying to solid region layers are not applicable to elevation lines layer
(Figure 30) or do not provide effective restoration (Figure 31). In Figure 32 you can compare
reconstructed layer with best visual appearance (first row second column of Figure 31) with

the corrupted layer.
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Figure 32: Elevation lines. Corrupted and restored

It is easy to see that restored layer do not differ from the corrupted significantly. And there
is no reason to expect significant compression improvement from that restoration
technique. Therefore we can conclude that restoration of elevation lines could be skipped
because it requires more complicated techniques than mathematical morphology can

provide.
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6 Removing asingle layer from a map

The task of restoration of layers arises also when there is a need for removing a layer (or
several layers) from a map. For example some less important layers, like e.g. elevation lines
could be unnecessary to the map user driving a car, moreover they can make difficulties for
reading a map. We can not just remove that layer because of artifacts it leaves on down-

laying layers. Therefore similar restoration technique should be applied.

6.1 Task definition

The task could be formulated in a following way:

For a given multi-layer map image and a layer from the map to be removed, design a proper
technique that eliminate artifacts (resulting from such removal) from underlying layers. The

main quality criterion is the visual appearance of the map without removed layer.

Consider a N-layer map M ={L,,..., L,,...,Ly}, where r is the number of layer to be
removed. The task is to design an operator (L) such that combined map image M such

that
ML, L (L) (L )}L)M

would be as much close to the original multi-layer map as possible.

6.2 Solution

The task of removing of a layer is a subtask of layer restoration. We just have to restore all
layers below the removing one using one of techniques proposed in Chapter 4. The

removing is performed as follows:

Algorithm of removing LayerX
Decompose combined map image into a set of Binary layers
For each Binary layer below LayerX do
Create Mask
EndFor
For each Binary layer below LayerX and Mask do
Apply reconstruction operator
EndFor

The algorithm is illustrated in Figure 33.
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Figure 33: Removing algorithm

Figure 34 illustrates the result of algorithm described above. Here Basic algorithm was used

as the restoration technique.

Original map Map with elevation lines removed

Figure 34: Removing elevation lines

We can see that algorithm effectively removed undesired layer from the image (elevation
lines in our case) and suppressed artifacts on the down-laying layers, performing good

visual appearance. Map readability simplified a lot.
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Further, to illustrate our approach we can remove Basics layer too. Take a look at the

following Figure 35.

\ 5

Original map Map with basic and elevation lines removed

Figure 35: Removing basics and elevation lines

Here is another example of removing unnecessary layers. Following map fragment (Figure
36) consists of 5 semantic layers instead of 4. The upper layer is a layer representing
territory borders (districts, private areas etc.). Other layers below this one are the same as it
had been considered before. Left image on the Figure 36 presents some urban region.
Naturally, most of users do not need elevation lines information or information about
territory borders when traveling in a city. Therefore it is naturally to remove these layers

from the map image.
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Original map Map with borders and elevation lines removed

Figure 36: Removing territory borders and elevation lines
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7 Implementation aspects

Following chapter discusses briefly the implementation details of described above
algorithms briefly. First we discuss how mathematical concepts proposed in Chapters 1.1
and 3 could be implemented. First subchapter covers the implementation of images,
structuring elements, and morphological operators. Second subchapter discusses software
implementation of proposed theoretical concepts. Also NIH Image] package used in

implementation as a base software tool is described briefly.

7.1 Implementing mathematical concepts

7.1.1 Image concept
The binary image space E (the space of all possible image pixel locations) is defined as

E =Z?, and the binary image X — as a set X < E of pixel locations:
X ={h=(i.7)| X (n)=0, hez?|

For simplicity we will use the grayscale image model (in which pixel values range from 0 to
255) to represent binary image so that black pixel will have minimum intensity (0 value)

and white pixel will have maximal intensity (255 value). In this representation we assume

the following characteristic function X (h) 72 — {0,255}

X(h):{o,if heX

255, otherwise

We will model the binary images: the image X as a rectangular matrix [ X ]W ., of pixels in

which, an image pixel is black and background pixel is white. Then we can write:

[Xdws =g =X ((00)) ie[tw], je[LH])

where W and H are the image horizontal and vertical dimensions respectively.

In the following we assume that there is an established relationship between image X

(which is a set of pixel location), the model of image (a matrix of pixel values [X]W o)

characteristic function X (h) yielding the value of the pixel at a given location h= (i, j),
and the pixel valueX; j = X ((i, j)) We will also use the grayscale image representation as

agreed before
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7.1.2 Representation of a structuring element

We represent the structural element A as a set of pixel locations relative to the origin (in

practice it is implemented as two arrays for each dimension respectively).

For example, for a given structural element:

the set of pixel location is

and it is implemented as two arrays:

A* ={-1,0,1,-1,0,1,-1,0,1},

AY ={1,11,0,0,0,-1,-1,-1}
7.1.3 Implementation aspects of morphological operators.

Dilation
Recall definition of dilation operator.
5A(X)={heE|/3hﬂx ;t@}

Under our image model the dilation Y =§,(X) can be computed as:

Y]y ={yi,j= min X ((i,1)- A[K])} i< [Lw] je[l,H]}

=LA
Here:

. A[k] denotes the k-th element of set A and (ﬂ— A[k]) is a translation of pixel

location (i, j) along vector —A[k]. The translation is negative because of the use of a

transposed structuring element A;

e the min{---} equation is interpreted so that pixel at location (i, j) will be black (has

value 0) if any of pixels at locations (i, j)— A[k] is black.

In practice Y; j is computed using X; j as follows:
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Yioj = kQ’l‘.i.ﬁ'AH {X (G.7)- A[k])} = kfl‘.i.H”AH Xi-A k], i-A[K]

Erosion

Similarly for erosion:

For
Y=gp(X)=XOA={heE|A c X|
it follows that

g = A {X ((i, N+ A[k])} = R Al A

the max { . } equation is interpreted so that pixel at location (i, j) will be black if and only

if all of pixels at locations (i, j)+ A[k] are black.

Rank operator

Similarly for rank operator:

Y = pas(X)={h| X N A, contains at least s elements}.

Then

|0 oo X (@D Ak >

255, otherwise
here countO{- . } is a function that counts number of black pixels in a given set of locations.

As it has been shown before, every morphological operator (even though erosion and
dilation) can be represented using rank operator. It means that when implementing

morphological operators we can do it uniformly using rank as a base operator.

7.2 Software implementation

All algorithms considered in chapters 4, 5 and 6 were implemented in Java using NIH
Image] framework. As our algorithms are based on mathematical morphology, first we
implemented a set of morphological operators and structuring elements. Further, basing on
morphological operators, we implemented algorithms of the current thesis as Image]
macro-language scripts. This allowed to concentrate on the realization of actual layer
processing and to avoid a lot of specific programming problems and implementation
details.
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7.2.1 Imaged in general

Image] is a public domain Java image processing program inspired by NIH Image for the
Macintosh. It runs, either as an online applet or as a downloadable application, on any

computer with a Java 1.1 or later virtual machine.

It can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images in TIFF,
GIF, JPEG, BMP, DICOM, FITS or "raw" formats. It supports "stacks", a series of images that
share a single window. It is multithreaded, so time-consuming operations such as image

file reading can be performed in parallel with other operations.

Image] was designed with an open architecture that provides extensibility via Java plugins.
Custom acquisition, analysis and processing plugins can be developed using Image]'s built
in editor and Java compiler. User-written plugins make it possible to solve almost any

image processing or analysis problem.

The source code is freely available. The author, Wayne Rasband (wayne@codon.nih.gov), is
at the Research Services Branch, National Institute of Mental Health, Bethesda, Maryland,
USA.

7.2.2 Plugins

Functions provided by Image] could be extended by plugins. In fact, the most of Image]J
standard functions are implemented as plugins. Plugins are loadable code modules that
extend the capabilities of Image]. Using plugins you can implement any needed algorithm
concentrating on implementation of how actually image has to be processed. All
background work when reading, displaying, magnifying, applying ROI, etc. will be
handled by Image]. For a developer, plugin is a Java class implementing necessary interface
placed into a certain folder. Plugins could be written in Image] Java editor or in any
existing Java environment, recorded with Image] macro recorder or written on Image]

internal macro language.

All morphological operators on which our algorithms are based were implemented as
Image] plugins. This allows using them in Image] macro language, which is a very flexible

tool for combining simple image operators into a complicated algorithm.

7.2.3 Implementing rank operator

As it had been discussed, rank operator was used as a base operator when we were
implementing all other operators such as dilation, erosion, etc. For example dilation
operator could be implemented as rank operator on the same structuring element with rank
parameter equal to 1. Therefore, first we implemented rank operator as Image] plugin and

then used it in implementation of all other operators. Here is a brief description of plugin
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implementing rank operator. It tells us about its source file, input parameters, its output,

example of usage in Image] and a brief description of how algorithm was implemented.

Source file:
Rank_.java
Input:
binary image
“rank” — integer rank parameter:
“element” — string name of structuring element
Output:
binary image
Usage:
1J.run(""Rank ", "rank=2 element="BLOCK 3X37'");

The plugin implements rank operator Rank(Element, Rank), where Element is a structuring
element defining the neighborhood and Rank is rank parameter, sets pixel to be black if the

local neighborhood of the current pixel location contains at least Rank black pixels.

Algorithm:

Procedure Rank(A : structuring element, s : integer)
For each y do
For each x do
Count pixels in intersection of A
and source image at current pixel location (X, y)
IT that number is bigger than s then
Put black pixel to a destination
Else
Put white pixel to a destination
EndFor
EndFor
End

Rank plugin is implemented using 2 nested functions: run() - interface function which
takes input image and parameters and then calls doFi I'ter () function, which takes source
and destination ImageProcessor classes, structuring element Element and integer rank
parameter and do the actual ranking. If rank parameter is greater than Element. length
or less than 0 then it is assumed to be equal to Element. length. ImageProcessor is

internal Image] class implementing handling of the image data, e.g. accessing pixels values,
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changing the type of the image, etc. Besides that it has a lot of predefined frequently used

methods like threshold, histogram functions, etc.

Other plugins, implementing other rank based morphological operators, are implemented
as a wrapper classes. These classes handle user given parameters (typically it is just a type
of structuring element), calculate appropriate rank parameter value and then call rank
plugin to perform the operation. This way we can avoid concentrating on the
implementation details and use once developed rank operator to implement all others.
Such approach also simplifies the bag tracking. If some error had been found once in a
source code, then it can be easily localized in rank plugin and the update will be naturally

spread to all other operators without any recompilation.

7.2.4 Developed plugins

In order to use mathematical morphology as a tool we have implemented a set of following
morphological operators: Rank operator (the base morphological operator), Erosion,
Dilation, Open, Close, OpenClose, CloseOpen, Alternating Sequential Filters, Rank-max Opening
and Rank-min Closing. All operators support 10 different structuring elements. Besides that,
the following extensions of classical morphological operators proposed by Heijmans [H9%4,
H95] were implemented: OwverFilter operator, UnderFilter operator, OverUnderFilter and

UnderQuverFilter operators.

Restoration algorithms proposed in a current thesis were implemented as macro-language
programs. Following the definition every algorithm requires as input two binary images —
corrupted layer and conditioning mask. Algorithm applies restoration technique and
produces two images — restored layer which actual output of the algorithm and modified

mask which can be skipped.
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8 Evaluation

8.1 Objectives of evaluation

The restoration techniques have been evaluated on a set of topographic color-palette map
images. These map images were decomposed into binary layers with distinctive semantic
meaning identified by the pixel color on the map. The restoration algorithms have been
applied for reconstruction of these semantic layers after the map decomposition process.
Both the combined color map images and the binary semantic layers composing these color
map images were originally available for testing. This fact gave us possibility to compare

restored images with their original undistorted counterparts.

The performance of the proposed restoration techniques has been evaluated quantitatively

and qualitatively.

e The objective of the qualitative evaluation was to compare the images visually and
decide on the usability of the restoration techniques in applications where human
visual factor plays prevailing role.

e The first objective of quantitative evaluation was to compute and compare the
differences between the original and corrupted layers and original and restored layers.
The second objective was to calculate the compression performance in applications
were map image is compressed as a set of its binary layers. All selected restoration
methods were evaluated against three major compression techniques: LZ (PNG), ITU
Group 4 (TIFF), JBIG. For each of these compression methods we measured the
compressed data size for the original semantic layers, similarly for the corrupted
binary layers after decomposition, and similarly for reconstructed binary layer using
each of the reconstruction method.
In the following sub-sections we present the algorithms we have evaluated, the test set, the
brief description of the compression techniques and image difference measures used in the

evaluation process. Finally we give the results of the evaluation.

8.2 Restoration algorithms

We experimented with various modifications of the reconstruction algorithm, and finally
chosen most prominent candidates for the evaluation. These four chosen restoration

methods are shown in Table 1:
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Table 1: Restoration methods

Method: Basic Soft Smooth-1 Smooth-2
Equation (reference) See 4.3 See 4.6 See 4.4 See 4.4
Structural element for dilation cross 3x3 block 3x3 cross 3x3 cross 3x3
Structural element for erosion  cross 3x3 block 3x3 cross 3x3 block 3x3
Algorithm modification none Soft dilation and erosion  Smoothing added Smoothing added
Performance low average good good
Passes over the image 2 2 3 3

The methods are as follows:

Basic

This algorithm is a version of basic algorithm where structuring element for erosion
and dilation is cross 3x3. This algorithm was chosen due its computational simplicity.

Although during prior investigation it has demonstrated relatively low performance.

Soft

The algorithm is a version of basic algorithm where erosion &, (X) and dilation
5A(X) is replaced with their “soft” counterparts EA(X,Z) and 5A(X,2)

respectively. The block 3x3 structuring element is used. Rank parameter for soft
operations has been chosen 2. This algorithm modification demonstrated average

performance with average computational complexity.

Smooth-1

The algorithm is a version of basic algorithm where structuring element of erosion
and dilation is cross 3x3 and smoothing of objects with rank parameter equal to 6 is
implemented. Algorithm demonstrated good performances but computational

complexity is relatively high.

Smooth-2

Algorithm is very similar to Smooth-1 but structuring element of erosion is cross 3x3
and of dilation is block 3x3. Also the smoothing of objects with rank parameter equal
to 6 is implemented. Algorithm showed good performance but computational

complexity is also the highest.
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Contours

Elevation layer are reconstructed using an own reconstruction algorithm. This
algorithm is a modification of Smooth-2 algorithm with smoothing rank parameter
equal to 5. All other characteristics of that algorithm are the same as Smooth-2. The
method was chosen due the best visual performance when applying to Elevation layer.
Other methods presented very poor performance when restoring elevation lines,
therefore that layer was reconstructed this that modification of Smooth-2 only.
Although Smooth-2 is another modification, for simplicity we will refer to Elevation

algorithm as to Smooth-2 when talking about Elevation layer.

8.3 Test set

The test set includes five randomly chosen images from the “NLS Basic Map Series 1:20000”
corresponding to the map sheets No/No 431306, 124101, 201401, 263112, and 431204. Each
map image consists of four binary component layers, each has the size of 5000 x 5000 pixels.
The images are denoted as ImageX, and the layers as LayerX, where Layer is the layer name,
and X is the relative domain number from 1 to 4 in a given order. The layer names are

following:

e Basic — topographic image, supplemented with communications networks, buildings,
protected sites, benchmarks and administrative boundaries;

e Elevation — elevation lines;
e Water —lakes, rivers, swamps, water streams;

e Fields — agricultural areas.
8.4 Image difference measures

We will use two following image quality measures to evaluate the quality of restoration.

Measures:
NMAE (Normalized Mean Absolute Error) — Hamming Distance:

H W
ZZ‘Xi,j_yi,j‘
NMAE (X,Y )= 121':]11{ -

Where H and W are image dimensions.
The measure depends on the amount of coinciding pixels contained by images.

NWMAE (Normalized Weighted Mean Absolute Error):
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NWMAE (XY ) = —

Where H and W are image dimensions and W,; is a weighting coefficient, given by

equation

W)’ X

Wi = Z

W,
Wi
1=-W, k=W,

Xi+k,j+| - yi+k,j+|

Where W, are elements of [2W, +1]><[2Wy +1] matrix W called weighted masking element.
W, and W, are half-dimensions of matrix W . The origin of W is assumed to be at the

center of the matrix. For example (W, =1, W =1, A sign points the origin),

1

=
I
(ORI N

1 1

Idea of this measure is to improve NMAE by take into consideration the neighborhood of
every pixel. The neighborhood is determined by weighted masking element W . The degree

of how neighboring pixel affects the measure depends on its weight in a matrix W .

Equations above assume that pixel values are 1 for foreground and 0 for background. In
our particular implementation, when pixel values are 0 for foreground and 255 for
background, we have to use 255-H - W scaling coefficient instead of H - W in order to keep

measure value in 0 to 1 range.

8.5 Qualitative evaluation

The object of qualitative evaluation is to compare the performance of restoration techniques
visually. Figures below represent the performance of restorations algorithms applied to
500x500 map fragment shown on Figure 37. Each figure contains the original
(uncorrupted), corrupted and four restored layers for Elevation (Figure 37), Waters (Figure

38) and Fields (Figure 39) layers respectively.

For Waters and Fields layer all restoration techniques presented similar good-looking
results. We found that proposed techniques are equally suitable for restoration tasks where
the main quality criterion is visual appearance of restored layer. For example, for the task
of layer removing, described in Chapter 6. In contrast, visual appearance of restored

Elevation layer is not as handsome as appearance of other layers. This caused by the
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complicated semantic structure of that layer and we conclude that more sophisticated

heuristics should be considered for that kind of restoration.
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Figure 37. Original combined map image and Elevation layer.
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Figure 38. Restoration of Waters layer.
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8.6 Compression results

This subsection contains compression results for PNG, TIFF and JBG file formats. Notice
that Basic layer is not corrupted and therefore do not require any restoration. Also Elevation
layer was restored only with Smooth-2 algorithm due unacceptable performance of other
techniques. Therefore the results for Basic and Elevation layers are marked with “—" sign to

indicate that given algorithm was not applied to the layer.

On the other hand, when calculating total compressed size (the sum of all compressed
layers) for each restoration technique, Basic and Elevation layers must be taken into an
account too, although they were not restored at all (like Basic layer) or e.g. Elevation layer
was restored only with Smooth-2. Therefore, when calculating total for Basic layer we will
use “Semantic layers” number — a number for uncorrupted compressed layer. And for
Elevation layer Smooth-2 number (when Elevation was restored with Smooth-2) will be used

in all other restoration techniques.

8.6.1 Results per reconstructed layer

We know that different types of layers have theirs distinct morphological structure.
Therefore we expect that different restoration techniques will affect them in a different
way. In this subsection results of experiments are classified with respect to the types of
layers. This allows evaluating the performance of restoration algorithms depending on the

layer which it had been applied to.

Results for Elevation:

As it had been discussed in Chapter 5, the Elevation layer was reconstructed with only one
algorithm Smooth-2 because of poor visual performance of alternatives. The experimental
results showed, as it also had been predicted in Chapter 5, that reconstruction do not affect
the layer significantly and the compression improvement ratio is only about 4% in the best
case or even became negative in the worst. This allows to state that mathematical
morphology is not a tool for restoration of such kind of layers as Elevation, and if another

restoration technique is not applicable, then it can be skipped completely.

Following Table 2 represents file sizes in bytes and compression improvement ratios in
percents for original, corrupted and restored Elevation layer. Figure 40 illustrates data
presented in a Table 2 graphically. Figure 41 illustrates compression improvement ratios

presented in Table 2.
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Table 2: Results of restoration of “Elevation” layer

Compression Semantic Corrupted Reconstructed layers
algorithm layers layers Smooth-2 %
Uncompressed 25 000 000 25 000 000 25 000 000 —
PNG 3 302 040 3 232 502 3 247 832 0.47
TIFF 1843 244 1925 352 1859 736 341
JBIG 944 838 1077 690 1 036 554 3.82
3500 000
3000 000
2500 000
8 2000 000- it W Original
2 1500000 & @ Corrupted
L T
1 000 0004 __ a8 B Restored
500 000 i
07 I T [ 1
JBG PING TIFF-4

Figure 40: File sizes of “Elevation” layer compressed with JBIG, PNG and TIFF. Bars represent original,

corrupted and restored with “Elevation” algorithm layers.
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Figure 41: Compression improvement of “Elevation” algorithm for “Elevation” layer

Results for Waters:

Waters layer was reconstructed with four different algorithms. Since that layer has more

regular

morphological

structure,

reconstruction demonstrated

significantly better
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compression improvement up to 50%. Experiments showed that Soft restoration algorithm

is the best for Water layer restoration. Following Table 3 represents file sizes in bytes and

compression improvement ratios in percents for original, corrupted and restored Waters

layer. Figure 42 illustrates data presented in a Table 3 graphically. Figure 43 illustrates

compression ratios presented in Table 3.

Table 3: Results of restoration of “Water” layer

Compression | Semantic Corrupted Reconstructed layers
algorithm layers layers Basic % Soft % | Smoothl % | Smooth2 %
Uncompressed | 25000000 25000000 | 25000000 — | 25000000 — | 25000000 — 25000000 —
PNG 1526431 1703447 | 1576740 7.44 | 1539062 9.65 | 1561013 8.36 1559218 847
TIFF 669 444 1428 656 732704 48.71 | 674520 52.79 | 892104 37.56 896 906 37.22
JBIG 325334 549 032 402749 26.64 | 372918 32.08 | 444094 19.11 446 740 18.63
1 800 000
1 600 000
1 400 000 2
1 200 000 B Original
g 1 000 000 Corrupted
; 800 000 | @ Basic
i B Soft
600 000 | |B Smooth-1
400 000 V: — |0 Smooth-2
200 ooot =
o W 7
JBG PNG TIFF-4

Figure 42: File sizes of “Water” layer compressed with JBIG, PNG and TIFF. Bars represent original, corrupted
and restored with four restoration algorithms layers.
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Figure 43:

Compression improvement of four different restoration algorithms for “Water” layer when

compressing with JBIG, PNG and TIFF respectively.

Results for Fields

Fields layer was also reconstructed with four different algorithms. Reconstruction achieve

d significant (up to 55%) compression improvement for all compression techniques.

Experiments showed that Smooth-1 algorithm is the best when reconstructing Fields layer.

Following Table 4 represents file sizes in bytes and compression improvement ratios in

percents for original, corrupted and restored Fields layer. Figure 44 illustrates data

presented in a Table 4 graphically. Figure 45 illustrates compression ratios presented in

Table 4.
Table 4: Results of restoration of “Fields” layer
Compression | Semantic Corrupted Reconstructed layers
algorithm layers layers Basic % Soft % | Smoothl % %
Uncompressed | 25000000 25000000 | 25000000 — 25000000 — 25000000 — —
PNG 309 712 456 710 335924 2645 | 330811 2757 | 320821 29.75 29.76
TIFF 99 622 196 456 118696 3958 | 119484 39.18 | 105388  46.36 46.19
JBIG 49 409 113977 62 065 45.55 59 879 47.46 50 936 55.31 54.83
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Figure 44: File sizes of “Fields” layer compressed with JBIG, PNG and TIFF. Bars represent original, corrupted
and restored with four restoration algorithms layers.
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Figure 45: Compression improvement of four different restoration algorithms for “Fields” layer when
compressing with JBIG, PNG and TIFF respectively.

8.6.2 Totals per compression methods

The following subsection classifies experimental results with respect to the applied
compression technique. In a real Digital Spatial Library we can not vary the compression
technique used. Therefore it makes sense evaluating total compression improvement

performed by the restoration algorithm for a given compression method.
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Compression results for PNG:

Examining experimental data for PNG compressing technique showed that Soft restoration

algorithm presented the best (up to 3.20%) compression improvement. Table 5 presents the

data for PNG compression.

Compression results for ITU G.4 (TIFF):

Examining experimental data for TIFF compressing technique showed that Soft restoration

algorithm also presented the best (up to 13.1%) compression improvement. Table 6 presents

the data for TIFF compression.

Compression results for JBIG:

Examining experimental data for JBIG compressing technique showed that Soft restoration

algorithm also presented the best (up to 8.58%) compression improvement. Table 7 presents

the data for JBIG compression.

Table 5: Experimental results for PNG compression

. Semantic Corrupted Reconstructed layers
Test images
layers layers Basic Soft Smooth-1 Smooth-2
Basic 1-4 3205301 — — — — —
Elevation 1-4 3302 040 3232502 — — — 3247 832
Water 1-4 1526 431 456 710 1576 740 1539 062 1561013 1559 218
Fields 1-4 309 712 1703 447 335 924 330 811 320 821 320 796
TOTAL (16) 8 343 484 8597 960 8 365 797 8323 006 8334 967 8333 147
Compression — — 2.70 % 3.20 % 3.06 % 3.08 %
improvement
Table 6: Experimental results for TIFF compression
) Semantic Corrupted Reconstructed layers
Test images
layers layers Basic Soft Smooth-1 Smooth-2
Basic 1-4 3282984 — — — — —
Elevation 1-4 1843 244 1925 352 — — — 1859 736
Water 1-4 669 444 1428 656 732 704 674 520 892104 896 906
Fields 1-4 99 622 196 456 118 696 119 484 105 388 105718
TOTAL (16) 5895 294 6 833 448 5994 120 5936 724 6 140 212 6 145 344
Compression — — 12.28 % 13.12 % 10.14 % 10.07 %
improvement
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Table 7:

Experimental results for JBIG compression

) Semantic Corrupted Reconstructed layers
Test images
layers layers Basic Soft Smooth-1 Smooth-2
Basic 1-4 1420 330 — — — — —
Elevation 1-4 944 838 1077 690 — — — 1 036 554
Water 1-4 325334 549 032 402 749 372918 444 094 446 740
Fields 1-4 49 409 113977 62 065 59 879 50 936 51 488
TOTAL (16) 2739911 3161 029 2921 698 2 889 681 2951914 2955112
Compression — — 7.57 % 8.58 % 6.62 % 6.51 %
improvement

8.6.3 Total results

The Table 8 represents averaged total sizes and compression improvements of original,

corrupted and four restored map sheets. Average total size is the average compressed file

size of a map image representing a single map sheet. Figure 46 illustrates the data

presented. Figure 46 illustrates compression improvement ratios presented in Table 8.

Table 8: Averaged total results

Compression | Semantic Corrupted Reconstructed layers
algorithm layers layers Basic % Soft % | Smoothl % Smooth?2 %
PNG 2085871 2149490 | 2091449 270 | 2080752 320 | 2083742 3.06 | 2083287  3.08
TIFF 1473824 1708362 | 1498530 12.28 | 1484181 13.12 | 1535053 10.14 | 1536336 10.07
JBIG 684 978 790 257 730 425 7.57 722 420 8.58 737 979 6.62 738 778 6.51
14.00 %
c 12.00 %
@
£
S 10.00 %
o
g_ 8.00 % - B Basic
= i 8 Soft
2 6.00% = & Smooth-1
%] 17
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0.00 %- :
PNG TIFF-4 JBG

Figure 46: Averaged total compression improvement of restoration algorithms

75



8.7 Combined algorithm

Since analysis of restoration techniques for every single layer showed that Soft algorithm
presented best compression improvement for Waters layer and Smooth-1 presented the best
improvement for Fields layer, we decided to propose and evaluate Combined algorithm.
Combined algorithm is the algorithm, where Elevation layer is reconstructed with Contours
algorithm, Waters layer is reconstructed with Soft algorithm, and Fields layer with Smoth-1
algorithm. Using of best restoration techniques for every single layer has to improve total
compression performance. The Table 9 represents averaged total file sizes and compression
improvements for Combined algorithm. Figure 47 illustrates averaged total compression

improvement of Combined algorithm.

Table 9. Combined algorithm results.

) ) Reconstructed layers
Compression | Semantic Corrupted -
algorithm layers layers Combined %
approach

PNG 2085871 2149490 2078 254 3.31 %

TIFF 1473824 1708362 1480 657 13.33 %

JBIG 684 978 790 257 720 185 8.87 %

14.00 %
= 12.00 % -
£
% 10.00 % o
S 800% - PNG
= BITIFF-4
% 6.00 % BIBG
o
S 4.00%
£
S
O 2.00% H
0.00 %
Combined algorithm

Figure 47. Compression improvements of combined algorithm

Combined algorithm presented several improvements in total compression improvement
comparing to averaged total results (Table 8) where all layers were reconstructed with

unchanged restoration technique.
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8.8 Image difference

We measure the following differences: a difference between the restored layer and the

original (uncorrupted) layer; and the difference between the original and corrupted layers.

First allows the evaluation of corruption caused by decomposition, and the second shows

how close restoration techniques approximate corrupted layer to the original one.

Figure 48 and Figure 49 illustrate the difference measured by NMAE and NMWAE

respectively. Here total averaged differences (differences for all layers were calculated for

every sample in a test set; then average difference was calculated) are presented.
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0.015+
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0.01+
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B Smooth-1
B Smooth-1

Figure 48. Difference between original (uncorrupted) layer and layer restored by restoration algorithms measured by

NMAE.

0.014
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B Smooth-1
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Figure 49. Difference between original (uncorrupted) layer and layer restored by restoration algorithms measured by

NMWAE.

In sense of image difference measures, Basic and Soft algorithms create the best

approximation of the corrupted layer to the original.
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9 Conclusion

In this work we have developed a technique for restoration of binary semantic layers of the
map images resulting from the decomposition of the image using color separation process.
The technique is able to reduce the corruption of the layers caused by the decomposition.
This also reduces the entropy of the reconstructed images and, therefore, improves the
compression performance. The color map image resulting from the combination of the
reconstructed layers remain identical to the original because all changes to the layer content
are performed only within those areas that will be certainly overlapped during the

composition.

The proposed technique is based on Mathematical Morphology. The base algorithm uses
the conditional dilation operator. We have modified that operator and proposed the erosion of
the mask to avoid the most disadvantages of standard conditional dilation. Three possible
modifications of the proposed base algorithm were considered. First modification is based
on varying the structuring element of dilation and erosion operator. This varying allows
controlling the speeds of expanding and shrinking of objects when dilation and erosion
operators are applied. Second modification is based on the using of soft counterparts of
morphological operators. Soft morphological filters are less sensitive to additive noise and
small variations in the shapes of the object. Besides that, soft morphological operators allow
controlling the speed of dilation and erosion by varying the value of rank parameter. Third
considered modification is a smoothing approach. The idea was to use rank operator to

smooth borders of objects.

The four chosen restoration techniques (Basic, Soft, Smooth-1 and Smooth-2) have been
evaluated on a set of topographic color-palette four-layer (Basics, Evaluation, Waters and
Fields) map images. Besides that, the technique for layer removal was developed using
proposed restoration operator. The restoration algorithms have been applied for
reconstruction of semantic layers after the map decomposition process. Both the combined
color map images and the binary semantic layers composing these color map images were
originally available for testing. This fact gave us possibility to compare restored images

with their original undistorted counterparts.

The performance of the proposed restoration techniques has been evaluated quantitatively
and qualitatively. The objective of the qualitative evaluation was to compare the images
visually and decide on the usability of the restoration techniques in applications where
human visual factor plays prevailing role. The first objectives of quantitative evaluation
were to compute and compare the differences between the original and corrupted layers
and between the original and restored layers; and to calculate the compression

performance for three major compression techniques: LZ (PNG), ITU Group 4 (TIFF), and
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JBIG. Results of experiments were classified in two ways: by semantic layers and by

compression techniques.
Calculating and comparing of image differences showed that,

e Results presented by Basic and Soft algorithms are closest to the original in sense of
image difference measures NMAE and NMWAE.

Classification by semantic layers showed that:

e Restoration of Elevation layer presented very poor compression improvement for all
compression techniques. The best result achieved using JBIG compression was only
3.82% of improvement. We conclude that developed restoration technique is not
effective when applied to such kind of layer because of its morphological structure.
Compression improvement is too small to be practical.

e Restoration of Waters layer showed that developed technique gains up to 52.79% of
compression improvement. That result was achieved by Soft algorithm using TIFF
compression. Using other compressions Soft algorithm was also the best one and
gained 32.08% with JBIG and 9.65% with PNG. We conclude that Soft algorithm is
effective in restoration of Waters layer and makes sense to be applied.

e Restoration of Fields layer showed that developed techniques gains significant
compression improvement. The best result 55.31% was shown by Smooth-1 algorithm
using JBIG compression. Smooth-1 algorithm was also the best in compression with
other techniques. It gained 46.36% when compressing with TIFF and 29.75% when
compressing with PNG. We conclude that Smooth-1 algorithm is effective in restoration
of Fields layer and makes sense to be applied.

Classification by compression techniques showed that:

e Soft algorithm was the best in average compression improvement for all compression
techniques. It gained 8.6% for JBG, 13.1% for TIFF and 2.7% for PNG.

e Though restoration can gain significant improvement for a single layer, it is not so
effective in sense of total compression improvement. This effect caused by the fact that
multi-layer map contains layers (Basics and Elevation) which can not be compressed
more efficiently using restoration. This makes the effect of restoring Waters and Fields
layer less significant.

We conclude that Basic and Soft algorithms are the best within investigated modifications.
The restoration of standalone Waters and Fields layers gains up to 30-50% compression
improvement (depending on the applied compression technique). Combined algorithm
performs the best results in total compression (sum of all layers) allowing gaining up to 5-
10% improvement (depending on the applied compression technique). Low total
improvement rates caused by the presence of non- or hardly restorable layers, such as

Basics and Elevation.
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10 Future Work

Global modeling and pattern matching.

Remarkable improvements in image compression have been achieved by specializing in
some known image types (e.g. text images) and exploiting global dependencies. The
emerging standard JBIG2 [H+98] will segment a page into different classes of image data, in
particular, textual, halftone and generic (other) [TK99], and utilize the repetitive nature of
the textual and halftone images. For textual data, JBIG2 uses either pattern matching and
substitution or soft pattern matching techniques. The first extracts symbols and marks from
the image into the dictionary, which is a collection of bitmaps, and substitutes similarly
looking patterns in the image with the indices into dictionary [IW94]. The latter technique
uses two-layer context template to encode refinement data used to losslesly recreate
original symbols in the image [H97]. Some data, such as line art data, may not be identified
as either textual or halftone, and is encoded by cleanup coder, which is essentially a bitmap
coder similar to JBIG [MF99].

It would be worth to develop an algorithm to extract the symbols and marks from the map
images into a separate Symbolic layer, for which JBIG2 can be applied. The difficulties here
are such that, at least in our sample images, the text may be drawn in the same color as
topographic data (i.e. located on the same physical layer), which complicates the separation
process. In other words, the textual data is integrated into topographic data, and is often
overlap each other. Thus, an advanced compression algorithm based on JBIG2 must be
developed for the compression of similarly combined layers. The pattern matching
technique must be able to extract the symbols even if they overlap with other type of
geographic data.

Advanced image compression algorithms.
Lately, there have been proposed advanced map image compression algorithms that gain
about 25% in compression performance over JBIG. These algorithms are based on:

e variable-size context-based modeling using context trees, which utilizes higher-order
context templates without context dilution problem, see [AF00a];

e multi-level optimal-order context-templates, which utilize inter-layer dependencies,
see [AKFO01];

e or their optimized combination, see [KF03].

It would be interesting to apply these algorithms in order to evaluate their performance for

compression of corrupted and respectively restored semantic layers.
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11 List of symbols

Symbol

E

E

Ed
P(E)

Meaning

Abel group

Discrete or Euclidian image space
d-dimensional product

Power set of E

Complement of X

Translate of A along vector h

Cardinal value of A

Morphological transformation of X using structuring element A

Minkowski addition

Minkowski subtraction

Dilation of X by A

Erosion of X by A

Reflectance of A

Rank operator

Conditional dilation of A by B relative to T

Soft dilation by A with factor r

Soft erosion by A with factor r

Multi-layer map
Combined map image
Layer combination process

Map decomposition into layers using color separation

Paragraph
reference

2.1.1
2.1.1
211

221
222
223

223

3.1
3.2
3.2

3.3
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Appendix. lllustration of layer removal.
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Fragment of the reconstructed map image with elevation lines layer removed.
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