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Abstract

In color quantization, we create a small palette from the image, and then map pixel

by pixel all colors in the image to palette colors. Thus the quantized image con-

tains only colors from the palette. Palette generation is a clustering problem in

three-dimensional space. As the clustering problem is NP-complete problem, fea-

sible palette generation algorithms are either heuristic or approximative in nature.

Hierarchical methods are a much researched heuristic clustering algorithm class.

There are two basic categories of hierarchical algorithms: divisive and agglomerative.

First we review existing divisive and agglomerative algorithms. Notoriously divisive

methods are fast and agglomerative are slow. In this thesis, we present our own

agglomerative clustering algorithm that uses k nearest neighbour graph. The goal is

to design an agglomerative clustering algorithm that runs as fast the divisive methods.

We study experimentally the performance of the nine different clustering algorithms.

As testing material we have three images. Test will be run on different palette sizes.

We will study, the quality of the quantized and how fast quantization was performed.

Keywords: color quantization, vector quantization, hierarchical clustering, cluster-

ing, agglomerative methods, divisive methods, kNN graph
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Chapter 1

Introduction

“Prediction is very difficult, especially of the future.”

– Niels Bohr

The idea of color quantization is to reduce the number of colors in a full color (24-bit)

image. A smaller set of representative colors is called color palette. Reduction should

be performed so that the quantized image differs as little as possible from the original

image. A 24-bit color image contains at most 224 = 16777216 different colors. These

colors are represented as three dimensional vectors, each vector element having 8-bit

dynamic range, allowing 28 = 256 different values. These vectors are often called

RGB triplets.

In color quantization, the original colors of the image are mapped to a smaller subset

of colors. Algorithmic optimization task is to find such a color palette that the overall

distortion is minimized. An example of color quantization is depicted in Fig. 1.1.

First, a color palette is found by using clustering algorithm and then the original

image values are replaced by their closest values in the palette.

11 13 15 17

13 25 27 19

15 27 21 21

17 19 21 23

11 17 23 =⇒

11 11 17 17

11 23 23 17

17 23 23 23

17 17 23 23

Figure 1.1: Example of quantization, where the original image is shown left, the color

palette in the middle, and the quantized image in the right.

Fig. 1.2 shows an example of quantizing a 24-bit full color image to 16 colors. We
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can see that general features of the image are retained in the quantized image: the

two parrots are in the same positions and even small details in the heads of the

parrots are mostly untouched by the quantization. On the other hand, a lot of new

edges appear in the background. This phenomenon is called a false contouring, and

it results from not having enough colors to represent smooth change from one color

to another. Areas with smooth changes are called color gradient or low frequency

areas in the image. Elimination of the false contouring is one of the most challenging

problems in color quantization.

Figure 1.2: 24-bit parrots image quantized to the 16 colors.

Originally color quantization research was motivated by the need to show 24-bit color

images in color monitor [50], which were able to handle only 256 different colors.

In 1994, Xiang et al. wrote: “In our instructional lab, we have only a few 24-bit

workstations, which means that students usually have to create their full-color projects

on 8-bit machines” [107]. This situation has completely changed from 1994. At the

moment of writing this thesis, 24-bit display adapters are common, thus negating the

need for real-time color quantization in personal computer color displays. Therefore,

we need to find another motivation for our work. In the following, we list a few

applications, where color quantization can be found.

1.1 Object Recognition and Image Analysis

Content-based image retrieval is a problem, in which we want to find a set of images

that match closely to the query image provided by user. A closely related problem is

object recognition, where one part of the query image needs to be matched against the

database of images, for example detecting melanoma cases in medical imaging [66]. In
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both problems, color histograms of the database and query images are used as feature

vectors in the matching. The idea is that image retrieval algorithm computes distance

between feature vectors of the query image, and the corresponding database images.

Images with the smallest distances are retrieved for the user. If color quantization is

used as a pre-processor, quantizing 224 histogram bins to 15 bins, for example, recog-

nition accuracy is increased from 37% to 78% according to [80]. At first glance this

result is counter intuitive because information is thrown away. However, quantizing

to 15 bins can be considered as a dimensionality reduction method that are known

to improve recognition accuracy in general [89].

A related application is automatic text location detection from complex color images.

Possible images are magazine covers, where automatic process should be able to detect

all textual fields [61]. If the algorithm knows, which is the background color, then

text location detection is easy. In binary images, this is possible, as one of the colors

is background color. In color images, however, the number of potential background

colors is higher. This means that a lot of comparisons needs to be done before

the background can be separated from the foreground. Color quantization can be

used as a preprocessing step for reducing the number of comparisons, and therefore,

to make it easier to separate foreground colors from the background colors. Real

life color image has multiple colors in background and foreground, especially if the

background has a scenery photo and foreground is overlayed text. For that reason,

color quantization method has to be careful that some foreground and background

colors are not assigned to the same cluster [61].

Caption segmentation from video frames [18] is a specific application of text location

detection. The task is to find captions from video frames, which can be further

fed into optical character recognition (OCR) system. Extracted textual caption can

then be used in indexing of digital video libraries [18]. In caption location problem,

candidate caption pixels are first extracted using intensity difference method [19].

The underlying assumption is that the caption and the background pixels have a high

difference in intensity. Caption areas can then be found from the vertical candidate

pixel color groups, and for that reason, the pixel colors are quantized. Iterative Self-

Organizing Data Analysis Technique A (ISODATA) [5] clustering algorithm has been

used in [18]. As the number of caption groups for each video frame is not known in

advance, the problem of the number of color clusters needs to be solved also.
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1.2 Image Compression

A document image is a bi-level image containing text, continuos tone images or

a combination of those two. Bi-level images are binary images, with only black

and white color pixels and continous tone images are images with more color tones

and usually areas of gradual change from one color to an other [44]. Traditional

image compression methods can be divided in two different categories: bi-level and

continuous tone, depending on the type of image to be compressed. Context based

compression schemes, such as JBIG2 [51] can compress efficiently drawings with a

low number of colors, and scanned text. However, JBIG2 does not work well on

continuous tone images such as digital photographs, and compression to 6.23 bpp

(out of 8 bpp) can be achieved, on average [36].

Figure 1.3: A document compression system using color quantization [17].

For digital photographs, a better approach is to apply lossy compression such as

JPEG [78] or JPEG2000 [87]. On the other hand, drawings and text usually con-

tain only sharp edges, and those are difficult to compress without noticeable visual

degradation by JPEG. One possible approach is to divide image into 8x8 pixel blocks,

and classify each block to three fundamental categories: background blocks, bi-level
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blocks and continuous tone blocks. An example of this process is shown in Fig. 1.3.

Color quantization is used for finding foreground and background colors in the bi-level

blocks [17].

Mobile devices usually do not have full color displays. We will refer these displays to

low end displays. When viewing full color images on such a device, color quantization

is needed. In [36], the following scheme has been proposed. First, a full color aerial

image is lossy compressed and then transmitted over the network in compressed form.

In mobile phone, the aerial image is then color quantized for display. This scheme

produced less distortion for a given rate than performing color quantization on aerial

image before the compression and transmission over the network. In Fig. 1.4, the

upper part describes a scheme where color quantization is performed in the mobile

device and the lower part describes a scheme where color quantization is performed

beforehand in the server.

Figure 1.4: System diagram of using color quantization and compression in mobile

device.

1.3 Other Applications

In computer graphics, a relatively new research area is non-photorealistic rendering

(NPR). The goal of NPR is to render image “in more creative fashion”, for example

rendering 3-d scenery or models in water color painting style instead of photorealistic

rendering [25]. Yeh et al. [110] used color quantization as a shading technique in

their work on rendering 3-d models of animals in traditional Chinese painting style.

To achieve painting style on shading, Gouraud shaded 3-d models [35] have been

quantized to four colors.

Map images typically contain only few colors, and even though these images should

not be compressed with JPEG or similar lossy compressiom mehtods, users still

distribute JPEG compressed map images in internet [63]. Unfortunately, JPEG
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compression of map images creates so-called ringing around the edges due to the

quantization of the cosine function coefficients [76]. As edges are discontinuities,

DCT transform uses more coefficients than are needed for smoothly changing areas

in the image, which is the case for continuous tone images [44]. Similar problems

arise when using other lossy compression techniques. Color quantization can be used

to suppress ringing noise in JPEG compressed map images as shown in Fig. 1.5 [63].

JPEG

4 colors
Color quantization

K colors16 million colors

Quantization

Clustering Palette

K colors

Derermine

K colors

Figure 1.5: Recompression of map images needs color quantization [63].

1.4 Goals of This Study

In this thesis, we formulate color quantization as an optimization problem. The goal is

to find the optimal color palette for a given image so that when the image is quantized

using this palette, the quantization error is minimized. When considering the original

color distribution of the image, finding the optimal palette is usually formuleted as

finding optimal partitioning of the color space. In the pattern recognition literature,

term cluster is used instead of partition [89], and algorithms that find the clusters

are called clustering algorithms. Finding the optimal palette was shown to be NP-

complete by Garey et. al. [73]. In this work, the authors found a polynomial time

reduction of the exact covering by three-sets problem to the restricted version of the

quantization decision problem. For this reason, heuristic or approximative solutions

are needed.

Two main approaches have been used in the literature: (i) iterative methods and (ii)

hierarchical methods. Iterative methods start with an initial partition, which is usu-

ally a random solution, and in each iteration the algorithm changes the partitioning

towards a solution with less distortion. The most widely known iterative method is

Generalized Lloyd Algorithm (GLA) [70], which is also known as K-means algorithm

in the pattern recognition literature. Hierarchical methods work either in top-down

fashion, splitting the color space into smaller and smaller partitions, or in bottom-up

fashion, enlarging partitions one at the time.
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In this thesis, we concentrate on hierarchical methods for palette generation. On

the other hand, most common iterative and heuristic color quantization methods are

also reviewed. Among the hierarchical methods we focus on the bottom-up meth-

ods, which are called agglomeration methods. Agglomerative clustering algorithm in

its basic form is easy to implement and it usually produces good results [94]. We

first initialize the system by assigning all unique colors to their own clusters. After

initialization, agglomeration iteratively merges the closest pair of clusters until the

number of clusters matches the user defined palette size. A simple way to find the

closest pair of clusters requires enumeration of all pairs. One way to speed up the

agglomeration is to precalculate a few (k) nearest neighbours to all colors, and to

search the closest pair by considering only these neighbours. The clusters together

with the links to their k closest neighbours forms a k nearest neighbour graph [32].

An important research question is how big k should be so that the quality of the

generated palette is still close or equal to the agglomerative clustering in its basic

form.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. First color quantization problem is

defined and a few commonly used heuristic algorithms are described in section 2.

Divisive methods are reviewed in section 3. Agglomerative methods are described in

section 4. Graph based agglomerative clustering method is introduced in section 4.3.

Selected algorithms are tested exerimentally in section 5. Conclusions are drawn in

section 6.
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Chapter 2

Color Quantization Framework

“General rules apply, except when they don’t”

– John McCarthy

Color quantization consists of two main tasks:

1. Palette generation

2. Mapping the original colors to the palette colors.

An input image I(x, y) contains X = {x1,x2, . . . , xN} ⊂ N3 unique colors. The

parrots picture in Fig. 1.2 is an image of size 768x512, which yields to 393216 pixels, of

which 72175 are unique. A palette generation algorithm finds a smaller represenative

set of colors C = {c1, c2, . . . cM} ⊂ N3 from the N distinct colors. The second task

is to map the colors in the original image I one pixel at the time to a palette color

ci ∈ C. This process of color mapping produces the output image Î(x, y).

In Fig. 2.1, a schematic diagram of the color quantization system is shown. To reduce

the computational load of the palette generation algorithm, it is sometimes useful to

first prequantize the input color space to a smaller number of colors.

I Î
8000 colors30 000 colors 16 colors

Color mappingPrequantization Palette generation

Figure 2.1: Description of the color quantization framework.

In color quantization the goal is to find such a C that minimizes distortion D(I, Î)

between original I and mapping q : X → C. Intuitively we would like distortion
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function D(·, ·) to be such that if visual distortion between images I and Î is large,

then D(I, Î) should also be large. We also require that if I = Î, then D(I, Î) = 0.

It is now easy to see that two decisions affect the final outcome, namely how color

mapping is done and how the palette colors are selected. Both of these decisions

depend on the selected distortion function.

In section 2.1, we consider the color space that we will use in this thesis. We define

scalar quantization problem in section 2.2. We generalize this definition to vec-

tor quantization, and thus, also to color quantization in section 2.3. Section 2.4 is

dedicated to the uniform quantization, and then we study different methods for pre-

quantization in section 2.5. In section 2.6, we explain how distortion metric can be

defined so that it leads to visually more pleasing outcome. In section 2.7, we study

algorithms to generate the color palette.

2.1 Color Spaces

Figure 2.2: RGB color cube [44].

In this thesis, we concentrate our studies in tristimulus color spaces, which means

that each color is represented by a three component vector (x = (R, G, B)) in RGB

color space as shown in Fig. 2.2. The corners of the RGB color cube represent the

colors red, green, blue, cyan, magenta, yellow, black and white. Black is the origin
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and white is the opposite corner farthest from the origin. In this model, different

shades of gray reside in the main diagonal from the (0,0,0) to the point (1,1,1). The

component color values are in range [0,255]. For the ease of interpretation all color

values have been normalized to the range [0,1] in Fig. 2.2.

The choice of the tristimulus color space is based on the fact that color vision in

human visual system (HVS) is based on three different types of cones (namely L, M

and S). Wavelength response curves of those cones are shown in Fig. 2.3. From these

response curves, standard color matching functions for XYZ color space are defined

as x(λ), y(λ) and z(λ), where λ is the wavelenght of the observed color [20].

Figure 2.3: Wavelength response curves of L, M and S cones [98].

A color in the XYZ space can be transformed to another three component color space,

for example RGB, CIELAB and YIQ [98]. A problem with the XYZ space and the

RGB derived from it is that the space is not perceptually uniform, which means

that distance in the color space between two colors does not match the perceived

difference. On the other hand, CIELAB 94 color space standard is designed to

be perpectually uniform. This is the reason why some color quantization systems

transform RGB vectors first to CIELAB 94 space and then perform palette generation

in this space [112].

Even though CIELAB 94 space is perceptually uniform, most of the images to be

quantized are stored either in RGB or in YIQ space [44]. For instance, in MPEG and

JPEG compression standards, a variant of YIQ color space is used. The YIQ color

space has also been proposed to be used as color space, when color quantization should

be performed [102]. Transformation from one tristimulus color space to the CIELAB
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increases the computational load of the color quantization system. Furthermore,

transforming RGB images into CIELAB space before quantization causes rounding

errors, which can be seen in the final quantization results [112].

2.2 Scalar Quantization

In this thesis, we define the scalar quantization [46] as a process of reducing the

number of levels in the original discrete signal.When using scalar quantization, we

quantize a set of integers, which form a histogram. Scalar quantization process pro-

duces a smaller set of numbers, where the original histogram is mapped to. More

formally, quantization is the process of mapping all original values x ∈ N in the same

quantization cell, or partition Si, to the same reproduction value ci ∈ N. The input

set X is divided into partitions Si so that Si ∩ Sj = ∅, when j 6= j and
⋃M

i=1 Si = X.

Reproduction values are usually called reproduction levels. A set C = {c1, c2, . . . , cM} ⊂
N contains all reproduction levels of the quantization system. Quantization is achieved

through mapping q : N→ C, called quantization:

ci = q(x). (2.1)

The quantization rule can be rewritten shortly as [46]:

q(x) =
∑

i

ci1si(x), (2.2)

where 1si(x) is an indicator function giving value 1 if x ∈ Si and 0 otherwise. The

partitions and the reproduction values are closely linked together. By definition

there exists only one reproduction value per partition. It is important to notice

that the partitions are disjoint, which means that each input value belongs only to

one partition. Unfortunately, the q(x) is not a bijection, and thus, inversion is not

possible in general. In other words, for a given output level, we cannot retrieve the

input value x.

An example of quantization is shown in Fig. 2.4, where real numbers are quantized to

natural numbers. This familiar quantization rule is rounding off the decimal numbers

to the nearest integer. We can also calculate the maximum error between the input

value x and the q(x) in this case. Maximum error appears, when the input value is

exactly in the half way between two integers, and it then amounts to |x−q(x)| = 0.5.
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11.3298 13.04 15.62 17.343 =⇒ 11 13 16 17

Figure 2.4: Example of scalar quantization, where q : R→ N.

Rounding off is an example of a uniform quantizer [46], in which the quantization

levels ci are equispaced (say ∆ apart).

Keeping in mind that the goal of the quantization is to produce quantization levels

with the minimum error, we need to be concrete on what error function we are

minimizing. In quantization literature, the error is usually called distortion, and will

be denoted here as d(x, q(x)) [46]. In the previous example, distortion type is called

absolute error, which is an intuitive distortion measure. More often the squared error

is used as a distortion function:

d(x, q(x)) = |x− q(x)|2. (2.3)

Rounding the real number to its closest integer, squared error distortion still gives

maximal error to be the middle point between two integers. Error in this case is

(x− q(x))2 = 0.25.

Our task is to quantize the one dimensional input (in the case of scalar quanti-

zation) to M quantization levels. To define the problem formally [46, 100], let

X = {x1, x2, . . . , xN} be the values of the input set and x ∈ R. Then the num-

ber of times each input value xi appears are P = {p1, p2, . . . , pN}. From now on we

will call this quantity a frequency. The quality of the overall quantization system can

then be expressed as the mean squared error (MSE):

1∑N
i=1 pi

M∑

i=1

∑

xj∈Si

pjd(xj , ci). (2.4)

The term
∑

xj∈Si
pjd(xj , ci) is the distortion incurred from mapping all values in

partition Si to ci. Distortions from all the partitions are then summed and divided

by the total frequency. The objective of quantization task is to find such set C =

{c1, c2, . . . , cM} that minimizes Eq. (2.4). When we generate one set C, we say that

we have generated a solution.

In scalar quantization, we have one dimensional space, in which ordering exists be-

tween all values in the following way:

−∞ < x1 < x2 < . . . < xN−1 < xN < ∞. (2.5)
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In a given solution, if one code cell includes values x1 and x2, then x4 cannot be

added to this cell without adding the value x3, because non-convex quantizer cells

are not allowed [41]. For this reason, the optimization problem can be split the into

subproblems. Optimal solution to the scalar quantization problem can be found by

dynamic programming [6], where the idea is to build the globally optimal solution

to a problem in bottom-up fashion by solving subproblems and storing the solved

solutions. After one set of solutions is done, those solutions can be used to solve one

set bigger solution and so on. The first one to use dynamic programming to solve

scalar quantization problem was Bruce [11]. The time complexity of his solution is

O(MN2). Later Wu [100] improved this result to the O(MN) by using the mono-

tonicities of the l2 error distortion function. In 1993, Wu and Zhang generalized that

result to squared error distortion function [105].

2.3 Vector Quantization

Vector quantization (VQ) [41, 46, 70] is a generalization of 1-dimensional scalar quan-

tization to any dimension D. In color quantization, we are dealing with three dimen-

sional RGB vectors, and thus, color quantization is a special case of vector quantiza-

tion where D = 3.

It is typical for a vector quantization algorithm to employ a large amount of nearest

neighbour searches during the process of the algorithm [94]. Some color quantization

algorithms use a special search structures that utilize the fact that the data is three

dimensional to speed up the nearest neighbour searches [42, 107]. In this work,

however, we concentrate on algorithms that can be used also in the general case

where D is not restricted.

Definitions needed to formalize the vector quantization problem are the same as in

scalar quantization, except that the quantizer input and output are vectors. Let the

input vectors be the set X = {x1,x2, . . . , xN} ⊂ ND. Quantizer cells are defined as

in scalar quantization, where quantizer cells Si partition the input space into disjoint

partitions S = {S1, S2, . . . , SM}. Each partition is associated a reproduction vector

ci ∈ ND, which is drawn from the set C = {c1, c2, . . . , cM} ⊂ ND, called the codebook.

The quantizer rule can be rewritten as:

ci = q(x). (2.6)
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Using the quantization rule, we now define the partition formally:

Si = {x ∈ X| q(x) = ci}. (2.7)

We can also define the partitioning using the inverse of the quantization rule as

Si = q−1(ci) [92].

An example of vector quantization is shown in Fig. 2.5, where the vector x is quan-

tized to the reproduction vector c1. The quantization rule will assing every vector in

the partition S1 to the reproduction vector c1. It can be seen that the vector x ∈ S1

will be quantized to c1 = q(x). In a similar fashion, all vectors in the partition S2

will be quantized to the codevector c2.

q(x)

x

S1

S2

Figure 2.5: Example of vector quantization.

Squared error in vector quantization is expressed as:

d(x, q(x)) = ||x− q(x)||2 = (x− q(x))t(x− q(x)), (2.8)

where t denotes transpose. From now on, we will assume d(·, ·) to be squared error

distortion function if not stated otherwise. This does not prevent us using some

other distortion function. In section 2.6, we will see that if we want to change

the distortion function to reflect better the percieved error, it will also change our

optimization problem.

Attractiveness of the squared error is its simplicity and the fact that its theoretical

proporties are well known [46]. The term ||x − c|| in the squared error is called l2

norm or Euclidean distance. The l2 norm is defined as [41]:

||x− c||2 =
( D∑

i=1

|xi − ci|2
)1/2

. (2.9)
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In fact, this is a special case of a more general distortion metric, called Minkowski

metric or lp-norm:

||x− c||p =
( D∑

i=1

|xi − ci|p
)1/p

(2.10)

If we set p = 1 we get l1, namely the Manhattan or city block metric. Similarly taking

the limit limp→∞ we get l∞, which is also called the maximum metric.

We can now use the distortion metric to define the partition by:

Si = {x ∈ X|d(x, ci) ≤ d(x, cj) ∀j 6= i} (2.11)

By combining the Equations (2.4) and (2.8), we get the objective goal for the vector

quantization as:

C = arg min
{c1,c2,...,cM}⊂RD

1∑N
i=1 pi

M∑

i=1

∑

xj∈Si

pj ||xj − ci||2 (2.12)

In other words, the goal is to find such a codebook C that minimizes squared error

distortion after quantizer mapping. Consequently this is also the task of the codebook

generation in the color quantization. Only unknown variables in Eq. (2.12) are the

set of codevectors C, as partitioning is defined by Eq. (2.11).

Another useful distortion metric is total squared error (TSE), which can be obtained

from Eq. (2.12) in the following way:

TSE(X,C) =
M∑

i=1

∑

xj∈Si

pj ||xj − ci||2. (2.13)

An obvious algorithm to find the optimal solution is to try every possible codebook

and pick the one that minimizes distortion. In color quantization, all possible code-

vectors are drawn from RGB color space with 224 different possible codevectors. The

number of all possible codebooks can be expressed combinatorially:
(

224

M

)
=

224!
(224 −M)!M !

≤ 224!
(224 −M)!

= (224 − (M − 1))(224 − (M − 2)) · · · 224 ≤ 2(M−1)24. (2.14)

With this analysis we can see that enumerating all possibilities is not a sensible

approach.
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The color quantization task is a combinatorial optimization task, which has been

proven to be NP-complete [73]. This is in stark contrast to the scalar quantization

problem, which was show to be solvable in linear time [100].

In Fig. 2.6, there are 4000 randomly sampled pixel values from Parrots image (Fig. 1.2),

plotted according to their green and blue dimensions. On the right hand side, the

open circles represent the 16 code vectors and the lines represent the partition bor-

ders. These regions are called Voronoi partitions [27].

Figure 2.6: Example of vector quantization: original dataset is shown to left, and

quantized to 16 codevectors to right.

Lloyd found in 1957 [72] the necessary conditions of optimality for a reproduction

levels for the squared error distortion. The conditions were later extended to vector

quantization by Gersho and Gray [41]:

• Nearest neighbour condition: For a given input vector, the optimal reproduction

codevector is its nearest neighbour in the codebook. From Eq. (2.11) we get

the condition:

d(x, q(x)) = min
ci∈C

d(x, ci). (2.15)

• Centroid condition: For a given partition, the optimal code vector is the centroid
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(average vector) of the vectors within the partition:

ci =
1
|Si|

|Si|∑

i=1

xi. (2.16)

First condition can be interpreted as the optimality condition for partitioning the

dataset, given the centroids. Unfortunately these conditions are not sufficient for the

globally optimal codebook [41].

We saw that the palette generation problem in color quantization is NP-complete.

This leads to the fact that the only feasible algorithms are heuristic ones. We can

compare different heuristic algorithms by the quality of the generated palette, as a

comparison metric we use MSE. Not only is the distortion of the solution important,

but the time complexity is also important to keep in mind. For this reason, we want

to find a heuristic algorithm that will be as good as possible in time-distortion sense.

Evaluating the goodness of the algorithm is usually done empirically.

2.4 Uniform Vector Quantization

Uniform vector quantizer is a VQ where codevectors ci are drawn from a lattice [21].

Geometrically, lattice can be thought of as an infinite regular array of points, which

uniformly fills the D-dimensional space [91]. As an example Zn = {x ∈ Zn} is an n-

dimensional lattice, where lattice points are all vectors in n-dimensional space, where

vector components are integers. Lattice is inherently an infinite in size, as seen from

Zn, thus for color quantization, we need to truncate it to the size M .

In Fig. 2.7, an example of uniform quantizer with rectangular and hexagonal lattices

are given. Note that as the lattice is an inherently infinite structure, the quantization

cells are not fully square or hexagonal at the edges. It is interesting to note, that

hexagonal lattice is much better for this dataset than square one, because it gives

smaller MSE even with fewer codevectors. It is also clear from the figure that uniform

quantization cannot give optimal C, except in a some special cases. The reason for

this is that the input vectors are not usually uniformly distributed. Typical situation

is that one region of the vector space has input vectors in dense clusters, and in other

regions, vectors are sparsely distributed.
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Figure 2.7: Example of uniform vector quantization to 16 codevectors (MSE =

635.13) and to 14 codevectors (MSE = 593.31).

2.5 Prequantization of the Dataset

Dataset size in color quantization is usually very large. Potentially full color image

can contain up to 16 million different color vectors, even though this kind of worst case

image is very rare in practice. Nevertheles, images with even moderate size can have

a large number of unique colors and, thus, making the size of the dataset (N) very

large and affecting the running time of the algorithm adversely. For example, parrots

is an 768x512 image, which yields to 393216 pixels, of which 72175 are unique. One

example of palette generation algorithm have time the time complexity of O(N2). For

that algorithm to generate palette would require more than five billion steps. This is

the reason why many color quantization algorithms [50, 102, 92, 107] use some form

of prequantization as a preprocessing step.

Prequantization is the process of reducing the size of the dataset so that the palette

generation would be faster. With prequantization proposed in [50], 72175 vectors

was brought down to around 8000 vectors. In this case, an O(N2) algorithm would

need around 64 million steps with this prequantization scheme.

Formally, prequantization is a mapping p : X → X ′, so that the original dataset is

reduced to the size |X ′| = N ′, where N > N ′ > M > 0. In general, we can divide
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prequantization methods into three categories:

1. Bitcutting is the process of cutting the number of least significant bits from R,

G and B components. This is effectively the same as uniform quantization of

RGB color space into N ′ possible colors [81].

2. Subsampling is the process of selecting a subset of colors from all the possible

unique colors in the original image.

3. Clustering the original dataset X to N ′ by any fast clustering algorithm.

In Fig. 2.8, we see an example of different prequantization methods, when the dataset

of size 4000 was reduced to 400 vectors. When comparing prequantized set to the

original, we see that bitcutting does not represent dataset the accurately. In the

bitcutting method, we reduced the resolution per vector component from 8bit to

5bit. Both random sampling and clustering approach produce fairly representative

subset of the original dataset. Visual inspection shows that clustered dataset seem

to be distributed more evenly than the randomly sampled version.

Most of the color quantization methods use bitcutting as the prequantization method [50,

69, 107]. First suggestions to use prequantization came from Heckbert [50], where he

suggested cutting 3 least significant bits off from each R, G and B component. In his

method, precision was reduced from 24bits per color to 15bits per color. Later many

color quantization algorithms fix precision to 15bits (R5 + G5 + B5; R5 + G6 + B4)

or 18bits (R6 + G6 + B6; R6 + G7 + B5) per color [81]. However, Shufelt showed

that working with less than 21bits can noticeably impair the quality of the quantized

images [84] .

The assumption in the subsampling is that not all colors are necessary to build final

codebook. Sampling should be done in the image domain, when reading the image

into memory, for example, random sampling the fixed number of pixels [28]. Another

possibility is sampling the image at decreasing step sizes (e.g. 1009, 757, 499, 421, . . .) [93],

or to sample every nth pixel in every mth row [81].

The time complexity of both bitcutting and subsampling is linear, and not every pixel

is needed to process. However, duplicate colors might get to be sampled in. To keep

the dataset unique for the clustering algorithm we need to store the prequantized

colors in the binary tree, thus the time complexity yields to O(N log N). Every color

is inserted to the tree one by one, and if a color in question is already in the tree

then the frequency of the color is increased by one.
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(a) Original dataset (b) Bitcutting

(c) With Clustering (d) Random sampling

Figure 2.8: Example of prequantization.
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Reitan [81], on the other hand, divides prequantization methods into bitcutting and

subsampling methods. Contrary to that statement any fast clustering algorithm can

also be used to generate smaller dataset. For example popularity algorithm [50], can

also be used as a prequantization step. Also generalized Lloyd algorithm (GLA) [70]

has been used to generate a smaller dataset for a slower O(N2) algorithm [95].

2.6 Perceptual Color Quantization

Human visual system (HVS) is more sensitive to the distortion in low spatial fre-

quancy than in high spatial frequency areas. This means that in the areas of image

with low activity (i.e. low spatial frequency) eye detects distortions easier than in

high activity areas [23]. For example false contouring in low frequency areas such as

sky are noticed easier than distortion near edges. This effect is called spatial visual

masking [23].

The intuitive idea to solve this problem would be to move the quantization error

from low activity areas to high activity areas where distortion does not matter much.

Basically four strategies exist to solve this problem:

1. Allocate more quantization levels to the areas of color space that correspond

to the low spatial activity [112].

2. Perceptually weighted distortion metric as a cost function [79].

3. A method that tries iteratively reduce false contouring after pixel mapping

phase [56].

4. Dithering approach in color mapping instead of mapping to the nearest neigh-

bour palette color [67].

Dithering has been used in color quantization literature [50, 101] as a last stage of

color quantization to reduce false contouring. In printing industry, dithering is known

as digital halftoning [44] where task is to print gray scale image by using only black

and white dots. Most common dithering methods are called error diffusion, where

the idea is to spread the quantization error to neighbouring pixels. In Floyd-Steinberg

error diffusion [34], quantization error is diffused to those pixels that have not yet

been quantized. Image is quantized from left to right and from top to bottom. Fig. 2.9

shows the Floyd-Steinberg error diffusion filter, where X denotes the current pixel.
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The quantization error from X is added to the neighbouring pixels according to the

diffusion filter so that 7/16 of the error is added to the pixel on right and so on. To

a human observer, dithered images appear to contain less error than non-dithered,

which is explained as the error is spatially dispersed by adding high frequency noise

to make it less perceptible [81].

X 7/16

3/16 5/16 1/16

Figure 2.9: Floyd-Steinberg error diffusion filter.

Dithering has several problems:

• dithering is a nonlinear process and as such difficult to model mathematically,

• dithered images are hard to compress efficiently using dictionary based com-

pression algorithms [36],

• dithering contradicts the optimization goal of color quantization.

Our assumption in this section is that false contouring can be reduced by using spatial

activity weighting. One approach to calculate the spatial activity of the pixel I(x, y)

can be performed by calculating the luminance gradient [81]:

a(x, y) = |Y (I(x, y))− Y (I(x− 1, y))|+ |Y (I(x, y))− Y (I(x, y + 1))|, (2.17)

where Y () is the luminance of the pixel I(x, y), and a(x, y) is the activity matrix

containing activity values for each pixel in image I. Luminance Y () is defined as

the Y component from the YIQ color space, where conversion is perfomed using the

following formula [44]:

Y = 0.299R + 0.587G + 0.114G. (2.18)

Then the activity weighting function w(x, y) is defined as [81]:

w(x, y) =





1/4 if a(x, y) = 0

1/3 if a(x, y) = 1

1/a(x, y) 1 < a(x, y) < 12

1/a(x, y)1.25 12 ≤ a(a, x) ≤ 16

1/161.25 if a(x, y) > 16

(2.19)
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Cut-off values and the exponent 1.25, was found by trial and error method [81]. MSE

distortion function from Eq. (2.12) can be rewritten in terms of distortion between

the original image I and the quantized image Î:

DMSE(I, Î) =
1

WH

W∑

x=1

H∑

y=1

||I(x, y)− Î(x, y)||2, (2.20)

where W is the width of the image, H is the height and function I(x, y) gives the

pixel color from the position x, y. Then weighted MSE is defined as:

DWMSE(I, Î) =
1∑W

x=1

∑H
y=1 w(x, y)

W∑

x=1

H∑

y=1

w(x, y)||I(x, y), Î(x, y)||2 (2.21)

There are different ways to define the spatially weighted distortion function, for

example, to divide image into disjoint square blocks (8 by 8 or 4 by 4 blocks). The

spatial activity of the block is calculated by taking the average distance from all color

vectors of the block to the mean color in the block [15, 60].

2.7 Palette Generation

In this section, we review some non-hierarchical clustering methods used in palette

generation. In general, any clustering method is suitable for palette generation task.

The difference between VQ and clustering is that in VQ we try to minimize MSE cost

function and in clustering the goal is to find the “natural” clusters from the data [53].

What is natural cluster depends on the data in question, and thus, optimization

based clustering methods need to change the cost function accordingly. In palette

generation, when squared error distortion is used, cluster shape is fixed to spherical

shape. The centroid of the partition is optimal codevector of the partition [46].

2.7.1 Product Vector Quantizer

Scalar quantizer can also be used to quantize vectors in such a way that each vector

component is quantized separately. Scalar quantizer for vectors is called product

quantizer [46]. For vectors x = (x1, x2, . . . , xD), product quantizer needs to build

C1, C2, . . . , CD codebooks. Final codebook is then the cartesian product of the scalar

codebooks Ci:

C = C1 × C2 × . . .× CD. (2.22)
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The corresponding codebook sizes are M1,M2, . . . , MD. Note, that the final vector

quantization codebook size is given by the:

M =
D∏

i=1

Mi. (2.23)

Time complexity of the codebook generation using product quantizer is O(
∑D

i=1 MiN) =

O(MN).

Method, where scalar quantizers are designed independetly of each other is called

independent scalar quantization (ISQ). Drawback in independet scalar quantization

is that it does not take into account correlation between the vector components [4].

In Fig. 2.10 we see example of product quantizer with two optimal scalar quantizers.

For both dimensions R and G, optimal scalar quantizer was used to generate 4 code-

cells, which leads to a vector quantizer codebook of size 16. Note that the upper left

corner has three codecells without any vectors from original dataset. We can see that

the dataset, where majority of vectors reside in the diagonal is especially difficult for

independent scalar quantizer. One option to remedy the situation would be to rotate

all vectors before quantization and then rotate vectors back after color mapping.

Figure 2.10: Example of product quantizer with optimal scalar quantizer on two

dimensions (MSE = 246.51).

Strategy that every dimension has the equal number codevectors is not necessarily
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the optimal choice. Akimov et al. [1] proposed an algorithm to choose optimally

codebook sizes for each dimension and partition.

2.7.2 Sequential Scalar Quantization (SSQ)

In sequential scalar quantization (SSQ) [4], scalar components are quantized one at

the time taking into account those components that had been quantized already.

We denote the ith scalar component of all vectors in the dataset by Xi. The SSQ

algorithm is [4]:

1. Qauntize the first scalar component X1 independetly to M1 levels, which forms

M1 codecells S1j , 1 ≤ j ≤ M1.

2. Quantize X2 within each S1j according to its conditional distribution p(x2|S1j)

to M2 regions in total. We call these regions codecells S2j , 1 ≤ j ≤ M2.

3. Quantize X3 within each S2j according to its conditional distribution p(x3|S2j)

to to M3 = M regions in total.

4. Pick codevector of each M codecell as the centroid for that codecell.

In Fig. 2.11, there is an example of SSQ, where x-axis was quantized first indepen-

dently and then y-axis using the conditional probabilities.

Figure 2.11: Example of sequential scalar quantizer on two dimensions (MSE =

157.84).
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2.7.3 Histogram Based Algorithms

Popularity algorithm was invented by Tom Boyle and Andy Lippman at the Ar-

chitechture Machine Group at MIT in the Summer of 1978 when Tom Boyle wrote the

software called “Color Maker”. Subsequently, Paul Heckbert rewrote that software

with the name “IMAGE” and published the algorithm in [50]. Popularity algorithm

is a simple and fast way to create color palette, it is also one of the first suggested

algorithms in the field of color quantization.

The main idea is to count the occurrences of the colors in the image and then select M

most frequent colors as the color palette. The Algorithm works in O(N log N) time,

as picking M most frequent colors can be done by first sorting the pixel values and

then scanning the sorted list. Same pixel values are consequtive entries in the sorted

list, so scanning take’s only O(N) time. Basic assumption behind the popularity

algorithm is that histogram peaks correspond to the cluster centroids. Unfortunately,

this assumption does not hold in practice. Histogram might have fewer peaks than

clusters or even more common, that one peak is much bigger than the others. In

which many colors of same shade will be selected as codevectors. In Fig. 2.12, there

is an example of this case.

Figure 2.12: Example of popularity algorithm on two dimensions (MSE = 2750.93).

One possibility to alleviate the problem of picking similar colors as the codevectors

is to select M most frequent colors that are separated by at least a predefined dis-
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tance [52]. Then using the nearest neighbour condition, the rest of the colors are

mapped to codevectors. In this way, the algorithm finds the clusters. Then cen-

troid condition is used to generate final codevectors as the average colors of the

corresponding clusters. Their idea is that the GLA method with one iteration and

initial codebook with popularity algorithm. Generated solution could be finetuned

by adding few a GLA iterations.

Some further enhancements to popularity algorithm have been proposed in [9], and it

has been further modified to work in CIELUV color space [40]. One global histogram

does not describe effectively local features of the image, Larabi et al. [65] proposed a

method to calculate local windowed histograms and how to calculate the final palette

from the collection local histograms.

2.7.4 Octree Quantization Algorithm

Octree quantization algorithm [42] is fast and produces comparable quality color

palettes. Original paper was later reprinted in Graphics Gems I [43], which resulted

in wide adoption of the algorithm in different implementations. Many commercial

image processing packages are still using octree quantization.

Octree quantization is based on the octree data structure [82], which is a tree where

each node contains pointers to eight children nodes. The colors are stored in the leaf

nodes.

Octree quantization produces color palette in one pass. Also it does not use any

prequantization of the input vectors. The idea is that image is processed pixel by

pixel. The tree is traversed until a leaf node is reached, and if the leaf node is empty

then pixel color is inserted into octree data structure; otherwise frequency count of

that color is increased.

RGB colors have each 8 bits per component, so we can separate RGB color into 8

bitplanes of 3 three bits. For example, at bit position i R has a bit 1, G has bit 0 and

B a bit 1. This leads to a 3 bit binary number 1012 = 510. It is clear that with three

bits we can represent numbers from zero to seven. This number is used as a child

node index. First, we take the most significant bitplane, use the index to traverse to

one of the eight children nodes. Then we take the next bitplane and again use that

as a index of a child node. Traversal continues until we take the last bitplane at the

level eight, which is the leaf node.
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When all pixels have been processed, then the process of reducing the leaf nodes start.

The algorithm searches for a node, for which the sum of the frequencies is minimum.

It calculates the average vector of all leaf nodes under this node. Removes all leaf

nodes and stores the new average vector and the summed frequencies. The process

continues until only M leaf nodes are left.

Reduction operator divides the color space to cubes of different sizes. The size of the

cube depends on the level in which the octree reduction was performed. Higher up

in the hiertarchy larger is the cube. As seen in previous example cube or square is

not optimal partition shape, thus distortion from octree quantization is larger than

competing methods [81].

2.7.5 Generalized Lloyd algorithm (GLA)

Generalized Lloyd algorithm (GLA) [70] is without doubt the most known codebook

generation algorithm. It is known by many names, for example LBG from the initials

of the original authors, and C-means algorithm [74] in statistical literature, where

C refers to the number of clusters (it is also known by the name K-means). The

name GLA comes from the fact that it is the generalization of the Lloyd’s scalar

quantization algorithm [72] to vector quantization.

GLA is derived from two necessary conditions for codebook optimality, namely the

nearest neigbour and the centroid condition. GLA is an iterative algorithm, which

starts from an initial solution. This solution can be generated, for example, by

randomly picking M vectors from the dataset, or using some fast clustering algorithm

to generate an approximate solution. The idea is that in each iteration GLA uses the

nearest neighbour condition to produce the optimal partitioning of the training set

given the codebook from the previous iteration. Then it uses the centroid condition

to generate a new codebook.

GLA is a descent optimization algorithm, where distortion is not increased in succes-

sive iterations. Thus, the algorithm converges to a locally optimal solution but the

convergence to the globally optimal solution is not guaranteed. Final quality of the

codebook is dependent on the initial solution [58]. The practical solution to local

optimality is to run GLA multiple times with many different random initial solutions

and then pick the best codebook. In Fig. 2.13, on the right, we see a good solution

with MSE of 101.64 and in the left we see result of the GLA with one random initial
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solution with MSE of 114.80. Of course, if we are lucky we can get low MSE with

just one random initial solution.

Algorithm 1 GLA
Generate initial codebook C

repeat

S ← Generate optimal partitioning for a given C

C ← Generate optimal codebook for a given S

Fill empty partitions

until Convergence

Figure 2.13: An example of GLA algorithm, left with one initial solution (MSE =

114.80) and right with 30 random initial solutions (MSE = 114.80).

As each GLA iteration is guaranteed not to decrease the quality of the solution,

many codebook generation methods use GLA as a postprocessor that fine-tunes the

generated codebook [39, 103, 77].

Related algorithm to GLA is ISODATA [5], which was used for color quantization

in [19]. Iterative fine-tuning works exactly same way as in GLA, but if cluster is

large enough it is split in two and if two clusters are close in enough they are merged

to one. Large and close enough are user specified parameters. As codebook size is

not set in the beginning ISODATA can be used in a situation, when number of color
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clusters is not known in advance. Other option to solve number of clusters problem is

to use F-ratio as a measure of goodness of fit of clustering model to that data set [63].
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Chapter 3

Divisive Algorithms

“There are 2 kinds of people in this world,

and both are wrong!”

– anonymous

In this section, we present divisive clustering algorithms, which are also called in VQ

literature tree-structured codebook generation (TSVQ) algorithms. Divisive method

for vector quantization was first developed in [12]. Even though originally divisive

methods were used in speech coding, it has been succesfully applied to color quanti-

zation. In general, divisive methods generate palette fast, with quality is comparable

to the other palette generation methods [81].

Divisive methods are inspired by the divide-and-conquer [22] approach. Divide-and-

conquer approach works for the problems, which can be recursively divided into

smaller subproblems, which are similar to the original problem. Solving the subprob-

lems and combining the solutions gives the solution to the original problem.

Divisive methods start with the codebook of one codevector representing the whole

dataset. Partition consisting of the whole dataset is then divided into two partitions.

Old centroid of split partition is discarded and two new centroids are formed as the

centroids of the two new partitions. Process of division continues until the codebook

size M is reached. Splitting can be done recursively as in [50] or iteratively, which

will be the case in this thesis.

Divisive algorithms are conceptually simple, but details can be involving. Main

question is where and what to split. First algorithm needs to decide, which partition

to split. Usually the decision is a heuristic one, split the largest partition or the one
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with the largest distortion. Local optimization strategy splits the partition, which

decreases the distortion most [38].

For the decision on where to split we need to define two concepts namely splitting axis

and splitting plane. Splitting plane is the plane that splits partition Si in two, and

splitting axis is orthogonal to it. Divisive algorithms work by first selecting splitting

axis and then finding a suitable splitting plane. Equivalent of finding the splitting

plane is finding the cut-point in the splitting axis, where splitting plane will be placed.

To sum-up, in each iteration every divisive algorithm makes following decisions:

1. Choose partition to split

2. Choose splitting axis

3. Choose cut-point

In computer graphics community, divisive methods are called binary space partition

(BSP) methods [27], with corresponding data structure. Idea is similar to the divisive

methods, but geometric primitives are stored in the tree data structure instead of

vectors (points). For example stored primitives can be line segments. Typical BSP

algorithm limits splitting hyperplane to be orthogonal to one of the coordinate axes,

which is called in the BSP literature axis-parallel cutting lines [26].

Many different splitting strategies have been proposed in VQ literature [108, 12, 104,

38], and a few in papers that directly deal with color quantization [109, 81, 71, 55, 77].

In the following, is short exposition on a few different splitting strategies.

3.1 The Number of Splitting Planes

Let’s consider the case, when splitting axis is fixed. Then we can investigate, the

number of possibilites of splitting the dataset in two. First we project all vectors to

the splitting axis. Remembering the restriction that the splitting plane is orthogonal

to the splitting axis, we can take the splitting axis and move it to the position where

there is one projected vector in the other side and all the rest in the other. Moving

splitting plane one vector at the time to the other direction leads to the N−1 = O(N)

different possibilities for the placement of the splitting plane [38].

The problem of choosing the splitting plane is then moved to how to select splitting

axis. In this section, we want to find out, for a purely theoretical interest, the number
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of splitting planes, without restricting splitting axis. We formulate the question in

following way: how many different ways can 3-dimensional set be split in two? If

answer to the question is small enough, then enumerating all possible bi-partitions is

possible. But we will see, that this is not the case.

We borrow the following result from the pattern recognition literature. First we need

a definition of a term general position [27]. Vector set is defined to be in general

position if there is no subset of D + 1 of vectors that lie on an (D − 1)-dimensional

hyperplane. For example, two dimensional space having 3 vectors distributed on

a line. We have to note that general position assumption might not hold for all

datasets [27]. If this holds then the number of splitting planes in color quantization

case is [24]:

C(N) =

{
2

∑3
i=0

(
N−1

i

)
, N > 4

2N , N ≤ 4
(3.1)

where (
N − 1

i

)
=

(N − 1)!
(N − 1− i)!i!

. (3.2)

We can find the order of C(N) by first forgetting the coefficient 2:

C(N) = 1 +
(N − 1)!

(N − 2)!1!
+

(N − 1)!
(N − 3)!2!

+
(N − 1)!

(N − 4)!3!

= N +
O(N2)

2
+

O(N3)
6

= O(N3). (3.3)

This result implies that enumerating all possible bi-partitions very fast grows to be

unfeasible. For example, let’s call N1 size partition before split and N2 size of new

partition. Then the time complexity of enumerating all possibilities of two consecutive

splits is O(N3
1 N3

2 ). And if N1 ≈ N2, then the time complexity would be O(N6).

3.2 Median Cut

Median cut was first proposed by Heckbert in his classic color quantization paper [50].

His idea is to split color space recursively into rectangular partitions. First, algortihm

projects all vectors to the coordinate axes. Splitting axis is the coordinate axis i such

that

max
i∈{R,G,B}

(max(Xi)−min(Xi)), (3.4)
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where Xi is the projected dimension. Median of the projected values is the cut-point

of that partition. This leads to equal number of colors in both new partitions S1 and

S2.

Figure 3.1: An example of Median Cut algorithm (MSE = 168.71).

Splitting process continues recursively until M number of partitions are created.

Then partition centroids form the codebook. Heckbert proposed, that GLA could

be used to fine-tune the solution generated by the splitting process. Original algo-

rithm [50] is recursive, but iterative variant is easy to define. Here we present the

iterative variant.

Algorithm 2 Median Cut
S1 ← smalles RGB cube that covers all training vectors

M ← 1

repeat

Si ← select which maximizes max(Xi)−min(Xi)

Xi ← find axis from Si which maximizes max(Xi)−min(Xi)

xj ← find median Xi

S2i, S2i+1 ← split Si from xj orthogonal to Xi

Calculate codevectors c2i and c2i+1 using Eq. (2.16)

M ← M + 1

until (M = |C|)
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Heckbert [50] uses radix sort to find the median, which requires O(N) time, when

number of digits in the numbers to be sorted is constant [22]. However median

selection without sorting can be perfomed in O(N) [62]. Total time complexity of

the median cut is then O(N log M).

Many variations exists of median cut algorithm, for example center-cut [55] algorithm

splits from the center of the partition instead of median. Splitting in the mean avoids

the extra computational cost of finding the median.

3.3 Variance-based Algorithm

Assumption behind the median cut is that all partitions should have approximately

equal number of vectors. In practice, each division splits partition exactly in half if

the number of vectors in that partition is even. However there is no real justification

for this assumption. For example, when partition has two regions, where one is a

dense concentration of vectors and the other is less dense. Then it is not sensible to

split dense region only for the reason that new partitions should have equal amount

of vectors.

Problems in Median Cut split strategy were recognized by Wan et al. [97]. Their

method [96, 97] is iterative and it is based on optimization stategy, where in each

iteration split is perfomed on such a way that the decrease in distortion is maximized.

Reitan [81] calls this algortihm an variance minimization technique. And variance of

the partition Si is defined:

σ2
i =

1∑
xj∈Si

pj

∑

xj∈Si

pj ||xj − ci||2. (3.5)

One dimensional case this is true, but in 3-dimensional case σ2
i represents the average

distortion of the partition Si. Variance minimization algorithm selects partition,

which has the highest average distortion to be split. Later term 1P
xj∈Si

pj
is dropped,

which leads to σ2 being the total distortion of the partition (TSE).

In variance minimization, split axis is one of the coordinate axis and the cut-point is

the point in projected coordinate axis, which will yield largest reduction in distortion.

Split axis is selected to be the coordinate axis, which used as a split axis will yield

largest reduction in distortion.
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Colors are projected into each coordinate axis of partition Si, these colors then form

1-dimensional distribution. Then the optimal cut point for that partition is [97]:

topt = arg max
µ+lower

2
≤t≤µ+upper

2

w1

w2
(µ− µ1(t))2, (3.6)

where µ is mean and µ1(t) is the mean of the new projected distribution for the first

half if the cut point is at t. w1 and w2 are the the frequencies of the tentative new

partitions Si+1 and Si+2. The variables upper and lower are max and min of the

projected distribution. Pseudo code for variance-based split is in algorithm 3.

Algorithm 3 Variance-based split
M ← 1

repeat

Find partition Si, with largest distortion Eq. (3.5)

Project all colors to its coordinate axes

Calculate cut-points tR, tG, tG with (3.6)

Split Si from cut point ti

M ← M + 1

until M = |C|

In greedy tree growing (GTG) [71] method, partition to be split is selected locally

optimally. GTG method precalculates for each partition the amount of distortion

will be decreased if that partition is split. Other partitions around the partition in

question do not affect the decrease in distortion. That is the reason, why it can

be saved. Then in each iteration algorithm selects the partition, which split results

largest decrease in distortion. Split axis and cut-point selection are done the same

way as in the variance minimization scheme.

3.4 Orchard’s Binary Splitting Algorithm

Orchard and Bouman proposed in [77] a divisive palette generation algoritihm, which

uses a local optimization strategy in selecting the splitting axis. Previous splitting

algorithms were limited to select splitting axis from one of the RGB coordinates.

Partition to be split is selected to be the one, which has largest distortion. This can

be approximated, by the largest eigenvalue of the covariance matrix (see details in

Appendix A) of the vectors in that partition [77]. In Orchard’s method, partition

with the largest eigenvalue is chosen to be split.
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Idea in Orchards method is to find the splitting axis in such a way that minimizes the

distortion. Intuitively such a axis is the direction or largest variance of that partition.

This axis can be found with principal component analysis and it is called the principal

axis or the eigenvector corresponding to the largest eigenvalue. More details on the

principal component analysis can be found from Appendix A. Cut-point is selected

to be the projection of the centroid to the principal axis.

Figure 3.2: An example of Orchard’s binary splitting algorithm (MSE = 115.32).

Problem with their method is that it assumes that best cut-point point is the pro-

jection of mean vector. The best case can happen, when two clusters are perfectly

divided by that plane. It is easy to construct a counterexample, where that does not

hold. For example see. the Fig. 3.3, where splitting plane is orthogonal to principal

axis and is going through the centroid. Centroid as cut-point is clearly sub-optimal

in this case.

37



Figure 3.3: Example of when the centroid is not the optimal cut-point.

Algorithm 4 Orchard’s method
M ← 1

repeat

Find partition Si, with largest distortion

Calculate principal component of partition Si

Cut point t is the projection of ci to principal component

Split Si from cut-point t

M ← M + 1

until M = |C|

3.5 Radius Weighted Mean Cut

Radius weighted mean cut (RWM Cut) [108] is the vector quantization split strategy

orginally used for Block Truncation Coding (BTC) image compression [106]. Later

the same method was applied to color quantization [109].

RWM Cut selects the partition with largest distortion to be split, as was done in

previous method. Also splitting axis is the principal axis of the partition. The cut-

point is defined as the projection of the radius weighted mean (RWM) vector to the

principal axis. RWM vector is defined as [108, 109]:

c′i =
1

∑|Si|
j=1 ||xj − ci||

|Si|∑

j=1

xj ||xj − ci||. (3.7)

Other possibility for a splitting axis is presented in [109], as the line going through

the ci and the c′i. As calculating the c′i is O(N) operation, the splitting axis selection
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strategy would be very fast. It is interesting to note that in few test images the line

going through ci and c′i is very close to the principal axis [81]. But in general no

proof of local optimality is given for this splitting axis selection strategy nor cut point

selection strategy.

Other approach was recently described by Shyi-Chyi et al. [85], where authors defined

splitting axis to be a line going from ci to the vector which is

arg max
x∈Si

||x− ci||. (3.8)

All vectors in the partition are projected to this line, then the cut point is found

by using two level scalar quantizer on projected values. Vectors, which projected

value falls in the class 0 form a partition and the vectors which projected value is

in class 1 form the other partition. Cut point is the decision boundary between the

classes 0 and 1. All partitions are split whose variance of distances from vectors to

the partition centroid is above the user defined threshold.

3.6 Locally Optimal Bi-partitioning

In locally optimal bi-partitioning [104, 38], partition to be split is the one that re-

sults in the largest reduction in distortion. Strategy is the same as in greedy tree

growing. Splitting axis is the principal axis. And the cut point is found optimally by

considering all cut point position t in the principal axis such that [104]:

topt = arg min
ξ
{D(S1(t)) + D(S2(t))}, (3.9)

where D(S1(t)) is the distortion of the partion S1 formed from the cut point t. It has

been shown, that topt can be found in O(N) time if projected distances were sorted

first [104].

After optimal cut point is found, tentative partitions S1 and S2 are formed. Then

local repartitioning with GLA is used to fine tune the partition boundary between

the partitions S1 and S2.

39



Algorithm 5 Locally optimal bipartitioning
M ← 1

repeat

Find partition Si, which split decreases distortion most

Calculate principal component of partition Si

Find optimal cut point t

{S2i, S2i+1} ← partition Si using the cut point

Use GLA to refine the partioning {S2i, S2i+1}
M ← M + 1

until M = |C|

Figure 3.4: An example of locally optimal bipartitioning (MSE = 106.26).

3.7 Optimal Principal Quantizer

All previous algorithms in this chapter used the bi-partitioning strategy, one partition

is always split in just two partitions. In this section, we will lift this restriction,

resulting many splits at the same time. It is well known that the colors in the color

space are spread along the luminance axis [47]. Consequently luminance axis is also

the principal axis of the dataset [101].

In [101], Wu proposed an optimal principal quantizer, which first projects all vectors
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to the principal axis and then sorts the vectors according to their projections. Now

if we consider the projection values we have a list of scalar values representing the

whole color space. Optimal principal quantizer uses optimal scalar quantizer [100]

on the projection values to partition the set of projections into the k intervals, where

k < M . Partitioning of the projected values induces a k partitioning of the color

space. Distortion function used in the scalar quantization of projection values is the

distortion of quantizing the vectors in that partition. In that way optimal principal

quantizer can be considered as a hybrid method of two existing methods: scalar

quantization and vector quantization [101]

The value of k is determined dynamically as the bottom-up dynamic programmig

process continues [101]. If after optimal principal quantizer is perfomed k < M ,

then M − k partitions still need to be formed. Algorithm then uses locally optimal

bipartitioning scheme to split those partitions created in the previous stage.

41



Chapter 4

Agglomerative Algorithms

“Hypothesis: All odd numbers are prime

Proof: If a proof exists, then the hypothesis must be true

The proof exists; you’re reading it now.

From 1 and 2 follows that all odd numbers are prime”

– anonymous

Agglomerative clustering [8] algorithm generates clusters by a sequence of merge op-

erations. Agglomeration process starts by initializing each data vector as its own

cluster. Two clusters are merged at each step and the process is repeated until

the desired number of clusters has been obtained. If we are considering the gen-

eral clustering problem, then many different merge rules exist. Different merge rules

give different clustering solutions, and thus those stragegies assume different cluster

shapes [89]. The single linkage (SL) [86] method determines the cluster pair to be

merged based on the two closest vectors. The complete linkage (CL) [86] method de-

termines the cluster to be merged based on the two furthest vectors. The unweighted

pair-group method using averages (UPGMA) [89] determines the unweighted average

distance between all intercluster vector pairs. The weighted pair group method aver-

age (WPGMA) [89] considers the weighted average distance between all intercluster

vector pairs, weight is selected in such a way that vectors in the larger cluster receive

lower weight and two clusters of size one receive both weight one. Ward’s method [99]

selects the cluster pair to be merged in such a way that increases the distortion least.

In VQ context, this is known as the pairwise nearest neighbour (PNN) method [33].

In this section, we consider only the PNN merge method.
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4.1 PNN Merge Distance Function

The overall goal in the vector quantization is to minize distortion cost function, for

example MSE or TSE distortion. The same also applies to the PNN algorithm so

that in each iteration, the function would be minimized. We know that distortion is

monotonicly decreasing as a function of number of partitions (centroids) [41]. This

means that in each PNN iteration overall distortion is increased. For that reason,

we have to find for all pairs or partitions Si and Sj , how much their merge would

increase overall distortion.

Ward proved in [99] that given TSE as a cost function, optimal choice Sa and Sb for

merging is when following is minimal:

D(Sab) = D(Sa) + D(Sb) +
nanb

na + nb
||ca − cb||2, (4.1)

where na and nb are frequencies of the respective partitions, and ca and cb are their

centroid vectors. Thus, increase of distortion, when merging two partitions can be

determined only by the frequencies of the merged clusters and their centroids.

The optimality of a single merge operation does not necessarily lead to a optimality

of the sequence of the optimal merge operations. Thus PNN method follows a local

optimization strategy.

Now we can define PNN distance dPNN(Sa, Sb) as the increase of the distortion, when

clusters Sa and Sb are merged.

dPNN(Sa, Sb) =
nanb

na + nb
||ca − cb||2, (4.2)

As noted by the symbol dPNN(, ) PNN merge cost can be thought to be a distance

function between two partitions (or clusters in general clustering problem). Next we

analyze some properties of this distance function. Sometimes it is usefull if distance

function used is a metric. If it is metric, then it has to satisfy metric space axioms:

Axiom 1. Symmetry: d(a, b) = d(b, a).

Axiom 2. Non-negative: d(a, b)) ≥ 0.

Axiom 3. Non-zero: d(a, b) = 0 ⇒ a = b.

Axiom 4. Triangular inequality: d(a, c) ≤ d(a, b) + d(b, c).

Lemma 1. dPNN(., .) does not follow triangle inequality
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Proof. We prove by counter example. Let’s take a = (1, 0)t, b = (0, 1)t and c =

(0, 0)t and corresponding cluster frequencies are na = 3, nb = 1 and nc = 3. Then

dPNN(a, b)+dPNN(b, c) = 1.9313 and dPNN(a, c) = 2, which cannot be true according

to triangle inequality, and, thus distance dPNN(., .) is not a metric.

What does this mean in practice? It is true that triangle inequality is not necessary

for the basic operation of PNN algortihm, but if triangle inequality would be satisfied

then we could use metric space indexing [16] techniques to find the pairwise closest

partitions faster. Normally it is necessary to consider all pairwise distances to find

closest pair.

4.1.1 Merging All Vectors to the Same Partition

Now we consider the case, when every vector in the dataset is iteratively merged to

the same cluster. We call this cluster S1. Merging all vectors one by one to S1 means

that the merge cost of vector vi to cluster S1 is:

n1

n1 + 1
||c1 − ci||2, (4.3)

where n1 is the number of vectors already merged to the cluster S1. Now if we take

a limit of n1 →∞ of the coefficient c = n1
n1+1 .

lim
n1→∞

n1

n1 + 1
= lim

n1→∞
n1

n1(1 + 1
n1

)
= 1. (4.4)

we get unity. This means that when n1 is “big”, we can forget the coefficient c from

dPNN, reducing it to the squared distortion. For example with 200 iterations we

would get c = 0.99502. Figure 4.1 shows that the coefficient c converges very fast

closer and closer to the unity.

This leads to the hypothesis that with large partition sizes coefficient could be for-

gotten. Also using l2 distance instead of squared error in that case, fast indexing

techniques could be used to find the closest pair of all partitions.
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Figure 4.1: Coefficient c as a function of iteration.

4.1.2 Monotony Property

Interesting monotony property describing the growth of PNN distances was proven

in [59]:

Lemma 2. Consider the clusters Sa, Sb and Sc, with centroids ca, cb and cc and

cluster frequencies na, nb and nc. Assume that dPNN(Sa, Sb) ≤ dPNN(Sa, Sc),≤
dPNN(Sb, Sc) and na, nb, nc ≥ 1. Then it holds that dPNN(Sa, Sc) ≤ dPNN(Sab, Sc).

In other words, distance from cluster Si to another cluster Sj can never be smaller

after Sj has been merged to some other cluster. This means, that PNN distances

are monotonously non-decreasing when PNN iterations are progressing. It was noted

in [14], that above mentioned monotony criterion is also true for any type of sym-

metric and totally ordered distance.

4.2 Overview of Agglomerative Methods

The PNN algorithm [33] is described in Algorithm 6. In each iteration, it merges

two partition that minimizes distortion. Number of iteations is N −M , and as M

(codebook size) generally is much smaller than N (M ¿ N), the number of iterations

is O(N). To find such two clusters, whose merge minimizes distortion, we only need

to find two partitions Sa and Sb, whose dPNN() distance is minimum. See section 4.1
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for more details on the PNN distance function. “Merge(Sa, Sb)” -operation on the

other hand calculates new centroid for a new cluster [33]:

ca+b =
naca + naca

nanb
, (4.5)

where na and nb are the corresponding cluster frequencies. Then cluster frequency

of the new cluster is simply na+b = na + nb.

Algorithm 6 PNN method
Mark every data vector to be codevector (M ← N)

repeat

(Sa, Sb) = FindNearestClusters(S)

Sa+b = Merge(Sa, Sb)

M ← M − 1

until M = |C|

The number of all pairwise distances is
(
N
2

)
, as binomial coefficient describes how

many ways we can select two from N . Which leads to

(
N

2

)
=

N !
(N − 2)!2!

=
1
2
(N − 1)N = O(N2), (4.6)

where we see, that with trivial algorithm by enumerating all pairwise distances has

the time complexity of O(N2). Which yields to the O(N3) time complexity of the

whole PNN algorithm When we consider more carefully the operations inside the PNN

iterations, we find that all are distance computations [83]. For arbitrary dimension

D this will lead to O(DN3) time complexity. But fortunately in color quantization

we quantize only 3-dimensional vectors. This method we call exact PNN.

Several speedups have been proposed in the literature to exact PNN. One possibility

to reduce the distance calculations is to use a distance matrix A, where an element

aij = dPNN(Si, Sj). Matrix is upper triangular as dPNN is symmetric. When parti-

tions Si and Sj are merged, only row i and column j needs to be recalculated. Which

leads to O(N) update operation. Authors in [92] propose to use exact PNN variant

with distance matrix for color quantization. Kurita [64] proposed to use distance

matrix for updates and heap structure for finding the minimum pairwise distance in

O(log N) time. Time complexity for Kurita’s method is O(N2 log N), but unfortu-

nately from keeping all pairwise distances in the heap and in the distance matrix the

space complexity becomes O(N2).
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Figure 4.2: An example of PNN algorithm on the right(MSE = 108.64) and on the

left PNN solution fine tuned with GLA (MSE = 101.94).

A linear in space complexity, but still order of magnitude faster than exact PNN

algorithm has been introduced, called fast exact PNN [39]. The idea is to calculate

nearest neighbour pointer nn() to all partitions:

nn(Sa) = arg min
i∈[i,N ],i6=a

dPNN(Sa, Si). (4.7)

To find minimum distance in dPNN() sense only O(N) steps are needed in each iter-

ation. After each merge operation, nearest neighbour pointers have been updated to

point to a new possibly closer partitions. This method is faster than previous ones

but it is still lower bounded by Ω(τN2), where τ denotes the number of partitions

whose nearest neighbour pointer must be updated.

Lemma 3. if dPNN(Sa, nn(Sa)) is minimum over all pairwise distances and nn(Sa) =

Sb, then nn(Sb) = Sa

Proof. We prove by contradiction. Let’s suppose that nn(Sb) 6= Sa, then

dPNN(Sb, nn(Sb)) < dPNN(Sb, Sa). But this cannot hold as dPNN() is symmetric and

thus dPNN(Sa, Sb) = dPNN(Sb, Sa).

This means that in each iteration only cases when nn(Sa) = Sb and nn(Sb) = Sa

need to be checked. Separate list holding pointers to those partitions which have this
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property. Then find minimum operation needs only to go through this list.

Other possibility is to use dynamic closest pair data structure, where update cost

is O(N log2 N) [31]. Total time complexity for clustering is then O(N2 log2 N) and

space complexity is O(N). Speedup of around 35% can also be gained compares to

the fast exact PNN by deferring the distance computations until necessary [59, 14].

Also different practical methods to speedup PNN have been proposed the [95]. All

of these methods still suffer the problem of quadratic time complexity.

To overcome the quadratic search cost Equitz proposed an approximative variant

called fast PNN [33]. Fast PNN uses KD-tree to search partitions to merge and it

also merges many partitions at the same time. Unfortunately quality of the produced

codebook is not comparable to the exact PNN [39]. Also essentially the same algo-

rithm as the fast exact PNN has been proposed for color quantization [3], in addition

of using activity weighted metric instead of the MSE. By assuming color quantiza-

tion as a special case of PNN algorithm Xiang et al. [107] consider a reduced set of

candidates for pairing for each color instead of all pairwise partition distances. Idea

is to search possible pair to merge in the small RGB boxes, where candidate pairs for

each color should be found. This obviously produces suboptimal results compared

to exact PNN but unfortunately the authors did not compare their approximative

algorithm to exact PNN.

4.3 Agglomerative Clustering Using kNN Graph

Exact, but fast methods, still use linear time per PNN iteration, natural question

then is that could we do better? In [30, 29], authors propose a method to do reduced

search by graph. First they sort RGB triplets by their luminance and then calculating

k Nearest Neighbour Graph (kNNG) [32], from the sorted luminance values. Inde-

pendently of them, in [37] use of directed graph to solve quadratic time complexity

was proposed. Main topic in the rest of this chapter is to delve more thoroughly in

the details of the kNNG based PNN.

The proposed method is basically the same as the PNN method except that we utilize

graph structure in the search of nearest neighbor. In the PNN, the search of nearest

neighbor cluster is repeated many times, and every search requires O(N) distance

calculations. The graph is utilized so that the search is limited only to the clusters

that are directly connected by the graph structure. If the number of edges is small,
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significant reduction in computation can be obtained.

Algorithm 7 PNN on kNN Graph
Mark every data vector to be node in the directed nearest neighbour graph (M ←
N)

Find kNN(xi) ∀xi ∈ X

repeat

(Sa, Sb) = FindNearestClustersInGraph(S)

Sa+b = Merge(Sa, Sb)

Find the k nearest neighbours of Sa+b

Update clusters that have Sa and Sb as neighbours

M ← M − 1

until M = |C|

Algorithm 7 shows the basic outline of the PNN algorithm with kNNG, where kNNG

is first calculated and then used. We use the shorthand Graph PNN for this algorithm

from now on. We clearly see that algorithm outputs the same codebook as the PNN

if k = N − 1. Then graph is complete, and that matches the condition of the PNN

algorithm. We can store kN distances in the heap structure as seen in Kurita’s

method [64], then the “FindNearestClustersInGraph()” -operation is O(log kN) =

O(log k + log N) = O(log N). Merge operation unchanged from the original PNN

algorithm. In find the k nearest neighbours operation, k neighbours are picked from

the neighbourhood lists of both Sa and Sb. When neighbours have been picked,

distances to them are recomputed. For that reason heap structure has to be updated,

which has a time complexity of O(log N).

Update clusters that have Sa and Sb as neighbours operation is the critical part of

the algorithm. To find the clusters,which consider Sa+b as a neighbour, in constant

time, algorithm maintains a incoming edges list. Size of the list is denoted by the

symbol ϑ. Then the time complexity of that operation is O(ϑ log N), where log N is

again the heap update cost. Total cost of algorithm is then O(ϑN log N).

Now interesing problem is, can we give an estimate of ϑ. It would be advantageous

if τ would be small constant, then the time complexity would be O(N log N). Unfor-

tunately no such guarantee exists in dPNN() space [39]. Our definition of the nearest

neighbour graph says that, at the graph creation phase, distance between vectors is

Euclidean. Also assumption is that in the original dataset frequencies were one for

each unique vector. It has been proven in [75] that ϑ is bounded by τDk, where τD is
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the kissing number of the dimension D [21]. Kissing number, which is defined as the

maximum number of unit hyper spheres that are touching another unit hyper sphere

without any interstections. Kissing number problem for general D is still unsolved

problem, but fortunately for the case D = 3 has been solved to be τ3 = 12 [21].

4.4 k-Nearest Neighbour Graph

We define k-nearest neighbour graph (kNNG) as a weighted directed graph, in which

every node represents a single vector, and the edges correspond to pointers to neigh-

bour vectors. Every node has exactly k edges to the k nearest vectors according to a

given distance function. The distance used herein is normal euclidean distance. First

we need one auxiliary definition of neighbourhood set [10] before we jump into the

formal definition of the kNNG. Let’s first impose a well defined order in the set X.

For all vectors in the set qi ∈ X \ {x}, there exists following ordering:

d(x, q1) ≤ d(x, q2) ≤ . . . ≤ d(x, qN−1). (4.8)

This is trivially true, as distance d(·, ·) output’s a real number and the set of real num-

bers is a well ordered. Now using the imposed ordering, we can define set kNN(x).

Definition 1. Set is kNN(x), when let k ≤ N and qi be as in Eq. 4.8, then:

kNN(x) = {q1, q2 . . . .qk} (4.9)

v

qk

kNN(v)

Figure 4.3: An example of the kNN(v).

In Fig. 4.3, we see the geometrical interpretation of the kNN(x), where v centered

and r = ||x − qk|| radius sphere is formed. Set kNN(v) contains vectors in that

sphere minus x. Next we give formal definition of kNN graph. Let’s define the set of

edges from vector x as e(x) = {(x, qi)|qi ∈ kNN(x)}.
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Definition 2. kNNG is a directed graph G = (V, E), where V = {xi ∈ X} and

E = {e(xi) ∈ X}.

We see from definition 2 that as every vertex in a graph has exactly k outgoing edges,

the number of edges is then |E| = k|V |. Note however, that using the kNNG with

Graph PNN will reduce the number of edges in the graph. In each iteration, one

vertex is taken out of the graph, then in the case when vertex x has an edge to the

both vertexes to be merged one edge will be removed from x’s edge list.

Figure 4.4: Sample 2d dataset (left), and the corresponding kNNG with k = 2 (right).

Fig. 4.4 give an example for kNNG for 2-dimensional dataset with k set to 2. Epp-

stein et al. [32] defined nearest neighbour graph, which is equivalent to our definition

of kNNG, when k = 1. They also mentioned kNNG and concluded that graph theo-

retical and combinatorial properties of the kNNG are fairly unknown. Graph created

with this definition has applications beyond the usage as auxiliary data structure in

our Graph PNN algorithm. Some example are the use in nonlinear dimensionality

reduction [88], where idea is to approximate the true manifold where high dimensional

vectors reside. Previously we have also used the kNNG to detect outliers from vector

set [48].

Other definitions of kNNG have been also proposed in literature. All of the graphs

which deal with the notion of neighbourhood vector set are called proximity graphs [54],

where vertices are vectors in the training set (or data set more generally) and edges

between vertices describe spatial relationship of those vertices.

Mutual k Nearest Neighbour Graph (MkNNG) by Brito et al. [10] is defined formally

as follows.

51



Definition 3. MkNNG is an undirected graph G = (V,E), where V = {xi ∈ X} and

E = {(x, q), q,x ∈ X|x ∈ kNN(q) ∧ q ∈ kNN(x)}.

Let’s find the inclusion relation between the MkNNG and the kNNG.

Lemma 4. MkNNG ⊆ kNNG

Proof. We prove by contradiction. By definition vertexes of both graphs are the

same. Let’s MkNNG = (V, E′) and kNNG = (V,E). Then let’s suppose, that there

exists e = (x, q) ∈ E′ and e /∈ E. Then by definition of MkNNG, q ∈ kNN(x), but

also by definition of kNNG, (x, q) ∈ E, which is a contradiction. Also the case when

x ∈ kNN(q) is proved in the same way. This completes our proof.

Figure 4.5: Example kNNG (left), the corresponding UkNNG (center) and the

MkNNG (right) [2].

The case when k = 1 the MkNNG = kNNG can happen only when all vectors are

each others nearest neighbours.

A different definition of undirected k Nearest Neighbour Graph1 (UkNNG), it is for-

mally defined as [75].

Definition 4. UkNNG is an undirected graph G = (V,E), where V = {xi ∈ X} and

E = {(x, q), q,x ∈ X|x ∈ kNN(q) ∨ q ∈ kNN(x)}.

In other words, this means that vertices v and q have an undirected edge between each

other if either of them consider the other as it’s nearest neighbour. We use directed

kNNG, but in principle UkNNG could also be used in agglomerative clustering. With

kNNG we have the explicit knowledge which vertices v considers to be it’s nearest

neighbours.
1Authors use term k Nearest Neighbour Graph, but we coined a different term to distinguis it

from kNNG.
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Lemma 5. If all edges in kNNG are changed to undirected edges and duplicate edges

are removed, then kNNG = UkNNG.

Proof. We prove this lemma by contradiction. Let and G = (V, E) be a kNNG and

G′ = (V,E′) be a UkNNG. There are two cases, when lemma would not hold: i)

e ∈ E and e /∈ E′ or ii) e′ ∈ E′ and e′ /∈ E. Case i): Lets suppose that e = (v, q) ∈ E

and e /∈ E′. Then q ∈ kNN(v), but by the definition of UkNNG e ∈ E′, which is a

contradiction. Case ii) is satisfied symmetrically.

Other possible proximity graphs are Gabriel Graph (GG), Relative Neighbourhood

Graph (RNG), Delaunay Triangulation (DT) and Minimum Spanning Tree (MST).

For detailed information of all of those, see review paper [54].

4.5 Neighbourhood Size

Graph PNN algorithm described in this section contains only one parameter, the

neighbourhood size k. The question what is the correct value of k, has a practical

importance as memory usage has linear dependence to k. If we want to be sure that

the distortion of the produced codebook is exactly same as the codebook produced

by the PNN algorithm, then the graph has to be complete. Graph is complete when

k = N − 1. Space complexity of the neighbourhood graph is O(kN), for that reason

complete graph is not practical. We have to keep in mind that the exact PNN

is also heuristic algorithm, which has only guarantees the optimality of the single

merge operation. The sequence of the merge operations will not necessarily produce

an optimal solution. On the other hand choice of k = N − 1 will lead to exactly

same distortion as the original PNN method, as then the graph will be complete.

Restricting neighbourhood graph to smaller than N − 1, will also cause some PNN

merge sequences not to exist, then algorithm will select some other sequence. The

non-optimality of the PNN method then states that when k < N − 1 algorithm can

produce smaller distortion than the exact PNN. To summarize, k = N − 1 is not

necessarily optimal in the distortion sense. However we are interested in the optimal

choice of k in the time/distortion sense. Which value of k gives the best distortion

for least time.

We need to define more formally, what we mean by optimal choice of k. One intuitive

definition is that choose k that gives minimum distortion. Another approach is to
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consider the fact that Graph PNN is an approximation of PNN algorithm, find k

such that codebook created by Graph PNN is same as created by PNN. On the other

hand, it is possible that algorithm cannot reach codebook size M as the number of

edges goes to zero before M is reached. Consider the situation, when k = 1 and

graph is such that all vectors form pairs i.e. e = (xa, xb) iff e = (xb, xa). Then

the smallest codebook that can be created is of size N/2. It is clear that arbitrary

sized codebooks can be created with algorithm only when kNN graph is connected.

Correspondingly kNN graph must have M connected components for the algorithm

to be able to reach the target codebook size.

4.5.1 The Case k = 1

In the theoretical development of this section we assume that in merge of two clusters

Sa and Sb, we do not select k outgoing edges for the new merged, cluster but just take

union of outgoing edges of both Sa and Sb. This means that only duplicate edges are

removed. Analysis is easier with this assumption. In this section, we want to show

that when k = 1 is enough for the algorithm to reach target codebook size M . Firts

we need the definition of the proximity graph Minimum Spanning Tree (MST) [90].

Minimum spanning tree is a spanning tree (tree, which connects all the vertices) with

the minimum cost.

Definition 5. Minimum spanning tree is a tree that spans the vector set S such that

the sum of euclidean edge weights is less than the sum for any other spanning tree.

Figure 4.6: Sample 2d dataset (left), and the corresponding minimum spanning tree

(right) [90].

Now we prove that all edges of the nearest neighbour graph are in minimum spanning

tree. We use the ideas from the correctness proof of Prim’s algorithm [22].

Lemma 6. Let T = (E, V ) be an minimum spanning tree and q ∈ V , then there

exists e ∈ E, where e = (q, NN(q)) for all q ∈ V .
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Proof. Let T ′ = (E′, V ′) be a minimum spanning tree, which does not contain vector

q and v = NN(q). By definition d(q, v) ≤ d(q, x), where x ∈ V ′ \ v. Adding e′ =

(q, x) does not create legal minimum spanning tree, as w(T ′+(q,v)) ≤ w(T ′+(q, x)),

where function w() summs all edge weights.

Lemma 7. NNG ⊆ MST

Proof. Proof is a direct application of the lemma 6, as it says that for each vector

there exists an edge to its closest neighbour.

Next we state our main result in this section. We need one more graph theoretical

concept, namely loop, which is a path of two directed edges such that e = (a, b) and

e′ = (b, a).

Theorem 1. Nearest neighbour graph is connected if and only if it has only one loop.

Proof. “⇒” Let connected nearest neighbour graph be G = (E′, V ) and minimum

spanning tree be T = (E, V ). Lemma 6 says that E′ ⊆ E and from the properties of

the trees we know that |E| = |V |−1 and trivially nearest neighbour graph |E′| = |V |.
Then one edge in G is left over from the minimum spanning tree and thus forms the

loop with one other edge in G.

“⇐” Let’s form G′ by subtracting the other edge of the loop from the G getting

|E′′| = |V | − 1 edges. To show that G is connected we need to show that T = G′.

First let’s consider the case G′ ⊆ T . We assume that e ∈ G′, e /∈ T . But lemma 6 says

that E′ ⊆ E, which leads to contradiction. And lastly we consider the case T ⊆ G′.

Now as E′′ ⊇ E and |E′′| = |E|, then E′′ = E. Which proves our claim.

In practice, this result has a real significance when user wants to use Graph PNN

with k = 1. By setting up an bookkeeping system to calculate amount of loops

after graph creation. By applying the theorem 1, we calculate number of loops

then subtract one from the sum, resulting the number of connected components.

Example is shown in Fig. 4.7, which contains four connected components and five

loops. For this example we could use Graph PNN algorithm to create clusterings

where M ∈ [4, 14]. Algorithm will fail if codebook sizes 1, 2 or 3 are requested.
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Figure 4.7: Sample 2d dataset (left), and the corresponding minimum spanning tree

(right) [90].

4.5.2 The Case k > 1

In previous section, we discussed on when k could be set to one. We found a fast

bookkeeping method to check when clustering can be produced. Unfortunately even

though algorithm can produce clustering to the size M , analysis in the previous

section does not guarantee anything about the quality of the clustering.

We know from section 4.1.2 that distances between clusters grow monotonously in

the PNN iterations. This leads to the observation that the neighbours of cluster

do not necessarily stay the same. It is also possible, that the nearest neighbours in

the graph creation will stay during the PNN iterations. One example is the case

when nearest neighbour pointers form an chain. For that dataset our algorithm will

produce exactly same codebook as PNN algorithm with k = 1. Both algorithms will

successively merge each vector to the same vector.

Optimal selection of the k in terms of PNN algorithm can be stated in the following

way. If during the algorithm iterations closest pair is always found in the neighbour-

hood list, then our algorithm produces exactly same results as the PNN algorithm.

Unfortunately no theoretically justified rule of thumb for selecting the k exists. Then

good candidate for k can be found experimentally, by comparing the distortion pro-

duced by PNN algorithm and our algorithm.
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4.6 Creation of the Neighbourhood Graph

Graph creation is related to the post office problem in computational geometry. The

problem is to find for every data point x its closest vector from a smaller set of

representative vectors. Many solutions exist (e.g. by solving minimum spanning tree

for the special case k = 1) at the cost of O(N log N + M2), and with the assumption

that all pairwise distances are stored in memory. In our case, however, we have

M = N . This makes the time complexity to O(N2), which is the same as that of the

full search.

Efficient construction of the k nearest neighbor graph is needed also in manifold

learning [88]. It uses nonlinear dimensionality reduction by mapping the input vec-

tors into a smaller dimensional subspace (called manifold). If such manifold exists,

Euclidean distance can be assumed to hold between nearby vectors along the surface,

which reduces the dimensionality significantly.

In statistical pattern recognition, the graph creation is known as kNN classifier

problem, or k-all-nearest-neighbors problem. The problem is to find for all vectors

their k-nearest neighbors in the same set. Theoretical results can be found in [13],

but we are not aware of any practical subquadratic algorithm that works for higher

dimension D. In general, this is referred as the curse of dimensionality.

Straightforward solution is to construct the graph by brute force by considering all

pairwise distances
(
N
2

)
but at the cost of O(N2) time. In the following, we aim at

solving the problem either by a faster but heuristic (thus suboptimal) method, or by

allowing the worst case time complexity become O(N2) if the algorithm works faster

for typical data sets in practice. We consider also the KD-tree method.

4.6.1 KD-Tree

There are many algorithms using spatial data structures for fast nearest neighbor

search such as KD-tree, ball-tree, and R-tree. For example, KD-tree [7] has been

introduced already long time ago and it is widely used for finding the nearest neigh-

bor [57]. These techniques can be extended for creating k nearest neighbor graph.

The KD-tree is a generalization of a simple binary search tree, in which each node

represents a subset of the vectors in the data set. The root of the tree represents

the entire data set. Each non-terminal node has two children sons representing two

subsets defined by the partitioning. The terminal nodes represent mutually exclusive
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small subset of the data sets, which collectively form a partition of the data set.

These terminal subsets of vectors are called buckets. In D-dimensional vector space,

a cluster is represented by D keys. Any of these can serve as the discriminator for

partitioning the subset represented by a particular node in the tree. In the creation of

the neighbourhood graph, we insert every vector into the KD-tree, and then search

for each vector its k nearest neighbours from the same tree.

The KD-tree data structure provide an efficient mechanism for examining only those

vectors closest to the query vector, thereby greatly reducing the computation required

to find the k nearest neighbours. The search algorithm is most easily described as

a recursive procedure. The geometric boundaries of the node are determined by the

partitions defined at nodes above it in the tree. If the node under investigation is

terminal, then all the vectors in the bucket are examined excluding the query vector

in question. A list of k nearest neighbours so far found and their distances to the

query vector is maintained as an ordered list during the search. Whenever a vector

is examined and found to be closer than the most distant member of this list, the list

is updated.

If the node under investigation is not terminal, the recursive procedure is called for

the node representing the subset on the same side of the partition as the query vector.

When the control returns, a test is made to determine if it is necessary to consider the

vectors on the side of the partition opposite the query vector. This is referred to as

the “bounds-overlap-ball” test. A “ball-with-in-bounds” test is made before returning

to determine if it is necessary to continue the search. See [7] for details of the KD-tree

algorithm.

The goal of the optimization of the KD-tree is to minimize the expected number

of vectors examined with the search algorithm. The parameters to be adjusted are

the discriminating key, partition value at each nonterminal node, and the number

of vectors contained in each terminal bucket. The prescription for optimizing the

KD-tree is to choose at every nonterminal node the key with the largest spread in

values as discriminator and to choose the median of the discriminator key values as

the partition.

The creation of the KD-tree takes O(DN log N) time and each search is proportional

to O(log N) [7]. Thus, if we consider k as a small constant, the expected time

complexity of the algorithm is only O(N log N) in the case of the low dimensional data

sets. Nearest neighbour search capabilities of KD-tree has been studied theoretically
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and experimentally by Yianilos [111]. It was concluded that for high dimensional

uniformly distributed data, to achieve savings over exhaustive search, the search

radii has to be very small. In other words, as dimensionality increases either the

number of distance computations must be increased, or the search radii decreased.

4.6.2 Other Methods

The other methods that can be considered for searching the k nearest neighbours

include:

• VPT [111]

• AESA [16]

• MST [45]

• TIEC [68]

Vantage point trees (VPTs) build a binary tree recursively, taking any vector p as the

root and taking the median M of the set of all distances d. Those vectors u such that

d(p, u) ≤ M are inserted into the left subtree, while those such that d(p, u) > M are

inserted into the right subtree. To solve a query in this tree, me measure d = d(q, p).

If d− r ≤ M we enter into the left subtree, and if d + r > M we enter into the right

subtree (with search radius r) . We report every vector considered that is close

enough to the query. The VPT takes O(N) space and it is build in O(N log N) worst

case time. The query complexity is argued to be O(log N), but as pointed out, this

is true only for very small search radii, too small to be an interesting case.

Approximation elimination search algorithm (AESA) is experimentally shown to have

O(1) query time. The structure is simply a matrix with the N(N−1)/2 precomputed

distances among the vectors of the data set. At search time a vector p from the data

set is selected at random and measure rp = d(p, q), eliminating all vectors u of the

data set that do not satisfy rp− r ≤ d(u,p) ≤ rp + r (with search radius r). While

all the d(u,p) has been precomputed, so only d(p, q) has been calculated at search

time. The process of taking a random pivot among the (not yet eliminated) vectors

of the data set and eliminating more vectors from the data set is repeated until

the candidate set is empty and the query has been satisfied. See [16] for details of

the algorithm. The problem with the algorithm is that it needs O(N2) s pace and

construction time which is unacceptably high for all but very small data sets.
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Minimum spanning tree (MST) can be constructed in O(|E|+ |V |log|V |) time, where

|E| is the number of the edges and |V | is the number of the vertices. At each vertex

of the MST is a data vector, and the weight of an edge is the distance between the

data vectors connected by the edge. In an MST, each vertex is always connected to

at least one of its nearest neighbours. Thus, a partial ordering of the data vectors

can be obtained. The MST presentation can be precomputed, and then stored in

O(N) space. Unfortunately, in the case for searching the k nearest neighbours the

precomputing takes O(N2 + N log N) time.

The triangle inequality elimination criteria (TIEC) restrict the nearest neighbour

search to a subsection of the data set based on the distances of the data vectors to

an ”anchor” vector. Given a fixed anchor vector, the distances between a anchor

and each data vector is pre-computed and stored in O(N) space. Those distances

serve as scalar projections of the data vectors with respect to the anchor vector.

Using several anchor vectors can strengthen TIEC’s ability to eliminate data vectors

from consideration. However, each anchor vector requires O(N) space for the scalar

projections, and the distances between each anchor vector and the other data vector

needs to be calculated. If we use N anchors the TIEC takes O(N2) space and time.
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Chapter 5

Experiments

“When in doubt, print ’em out.”

– Karl’s Programming Proverb 0x7

In this section, we present our experimental procedure and the results of the subse-

quent test runs. Testing methodology was as follows: three fairly different natural

images were chosen. Images were quantized to 16, 32, 64, 128 and 256 colors with the

algorithms described below. Primarily we were interested in the distortion between

original image and the quantized image. Distortion function used was MSE, from

Eq. (2.12). Finally, execution times of the algorithms were also recorded.

5.1 Experimental Setup

Test images in our experiments are: parrots, sunflower and skyline as shown in

Figs. 5.1, 5.2 and 5.3. As in [81], we did not use prequantization. From the test

image set, image parrots is a classical image processing and compression test image.

Image contains large collection of different colors in the detail areas, on the other

hand, background is out of focus and thus is the area of smooth change from green to

brown and white. In Fig. 5.1, we see that colors are concentrated on the luminance

axis, with a few separate clusters around it. These clusters are connected to the main

cluster in the luminance axis.

Sunflower image was taken by the author with Nikon CoolPix 3200 digital camera.

The image size was reduced by 60 % to make the dimensions of the image approx-

imately similar to the other test images. From the table 5.1 we see that the image
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contains a large amount of unique colors, 47% of the pixels contains mutually dif-

ferent colors. Image contains a high amount of yellow and green tones, also we note

that the luminance axis is not so clearly observed as in the parrots image.

Table 5.1: Summary of the test images.
Image W H unique colors unique/all colors type

parrots 768 512 72175 18% Natural (animal)

sunflower 453 604 127282 47% Natural (flower)

skyline 400 594 47102 20% Natural (scenery)

Skyline image is the famous desert scenery photo taken in the Arches National Park,

Utah1. Image contains only relatively few unique colors, which are either different

shadesof red and blue. From Fig. 5.3 we can see that the two colors with different

shades form two well separated clusters.

Figure 5.1: Parrots image (left) and the corresponding color histogram (right).

For this study, we selected nine different algorithms. The basis of choosing algorithms

on this experiment was to make the comparison between the most common divisive

methods, agglomerative methods and the proposed Graph PNN method. The kNN

graph was created using KD-tree method described in section 4.6.1. Optimized PNN

refers to the implementation of the fast exact PNN algorithm [39] with the speed

optimization tricks explained in [95]. For the sake of comparison, popularity algo-

rithm and the generalized Lloyd algorithm were also taken into the test. By Multiple

Generalized Lloyd algorithm we mean running GLA on 30 different random initial
1Copyright photo courtesy of Robert E. Barber, Barber Nature Photography

(REBarber@msn.com).
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Figure 5.2: Sunflower image (left) and the corresponding color histogram (right).

Figure 5.3: Skyline image (left) and the corresponding color histogram (right).

solutions and picking the best solution as the output codebook. We will also study

if the codebooks generated from some selected algorithms can be fine-tuned by the

GLA.

The list of algorithms used in this experiment are:

• Popularity algorithm [50],

• Generalized Lloyd algorithm [70],

• Multiple Generalized Lloyd algorithm [70],

• Median Cut [50],

• Orchard’s algorithm [77],
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• Locally Optimal Bi-partitioning [104, 38],

• Pairwise Nearest Neighbour [33],

• Optimized Pairwise Nearest Neighbour [95] and

• Graph PNN [37].

We hypothesize that popularity algorithm will output the codebook with most dis-

tortion, compared to the other algorithms we are testing. We see from Figs. 5.1,

5.2 and 5.3 that the colors tend to concentrate on certain areas, then it is plausible

that most popular colors are very close to each other. Interesting question is whether

GLA can significantly improve the results of the popularity algorithm. In literature,

it has been reported that GLA and even running GLA multiple times would not yield

as low distortion as agglomerative methods [94, 58]. We would like to know if this

result applies also to our test image sets.

In table 5.2, we see eigenvalues calculated from the covariance matrices of the test

images. Magnitude of the eigenvalue describes the variance of the data in the direction

of the corresponding eigenvector. Both Orchard’s algorithm and the locally optimal

bi-partitioning assume that the λ1 > λ2. For sunflower λ1 is more than five times

of the λ2, which would suggest that the divisive principal component based methods

(Orchard’s method and optimal bi-partitioning) work well for the sunflower image.

Table 5.2: Eigenvalues of the test image covariance matrices.
Image λ1 λ2 λ3

parrots 7069 2286 821

sunflower 9265 1645 340

skyline 1830 604 21

Finally, we are interested to know if agglomerative methods produce better quality

color palettes than the divisive methods.

5.2 Results

In the following, we first made the quantization experiments with all algorithms to

all test images. We noticed that the popularity algorithm systematically produced

distortions of more than thousand. For that reason we used GLA as a fine-tuner of
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the popularity results. In tables 5.3, 5.4 and 5.5, we see the quantization results of all

algorithms when varying the codebook size. Best distortion for each test is marked

with boldface.

We note that for parrots and sunflower, GLA and multiple GLA produces lowest dis-

tortions. The reason for this is that when dataset forms essentially one big cluster,

centroids in GLA iterations can travel to the locations with low distortion. Hier-

archical methods, on the other hand do not iteratively finetune the codebook and

even though the individual split or merge decisions are optimal, it does not guar-

antee global optimum. Median cut produces high distortion in all cases. And also

as expected, Orchard’s algorithm produces comparatively good results but locally

optimal bi-level partitioning produces systematically lower distortion than Orchards

algorithm.

Table 5.3: Summary of quantization distortions for parrots.
Algorithm M = 16 M = 32 M = 64 M = 128 M = 256

Popularity + GLA 172.13 92.40 58.19 35.47 21.89

GLA 136.32 75.39 41.54 24.43 14.32

Multiple GLA 136.32 75.08 41.54 24.43 14.32

Median Cut 640.51 533.81 427.47 310.41 227.15

Orchard’s algorithm 146.53 77.18 43.04 24.88 14.63

Optimal Split 137.95 76.32 42.32 24.47 14.23

PNN 140.21 78.43 43.76 25.21 14.57

Optimized PNN 141.50 77.91 43.04 25.27 14.53

Graph PNN 138.94 77.55 42.78 24.95 14.50
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Table 5.4: Summary of quantization distortions for sunflower.
Algorithm M = 16 M = 32 M = 64 M = 128 M = 256

Popularity + GLA 136.97 73.91 50.73 36.83 30.99

GLA 96.63 53.86 32.16 19.71 12.33

Multiple GLA 96.52 53.86 32.15 19.70 12.28

Median Cut 302.10 283.26 254.55 31.59 20.43

Orchard’s algorithm 99.11 56.88 33.34 20.22 12.31

Optimal Split 98.47 54.89 32.87 19.86 12.20

PNN 100.45 56.53 33.36 20.26 12.41

Optimized PNN 102.25 55.73 33.50 20.23 12.50

Graph PNN 99.28 56.01 33.19 20.13 12.40

In table 5.5, we see the quantization results for the skyline test image. As noted

before, the skyline dataset consists of two separated clusters. For this test image,

GLA does not produce best results and even running GLA multiple times cannot

produce much better codebook. Locally optimal bi-level split produces the best

results except for M = 32, when Graph PNN produces codebook with a little bit

smaller distortion.

Table 5.5: Summary of quantization distortions for skyline.
Algorithm M = 16 M = 32 M = 64 M = 128 M = 256

Popularity + GLA 131.72 76.15 52.71 20.21 10.53

GLA 117.54 57.07 25.92 16.01 9.70

Multiple GLA 117.54 57.07 25.92 16.01 9.70

Median Cut 873.72 735.73 619.39 478.41 60.44

Orchard’s algorithm 118.31 54.37 24.33 11.92 6.34

Optimal Split 115.93 52.92 23.44 11.74 6.19

PNN 127.78 53.57 23.67 12.07 6.28

Optimized PNN 121.25 52.56 24.39 12.06 6.28

Graph PNN 117.86 52.45 23.63 12.00 6.32

Then we run the test if GLA can be used to finetune the codebooks produced by

hierarchical algorithms. We selected only locally optimal bi-partitioning, optimized

PNN algorithm and Graph PNN algorithm. We also recorded the total time used in

the codebook generation and subsequent GLA iterations. Best time in each test is
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marked with italics font. We did not limit the number of iterations, instead we set

it to stop until convergence. Tables 5.6, 5.7 and 5.8 summarize the results. We note

from the tables that only in one case GLA produces a litte bit better solution than the

other methods. We see that plain GLA is slow on all test cases and even optimized

PNN produces results faster in three test cases for skyline test image. The reason

why GLA used as finetuner is much faster than the plain GLA is that the initial

codebook produced by the hierarchical methods was already close to locally optimal

solution. In our tests, we noted that at maximum it took 5 seconds to finetune in any

of the tests, when plain GLA, for example for sunflower, took over hundred seconds

all the cases.

We note that Graph PNN is the fastest method in all but three test cases for skyline,

when splitting strategy was fastest. The difference in distortion between locally

optimal bi-partitioning and the PNN methods is very small. In most of the cases,

the difference in distortion is less than one unit.

Table 5.6: Finetuned quantization results for parrots.
M = 16 M = 32 M = 64 M = 128 M = 256

Algorithm MSE Time MSE Time MSE Time MSE Time MSE Time

GLA 136.32 61.32 75.39 77.13 41.54 118.82 24.43 186.50 14.32 140.68

Opt. Split 136.29 6.34 74.11 7.05 41.35 8.51 23.93 9.84 13.95 12.78

Opt. PNN 136.18 176.90 74.79 176.03 41.49 176.93 24.04 177.42 13.97 178.84

Graph PNN 136.37 5.40 74.93 5.34 41.43 5.92 24.17 6.45 14.02 7.68

Table 5.7: Finetuned quantization results for sunflower.
M = 16 M = 32 M = 64 M = 128 M = 256

Algorithm MSE Time MSE Time MSE Time MSE Time MSE Time

GLA 96.63 140.68 53.86 126.01 32.16 153.62 19.71 220.37 12.33 355.77

Opt. Split 96.92 12.75 54.02 14.16 32.12 16.22 19.44 19.09 11.94 25.11

Opt. PNN 97.61 447.17 53.87 447.70 32.09 447.85 19.45 449.76 11.94 450.83

Graph PNN 96.66 8.41 53.56 8.33 31.88 9.35 19.47 10.48 11.99 13.07
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Table 5.8: Finetuned quantization results for skyline.
M = 16 M = 32 M = 64 M = 128 M = 256

Algorithm MSE Time MSE Time MSE Time MSE Time MSE Time

GLA 117.55 28.95 57.10 45.38 25.92 59.05 16.01 96.24 9.70 150.19

Opt. Split 114.77 2.51 50.63 3.10 22.79 3.77 11.53 4.68 6.07 6.72

Opt. PNN 114.49 50.81 50.31 50.96 23.29 50.48 11.61 50.98 6.08 51.36

Graph PNN 116.76 3.41 51.01 3.62 23.23 3.87 11.67 4.37 6.15 5.21

5.2.1 Neighbourhood Size

We studied the effect of the neighbourhood size on the distortion. The results are

shown in Figs. 5.4, 5.5 and 5.6 respectively. As can be seen from table, algorithm

was not able to reach the target codebook size with k = 1. And even more, when

target codebook size was 64 and 16, k = 2 was not large enough. We note that in

all cases, for some value of k, Graph PNN reached the same distortion or smaller

than PNN. But as can be seen in Table 5.9, PNN still produces smaller distortion on

average (tests were run until k = 40) . Standard deviation of the distortion increases

noticeably when codebook size is getting smaller.

We note from Fig. 5.4 that when quantizing to 256 colors, only a small neigbourhood

is enough. Furthermore, distortion does not change much as the function of k. For

that reason, almost any k will produce good results. On the other hand, from these

tests it is not possible to give a rule of thumb on how to select the value of k, when

codebook size is smaller (64 and 16). This would need further investigations, and

possibly more theoretical approach to the problem.

Table 5.9: Summary of distortions.
M PNN (MSE) Graph PNN (avg.MSE) Graph PNN (std.MSE)

16 141.50 144.33 2.79

64 43.04 43.65 0.40

256 14.53 14.63 0.07
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Chapter 6

Conclusions

“A conclusion is the place where you got tired of thinking.”

– Anonymous

In this work, we have presented the color quantization framework with emphasis on

hierarchical palette generation algorithms. Common palette generation algorithms

are reviewed in the first part of this thesis. We presented a review of different divisive

heuristics to solve the problem. We find in experiments that divisive methods that

project vectors to the principal component are fast and produce a good quality palette

compared to the other methods.

Main concentration of this thesis is in the agglomeration methods. Agglomeration

method produces good quality codebook, but the algorithm is slow because it con-

siders the full distance matrix from each cluster to all other clusters. Main idea of

the fast exact PNN, is that for each cluster only it’s nearest neighbour needs to be

kept in store. Unfortunately, maintaining the list requires O(τN) time. To find the

nearest neighbour we have to consider all other clusters. Experimentally we notice

also that the fast exact PNN is more than ten times slower than the best locally

optimal bi-partitioning method.

We can make agglomeration faster if we approximate the neighbourhood. We do

not consider all N − 1 possible neighbours, but a neighbourhood is calculated before

the agglomeration process. In this thesis, we presented an agglomeration algorithm

based on the k nearest neighbour graph. We notice in experiments that the algorithm

can produce the same quality palette as the locally optimal bi-partitioning and other
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agglomeration methods. Graph based agglomeration method is faster than the best

splitting method in all but three test cases.

The problem of choosing the best possible size for the neighbourhood was also studied.

We proved that for the neighbourhood size of one, if graph has M+1 loops, M clusters

can be formed. We studied also experimentally how the distortion was affected by

the function of neighbourhood size. We noticed that when M = 256 neighbourhood

size can be arbitrary as long as it is not one or two. But with smaller palette size we

noticed a lot of variation in distortion. It is still an open theoretical problem, how to

select the best possible k.
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Appendix A

Principal Component Analysis

“Many students feel that mathematics is an old, dead subject.

And why not? Most of high school mathematics was perfected many centuries ago by

the Greeks and Arabs, or at the latest, a few centuries ago by Newton and Leibnitz.”

– Michael Frame and Benoit Mandelbrot

A.1 Covariance Matrix Calculation

To calculate all principal components of the color space we need to first center the

dataset around origin by subtracing the mean value:

x̂i = xi − 1
n

n∑

j=1

xj , (A.1)

and we form a matrix of all subtracted vectors:

X = (x̂1, x̂2, . . . , x̂n). (A.2)

Then we calculate covariance matrix Σ:

Σ =
1

n− 1
XXT , (A.3)

which can be justified as unbiased covariance of two sample values defined as:

σij =
1

n− 1

n∑

k=1

(xki − x̄i)(xkj − x̄j). (A.4)

This means that covariance σij is a variance measured between dimensions i and

j. As the individual elements in matrix X from Equation A.3 were already mean
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subtracted we can see identity between Equation A.4 and Equation A.3 when matrix

Σ in Equation A.3 is expanded:

σij =
n∑

k=1

xikxjk. (A.5)

A.2 Eigenvectors and Eigenvalues of Covariance Matrix

Eigenvector v1 that corresponds to the largest eigenvalue λ1 of covariance matrix Σ

descibes the direction of largest variance in data [49]. That eigenvector is also called

first principal component. Similarly eigenvector v2 that corresponds to the second

largest eigenvalue λ2 is called second principal component of data and so on.

Eigenvector and it’s corresponding eigenvalue of covariance matrix Σ is defined:

Σv = λv, (A.6)

where we get:

(Σ− λI)v = 0. (A.7)

To which trivial solution is v = 0, and non-trivial solutions are found by using

Invertible Matrix Theorem and rewriting Eq. A.7 to:

det(Σ− λI) = 0. (A.8)

This leads to solving the roots of the d degree polynomial:

p(λ) = c0λ
d + c1λ

d−1 + . . . + cd−1λ + cd (A.9)

The maximum number of roots of d degree polynomial is d, and thus, the number of

eigenvectors in Σ is d. Every x of Σ is uniquely represented by the linear combination

of vi’s:

x = c1v1 + c2v2 + . . . cdvd. (A.10)

So it can be seen that the eigenvectors form a basis on Σ.

Then problem is to find those eigenvectors. Whatever algorithm we use, we can

use the definition of eigenvector and eigenvalue in Eq. A.6 to check whether the

result was correct, or close enough to be usefull in practice. Solving the roots of

the polynomial with a high degree is not practical. Thus algorithms are iterative

that approach desired eigenvector and corresponding eigenvalue. These algorithms

provably eventually find correct eigenvector.
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A.2.1 Power Method

Power method is an iterative method for finding largest eigenvector and corresponding

eigenvalue of matrix Σ. First we have to assume that relationship

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λd| (A.11)

holds. This means that |λ1| is strictly larger than |λ2|. If this assumption of data

does not hold, then power method will not converge. Correspondingly closer |λ2|
|λ1| gets

to 1 slower power method converges.

Algorithm 8 Power Method
Select x0, whose largest element is 1.

repeat

x̂k+1 ← Σxk

µk ← max{x̂1, x̂2, . . . , x̂d}
xk+1 = x̂k+1

µk

k ← k + 1

until x converges

Power method is an iterative algorithm, described in Algorithm 8, which starts from

initial guess eigenvector x0. New vector xk+1 is calculated by multiplying it by co-

variance matrix Σ and then scaling vector component values by maximum component

value µk. The sequence {µk} approaches λ1 and xk approaches v1 as k →∞.

Fig. A.1 is an example of how sequence {µk} reaches λ1 with just a few iterations.

Covariance matrix calculated from the parrots test images has a λ1 = 6323. Power

method reaches 6314 with just five iterations and with twelve iterations reaches cor-

rect the eigenvalue.
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Figure A.1: Example of convergence of {µk} sequence with Σ from parrots test image.

Problem with the power method is that it can only be used to approximate largest

eigenvalue and its corresponding eigenvector.
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