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Abstract

Background: Multiple chronic diseases in patients are a major burden on the health service system. Currently, diseases are
mostly treated separately without paying sufficient attention to their relationships, which results in the fragmentation of the care
process. The better integration of services can lead to the more effective organization of the overall health care system.

Objective: This study aimed to analyze the connections between diseases based on their co-occurrences to support decision-makers
in better organizing health care services.

Methods: We performed a cluster analysis of diagnoses by using data from the Finnish Health Care Registers for primary and
specialized health care visits and inpatient care. The target population of this study comprised those 3.8 million individuals
(3,835,531/5,487,308, 69.90% of the whole population) aged ≥18 years who used health care services from the years 2015 to
2018. They had a total of 58 million visits. Clustering was performed based on the co-occurrence of diagnoses. The more the
same pair of diagnoses appeared in the records of the same patients, the more the diagnoses correlated with each other. On the
basis of the co-occurrences, we calculated the relative risk of each pair of diagnoses and clustered the data by using a graph-based
clustering algorithm called the M-algorithm—a variant of k-means.

Results: The results revealed multimorbidity clusters, of which some were expected (eg, one representing hypertensive and
cardiovascular diseases). Other clusters were more unexpected, such as the cluster containing lower respiratory tract diseases and
systemic connective tissue disorders. The annual cost of all clusters was €10.0 billion, and the costliest cluster was cardiovascular
and metabolic problems, costing €2.3 billion.

Conclusions: The method and the achieved results provide new insights into identifying key multimorbidity groups, especially
those resulting in burden and costs in health care services.

(JMIR Med Inform 2022;10(5):e35422) doi: 10.2196/35422
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Introduction

Multimorbidity
Multiple chronic diseases in patients are a major burden to the
health service system in terms of both service use and costs [1].
In many service systems, diseases are mostly treated separately
without paying sufficient attention to their relationships, which
results in the fragmentation of the care process. Better
integration of services can lead to a more effective organization
of the overall health care system. To support this, we analyzed
the connections between diseases based on their co-occurrence
and performed a clustering analysis to identify multimorbidity
patterns.

Multimorbidity is often defined as the coexistence of ≥2 chronic
conditions within a patient [2,3]; however, the number of
medical conditions included in this definition ranges widely
[4]. Systematic reviews have shown that multimorbidity reduces
self-rated health, quality of life, and functional ability and
increases the risk of premature death, hospitalization, and use
of health services, causing a substantial economic burden for
societies and health care systems [5]. Wang et al [6] reported
that multimorbidity cases, defined as patients with ≥2 chronic
conditions, have 2 to 16 times higher costs than
nonmultimorbidity cases. Brettschneider et al [7] analyzed the
impact of 45 conditions on health-related quality of life. The
authors measured multimorbidity using a weighted count score
and assessed its association with decreases in the health-related
quality of life. The strongest impact was observed in Parkinson
disease, depression, and obesity.

An active research area is the measurement of the severity of
multimorbidity. Stirland et al [8] reviewed 35 multimorbidity
measures. Most measures (25 of 35) in their review were based
on simple (weighted or unweighted) counts of diseases; some
measures (4 of 35) used drug counts, and some (5 of 35) were
based on expert-generated grouping of diagnoses, mainly based
on frequencies. Such measures have been used to assess
mortality, health care use, cost, and quality of life.

Diagnosis Groups
The number of possible multimorbidities is too large for human
analysts to examine them individually. In the case of only 205
diagnoses, there are 20,910 different pairs of diagnoses. It is
easier to analyze their connections by first dividing the diagnoses
into smaller groups that contain related diagnoses and then
examining only the connections between diagnoses within each
group. This effectively removes less relevant multimorbidities
from the data and allows us to show the connections in small
groups that are easy to analyze.

Diagnosis groups can also predict future costs for a patient.
Farley [9] discovered that simply counting the number of
diagnosis clusters to which a patient belongs is a good predictor
of high costs in the future. When combined with other measures
such as the number of prescriptions, it outperformed more
complex comorbidity indices such as the Charlson, Elixhauser,
and RxRisk-V indices [9].

Diagnosis groups were previously created manually by experts
by joining diagnoses of clinical similarity. Travers et al [10]

studied how well the 4 groupings covered emergency medicine.
The authors discovered that the Agency for Healthcare Research
and Quality grouping for inpatient care provides the best
coverage (99%), whereas the National Center for Health
Statistics vital statistics grouping covers only 88%. They also
criticized that most clusters (76%) were small, and there were
large clusters containing dissimilar conditions. Open questions
include how to evaluate a cluster system and determine its
clinical relevance. Travers et al [10] further argued that a good
clustering system should collapse the individual International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) codes into clinically meaningful clusters.

The number of groups was also problematic. Schneeweiss et al
[11] argued that 367 clusters are too many for comparative
analysis, whereas 17 clusters are too broad for this purpose. The
authors reduced the number of International Classification of
Diseases (ICD) categories to 110 diagnosis clusters by
cross-tabulation between the ICD-9-CM and International
Classification of Health Problems in Primary Care–2
classifications, covering approximately 90% of all diagnoses
of their records made by family physicians.

Clustering to Detect Multimorbidity Patterns
An alternative to the manual grouping of diagnoses is the use
of computer algorithms to create groups. A cluster is a group
of objects that are similar to each other, whereas objects in
different clusters are expected to be far from each other or at
least less similar than those in the same cluster [12]. Clustering
can be used to detect multimorbidity patterns by grouping either
patients or diseases [13]. If we group the diagnoses, one
diagnosis belongs to only one cluster, whereas a patient can
belong to several clusters. If we group the patients, the reverse
is true: one diagnosis can belong to several groups, but one
patient can belong to only one cluster. This study focused on
grouping diagnoses.

The data used in clustering can be either numerical values or
text. Here, we follow the study by Hidalgo et al [14] and
represent the diagnoses as nodes and their relationships as links
in a network. We refer to this as the multimorbidity network. In
this network, the weight of the links between 2 diagnoses
measures how strongly they correlate in a patient record
database.

Although clustering algorithms have been widely used elsewhere
in health care, the existing literature lacks reliable, automatic,
and computer-generated clusters. Estiri et al [15] used clustering
to detect anomalies in health records by combining
agglomerative clustering with a k-means algorithm. The idea
was to detect small clusters and flag them as anomalies. The
authors reported a significantly smaller number of false positive
cases than simple anomaly detection based on the SD and
Mahalanobis distance.

Huang et al [16] clustered patients into 5 clinically meaningful
groups based on the similarity of their diagnoses and the
geographical locations of the hospitals. Their motivation was
to build machine learning models trained for each group
separately to provide a better prediction of mortality and
intensive care unit stay time.
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Kalgotra et al [17] used co-occurrence statistics to build a
multimorbidity network to study the disparity of gender. The
statistics were extracted from the treatment data of >22.1 million
patients. They created networks separately for men and women
and compared the structures of the 2 networks. The networks
of female patients had more connections with mental health.

Folino et al [18] clustered patients based on a multimorbidity
network built using co-occurrence statistics. They used the
k-means clustering algorithm with Jaccard distance. A
representative of each cluster was chosen as the set of all
diseases whose relative frequency in the cluster exceeded a
user-defined threshold (eg, 0.8). Clustering was used to predict
future diseases and was tested using the records of 1462 patients
from a small town in South Italy.

In the study by Folino and Pizzuti [19], the same prediction
system was revised using common neighbors in the network.
Records of 2541 patients from 2000 to 2009 were used to build
a network from ICD-9-CM codes. The resulting network
contained 492 nodes and 21,676 connections. A total of 2
separate subnetworks were created. The first included only
connections with a relative risk (RR) value of >20 (2330
connections), and the other included those with a Pearson
correlation value of ≤0.06 (7242 connections). Future patient
diseases were predicted by calculating the number of common
neighbors shared by the 2 diseases.

Ding et al [20] extended the previous prediction model using
ICD, 10th Revision (ICD-10) and demographic data. On the
basis of data collected between 2007 and 2014 in an (unnamed)
provincial capital in China, they reported that 71% of acute
diseases and 82% of chronic diseases were predictable.

John et al [21] applied clustering to 1039 American Indians
using data from an interview-based questionnaire. Cornell et al
[20] used ICD-9 codes from data obtained from administrative
databases of primary care clinics. Marengoni et al [22] used
electronic medical records of the acute care wards of 38 internal
medicine and geriatric wards in Italy in 2008.

Marengoni et al [22] calculated clusters of diseases to detect
groups of patients at risk of in-hospital death. Their data
comprised 1332 older people hospitalized in acute care wards.
This small data set had 19 diagnoses, which were grouped into
8 clusters using a correlation matrix and average linkage
agglomerative clustering. The results included 4 clusters
comprising a disease and its possible consequences. For
example, diabetes is clustered with cerebrovascular diseases
and coronary heart diseases, thyroid dysfunction with anxiety,
and chronic renal failure with anemia. The combination of
chronic renal failure and anemia had the highest likelihood of
in-hospital death, with an odds ratio of 6.1.

Most existing studies on clustering are based on hierarchical
agglomerative methods using heuristic criteria, either average
or complete linkage [13]. Wartelle et al [23] extended
hierarchical agglomerative clustering by directly optimizing
clustering using RR. By default, this is a more solid approach
than any linkage criterion (single, average, or complete). They
applied the method to data collected from the emergency
department (ED) of Troyes Hospital in Eastern France during

a 2-year period between 2017 and 2019. A network comprising
151 ICD-10 blocks was created using 114,391 hospital visits
of 72,666 patients.

Proposed Methodology
In this study, instead of agglomerative clustering, we applied a
k-means–based algorithm. Previously, k-means clustering was
used for clustering patients [24]. We applied the algorithm for
clustering diseases using data comprising 45 million health care
visits covering all public health service use (both primary and
secondary care) of the population aged ≥18 years in the entire
of Finland from 2015 to 2018. This data set is significantly
larger than that used in any of the previous studies.

We constructed a multimorbidity network comprising diseases
represented as blocks of the ICD-10 codes. Correlated diseases
were in the network. The strength of the links between the
diseases was measured using RR, which estimates how much
higher the observed prevalence is in relation to the expected
prevalence. Clustering was used to find multimorbidity patterns
by dividing the network into subgroups with high RR values
within. These groups can contain previously unknown
multimorbidity patterns.

Similar to the study by Wartelle et al [23], our study was also
based on RR. However, there were 2 main differences. First,
the agglomerative clustering algorithm in the study by Wartelle
et al [23] needs to access the original data after each merge to
recalculate the RR values, which is very time consuming with
large data. We constructed the network only once, without any
need to access the original data after that. This approach scales
better as the network is remarkably smaller than the original
data (205 nodes vs 58 million patients). K-means itself may
require multiple runs [25] to create accurate clustering; however,
we avoided this by using a more robust derivation called the
M-algorithm [26].

The second difference is that the results of [23] were obtained
from emergency visits. Although the resulting clusters could
be valid in this context, the generated clusters were different
from those obtained from all general health care visits.

The main contributions of our paper can be summarized as
follows:

• We use a k-means–based algorithm called M-algorithm,
which has been shown to provide highly accurate clustering
with controlled validation data sets and scaling up to
large-scale data [26].

• We use inverse internal weight (IIW) in the network as a
cost function as it has been shown to provide more balanced
cluster sizes than other alternatives [26].

• We apply the algorithm to large-scale data comprising 58
million health care visits in all of Finland from 2015 to
2018.

• We make the data publicly available on the University of
Eastern Finland website [27], including the multimorbidity
network and the clusters.

These contributions directly support several of the goals
described by Whitty and Watt [28]. These objectives include
strengthening statistical methods to detect clusters, applying
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them to large data sets, and treating clusters of diseases more
effectively. In this paper, we describe the content of the
generated clusters and their relationships with nearby clusters.
We report the most significant observations and their effects
on both service use and costs in the health care system. The
study follows the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis) guidelines [29] for all relevant items except those
related to prediction.

Methods

Overview
Graph clustering has been used in physics [30,31], engineering
[32], image processing [33], and medical [34] and social
sciences [35]. The technique has several names, including
network community detection [36-42], graph clustering [43] or
graph partitioning [33,44,45]. These methods can be directly
applied to diseases by considering the co-occurrence matrix of
diseases as a graph.

By grouping data into meaningful clusters and finding
co-occurring diagnoses, it is possible to plan the treatment
processes of multimorbid patients and the resources needed in
service provision. It is known that diseases often cluster because
of a common risk factor; however, only a small number of
possible clusters and the connections between the clusters are
well known [28].

Data
A summary of the patient record database is presented in Table
1. The data were extracted from the National Administrative
Care Register for Health Care, covering all inpatient and
outpatient primary and specialized care between 2015 and 2018.
Finnish health care registers include data on the patient’s age,
gender, and the municipality of residence, as well as information
concerning the service event, such as the type of contact (visit,
phone call, or inpatient admission) and reason for the visit,
treatment, and procedures. Reasons for visits were recorded
using ICD-10 or International Classification of Primary Care,
second edition codes.

Table 1. Summary of the patient database.

ValuesData

Entire database

4,280,985 (100)All patients, n (%)

3,987,382 (93.14)Patients with ICD-10a codes

2015 to 2018Time range

311,721,962 (100)Total visits, n (%)

69,306,854 (22.23)Visits with ICD-10 codes

1.6Number of diagnoses per visit, mean

9685 millionTotal cost of all visits per year (€b)

Included in clustering

58,391,604 (18.73)Visits, n (%)

6596 millionCosts per year (€)

2538 (6478)Cost of patient per year (€), mean (SD)

3,835,531 (89.59)Patients, n (%)

2,536,944 (37,494)Patients per year, mean (SD)

Gender, n (%)

2,062,110 (54)Women

1,773,419 (46)Men

54Age (years), median

943,717 (25)Patients aged >70 years, n (%)

aICD-10: International Classification of Diseases, 10th Revision.
bA currency exchange rate of €1=US $1.09 is applicable.

The entire patient record database contains information on 4.3
million patients aged >18 years. For the cluster analysis, we
only included patients with a medical diagnosis (excluding
external cause diagnoses), which totaled 3.8 million. The full
database included approximately 312 million contacts with
health services. The visits were divided into 272,090,337

contacts with primary care services and 39,631,625 contacts
with special care services. Primary care contacts included
142,874,297 home visits, 71,658,708 visits to a health center,
26,849,249 phone calls, and 30,708,083 other types of contacts.

JMIR Med Inform 2022 | vol. 10 | iss. 5 | e35422 | p. 4https://medinform.jmir.org/2022/5/e35422
(page number not for citation purposes)

Fränti et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


For the clustering analysis, from all the visits (311,721,962),
we included only those having ICD-10 diagnoses recorded
(n=69,306,854 [22.23%]). We excluded all the symptom codes
(R00-R99); external causes for injuries, diseases, and deaths
(V01-Y92); and health factors and contacts to the service
providers (Z00-ZZB), as they do not represent any disease
themselves, as well as special diagnosis codes (U00-U99). After
filtering these out, the remaining data included 18.73%
(58,391,604/311,721,962) of visits.

The costs for each diagnosis were calculated using the
computational standard cost [46,47] using patient grouping
methods and standard unit costs calculated from national-level
cost accounting projects. Hospitalizations and hospital outpatient
visits were grouped using the Nordic Diagnosis-Related Groups
grouper. The Nordic Diagnosis-Related Groups cost weights
for hospitalizations and outpatient visits were based on
individual-level cost accounting data from several hospitals and
were used in the national price lists by the Finnish Institute for
Health and Welfare [48]. The unit cost estimates for each type
of primary care contact were obtained from the national standard
price list for primary care encounters. The unit cost estimates
for social care encounters and community care bed-days were

derived from the national price list for the unit costs of health
care services in Finland.

The total annual health service cost in Finland during the period
2015 to 2018 was €9685 million for a total of 311 million visits.
A currency exchange rate of €1=US $1.09 is applicable. The
cost estimation for the data used in the cluster analysis totals to
€6596 million per year. The annual cost of each year had an
increasing trend between 2015 and 2017 but decreased in 2018:
€6579 million (2015), €6626 million (2016), €6723 million
(2017), and €6455 million (2018). Some changes may have
originated from changes in recording practices. In addition,
patients who were hospitalized for longer periods (weeks or
months) were not included in the 2018 data if they were not
discharged by the end of 2018.

Measuring RR
There are several possibilities for measuring the strength of the
relationship between 2 diseases (Table 2). These include φ
correlation (Pearson correlation) [14,34], co-occurrence
correlation [49], Jaccard coefficient [50], Yule Q [21,22], Salton
cosine index [17], and multiple variants of RR [18,19,26]. For
a good review, refer to the study by Srinivasan et al [49].

Table 2. Ways of measuring disease connectivity.

ReferencesFormulaaName

[14,51]Relative risk 1

[18]Relative risk 2

[52]Relative risk 3

[49]Co-occurrence correlation

[14,18,34] (slight variation [52])φ-correlation

aN: number of patients; Px: number of patients with diagnosis x (prevalence); Pxy: number of patients with both diagnosis x and y (prevalence); E[xy]:
expected frequency of xy; p(x)=Px/N: probability of a random patient having a diagnosis x; p(xy)=Pxy/N: probability of a random patient having both
diagnosis x and y.

Several authors [17,23,49] have noted that the existing measures
contain biases. For example, RR overemphasizes the connection
between infrequent diseases. The Pearson correlation
underestimates the relationship between common and infrequent
diseases. Owing to these problems, Srinivasan et al [49] ended
up proposing their own method, called co-occurrence
correlation.

We used RR (variant 1 in Table 2) as this measure has been
widely used in the literature, and its values are clear to
understand. It has been used previously by several authors
[14,18,23] to study the relationship between diagnoses. It can
also be used for other purposes; for example, to study market
baskets [51].

RR is defined based on the diagnoses’ prevalence, as follows:

Here, p(x) (Px/N) and p(y) (Py/N) are the probabilities that a
randomly chosen patient has diseases x and y, respectively, and
p(xy) (Pxy/N) is the probability that a randomly chosen patient
has both diseases. E[xy] is the expected frequency of xy. Figure
1 demonstrates the detailed calculation of the RR values in cases
of asthma and sleep disorders. An RR value >1.0 indicates that
the 2 diseases are related.
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Figure 1. Example of measuring comorbidity by relative risk. Here, asthma and sleep disorders are highly correlated. If they were independent of each
other, the probability of a person having both should be p(A) × p(B) = 0.18%, whereas their observed co-occurrence would be 0.49%. Therefore, the
relative risk to have both is 2.7 times higher than by random chance.

Most RR values are between 0.5 and 5.0; however, they can
also be >100. These outlier values would dominate the clustering
cost function optimization, and for this reason, we normalized
them to the range of (0,1) by using the following variant of the
generalized symmetrical sigmoid function [53]:

Multimorbidity Network
A multimorbidity network is formed by connecting all pairs of
diagnoses that are related (Figure 2). Each node in this network
corresponds to a medical diagnosis, and the strength of the
connections can be measured using RR, correlation, or other
methods. We used the name multimorbidity network following
the choice of Aguado et al [54]. This network has also been
called a disease co-occurrence network [48], phenotypic disease
network [14], comorbidity network [17], and disease
comorbidities network [34].

Figure 2. Multimorbidity network formed by finding related diagnoses for all diagnoses in the data set.

Several previous studies used multimorbidity networks
[14,17,18,34,49,54]. In addition, Klimek et al [55] and Moni
and Liò [52] studied comorbidity associations, although they

did not explore much of the network analysis. Moni and Liò
[52] created R language software called comoR for disease
comorbidity risk analysis. Divo et al [34] studied chronic
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obstructive pulmonary disease for disease screening and
management. Folino et al [18] predicted future diseases based
on past medical history. Srinivasan et al [49] used a
multimorbidity network to extract features for a high-cost patient
prediction. Hidalgo et al [14] also published multimorbidity
network data (based on 13 million patients) [56].

We constructed a multimorbidity network (Figure 3 [57]) by
calculating the RR value for all pairs of diagnoses, including

those with an RR value ≥1.0 and at least 10 patients with both
diagnoses. The accuracy used for diagnoses was the subgroup
of the ICD-10 classification (eg, I20-I25). We also filtered out
the diagnoses that indicated symptoms and external causes
(those starting with Z, W, Y, and R). After filtering, we obtained
205 disease subgroups in the graph (see Multimedia Appendix
1 for the full list).

Figure 3. The full network was overwhelming to analyze, with 205 disease subgroups and 14,254 connections overall. Here, we show only the 8895
connections with a relative risk of >1.5. Connections with relative risk >3.0 are drawn in bold. ICD-10 (International Classification of Diseases, 10th
revision) subgroups are represented by the first diagnosis of the group (Multimedia Appendix 1). The image was created by using the Gephi software
[56]. Only very tight groups such as pregnancy-related diagnoses and tumors can be recognized from the network.

Clustering

Overview
The main motivation for clustering is that the multimorbidity
network is too large (205 nodes and 14,254 connections) for
detailed analysis. For this reason, we clustered the graph to form
more compact entities of related diseases. The goal was to assign
strongly related diseases to the same cluster but keep

uncorrelated diseases in different clusters. To achieve this goal,
an evaluation criterion was necessary to measure the
effectiveness of clustering.

Cost Function
Instead of using heuristic criteria such as average or complete
linkage, it is better to define an exact cost function that the
clustering algorithm optimizes directly. When clustering
numerical data, a typical goal is to measure the compactness of
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the clusters. For example, both the Ward method and k-means
minimize the sum of squared distances between the data objects
to the cluster mean (centroid). However, calculating the mean
of a subgraph is not possible directly but would require an
indirect solution such as vectorizing the nodes by graph
embedding [58]. Moreover, calculating the distance between 2
nodes is not possible if they are not connected. Therefore,
graph-specific cost functions have been developed to overcome
these issues.

Three cost functions were evaluated in the study by Sieranoja
and Fränti [26] with controlled data—conductance, mean
internal weight, and IIW. The last function produced the most
accurate clustering result with balanced cluster sizes and was
therefore chosen in this study as well. When k is the number of
clusters, Wi is the internal weight of cluster i, and M is the total
weight (mass) of the entire graph, the cost is calculated as
follows:

In multimorbidity network analysis, it is desirable to have
clusters of approximately the same size. This could be controlled
by specifying the number of clusters. As the cost function
induces balanced cluster sizes, we aimed to group N nodes into
k clusters of size N/k=n. In our case, we had N=205 diseases
and k=15 clusters with 205/15=13.7 diseases, on average. This
size was sufficiently small to allow us to investigate the clusters
manually.

Clustering Algorithm
We used the recently developed M-algorithm in [26], which
combines a k-means type of iterative optimization with an
additional merge and split strategy to escape from local minima
(Figures 4-5). The IIW was the recommended cost function.

Figure 4. The M-algorithm merges 2 random clusters, splits 1 random cluster, and fine-tunes the result by using the K-algorithm. The network in this
example is the k-nearest neighbors graph of the presented 2D data set.

K-means uses two optimization steps: assignment and centroid
steps. In the assignment step, every point is placed in the cluster
whose mean (centroid) is closest. However, the assignment of
points is not independent of the assignment of other points.
Their joint effect may cause the cost value to fluctuate so that
the total value increases even if the single assignment decreases.
To avoid this problem, we used the sequential variant of
k-means, where every assignment has an immediate effect on
the centroids. This technique prevents fluctuations.

The k-means variant applied to graphs is called the K-algorithm,
which is similar to the original k-means algorithm but without
centroids. The distance calculations were replaced by directly
evaluating the effect of the assignment on the cost function.
Most cost functions are based on maximizing the weights inside
the cluster or minimizing external weights. Therefore, the effect
of a node joining a cluster can be calculated using only its edges
and the size of the cluster.

The K-algorithm iteratively improves the initial solution by
sequentially processing the nodes in random order. For each
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node, the method considers all clusters and checks whether
changing the partition of the node improves the cost function.
If it does, the cluster assignment is changed. After all the nodes
have been processed, the algorithm starts another iteration. The
iterations continue until no changes occur.

The M-algorithm differs from the K-algorithm in the additional
merge and split step. The M-algorithm first merges 2 random

clusters and then splits 1 random cluster. The clustering solution
is fine-tuned using the K-algorithm. If the new solution improves
the cost function value, it is kept as the current solution;
otherwise, the process continues from the previous solution.
The merge and split process is repeated depending on the
amount of computation time required. The pseudocode for the
algorithm is presented in Figure 5.

Figure 5. Pseudocode for the M-algorithm.

As the network itself is quite small (205 diagnoses), the
clustering algorithm takes only a little time. The time complexity
of the M-algorithm is O(RIN[k+|E|/N]), where R is the number
of repeats, N is the number of diagnoses (nodes), k is the number
of clusters, |E|/N is the average number of connections for each
node (diagnosis), and I is a small number that reflects the
number of iterations to converge. We ran the M-algorithm for
20,000 repeats, which took 27 minutes (single thread) on an
Intel Xeon(R) W-2255 CPU at 3.70 GHz. The bottleneck was
the O(Nv) network construction, which needed to process all
Nv=58 million patient visits and took 52 minutes.

The number of clusters, k, must be fixed by the researcher
beforehand. A small number is likely to generate large mixed
clusters of many diseases, thereby losing the capability to make
meaningful observations. A large number of clusters tend to
mainly cluster diseases from the same ICD group, which might
lose the chance to detect relevant multimorbidity patterns. We
tried clustering with several different k values and chose k=15
as it produced clusters of convenient size for analysis in the
form of similarity matrices.

It is also possible for the algorithm to recommend the number
of clusters using a suitable cluster validity index that measures

the ratio of within-cluster and between-clusters similarities, as
in the study by Zhao and Fränti [59]. Wartelle et al [23] derived
a validity index from RR and obtained k=16 clusters in their
data. We used the silhouette coefficient [60] for our data, and
in the range of 5 to 25, it obtained k=17 clusters. They are both
close to our choice of k=15.

Ethics Approval
Permission to use the register data was obtained from the Finnish
Institute for Health and Welfare. All methods were carried out
in accordance with relevant guidelines and regulations or
declaration of Helsinki. The Finnish legislation (Act 552/2019)
do not require informed consent for register-based research
when study is solely based on registers and the study is
considered to be of public health importance.

Results

RR Measurements
Table 3 shows the 10 pairs of disease subgroups with the highest
RR values. They are diagnoses with the highest probability of
appearing jointly relative to the expected probability with the
independent assumption. Some connections are obvious, often
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representing the same or closely related conditions (C40-C41
and C45-C49). Some have known explanations in medical
science (F70-F79 and Q90-Q99) or a clear causal relationship
(D80-D89 and N00-N08). There are also connections with
smaller RR values that are not so obvious at first sight; however,

they are clinically meaningful (I26-I28 and M30-M36). In
addition to using the ICD-10 subgroups, we calculated the RR
values for diagnoses with 3-character precision. Some RR values
<1.0 were also found for diagnoses such as E10 and E11, which
are exclusive to each other.

Table 3. The 10 disease pairs with the highest relative risk (RR) valuea.

Count
(n=3987,
382%), %

RRDiagnosis BDiagnosis A

DescriptionCodeDescriptionCode

484 (0.01)170.1Inflammatory diseases of the central ner-
vous system

G00-G09Viral infections of the central nervous systemA80-A89

132 (0.00)110.7Sequelae of infectious and parasitic diseasesB90-B94TuberculosisA15-A19

107 (0.00)98.3Malignant neoplasms of mesothelial and
soft tissue

C45-C49Malignant neoplasms of bone and articular
cartilage

C40-C41

893 (0.02)91.0Burns and corrosions of multiple and unspec-
ified body regions

T29-T32Burns and corrosions of external body sur-
face, specified by site

T20-T25

945 (0.02)79.7Chromosomal abnormalities, not elsewhere
classified

Q90-Q99Mental retardationF70-F79

811 (0.02)50.7Disorders of optic nerve and visual path-
ways

H46-H48Demyelinating diseases of the central nervous
system

G35-G37

2386 (0.06)47.2Glomerular diseasesN00-N08Certain disorders involving the immune
mechanism

D80-D89

866 (0.02)45.7Other diseases of pleuraJ90-J94Suppurative and necrotic conditions of lower
respiratory tract

J85-J86

328 (0.01)45.3Congenital malformations of the urinary
system

Q60-Q64Other disorders of kidney and ureterN25-N29

238 (0.01)42.0Congenital malformations of the nervous
system

Q00-Q07Mental retardationF70-F79

aFull list is available on the University of Eastern Finland website [27].

Clustering Results
The overall clustering results are visualized as a graph in Figure
6. The graph shows connections within the clusters; however,
all connections between clusters have been eliminated for clarity.
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Figure 6. Clusters obtained from the multimorbidity network. Subjective labels of 6 clusters are also shown. This figure shows all 205 diagnoses and
only those 1144 connections with relative risk ≥1.5. Cases with a relative risk of ≥3 are shown with thicker lines. International Classification of Diseases,
10th Revision, blocks are represented by the first diagnosis of the block (eg, F10-F19 by F10).

We fixed the number of clusters to 15 for the M-algorithm [26].
This roughly matches the number 16 used in a study by Wartelle
et al [23]. The main characteristics of the resulting clusters are
summarized in Tables 4 and 5. The strength of the associations
between the diagnosis subgroups inside the 2 example clusters

and the connections between the 2 clusters can be observed in
Figure 7. The number of patients in each cluster, the number of
visits to health services, total costs, cost per visit, and cost per
patient are reported in Table 6.
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Table 4. Content of the 15 clusters (ICD-10a blocks) and their strengths as the mean RRb values of diagnoses within the cluster.

ICD-10 codesRR, meanCluster

O85-O92; O30-O48; O20-O29; O10-O16; O60-O75; O94-O99; O80-O84; P05-P08; P00-P04; O00-
O08; P35-P39; P90-P96; Q50-Q56; P70-P74; P50-P61

11.3Cluster 1

B50-B64; N00-N08; D70-D77; C81-C96; D55-D59; D80-D89; D65-D69; B99-B99; A15-A19; N17-
N19; B20-B24; K70-K77; K90-K93

8.1Cluster 2

F70-F79; Q90-Q99; F80-F89; Q00-Q07; Q35-Q37; Q80-Q89; Q65-Q79; F90-F98; Q20-Q28; Q10-Q18;
H65-H75; H60-H62; K00-K14

7.8Cluster 3

C40-C41; C45-C49; C76-C80; C30-C39; D37-D48; C69-C72; C00-C14; C51-C58; C64-C68; C73-C75;
C50-C50; C43-C44; D10-D36

7.6Cluster 4

J95-J99; J85-J86; J90-J94; J80-J84; Q30-Q34; I26-I28; J40-J47; B95-B98; M30-M36; J20-J22; E65-
E68; E20-E35; I80-I89

5.7Cluster 5

T36-T50; B15-B19; F60-F69; F10-F19; F99-F99; T51-T65; F20-F29; F30-F39; T33-T35; T26-T28;
F40-F48; T20-T25; F50-F59; P10-P15

5.4Cluster 6

E40-E46; E50-E64; D60-D64; I95-I99; D50-D53; L55-L59; D00-D09; E15-E16; G60-G64; I70-I79;
L10-L14; C60-C63; N40-N51

4.8Cluster 7

G80-G83; G10-G14; J60-J70; G90-G99; F00-F09; G70-G73; G30-G32; N10-N16; B90-B94; S70-S79;
M80-M85; G20-G26VG35-G37

4.6Cluster 8

Q60-Q64; N25-N29; K65-K67; Q38-Q45; C15-C26; K80-K87; K55-K64; K40-K46; N20-N23; K20-
K31; K50-K52; A00-A09; K35-K38

4.5Cluster 9

G00-G09; A80-A89; A90-A99; A65-A69; M00-M03; A30-A49; B25-B34; A20-A28; M05-M14; B00-
B09; L00-L08; L40-L45; B35-B49; G40-G47; A75-A79

4.3Cluster 10

H53-H54; H46-H48; H55-H59; H49-H52; H43-H45; H30-H36; H15-H22; H40-H42; H25-H28; H00-
H06; H10-H13; H90-H95; H80-H83

3.8Cluster 11

T00-T07; T90-T98; T79-T79; S10-S19; S30-S39; S20-S29; T08-T14; T29-T32; S50-S59; S40-S49;
S80-S89; S60-S69; S00-S09; T15-T19

3.0Cluster 12

M95-M99; M40-M43; M45-M49; M86-M90; T80-T88; G50-G59; M15-M19; M20-M25; M50-M54;
M91-M94; M65-M68; M70-M79; N99-N99; M60-M63

2.9Cluster 13

A50-A64; A70-A74; B85-B89; N70-N77; B65-B83; T66-T78; L50-L54; L20-L30; N80-N98; L60-L75;
J30-J39; N60-N64; J00-J06; S90-S99

2.9Cluster 14

I30-I52; I20-I25; I60-I69; I10-I15; L80-L99; I05-I09; J09-J18; E70-E90; N30-N39; E10-E14; E00-E07;
I00-I02; P20-P29; C97-C97; P80-P83

2.1Cluster 15

aICD-10: International Classification of Diseases, 10th Revision.
bRR: relative risk.

JMIR Med Inform 2022 | vol. 10 | iss. 5 | e35422 | p. 12https://medinform.jmir.org/2022/5/e35422
(page number not for citation purposes)

Fränti et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Summarization of the cluster content with their age and gender distributions.

DescriptionAge ≥70
years, %

Age (years),
median

Dominant genderCluster

Values, n
(%)

Gender

Pregnancy, childbirth and the puerperium (O codes), certain
conditions and disorders originating in perinatal period

033219,566
(99.68)

WomenCluster 1: pregnancy

(P05-P08, P00-P04, P35-P39, P90-P96, P70-P74, and P50-
P61), and congenital malformations of genital organs (Q50-
56)

Infectious diseases strongly affecting the immune system
(B50-B64, B20-24, B99-B99, and A15-19); malignant

5069110,157
(50.79)

MenCluster 2: immune system
and blood-forming organs

neoplasms of lymphoid, hematopoietic, and related tissue
(C81-96); diseases of the kidneys (N00-N08 and N17-N19),
liver (K70-77), blood, and blood-forming organs and disor-
ders of the immune mechanism (D70-D77, D55-D59, D80-
D89, and D65-D69 [except nutritional and aplastic and
other anemias]); and other diseases of the digestive system
(K90-K93)

Mental retardation (F70-79) and disorders of psychological
development or unspecified disorder (F80-F89, F99-F99)

17491,062,480
(55.13)

WomenCluster 3: mixed cluster; in-
cludes mental disorders,
malformations, and ear and
oral cavity diseases

and congenital malformations (Q codes except for codes
for congenital malformations of the respiratory system,
digestive system, genital organs, and urinary system); dis-
eases of the ear (H65-H75 and H60-H62); and diseases of
the oral cavity, salivary glands, and jaws (K00-K14)

Malignant neoplasms (all C codes, except codes for malig-
nant neoplasms in digestive organs; male genital organs;

4266317,372
(62.64)

WomenCluster 4: tumors

lymphoid, hematopoietic, and related tissue; multiple inde-
pendent sites) and benign neoplasms (D10-D36)

Lower respiratory tract diseases and related inflammatory
conditions (J95-J99, J85-J86, J90-J94, J80-J84, J40-J47,

3864437,591
(59.13)

WomenCluster 5: lower respiratory
system

and J20-J22); congenital malformations of the respiratory
system (Q30-Q36), pulmonary heart disease and diseases
of pulmonary circulation (I26-I28); bacterial, viral, and
other infectious agents (B95-B98); systemic connective
tissue disorders (M30-M36), obesity (E65-E68) and disor-
ders of other endocrine glands (E20-E35); and diseases of
veins, lymphatic vessels, and lymph nodes not classified
elsewhere (I80-I89)

Mental and behavioral disorders and substance abuse
problems (F60-F69, F10-F19, F20-F29, F30-F39, F40-F48,

1546369,203
(58.30)

WomenCluster 6: mental and behav-
ioral disorders

F50-F59, and F99); poisonings (T36-T50 and T51-T65)
and certain viral infections (B15-B19); and related burns
(T20-T25 and T26-T28), frostbite injuries (T33-T35), and
birth trauma (P10-P15)

Malnutrition (E40-E46) and nutritional deficiencies (E50-
64); anemias (D50-D53 and D60-D64); other and unspeci-

5872314,390
(66.98)

MenCluster 7: nutritional

fied disorders of the circulatory system (I95-I99); certain
skin diseases (L55-L59 and L10-L14); in situ neoplasms
(D00-D09); other disorders of glucose regulation and pan-
creatic internal secretion (E15-E16); polyneuropathies
(G60-G64); diseases of arteries, arterioles, and capillaries
(I70-I79); and diseases and malignant neoplasms of male
genital organs (C60-C63 and N40-N51)

Cerebral palsy, memory disorders, other diseases of the
central nervous system or neurodegenerative diseases (in-

6476242,917
(59.83)

WomenCluster 8: diseases related to
aging

cluded G-codes), lung diseases because of external agents
(J60-J70), organic mental disorders (F00-F09), renal tubu-
lointerstitial diseases (N10-N16), changes in bone structure
(M80-85) and injuries (hip and thigh S70-S79), and other
infections (B90-B94)
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DescriptionAge ≥70
years, %

Age (years),
median

Dominant genderCluster

Values, n
(%)

Gender

Congenital malformations of the urinary system and diges-
tive system (Q60-Q64 and Q38-Q45), some disorders of
the kidney and ureter (N25-N29) and genitourinary system
(N20-N23), diseases of the digestive system (all K codes,
except diseases of the oral cavity, salivary glands and jaw,
and diseases of the liver), malignant neoplasms of digestive
organs (C15-C26), and intestinal infectious diseases (A00-
A09)

3763387,222
(54.07)

WomenCluster 9: mixed cluster; in-
cludes organ malformations
and digestive system disor-
ders

Inflammatory diseases (G00-G09)/viral infections (A80-
A89) of the central nervous system, hemorrhagic fevers
(A90-A99), certain other infectious and parasitic diseases
(A65-A69, A30-A49, A20-A28, A75-A79, B00-B09, and
B35-B49), infectious arthropathies/inflammatory pol-
yarthropathies (M00-M03 and M05-M14), infections of
the skin and subcutaneous tissue or papulosquamous disor-
ders (L00-L08 and L40-L45), and episodic and paroxysmal
disorders (G40-G47)

3361483,595
(53.55)

WomenCluster 10: infections and
inflammation

Diseases of the eye and adnexa (all H codes) and diseases
of the inner ear (H80-H83) and other disorders of the ear
(H90-H90)

4567491,892
(58.89)

WomenCluster 11: eye and ear

Injuries in different parts of the body (all S codes, except
injuries to the hip and thigh) and in multiple body regions
(T00-T07) or unspecified parts (T08-T14 and T29-T32),
effects of foreign bodies entering through a natural orifice
(T15-T19), and some of their consequences (T79-T79 and
T90-T98)

2655516,849
(51.27)

MenCluster 12: injuries

Diseases of the musculoskeletal system and connective
tissue (all M codes, except infectious and inflammatory
arthropathies or poly arthropathies, systemic connective
tissue disorders, and disorders of bone density and struc-
ture); complications of surgical and medical care (T80-
T88); nerve, nerve root, and plexus disorders (G50-G59);
and other disorders of the genitourinary system (N99-N99)

3160855,218
(58.69)

WomenCluster 13: musculoskeletal
system

Sexually transmitted diseases (A50-A64 and A70-A74),
parasitic diseases (B85-B89 and B65-B83), unspecified
effects of external causes (T66-T78), inflammatory diseases
of female pelvic organs (N70-N77), disorders of the breast
(N60-N64), noninflammatory disorders of the female gen-
ital tract (N80-N98), some diseases of the skin (L50-L54,
L20-L30, and L60-L75), acute and some other upper respi-
ratory infections (J30-J39 and J00-J06), and injuries to the
ankle and foot (S90-S99)

1948844,339
(65.79)

WomenCluster 14: mixed cluster;
includes sexually transmit-
ted, parasitic, and urinary
tract diseases

Diseases of the circulatory system (all I codes, except pul-
monary heart disease and diseases of pulmonary circulation
[I26-I28] and diseases of arteries and veins [I70-I79, I 80-
I89, and I95-I99]), other disorders of the skin and subcuta-
neous tissue (L80-L99), influenza and pneumonia (J09-
J18), metabolic disorders (E70-E90), disorders of the thy-
roid gland (E00-E07), diabetes mellitus (E10-E14), other
diseases of urinary system (N30-N39), respiratory and
cardiovascular disorders specific to the perinatal period
(P20-P29), malignant neoplasms of independent (primary)
multiple sites (C97-C97), and conditions involving the in-
tegument and temperature regulation of fetus and newborn
(P80-P83)

4768867,133
(56.22)

WomenCluster 15: cardiovascular
and metabolic
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Figure 7. Two example clusters and their connections in between. The numbers are relative risk values. High values and the red color signify stronger
relationships. The blocks are represented by the first diagnosis code (eg, T36 represents block T36-T50).
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Table 6. Estimated (annual) costs of each clustera.

Cost per pa-

tientb (€)

Cost per

visitb (€)
Total costb (€c;
millions)

Visitsb (n=14,597,901), n
(%)

Patientsb (n=2,536,944),
n (%)

DescriptionCluster

2648810207255,902 (1.75)78,159 (3.08)Pregnancy1

5435798521653,500 (4.48)95,865 (3.78)Immune system and blood-
forming organs

2

3871713241,899,209 (13.01)838,208 (33.04)Mental disorders, malforma-
tions, ear and mouth

3

33486737041,046,147 (7.17)210,272 (8.29)Tumors4

2070651620953,199 (6.53)299,482 (11.80)Lower respiratory system5

32384349082,094,496 (14.35)280,450 (11.05)Mental and behavioral disor-
ders

6

2703741525708,930 (4.86)194,250 (7.66)Nutritional7

42396617301,105,325 (7.57)172,194 (6.79)Diseases related to aging8

2744829720867,971 (5.95)262,362 (10.34)Organ malformations and diges-
tive system

9

17435646271,110,728 (7.61)359,738 (14.18)Infections and inflammation10

929359298827,680 (5.67)320,947 (12.65)Eye and ear11

1286579417720,282 (4.93)324,191 (12.78)Injuries12

13564908361,704,486 (11.68)616,550 (24.30)Musculoskeletal system13

611303290955,465 (6.55)474,604 (18.71)Sexually transmitted, parasitic,
urinary tract

14

292067922583,326,018 (22.78)773,406 (30.49)Cardiovascular and metabolic15

aA patient and a visit can belong to multiple clusters. Visits and costs include only visits and related costs for diagnoses in a cluster. The cost per visit
is calculated as an average for the whole 4-year period; all other values are annual.
bNumber of patients: mean 353,378; number of visits: mean 1,215,289; cost: mean €666 million; cost per visit: mean €583; cost per patient: mean
€2377.
cA currency exchange rate of €1=US $1.09 is applicable.

Most clusters were dominated by records of female patients.
Cluster 1 (219,566/220,280, 100%) included only women, as
it comprised pregnancy-related diagnoses. Other clusters with
>60% of records of women were cluster 14 (844,339/1,283,478,
65.7%) of mixed diseases (sexual and urinary) and cluster 4
(317,372/506,660, 62.6%) of malignant tumors. The only cluster
with a significantly higher proportion of diagnoses from men
was cluster 7 (314,390/469,378, 66.9%), which comprised
diagnoses mainly related to nutrition. In most other clusters,
the proportions of men and women were approximately equal.

The main reasons for female dominance were that the full
database included 1,999,325 men and 2,253,669 women and
that women had an average of 6.6 diagnoses, whereas men had
only 5.4 diagnoses. A possible reason is that there is a lower
threshold for women to seek help from health services than for
men. For example, the study by Corrigan [61] suggested that
social factors discourage men from seeking mental health care,
which can lead to the absence of mental health–related
multimorbidities among men.

As all diagnoses were forced to belong to a cluster, there were
several mixed clusters. For example, the largest cluster (cluster
3) comprised 33.04% (838,208/2,536,944) of patients, including
those with dental health problems (K00-K14). If this subgroup
of diagnoses were removed, the number of patients would

decrease to only 87,634 and would mainly comprise diagnoses
related to mental retardation, congenital malformations, and
chromosomal abnormalities. However, it is quite logical that
dental health–related diagnoses are clustered with mental
retardation; congenital malformations; and abnormalities, such
as patients with malformations in the oral cavity, jaws, and
teeth, which is a patient group treated in the public health service
system.

The second-largest cluster (cluster 15), comprising 30.49%
(773,406/2,536,944) of patients, included cardiovascular,
endocrine, and metabolic diseases. It also had the highest
number of visits to health care (3.3 million annual visits). The
third-largest cluster (cluster 13) had 24.30% (616,550/2,536,944)
of patients but was more focused on diagnoses related to
diseases of the musculoskeletal system and connective tissues.
Other more clearly focused clusters included tumors (cluster
4), mental disorders (cluster 6), injuries (cluster 12), diseases
related to nutrition (cluster 7), and pregnancy (cluster 1). These
clusters can be easily explained based on morbidity and
mortality data in Finland. Cardiovascular diseases are still the
major cause of death [62], and mental disorders are the main
cause of disability pensions, followed by musculoskeletal
disorders [63].
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These clusters also had clear age profiles. The average age of
most clusters was rather high, being ≥60 years in the case of 10
clusters. The exceptions were cluster 6 (mental; mean 46 years),
cluster 12 (injuries; mean 55 years), mixed clusters 3 (mental,
ear, and oral cavity; mean 49 years) and 14 (sexual and urinary;
mean 48 years), and cluster 1 (pregnancy; mean 33 years).

Although clustering captures many connections between
diseases, it does not capture all information. In fact, many

interesting connections can be found by analyzing how strongly
the clusters are connected to each other (Figure 8). Cluster 7
(nutritional problems) was the most central cluster, with a strong
connection to 10 other clusters. Cluster 1 (pregnancy) was also
connected to cluster 6 (mental and behavioral disorders). For
example, pregnancy with abortive outcomes (O00-O08) had 5
connections with RR >2 to cluster 6 (mental and behavioral
disorders), including neurotic, stress related, mood disorders,
and drug poisoning (T36-T50).

Figure 8. Connections between clusters. Each cluster is represented in the rows with the number and description and in the columns with the number.
Values in the table represent the number of links with a relative risk of >2.0 between the clusters. Higher values signify a stronger connection and are
emphasized by the red color. Three clusters with the highest values for each row are highlighted with bold font.

Cluster 12 (injuries) had strong connections with clusters 6, 7,
and 8. For example, the connection to the nutritional problems
cluster had 56 links, with an RR >2. Of these links, 9 came from
connections to other and unspecified disorders of the circulatory
system (I95-I99).

Figure 7 shows the connections between clusters 6 and 12 in
more detail. Cluster 6 comprised mental health (eg, F30-F39
and F60-F69) and substance abuse–related (T36-T50 and
F10-F19) diagnoses. Cluster 12 comprised fractures and other
injuries. These clusters had a strong connection. A possible
explanation is that mental health and substance abuse problems
often lead to painful, fracture-causing accidents.

Cost Effect
The costs of all visits, ward stays, and other contacts of patients
belonging to the cluster were calculated for those contacts in
services with a diagnosis belonging to the cluster. The estimated
costs for each cluster are presented in Table 5. The costs are in
euro currency (€).

In general, the cost depends on the number of patients and visits.
The largest cluster (cardiovascular and metabolic cluster 15)
had 3.3 million visits and €2.3 billion in total costs. However,
the cost per patient (€2920) was not the highest, and the cost
per visit (€679) was only slightly above average. The diseases
in the cluster, such as cardiovascular and metabolic disorders,
are largely treated in primary health care, and thus, the average
visit cost remains relatively low.

For each patient, the highest costs were in cluster 2 (€5435),
including infectious diseases strongly affecting the immune
system, diseases of the blood and blood-forming organs, and
other disorders involving the immune mechanism. These
diseases are likely to need frequent contact with specialized
care. Per-patient costs were also high in cluster 8 (diseases
related to aging), including diagnoses of neurodegenerative
diseases and memory disorders requiring frequent health care
contacts and intensive care. The cheapest clusters per patient
were cluster 3 (mental disorders, malformations, and ear and
mouth; €387) and cluster 14 (sexually transmitted, parasitic,
and urinary tract diseases; €611). However, if dental diagnoses
were removed, the cost for cluster 3 would be €1144.

The highest cost per visit (€829) was in cluster 9, including
organ malformations and diseases of the digestive system. The
second-highest cost per visit was observed in cluster 1
(pregnancy), where the cost per visit was €810. This is likely
because of delivery-related hospital stays, operations, and other
specialized care. Regular maternity care visits are not usually
recorded using the ICD-10 codes. Clusters with the lowest cost
per visit were the same as those with the lowest cost per patient.

Table 7 shows how the costs of some clusters have developed
during the years relative to the total cost of all clusters in the
same year. Only clusters with a visible trend (increasing or
decreasing) are shown. Clusters that included tumors, lower
respiratory system, and eye and ear steadily increased their
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proportion of all costs from 2015 to 2018, as well as the cluster
that included inflammatory diseases and infections, among a
few others. The diseases included in these clusters increase with

age, and thus, the increase in costs is most likely because of the
aging of the population.

Table 7. Trends of the annual costs (relative to all costs) of selected clusters from 2015 to 2018.

2018201720162015Trend and cluster

Increasing trend, %

7.47.27.17Tumors

6.66.46.36.1Mixed cluster 10

6.46.46.26.1Lower respiratory system

3.23.132.9Eye and ear

Decreasing trend, %

8.8999.5Mental and behavioral disorders

6.36.76.76.9Mixed cluster 8

44.24.24.4Injuries

222.22.4Pregnancy

The relative costs of mental and behavioral disorders decreased
the most (from 9.5% to 8.8%), whereas injuries (4.4% to 4.0%)
and pregnancy-related diseases (2.4% to 2.0%) also showed a
clear decrease. There are several explanations for the observed
decline in the costs of care related to mental and behavioral
disorders, including the current tendency to prefer outpatient
services and difficulties in appropriate service provision. The
absolute cost values for pregnancy-related issues were €219
million, €213 million, €202 million, and 194 million from 2015
to 2018. Therefore, the decrease is real, which could be
explained by the decrease in the birth rate from 1.65 to 1.41
during the same period (1.65, 1.57, 1.49, and 1.41) [64].

Discussion

Principal Findings
We analyzed the data by clustering the diagnoses into 15
clusters. All clusters were consistent with expert knowledge of
the domain. Some of these clusters were expected. For example,
mental and behavioral disorders were so closely associated with
substance abuse problems that they formed one cluster. Some
clusters also showed interesting and unexpected connections,
such as a cluster that included lower respiratory tract diseases
and systemic connective tissue disorders. Although some
connections are easily justified by the close relation of the
diagnoses, they are not necessarily considered when planning
the current service processes and resources. For example,
understanding the strong connections between many disorders
related to aging could improve the treatment processes of older
patients who are multimorbid.

Analysis of the connections between clusters also provided
interesting details. For example, the mental health and substance
abuse cluster was very closely connected to the cluster
comprising fractures and other injuries. A possible explanation
is that mental health and substance abuse problems often lead
to painful, fracture-causing accidents. The nutritional problems
cluster was the most central in the data, with a strong connection
to 10 other clusters. This is an interesting finding that addresses

the connection between nutritional status and various health
disorders.

For each patient, the highest costs were in cluster 2 (€5435),
which included infectious diseases that strongly affect the
immune system, diseases of the blood and blood-forming organs,
and other disorders involving the immune mechanism. These
diseases are likely to need frequent contact with specialized
care.

Clusters associated with an aging population increased their
proportion of all costs from 2015 to 2018. These clusters
included diseases related to tumors, lower respiratory system,
and eye and ear. The relative costs of mental and behavioral
disorders decreased the most (from 9.5% to 8.8%), which might
be partly explained by the current tendency to prefer outpatient
services.

Limitations
The underlying data reflect how patients use health services and
are diagnosed during health care contacts, which may not always
accurately reflect the true relationship between diseases. For
example, a person who visits health services only for caries
treatment may not be as easily diagnosed with alcohol-related
disorders (F10) or problems related to metabolic disorders (E66)
as a person who visits because of mental health issues or
maternity issues.

The clustering methodology itself has a few limitations.
Although the chosen clustering algorithm and cost function
were shown to have good clustering accuracy with validation
data, it forces every diagnosis to belong to a cluster, even if it
does not have any connections to other diagnoses. A possible
improvement could be the application of outlier detection as a
preprocessing step to remove such cases.

Another limitation is that every diagnosis can belong to only
one cluster, although it can be connected to diseases in several
clusters. For example, dental health diagnoses were clustered
with mental retardation and malformations but are clearly very
relevant comorbidities for other chronic conditions such as
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diabetes. In addition, many infectious disease subgroups are
likely to have significant connections with many chronic
conditions that decrease the immune response, such as tumors.

The data might also be biased by domestic characteristics within
the Finnish population and traditions in recording diagnoses.
For example, some conditions such as substance abuse disorders
are still highly stigmatized and thus underdiagnosed. The
research goal was to find relevant multimorbidity diseases that
have a high cost effect on the Finnish health care system.
Although some bias might exist, we expect most multimorbidity
patterns to appear in other high-income countries, and therefore,
the main results might be globally generalizable. This finding
was partly confirmed by similar studies in the United States
[65] and France [23].

Comparison with other clustering results in earlier studies was
challenging mainly because there are many variations in the
definition and measures of multimorbidity, as well as the data
sources, such as registers, health records, and self-reports, which
have been used to obtain information on comorbidities. These
differences make comparison difficult but still possible to some
degree, as shown in the studies by Prados-Torres et al [13] and
Wartelle et al [23].

Comparison With Prior Work

Comparison of Clusters
Wartelle et al [23] obtained 16 clusters (vs 15 in our case). Some
of these were similar to ours. For example, cluster 5 contained
diagnoses related to mental disorders, substance abuse, and
fractures. In our results, substance abuse and mental problems
also formed a cluster, which was closely connected to another
cluster with different types of fractures. Their data also included
one women-specific cluster with pregnancy-related diagnoses.
However, most of the clusters were very different from ours.

Their clusters were more unbalanced in size; 5 of the clusters
contained only 1 diagnosis, and the largest cluster had 13
diagnoses. In our case, the smallest cluster was size 13, and the
largest size was 15. This is partly because of our choice of a
clustering cost function that favors more balanced clusters and
also because the choice of ED data in [23] was expected to
generate larger clusters for trauma diagnoses.

Most of the differences originated from the data. Our data are
from everyday health care visits, whereas the data studied by
Wartelle et al [23] came from ED visits. They had a smaller
number of diagnoses (162 vs 205). These included symptom
codes (R00-R99) and factors influencing health status
(Z00-Z99), which we removed as we found them to confuse the
analysis. These data-related factors produced several clear
differences in the results, which we report in the following
sections.

The first difference from the study by Wartelle et al [23] is that
our data had a female majority (2,062,110/3,835,531, 53.7%).
We had only 3 clusters with more male than female patients
(nutritional 314,390/469,378, 66.9%; injuries
516,849/1,008,118, 51.2%; immune system and blood-forming
organs 110,157/216,898, 50.7%). The ED data had 10 clusters
with a male majority (52%-64%). A likely explanation is that

these clusters were either directly or indirectly related to trauma
commonly treated in EDs, whereas our data represent the
services used in primary health care, which has only one cluster
(cluster 12) related to injuries.

Patients in the ED data were also much younger than those in
our data (mean age 40 years vs 51 years). There were 3 clusters
in which the average age of patients exceeded 50 years. One of
the clusters (approximately 50%) mostly comprised children
aged <5 years. Our data were restricted to adult patients. ED
data also lacked a clear pregnancy cluster, and pregnancy-related
diagnoses were merged with digestive- and menstruation-related
diagnoses.

Busija et al [66] conducted a meta-analysis investigating 51
different articles on multimorbidity profiles. They constructed
a similarity matrix of health conditions by counting the number
of times each pair of diseases appeared within the same group.
The similarity matrix was then projected onto a 2D surface
using multidimensional scaling (SPSS/PROXSCAL). This was
performed separately for 4 different types of studies grouped
by methodology: exploratory factor analysis, cluster analysis
of diseases, latent class analysis, and cluster analysis of people.

Overall, their data had fewer diagnoses and clusters. The largest
case (factor analysis) included only 70 diagnoses, and they
manually distinguished 5 clusters (with a group of mental health
problems as one axis) from the 2D projection. They reported
clustering of vision, hearing impairment, and fractures in 2 of
the 4 cases. In our data, vision and hearing problems were in
one cluster, and fractures were in another. These were also
weakly connected. A mental health group was visible in all 4
cases and was closely associated with addictions. This is
consistent with our results, where mental health and substance
abuse problems formed 1 cluster.

Comparison of Costs
We compared the cost of our data with that reported by the
Milken Institute in the United States in 2016 [65]. The costliest
(both direct and indirect costs) chronic disease in the United
States is diabetes type 2, with direct costs of US $185 billion.
When indirect costs are included, the four most costly diseases
were hypertension (US $1042 billion), diabetes type 2 (US $526
billion), chronic back pain (US $440 billion), and osteoarthritis
(US $430 billion).

The costliest diseases (hypertension and type 2 diabetes) are in
accordance with our results, where the costliest is cluster 15
(cardiovascular and metabolic), which includes hypertension
and diabetes-related diagnoses (I10-I15 and E10-E14), as well
as other related cardiovascular diseases common in the Finnish
population. The costs of the cluster become high as the size of
the patient population increases, as well as the need for frequent
contact with health care, although costs per visit are close to
average.

Conclusions
To the best of our knowledge, this is the first clustering study
with such a rich data set, including all health care visits of
Finnish adults aged ≥18 years, covering both primary- and
secondary-level care. Good coverage is important, as the
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tendency in the development of health service systems is to seek
better integration of services, including the integration of
primary health care, specialized care, and social services.

Identifying multimorbidity clusters, related characteristics, and
especially the burden they cause for service use and costs is
helpful in estimating the resources needed in the service system,
including the specialties and other knowledge profiles of
professionals. Such information could also be applied to estimate
future needs when, for example, the projections of population
aging and other demographics are known.

To the best of our knowledge, this is the first study to use
k-means–based clustering of diseases. Although the standard
k-means algorithm can be unstable, we used a recent

modification called the M-algorithm, which was shown to be
accurate on controlled validation data sets. This directly
optimizes a cost function for a network that has RR values as
weights. Existing studies rely mainly on agglomerative
clustering, using either a heuristic cost function such as average
or complete linkage or a slow calculation of the RR. The
methodology used was accurate and scalable for large-scale
data.

In a future study, we will consider clustering patients and
comparing whether the same diagnoses can be grouped together.
Another idea is to study geographical differences within Finland.
The data are large, and as they are publicly available, they have
a high potential for others to find more interesting results by
data mining.
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