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The Mumford-Shah model is extensively used in image segmentation. Its energy functional causes the content of the segments to
remain homogeneous and the segment boundaries to become short. However, the problem is that optimization of the functional
can be very slow. To attack this problem, we propose a reduced two-phase Mumford-Shah model to segment images having one
prominent object. First, initial segmentation is obtained by the k-means clustering technique, further minimizing the Mumford-
Shah functional by the Douglas-Rachford algorithm. Evaluation of segmentations with various error metrics shows that 70
percent of the segmentations keep the error values below 50%. Compared to the level set method to solve the Chan-Vese
model, our algorithm is significantly faster. At the same time, it gives almost the same or better segmentation results. When
compared to the recent k-means variant, it also gives much better segmentation with convex boundaries. The proposed
algorithm balances well between time and quality of the segmentation. A crucial step in the design of machine vision systems
is the extraction of discriminant features from the images, which is based on low-level segmentation which can be obtained by
our approach.

1. Introduction

Image is an entity having different objects. Image segmenta-
tion is one of the techniques to recognize the regions that
show different objects in the image.

Let the function gðx, yÞ represent the intensity of light at
any point ðx, yÞ of domainΩ ∈ R2 when an image is captured.
So, image is defined as g = fgðx, yÞ ∣ ðx, yÞg ∈Ω ⊂ R2. The
RGB color representation of an image is mathematically rep-
resented by gðx, yÞ ∈ R3. The aim is to find regions Ω1,Ω2,
Ω3,⋯⋯Ωn for n ∈N , of a domainΩ ⊂ R2, corresponding
to different objects or their parts or shadows in the image.
These regions Ωi, i = 1, 2,⋯⋯ n, of the image will have
boundaries. In summary, the segmentation problem has the
following definition: supposeΩ be the domain of g. Compute
and find Ω1,Ω2,⋯Ωn such that

Ω =
[n
i=1

Ωi, ð1Þ

and g varies smoothly over the regions Ωi, i = 1, 2,⋯⋯ n as
well as g varies discontinuously over the boundaries between
Ωi, i = 1, 2,⋯n. The same problem can be represented in
terms of approximation theory: find an approximation f of
g in such a way that each f i represents the entire region Ωi
via a piecewise smooth function.

There are many approaches to image segmentation [1]
including thresholding, clustering, or classification methods
[2–4], region-based methods [5], and edge-based active con-
tour methods [6–8]. Segmentation techniques based on deep
convolutional neural networks have been developed for
various medical images MRI, CT, and X-rays, which show
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promising results in comparison to conventional segmenta-
tion methods [9–12]. The segmentation problem has also
been considered as an energy minimization problem. But till
date, obtaining a generalized solution that works without
prepriori facts about the object elements, its characteristics
like shape, color, texture, appearance of shadows, and over-
lapping of objects are an open problem.

Segmentation is essentially a clustering problem with
additional connectivity constraint. k-means is widely used,
its properties are well known, and it has also been applied
to image segmentation with modest modifications. It is fast
and simple to implement [13], which makes it suitable for
large datasets like images. However, applying k-means
merely based on the pixel values usually results in very frag-
mented segments. Regularized k-means (reg-KM) [14]
attacks this by combining the intensity and the spatial infor-
mation using two terms. The first term calculates the ratio of
the segment perimeter and its area while the second term
measures the intracluster dissimilarity as in the standard k-
means.

In 1989, Mumford and Shah introduced the Mumford-
Shah model [15]. Since then, it has applications in the areas
such as image denoising, image restoration, and image
segmentation [16]. The Mumford-Shah model can be imple-
mented using the Douglas-Rachford algorithm, ADI implicit
method, and other numerical optimizations [17–22]. The
improvement of local minima was achieved by graph-based
methods, but these methods do not allow for open bound-
aries [23].

A convex relaxation approach was presented in [24],
using functional lifting which guarantees a globally optimal
solution, is independent of initialization, and takes care of
open boundaries. There are suitable algorithms to solve the
simplified Mumford-Shah model which include convex
boundaries for any kind of image segmentation [18, 22, 25–
27]. The problems of the previous approaches are that those
based on Mumford-Shah are rather slow, while many region
and contour-based models provide poor segmentation result
if the parameters are not carefully tuned.

In this paper, we introduce a two-phase image segmenta-
tion algorithm. Instead of using region or block-based heu-
ristics to solve the segmentation problem, we define it as a
global optimization problem. We input the number of seg-
ments, select the initial centroids randomly, and apply the
k-means clustering technique to obtain the initial segmented
image, which is further improved by minimizing the
Mumford-Shah model. k-means is known to be sensitive to
the initialization. A typical solution is to try the algorithm
several times with different initialization or use some more
robust initialization technique, see [13]. Our main contribu-
tion is to show how the proximal splitting technique can be
used to solve the two-phase Mumford-Shah model.

We compare our segmentation with ground truth data
for 100 color images from the Weizmann image dataset
[28]. Statistically evaluating using error metrics defined in
[29], we find 70% of our segmentation have an error value
of 0.5 or less. The method works especially well with seg-
ments that are difficult to determine, there are multiple
objects in the image, and objects have stripes, or complex

objects posing so that they have artificial boundaries. For
these troublesome images, we find our algorithm gives
slightly better segmentation when compared to the classical
Chan-Vese optimization algorithm [8], and much better than
the k-means variant (reg-KM) [14]. Our implementation of
the Douglas-Rachford (DR) algorithm is also a lot faster than
the Chan-Vese algorithm. The Chan-Vese model jointly uses
the reduced Mumford-Shah model and level set method
which also uses active contours for image segmentation. This
is time consuming because it is solved using reinitialization of
a level set function [30, 31].

The modern machine vision methods have higher-level
goals like extracting an anatomical object of interest for diag-
nosis of diseases, scene classification, detection of human
activity in visual surveillance, assigning a name to a human
face in an image, and classifying handwritten characters
[32]. A crucial step in the design of such machine vision sys-
tems is the extraction of discriminant features from the
images [33, 34]. The application of the proposed approach
is to obtain a low-level segmentation based on color features
and spatial connectivity, which can be further fed to the
above-mentioned higher-level semantic segmentation.

The rest of the paper is organized as follows: Section 2
introduces the Mumford-Shah image segmentation model
and shows its discrete formulation. Section 3 explains the
proximal splitting technique used for optimizing the
Mumford-Shah functional and also contains pseudocode.
In Section 4, we explain the evaluation criteria used and dis-
cuss the results. Conclusions are drawn in Section 5.

2. The Mumford-Shah Image
Segmentation Model

The Mumford-Shah model is based on the functional Eð f ;
ΓÞ which is to be minimized and it depends on two parame-
ters μ and λ. The functional Eð f ; ΓÞ is given by

E f ; Γð Þ = μ2
ð ð

Ω

f − gk k2dxdy+
ð ð

Ω−Γ
∇fk k2dxdy + λL Γð Þ,

ð2Þ

where g is an image, function f approximates g which is dif-
ferentiable over the regions Ωi, and

Ω =
[n
i=1

Ωi ∪ Γ, ð3Þ

where Γ is made up of smooth arcs and it creates boundaries
for Ωi. The overall length of all the smooth arcs of Γ is
expressed by LðΓÞ. The parameters μ and λ control the
approximation quality and segment coarseness, respectively.

The smaller value of E gives good segmentation ð f , ΓÞ
and better representation of the imageg. The first term in
equation (2) measures how well f approximates the image
g. The second term measures how much f varies on each
Ωi. The third term in equation (2) measures the length of
the boundaries and ensures that the boundaries Γ are as small
as possible. Mumford and Shah mentioned that [15],
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dropping any of the terms in equation (2), we have inf fEg
= 0. If the first term is not in equation (2), we have f = 0, Γ
=∅. If the second term is not there in equation (2), we take
f = g, Γ =∅. If the third term is not there in equation (2), we
take Γ as a fine grid of N horizontal and vertical lines and
hence Ωi =N2 number of small squares. Also, f is average
of g on each Ωi.

The presence of all the three terms leads to nontrivial
optimal solution Eð f , ΓÞ. The optimal value ð f , ΓÞ can be
visualised as a cartoon of the actual image g. Both Mumford
and Shah were uncertain for the well-posedness of minimiza-
tion of E. However, they conjectured that for the continuous
function g, E has a minimum in the set of all pairs ð f , ΓÞ
where f is differentiable on each Ωi and Γ a finite set of sin-
gular points joined by a finite set of C1 arcs.

The energy functional Eð f , ΓÞ in equation (2) whose
exact minimization is a nontrivial task. When f is a piecewise
constant function on each Ωi, obtained as the average value
of g on each Ωi, the second term in equation (2),

Ð Ð
Ω−Γ

k∇f k2dxdy = 0. Therefore, equation (2) reduces to the sim-
plified Mumford-Shah model [5, 21, 35] given as

E f , Γð Þ = μ2
ð ð

Ω

f − gk k2dxdy + λ L Γð Þ: ð4Þ

This is a special case of equation (2). This is also called the
minimal partition problem [6]. If λ is large, the emphasis is
on the length of the boundaries Γ and the minimization of
E leads to fewer boundaries and coarser segmentation. If λ
is small, the emphasis is on the first term of equation (4)
which leads to an approximation f that follows gmuch more
closely and allows for more boundaries. Thus, a small λ leads
to a finer segmentation. If λ = 0, the minimum of E forces f
= g leading to finest possible segmentation, which is a trivial
segmentation, where every region consists of a single point
(pixel).

2.1. Image Segmentation Model. Equation (4) is the reduced
two-phase segmentation model. In the two-phase model,
the image is divided into two segments, the object and
the background. Chan-Vese used the level set method to
implement the two-phase segmentation model [6, 8]. In
our approach, we solve the reduced two-phase model by
rewriting the problem using the Douglas-Rachford proxi-
mal splitting algorithm. We use a convexification technique
similar to [18, 22].

In this work, we have considered RGB images. The goal is
to divide the given image into two regions, the background
and the foreground object. We define the foreground object
as Ω0, background as Ω1, and the entire image as Ω. So,
image g =Ω0 ∪Ω1 ∪ Γ, here Γ represent the arcs of the seg-
ment Ω0. The image g contains n ×m pixels.

Let c0 and c1 denote the color values of randomly selected
pixels as foreground pixel and background pixel, respectively.
From simplified equation (4), we have

E c0, c1, Γð Þ = μ2
ð ð

Ω0

ω0dxdy + μ2
ð ð

Ω1

ω1dxdy + λL Γð Þ,

ð5Þ

where ω0 = kgðx, yÞ − c0k2 and ω1 = kgðx, yÞ − c1k2, x = 1
⋯ n; y = 1⋯m. Let Ω0 = ffðx, yÞg ∣ ω0ðx, yÞ < ω1ðx, yÞg
and Ω1 = complement of Ω0:

Now, our aim is to find the regions Ω0 and Ω1 that min-
imize functional Eðc0 ; c1 ; ΓÞ which is given in equation (5).
Defining ω = ω0 − ω1, we represent the domain Ω with
binary indicator function f so that

f x, yð Þ = χΩ x, yð Þ
1 ; x, yð Þ ∈Ω0, i:e:,ω < 0,
0, otherwise:

(
ð6Þ

This function f is the expected approximation of image g
. Using f , the minimization of functional Eðc0 ; c1 ; ΓÞ from
equation (5) can be seen as follows:

min
f x,yð Þ∈ 0,1f g

f , ωh i + λ fk kTV : ð7Þ

The first term in equation (7) is the inner product of f
and ω and is defined as h f , ωi = Ð fω. The total variation
pseudonorm is k f kTV , which equals to LjΓj for binary indi-
cator f = χΩ by coarea formula established by Fleming and
Rishel [20].

2.2. Discrete Formulation of Segmentation Model. To discre-
tize variational problem (7) on a grid of n ×m pixels, we
assume that N = n ×m. Let vi ∈ R2 be a vector field for every
i and suppose

v! = vi
!� �N

i=1 ∈ R
N×2, ð8Þ

then norm of v is given by

v!
��� ���

1
= 〠

N

i=1
vi
!�� ��: ð9Þ

The total variation pseudonorm, for f = ð f iÞðN /i = 1Þ
∈ RN , is defined as

fk kTV = ∇fk k1 = 〠
N

i=1
∇f ik k, ð10Þ

using equation (9). Thus, we obtain

min
f i∈ 0,1f g

f , ωh i + λ ∇fk k1: ð11Þ

We assume that the pixels are indexed on a two-
dimensional grid where δ1 = ð1, 0Þ and δ2 = ð0, 1Þ, the finite
difference gradient operator is

∇f ið ÞNi=1 = f i+δ1 − f i, f i+δ2 − f i
� �N

i=1
∈ RN×2: ð12Þ
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We use periodic boundary conditions for simplicity. The
inner product RN is

f , ωh i = 〠
N

i=1
f iωi: ð13Þ

Equation (11) is a nonsmooth and nonconvex and usu-
ally direct minimization that leads to poor local minima. By
replacing the binary constraint f i ∈ f0, 1g with a box con-
straint f i ∈ ½0, 1�, we obtain the convex formulation of the
energy functional of equation (11). This defines the following
finite dimensional convex problem:

min
f i∈ 0,1½ �N

f , ωh i + λ ∇fk k1: ð14Þ

One can prove that this relaxation is exact, meaning that
the minimizer f , when it is unique, is binary, f ∈ f0, 1g. It
means that Ω such that f = χΩ actually solves the original
segmentation problem.

3. Proximal Splitting Technique

Proximal algorithms are used for solving large-scale, con-
strained, or distributed optimization problems [36, 37].
Many image processing problems can be formulated as

min
x∈RN

f1 xð Þ+⋯+f n xð Þ, ð15Þ

where f1,⋯, f n:RN →� −∞; +∞�: These algorithms use
splitting technique such that the functions f1,⋯, f n in equa-
tion (15) can be used to get an algorithm which is easily
implementable. Usually, these algorithms are called proximal
because each function in equation (15) is involved via its
proximity operator. We propose to use proximal splitting
scheme to solve our optimization problem, i.e., simplified
Mumford-Shah model of equation (14).

3.1. Splitting. We introduce the variable u = ∇f (http://www
.numericaltours.com). The optimization problem (14) can
be seen as follows:

min
z= f ,uð Þ∈Z=RN×RN×2

F zð Þ +H zð Þ, ð16Þ

where FðzÞ and HðzÞ are defined as follows:

F zð Þ = F f , uð Þ = f , ωð Þ + i 0,1½ �N fð Þ + λ uk k,
H zð Þ =H f , uð Þ = lD f , uð Þ, D = z = f , uð Þ: u = ∇ff g:

ð17Þ

Here, the constraints are defined using indicator function
as follows:

l 0,1ð ÞN sð Þ = 0 if s ∈ 0, 1½ �N ,
+∞ otherwise,

(

lD f , uð Þ =
0 if f , uð Þ ∈D = z = f , uð Þ: u = ∇ff g,
+∞ otherwise:

( ð18Þ

3.2. Proximal Mapping. The proximal mapping, proxγT
: RN → RN , for any convex function T with γ parameter
and t, s ∈ RN

proxγT tð Þ = arg min
s

1
2 t − sk k2 + γT sð Þ: ð19Þ

Here, proxγHðtÞ = s∗ is the minimizer of function T .
Proximal operators can be viewed as generalized projections
(see Appendix A). Similarly, reflection is defined as

rproxγT tð Þ = 2proxγT tð Þ − t: ð20Þ

3.3. Douglas-Rachford Algorithm. The Douglas-Rachford
(DR) algorithm minimizes functionals iteratively as in equa-
tion (16):

min
z

Fn zð Þ +Hn zð Þf g: ð21Þ

It is given that FðzÞ and HðzÞ are convex functions.
Hence, we can compute their proximal mappings proxγF
and proxγH , respectively. It is not required that the functions
FðzÞ and HðzÞ are smooth. A DR iteration is (see Appendix
C):

~zk+1 = 1 − μ

2
� �

~zk +
μ

2 rproxγHn rproxγF ~zkð Þ
� �

,

zk+1 = rproxγF
n
~zkð Þ,

ð22Þ

where

rproxγF
n
zð Þ = 2proxγF

n
zð Þ − z: ð23Þ

We can show that for any value of γ > 0, 0 < μ < 2, and
~z0, zk ⟶ z∗is a minimizer of Fn +Hn.

3.3.1. Proximal Operator ofH. The proximal mapping ofH is
the orthogonal projection on the convex set D:

ef n, ~un� �
= proxγHn f , uð Þ = ProjD f n, unð Þ: ð24Þ

The following linear system of equations gives ~f and ~u
because

~un = ∇~f n, ð25Þ
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where

ef n = IdN−Δð Þ−1 f n − div unð Þð Þ ð26Þ

(see Appendix B).
Here, by convention, Δ = div ∘ ∇ and div = −∇∗. We have

cef n mð Þ = ĥn mð Þ
K mð Þ , ∀m = m1,m2ð Þ, ð27Þ

where

K mð Þ = 1 + 4 sin πm1
n

� �2
+ 4 sin πm2

n

� �2
: ð28Þ

As we have discretized variational problem (7) on a grid
of n ×m pixels,m1 takes values 1⋯ n andm2 takes the values
1⋯m.

Also, hn = f n − div ðunÞ and where the two-dimensional
discrete Fourier transform of an image h is hn.

3.3.2. Proximal Operator of F. The function Fð f , uÞ can be
written as

F f n, uð Þ = F0 f nð Þ + λ uk k1, ð29Þ

where

F0 f nð Þ = f n, ωh i + l 0,1½ �N f nð Þ: ð30Þ

The proximal mapping of Fn is

proxγFn f n, uð Þ = proxγF
0
fð Þ ; proxγλ :k k uð Þ

� �
: ð31Þ

We define the value of λ > 0. The proximal operator of F0
is

proxγF
0
fð Þ

�
; Proj 0,1½ �N f n − γωð Þ, ð32Þ

where

Proj 0,1½ �N hnð Þ =max 0, min 1, hnð Þð Þ: ð33Þ

The proximal operator of the l1 − l2 norm k:k1 is a soft
thresholding of the amplitude of the vector field:

proxγ :k k1 uð Þi =max 0, γ

uik k
� �

ui: ð34Þ

3.4. Implementation. The implementation is sketched in the
following pseudocode. We use the following notations:

g: input image of size X × Y
segments : number of segments
iterations: number of iterations
lambda λ: control parameter inMumford-Shah functional

rc0, rc1: color values of randomly selected pixel0 and
pixel1

c0, c1: color values of pixel0 and pixel1 after iterations of
k-means

ω, ω0, ω1 :indicate regions Ω, Ω0, and Ω1
f : indicator function
u: gradient of f
E: value of functional E at each iteration
The following subprograms are also needed:
f f t: fast Fourier transform
grad: gradient
if f t : inverse fourier transform
div: divergence

4. Experimental Results

4.1. Image Dataset. The performance of our algorithm is eval-
uated using the partial Weizmann dataset [28] images depict-
ing one object in the foreground. Currently, the image
database contains a hundred grey level and hundred color
images along with their ground truth segmentations, out of
which we have used only color images. The dataset comprises
of images that clearly have an object that is different from the
background. Each image has three corresponding ground
truth segmentations as shown in Figure 1.

4.2. Evaluation Criterion. The performance of our algorithm
is based on region-based error metrics defined in [29]. Con-
sidering S1 as segmentation obtained by an algorithm, S2 as
one of the ground-truth, we calculate

E S1, S2, pið Þ =
R S1, pið Þ ∩ R S2, pið Þ
			 			

R S1, pið Þ , ð35Þ

a value in the range ½0, 1�. For a given pixel pi, we consider
segment S1 in the solution and segment S2 in the ground
truth that contain the pixel. If one segment is a proper subset
of the other, then the pixel lies in an area of refinement, and
the local error should be zero. Otherwise, the two regions
overlap in an inconsistent manner and we should calculate
the corresponding error. Here, RðS ; piÞ is the set of pixels
corresponding to the region in segmentation S that con-
tains pixel pi, and the local refinement error is defined as
EðS1, S2, piÞ.

This local error measure is not symmetric, and it gives
refinement in one direction only. It is to be noted that
EðS1, S2, piÞ = 0 if S1 is a refinement of S2 at pixel pi, but not
the opposite. Considering this local refinement error in each
direction at each pixel, there are two methods to combine
the values into an error measure for the entire image: global
consistency error ðGCEÞ that forces all local refinements to
be in the same direction and local consistency error ðLCEÞ
that allows refinement in different directions in different
parts of the image [38]. For a given n as the number of
pixels, we have
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GCE S1, S2ð Þ = 1
n
min 〠

n

i

E S1, S2, pið Þ, 〠
n

i

E S2, S1, pið Þ
( )

,

LCE S1, S2ð Þ = 1
n
〠
n

i

min E S1, S2, pið Þ, E S2, S1, pið Þf g:

ð36Þ

The region-based consistency measure LCE is tolerant to
refinement in either direction at each image pixel. If we sim-
ply replace the pixelwise minimum with a maximum, we get
a measure that does not tolerate refinement at all and penal-
izes dissimilarity between segmentations proportional to the
degree of region overlap. Applying to segmentations S1 and
S2, the bidirectional consistency error (BCE) is defined as

MS (g, segments, max iterations, lambda) → f
rc0 ⟵ rgb values of randomly selected pixel0
rc1 ⟵ rgb values of randomly selected pixel1
ðc0, c1Þ⟵ kmeansðrc0, rc1Þ
mu⟵1, gamma⟵1,
ω0 ⟵ dif f ðc0, gÞ
ω1 ⟵ dif f ðc1, gÞ
ω⟵ dif f ðω0, ω1Þ
f ⟵ indicatorðωÞ
u⟵ grad(f)
REPEAT
term1⟵ ð1 −mu/2Þ ∗ f
term2⟵mu/2 ∗ ð2 ∗ proxf 0ð2 ∗ projc1ð f , u1Þ − f , gamma, ωÞ
term3⟵ ð2 ∗ projc1ð f , u1Þ − f ÞÞ
f 1⟵ term1 + term2 − term3
term1⟵ ð1 −mu/2Þ ∗ u
term2⟵mu/2 ∗ ð2 ∗ proxL1ð2 ∗ projc2ðuÞ − u, gamma ∗ lambdaÞ
term3⟵ ð2 ∗ projc2ðuÞ − uÞÞ
u1⟵ term1 + term2 − term3
f ⟵ projc1ð f 1, u1Þ
u⟵ projc2ðu1Þ
Ef ðnÞ⟵ sumðω ∗ f Þ + lambda ∗ sumðsqrtðsumðu2ÞÞÞ

UNTIL ððn ≥ 2Þ AND (ΔEiter < 0:1) OR (iter =maxiter)
Procedures
diffða, bÞ → c

FOR all i∈½1, X� DO
FOR all j ∈ ½1, Y � DO

cði, jÞ = aði, jÞ − bði, jÞ
indicatorðwÞ→ f

FOR all i∈½1, X� DO
FOR all j ∈ ½1, Y � DO

IFwði, jÞ > 0 THEN
f ði, jÞ = 1

ELSE
f ði, jÞ = 0

Auxiliary functions
projc1ðtf1, tu1Þ→ if ft

K ⟵ gridk()
if f t = if f tð f f tðt f 1Þ − div ðtu1ÞÞ/KÞ

gridk() → K
FOR all i∈½1, X� DO
FOR all j ∈ ½1, Y � DO
Kði, jÞ = 1 + 4 ∗ sin ðX ∗ π/iÞ2 + 4 ∗ sin ðY ∗ π/jÞ2

projc2ð f Þ → gf
gf =gradf(f )

proxf0ð f , gamma,wÞ
FOR all i∈½1, X� DO
FOR all j ∈ ½1, Y � DO

mði, jÞ =max ð0, min ð1, f ði, jÞ − gamma ∗wði, jÞÞ

Algorithm 1: Minimization of MS model using DR algorithm.
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BCE S1, S2ð Þ = 1
n
〠
n

i

max E S1, S2, pið Þ, E S2, S1, pið Þf g: ð37Þ

In addition, we can ask if segmentation S1 obtained by
our algorithm is consistent with the collection of all ground
truth segmentations Sk of that image. The BCE∗ measure is
obtained by computing the minimum error at each pixel
over each ground truth segmentation Sk:

BCE∗ S1ð Þ = 1
n
〠
n

i

min
k

max E S1, Sk, pið Þ, E Sk, S1, pið Þf gf g:

ð38Þ

Structural similarity index [39] measures the visual
quality between two images. It is calculated as a weighted
combination of three factors luminance, contrast, and struc-
tural similarity. It can be expressed as

Original Ground truth 1 Ground truth 2 Ground truth 3 k-means

Lambda = 0.10 Lambda = 0.25 Lambda = 0.50 Lambda = 0.75 Lambda = 1.00

Figure 1: Segmentation results for selected two images using the Douglas-Rachford algorithm.
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Figure 2: Error metrics for different values of λ for 100 images.
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SSIM x, yð Þ = l x, yð Þ½ �α: c x, yð Þ½ �β: s x, yð Þ½ �γ, ð39Þ

where l is the luminance, c is the contrast, s is the structural
similarity, and α, β, and γ are positive constants. The three
factors are calculated separately as follows:

l x, yð Þ = 2μxμy + C1
μ2x + μ2y + C1

,

c x, yð Þ = 2σxσy + C2
σ2x + σ2y + C2

,

s x, yð Þ = σxy + C3
σxσy + C3

, ð40Þ

where μx and μy are local means, σx and σy are the standard
deviations, and σxy is the cross-covariance between the two
images x and y, respectively. If α = β = γ = 1, then SSIM
simplifies to
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Figure 3: Behaviour of E for different values of λ with tolerance = 0:1.
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Figure 4: Images and their ground truths.
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SSIM =
2μxμy + C1
� �

+ 2σxσy + C2
� �

μ2x + μ2y + C1
� �

+ σ2
x + σ2

y + C2
� � : ð41Þ

We use SSIM to calculate the similarity between the
image generated by the segmentation result, and the image
generated from the ground truth segmentation. Here, we
have implemented the proposed method for two-phase
segmentation, which gives us foreground (object) and back-
ground. We have used SSIM to evaluate the foreground.

4.3. Results. We have executed the DR algorithm over 100
images from the Weizmann dataset [29], for various values
of λ as 0:10, 0:25, 0:50, 0:75, and 1:00:λ is a parameter
which is positive, and unfortunately, there is no fitness func-
tion to adjust it automatically. This is a drawback of the
method. reg-KM and Chan-Vese methods also have similar
limitation.

For each of the 100 images, the segmentation results are
compared with their three ground truths to obtain the error
measures GCE and BCE∗. The average value of the three
error values is taken as the final error. Out of these λ values,
we found that the results using λ = 0:75 and λ = 1:00 are the
best in terms of accuracy in most of the images. We elaborate
these in Figure 2. It is very important that the error values are
more concentrated towards zero. Figure 2(a) illustrates that
for λ = 0:75 and λ = 1:00, around 69% of the images have
GCE value of 0.5 or less. Similarly, Figure 2(b) illustrates that
for λ = 0:75 and λ = 1:00, around 70% of the images have
BCE∗ value of 0.5 or less.

Figure 1 shows the original image, the three human
segmentations comprising the ground truth, the initial

reg-KM Chan-Vese DR

Figure 5: Segmentation results using reg-KM, Chan-Vese, and
Douglas-Rachford (DR) algorithms.

Input image

590 iterations Global region-based segmentation

Initial contour
400

300

200

100

50 100 150 200 250 300

Figure 6: Result of the Chan-Vese algorithm.

Table 1: Comparison of reg-KM, Chan-Vese algorithm, and
proposed DR algorithm in terms of BCE∗ error.

Image reg-KM Chan-Vese Proposed DR

Church 0.2732 0.1563 0.1552

Lion 0.2682 0.1893 0.1435

Caterpillar 0.3919 0.3327 0.3723

Table 2: Comparison of reg-KM, Chan-Vese algorithm, and
proposed DR algorithm in terms of SSIM.

Image reg-KM Chan-Vese Proposed DR

Church 0.6864 0.6878 0.7334

Lion 0.7026 0.6880 0.7948

Caterpillar 0.1238 0.1187 0.2059

Table 3: Comparison of reg-KM, Chan-Vese algorithm, and
proposed DR algorithm in terms of execution time (seconds).

Image reg-KM Chan-Vese Proposed DR

Church

<1
60.00 2.02

Caterpillar 48.42 1.42

Lion 10.63 1.38

k = 0, λk ∈ ½ϵ, 2 − ϵ�
{

xk ⟵ proxγ f2ðykÞ
yk+1 ⟵ yk + λkðproxγf1ð2xk − ykÞ − xkÞ

}until k >maxiterations

Algorithm 2:
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segmentation obtained by the k-means clustering technique,
and the result of the Douglas-Rachford algorithm for two
selected images from the dataset. It is clear that when λ is
large, the minimization of E leads to fewer boundaries and
coarser segmentation and when λ is small, we obtain a finer
segmentation. Minimization of E is achieved when the differ-
ence of E between two iterations is less than 0.1 tolerance. We
vary λ from 0.1 to 1.00 to have segmentation from finer to
coarser, as established in [15]. Figure 3 compares the perfor-
mance and efficiency of the iterations with different λ values.
It shows that the value of the minimization of energy func-
tional keeps decreasing when iterated long enough. We
observe that for λ values of 0.75 and 1.00, minimization of
energy functional reaches the lowest values. At the same time
for λ value of 0.75, it converges faster.

Further, for comparison with other methods, we select
three images from the dataset such that their segmentation
is not an easy task. Figure 4 shows these three selected images
and their different ground truths. For the church image, it is
difficult to determine which is the object, the church, or the
signboard. This confusion is also seen in the ground truths.
The same is observed in the case of a lion, where either the
lion or the ball, or both, is considered as the object. The seg-
mentation of caterpillar is the most difficult because it has
stripes which can act as an artificial boundary.

Figure 5 shows segmentations obtained by the reg-KM
algorithm [14], Chan-Vese algorithm [8], and the proposed
DR algorithm. The results are optimized as follows. Results
of reg-KM are with the regularization parameter 0.5. The
Chan-Vese algorithm has been used with various initial con-
tours like a small circle, large circle, and user-defined box.We
tested all these and chose to use small circles (see Figure 6) as
it provided the best segmentation for these images. In our
algorithm, we have used the k-means clustering method for
obtaining initial segmentation and then Mumford-Shah
functional minimized by Douglas-Rachford using the param-
eter λ = 0:5.

Table 1 shows the numerical comparison of reg-KM,
Chan-Vese, and the proposed DR algorithm. The results
show that the reg-KM algorithm has worse accuracy in all
three cases which we obtained through the error evaluation
criteria mentioned in Section 4.2. The results of the Chan-
Vese method and the proposed DR method have similar
accuracy; Chan-Vese is better with caterpillar while DR is
better with lion.

Table 2 summarizes the SSIM values for the three
methods: reg-KM, Chan-Vese, and the proposed DR. In case
of all images, the proposed DR algorithm achieves signifi-
cantly higher SSIM values which indicates its superiority over
the compared methods.

Table 3 summarizes the processing times of these algo-
rithms. We can see that the proposed DR algorithm is an
order of magnitude faster than Chan-Vase. The three images
are segmented in about 1.5 seconds, on average, while Chan-
Vese takes 40 seconds per image, on average. The reg-KM
technique does not give very good segmentation but is defi-
nitely fast in terms of execution time. However, the DR
algorithm uses a minimization technique and therefore it
takes more time but gives much better results than reg-KM
and nearly the same results when compared to the popular
Chan-Vese method.

5. Conclusions

In this paper, we proposed a reduced two-phase Mumford-
Shah model to segment images with one object. We obtained
initial segmentation by the k-means clustering technique
and further minimized it by our implementation of the
Douglas-Rachford algorithm. In k-means, k is a user-
selected parameter about how many segments. If k needs
to be automatically selected, then it should also be included
in the Mumford-Shah functional in (2). Possible solutions
how to do it, we refer to solutions in the clustering context
[40]. Experiments with various error metrics LCE, GCE,
and BCE∗ show that 70 percent of the segmentations keep
the error values below 0.5. We also compare our algorithm
to Chan-Vese implementation which is one of the classical
methods to optimize the Mumford-Shah functional. Our
segmentation is slightly better in two of the three selected
images, while the main benefit is that our method is signifi-
cantly faster than the Chan-Vese algorithm. Secondly, we
compare our algorithm with a recent k-means variant, reg-
KM. According to the BCE∗ error metric, our segmentations
are significantly better. However, reg-KM is much faster as it
has a statistical approach of clustering but it does not give
smooth segmentation with convex boundaries. Our algo-
rithm balances time as well as quality of segmentation. As
a future research, we consider adopting the Mumford-Shah
model in k-means context.

Repeat
{

~zk+1 ⟵ ~zk + μðproxγGð2proxγFð~zkÞÞ − ~zkÞ − proxγFð~zkÞ
⟵ð1 − μ/2Þ~zk + μðproxγGð2proxγFð~zkÞÞ − ~zkÞ − μproxγFð~zkÞ + ðμ/2Þ~zk
⟵ð1 − μ/2Þ~zk + ðμ/2Þð2proxγGð2proxγFð~zkÞÞ − ~zkÞ − 2proxγFð~zkÞ + ~zk

⟵ð1 − μ/2Þ~zk + ðμ/2ÞrproxγGðrproxγFð~zkÞÞ
~zk+1 ⟵ proxγFð~zk+1Þ

} until k >maxiterations

Algorithm 3:
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Appendix

A. The Projection, Proximal Mapping,
and Reflection

Let C ⊂ RN be a closed convex set. The projection onto set C
is a mapping

Pc : R
N ⟶ C, ∀x ∈ RN , ðA:1Þ

defined by

PC xð Þ = z ∈ C : x − zk k = inf x − ck k, c ∈ C,∀x ∈ RN
 �
:

ðA:2Þ

The proximal mapping of an indicator function i is given
by

proxi 0,1½ �N tð Þ = arg min
v

1
2 t − vk k2, ðA:3Þ

which is nothing but projection of i on ½0, 1�N and is denoted
by proj½0,1�N ðtÞ:

The reflection with respect to set C is a function

RC : RN ⟶ C, ∀x ∈ RN , ðA:4Þ

defined by

RC xð Þ = PC xð Þ + PC xð Þ − xð Þ = 2PC xð Þ − x, ∀x ∈ RN :

ðA:5Þ

Let RN be N-dimensional Euclidean space, k:k be norm,
and domf = fx ∈ RN j f ðxÞ<∞g, Γ0ðRNÞ be the class of lower
semicontinuous functions from RN ⟶ ð−∞, +∞Þ such
that ð f Þ ≠∅ and f ∈ Γ0ðRNÞ. For any x ∈ RN , the minimiza-
tion problem

min
y∈RN

f yð Þ + 1
2 x − yk k2 ðA:6Þ

admits a unique solution, which is denoted by proxf ðxÞ. The
operator proxf : RN → RN thus defined is the proximal oper-
ator of function f :

B. Solving a Linear System of Equations to
Obtain ð~f , ~uÞ

Let C = fx = ðy, zÞ: Ax = bg = ðy, zÞ: ½BN�½y/z� and D = fz =
ð f , uÞ: u = ∇f g ProjCð f , uÞ is given by

p = x + AT AAT� �−1
b − Axð Þ: ðB:1Þ

Let p = ð~f , ~uÞ, x = ð f , uÞ, and A = ½−∇−I�, than the ProjD
ð f , uÞ is given by

~f

~u

" #
=

f

u

" #
+

−∇

−I

" #
−∇−I

−∇

−I

" #" # !−1

u+∇fð Þ,

~f

~u

" #
=

f

u

" #
+

−∇

−I

" #
−Δ+Ið Þ−1 u+∇fð Þ,

~f

~u

" #
=

f

u

" #
+

−∇ −Δ+Ið Þ−1 u+∇fð Þ
−I −Δ+Ið Þ−1 u+∇fð Þ

" #
,

~f = f−∇ −Δ+Ið Þ−1 u+∇fð Þ,

~f = f− −Δ+Ið Þ−1 ∇:∇f−∇uð Þ,

f ~ −Δ+Ið Þ = f −Δ+Ið Þ−∇:∇f+∇u,f ~ −Δ+Ið Þ = −Δf + f+Δf+∇u,

f ~ −Δ+Ið Þ = f+∇u,~f = −Δ+Ið Þ−1 f+∇uð Þ,~f = −Δ+Ið Þ−1 f − div uð Þð Þ:
ðB:2Þ

Let h = ð f − div ðuÞÞ and ĥ denote fast Fourier transform
of G then

~f = I−Δð Þ−1h,
~f I−Δð Þ = h,
~f−Δ~f = h,b~f −Δb~f = ĥ,b~f + 4π xj j2b~f = ĥ,

1 + 4π xj j2� �b~f = ĥ,

1 + 4π πω1
n

� �2
+ 1 + 4π πω2

n

� �2� �b~f = ĥ,

K ωð Þb~f = ĥ,

b~f = ĥ
K ωð Þ :

ðB:3Þ

C. Douglas-Rachford Algorithm

Let f1 and f2 be lower semicontinuous functions. Also, f1 and
f2 need not be differentiable and f1ðxÞ + f2ðxÞ→ +∞as kxk
→ +∞.

The problem is

min
x∈RN

f1 xð Þ + f2 xð Þ: ðC:1Þ

Solution. The problem has at least one solution. Let γ ∈ �
0,+∞½, ϵ ∈ �0, 1½, and y0 ∈ R

N .
The solution is denoted by yn+1; Douglas-Rachford itera-

tions are as follows:
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Applying the same to our minimization problem, in
equation (16) by taking y0 ⟵ ~z0 ⟵ ð f , uÞ, xk ⟵ zk ⟵
proxγFð~zkÞ and k = 0.

Data Availability

The data used to support the findings of this study are publicly
available: http://cs.uef.fi/sipu/images/ and http://www.wisdom
.weizmann.ac.il/~vision/Seg_Evaluation_DB/.
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