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Abstract 

Balanced k-means aims at finding clusters of equal size. A slightly different variant requires predefined cluster sizes, 

which do not need to be equal. We present a generalized version of the balanced k-means algorithm to solve the fixed-

size clustering problem with any predefined cluster sizes. The algorithm operates similarly to standard k-means but uses 

the Hungarian algorithm in the assignment step. We also discuss how the balanced k-means algorithm could be used as 

such by modifying the data. 

 

 

1 Introduction 

The goal of clustering is to group n data points into k clus-

ters by minimizing intra-cluster distances and maximizing 

between-cluster distances. Each group is represented by a 

center point (centroid). Minimizing SSE in Euclidean 

space has been shown to be an NP-hard problem [1]. 

K-means [2] is the most common clustering algorithm. For 

a given number of clusters and some initial solutions, it 

finds a local minimum of sum-of-squares errors (SSE):  

SSE = ∑ ∑ ‖𝑋𝑖 − 𝐶𝑗‖
2
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where Xi denotes a data point and Cj denotes a centroid. It 

was shown in [3] that SSE not only minimizes intra-cluster 

distances but also maximizes between-cluster distances as 

a side effect.  

The K-means algorithm consists of two repeatedly exe-

cuted steps: the assignment step and the centroid step. They 

work as follows. 

Assignment step: Assign the data points to clusters speci-

fied by the nearest centroid: 
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Update step: Calculate the mean of each cluster: 
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The two steps are repeated until the centroid locations no 

longer change. The assignment step and the update step are 

optimal with respect to SSE: The partition step minimizes 

SSE for a given set of centroids, and the update step mini-

mizes SSE for a given partition. The solution, therefore, 

converges to a local optimum but without a guarantee of 

global optimality.  

To obtain better results than those achieved by k-means, 

slower agglomerative algorithms [4, 5, 6] or more complex 

variants of k-means [7, 8, 9, 10] are often used. 

Balanced clustering is the same as normal clustering, but it 

requires that the cluster sizes must be equal (or differ by at 

most 1). Balanced clustering is necessary for balancing the 

workload and avoiding unbalanced energy consumption in 

the network. Balanced k-means [11] works the same way 

as standard k-means, but the assignment step is different 

due to the balance constraint. It uses the Hungarian algo-

rithm in the assignment step. 

In general, balanced clustering is a 2-objective optimiza-

tion problem with two goals that contradict each other: 

minimize SSE and balance the cluster sizes. Traditional 

clustering aims to minimize SSE without considering the 

balance. Balancing, on the other hand, would be trivial if 

we did not care about SSE; simply divide the points into 

equal-sized clusters randomly. 

Fixed-size clustering is a generalized version of balanced 

clustering. It requires having clusters of predefined sizes. 

For example, we need to allocate resources with a given 

(non-equal) demand for the resource. Balance clustering is 

a special case of fixed-size clustering where the predefined 

cluster sizes are equal. 

In the literature, balanced clustering has been widely stud-

ied, but less attention is paid to the more general case of 

fixed-size clustering. In this paper, we revise the original 

balanced k-means algorithm [11] by changing the balanced 

constraint to any fixed-size constraint. Otherwise, the algo-

rithm is the same. We will also discuss an alternative ap-

proach in which, instead of modifying the algorithm, we 

would modify the data to make it a balanced clustering 

problem.  

2 Balanced clustering 

Hard balance constrains all the clusters to be of size n/k  

1. It is a strict limit. Soft balance is more relaxed. It merely 

aims towards more balanced clustering but does not en-

force it. We next give a brief review of existing algorithms 

for these two cases. 

2.1 Hard balance 

One possible approach to enforce balance is to redesign the 

assignment step of k-means by adding a balance constraint. 
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For instance, the constrained k-means [12] defines the as-

signment as a minimum cost flow problem with minimum 

cluster sizes. The problem is then solved by linear pro-

gramming in O(k3.5n3.5) time. The balanced k-means [11] 

solves the assignment step by the Hungarian algorithm, re-

ducing the time complexity to O(n3). However, both ap-

proaches are slow and poorly scalable. 

The algorithm in [13] was claimed to have an average time 

complexity of O(mn1.65) to O(mn1.7), where m is the number 

of iterations. The algorithm in [14] directly converted the 

problem to linear programming using a heuristic function, 

but with inferior clustering accuracy compared to k-means-

based approaches. Regularized k-means [15] introduced a 

balance regularization term to the objective function, ex-

tending the method to the case of soft balance. 

Other approaches include the Fuzzy c-means [16], a Me-

metic algorithm [17], which combines a crossover and a 

responsive threshold search, alternating between two dif-

ferent local search procedures, and a strategic oscillation 

[18]. 

2.2 Soft balance 

The most common approach for the soft-balanced case is 

to use a penalty term. The greater the difference in cluster 

sizes, the higher the penalty, and vice versa. In the case of 

perfect balance, the penalty is zero. One of the first ap-

proaches is frequency-sensitive competitive learning [19], 

where clusters compete for data points, but the penalty in-

creases the more data points they win. As a result, smaller 

clusters will be favored. 

Least squares linear regression was used with a balance 

constraint that aims to minimize the variance of the cluster 

sizes [20]. The resulting hyperplanes represent the cluster 

boundaries, which are iteratively improved.  

The concept of balance was generalized from cluster size 

also to their variance and density in [21]. The algorithm 

adds a multiplicative weight in the assignment step of k-

means, followed by a separate balancing phase, in which 

points are shifted from clusters with the larger weights to 

clusters with lower weights. 

An algorithm called -balanced clustering [22] takes as in-

put a user-given parameter , which denotes the maximal 

difference between the cluster sizes. A value  = 1 implies 

hard balance, and values  > 1 soft balance. In the assign-

ment step, points are assigned to the cluster with the nearest 

centroid that does not violate this constraint.  

Ward’s agglomerative clustering also aims at minimizing 

SSE. Other agglomerative clustering variants that mini-

mize all pairwise within-cluster distances result in more 

balanced cluster sizes than using SSE [23]. 

3 Fixed-size k-means 

Some balanced clustering algorithms can also be applied to 

the fixed-size clustering problem. For example, con-

strained k-means [12] allows setting any lower bounds on 

the cluster sizes. We next show how the original balance k-

means [11] can be turned into a fixed-size k-means. 

First, we need to define the assignment problem. A formal 

definition for the (linear) assignment problem is as follows. 

Given two sets (A and S) of equal size and with a weight 

function W: A×S → R, the goal is to find a bijection f: A 

→ S so that the cost function is minimized: 

Cost = ∑ 𝑊(𝑎, 𝑓(𝑎)).

𝑎∈𝐴

 (4) 

In the proposed algorithm, sets A and S represent the clus-

ter slots and the data points, respectively, as shown in Fig-

ure 1. Fixed-sized k-means proceeds in the same way as k-

means, but the assignment phase is different. Instead of se-

lecting the nearest centroid, we have n pre-allocated slots 

divided equally among the clusters. The datapoints can be 

assigned only to these predefined slots. 

 

Figure 1  Assigning points to centroids via cluster slots 

 
To find the optimal assignment minimizing SSE, we solve 

an assignment problem using the Hungarian algorithm [24]. 

We first construct a bipartite graph consisting of n data 

points and n cluster slots, as shown in Figure 2. We then 

partition the cluster slots in the clusters according to the 

assignments. 

 

Figure 2  Minimum SSE calculation with fixed-sized clus-

ters is done via a bipartite graph 

 
Clusters slots that are allocated to the same cluster share 

the same centroid. The initial centroids can be drawn ran-

domly from all data points. The edge weight is the squared 

distance from the point to the cluster centroid it is assigned 

to. Contrary to the standard assignment problem with fixed 

weights, here the weights dynamically change after each k-

means iteration according to the newly calculated centroids.  

After this, we perform the Hungarian algorithm to get the 

minimal weight pairing. The squared distances are stored 



in an n×n matrix, for the sake of the Hungarian algorithm. 

The update step is similar to that of k-means, where the 

new centroids are calculated as the means of the data points 

assigned to each cluster: 
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(5) 

The weights of the edges are updated immediately after the 

update step. The pseudocode of the algorithm is in Algo-

rithm 1. In the calculation of the edge weights, the cumu-

lative sum of cluster sizes is: 

𝑐𝑢𝑚(𝑗) = ∑ 𝑛𝑙   ∀𝑗 ∈ [1. . 𝑘],

𝑙=[1..𝑗]

 (6) 

where nl is the cluster size, and the number of cluster slot 

is denoted by a. To determine which cluster the given clus-

ter slot belongs to, we use the following equation: 

arg min𝑗   𝑐𝑢𝑚(𝑗) ≥ 𝑎. (7) 
The edge weights are calculated as: 

𝑊(𝑎, 𝑖)

= 𝑑𝑖𝑠𝑡(𝑋𝑖 , 𝐶arg 𝑚𝑖𝑛𝑗  𝑐𝑢𝑚(𝑗)≥𝑎
𝑡 )2  ∀𝑎

∈ [1. . 𝑛]  ∀𝑖 ∈ [1. . 𝑛]. 

(8) 

After convergence of the algorithm, the partition of points 

Xi, i ∈ [1..n], is: 

𝑋𝑓(𝑎) ∈ 𝑃arg min𝑗 𝑐𝑢𝑚(𝑗)≥𝑎. (9) 

 

 
 

The convergence result in [12] (Proposition 2.3) applies 

also to the proposed fixed-size k-means as well. The result 

states that the algorithm terminates in a finite number of 

iterations at a locally optimal partition. At each iteration, 

the cluster assignment step cannot increase the objective 

function of the constrained k-means, as shown in Equation 

(3) in [12].  

The cluster update step will either strictly decrease the 

value of the objective function, or the algorithm will termi-

nate. There are a finite number of ways to assign n points 

to k clusters so that cluster h has at least h points. Since 

constrained k-means does not permit repeated assignments, 

and since the objective function is strictly nonincreasing 

and bounded below by zero, the algorithm must terminate 

at some locally optimal cluster assignment.  

The same convergence result applies to the fixed-sized k-

means as well. The assignment step is optimal with respect 

to SSE because the pairing and update steps are both opti-

mal with regard to SSE, which is minimized clusterwise in 

the same way as in k-means. 

4 Time complexity 

The time complexity of the assignment step in k-means is 

O(kn). The assignment step of the proposed fixed-sized k-

means algorithm can be solved in O(n3) time with the Hun-

garian algorithm. This is also the bottleneck of the algo-

rithm. The total time complexity is therefore O(zn3), where 

z is the number of iterations.  

The greedy assignment heuristic could be considered as an 

alternative algorithm for faster speed. However, it is sub-

optimal and therefore does not guarantee convergence of 

the algorithm. 

5 Alternative approach 

We next discuss an alternative approach for solving the 

fixed-size clustering problem. Instead of modifying the al-

gorithm, we can modify the dataset as follows, allowing the 

original balanced k-means algorithm to be used. The idea 

goes as follows. 

Suppose that we have three clusters with the size con-

straints of 5, 3, and 2. Instead of having as many cluster 

slots as the sizes require, we create additional dummy slots 

so that their total number would become equal:  5, 5, 5. We 

then add 0+2+3 = 5 dummy data points so that their number 

matches that of the cluster slots (see Figure 3). 

 

Figure 3  Adding dummy points and dummy cluster slots. 

The distance of the dummy data point to its pre-assigned 

cluster is zero, and to all other clusters, it is  

 

The dummy points are then numbered and forced to their 

pre-assigned clusters by setting their distances as follows. 

The distance of a dummy point to its own pre-assigned 

cluster is 0, and  to all other clusters. In this way, the 

dummy points will always occupy equally many slots in a 

cluster as there are dummy slots. In this way, they do not 

affect the clustering, and any balanced clustering algorithm 

can be used. 

We note that, when using a distance matrix, this scheme 

works easily. However, if we calculated the Euclidean dis-

tances on demand, the attribute values for the dummy 

points would require a bit of thinking work. Since we can 

easily modify the balanced k-means algorithm, we do not 

need this approach. However, if another algorithm were 

used as the starting point, this modification might become 

useful.  



The drawback is the additional computation caused by the 

dummy points. In Figure 1, the addition is 50%. It would 

multiply the processing time by a factor of about 3.4. In the 

extreme case, there is one big cluster of size (n-k+1) and 

(k-1) small clusters of size 1. This would increase the time 

complexity from O(zn3) to O(zn6), which is why we do not 

consider this variant further. 

6 Experiments 

As an application, we present seating planning for a party. 

First, we need a distance matrix, where the compatibility 

of people is defined by distance. This must be done manu-

ally. The distance matrix can be created as follows.  

The organizer sets 0 values between participants who are 

known to be good matches to sit at the same table. They 

are typically close friends or relatives. Then, for people 

who are not expected to carry on a conversation with each 

other, the distance is set to a maximum of, say, 100. These 

can be distances between the other PhD students and lab 

members, and the relatives of the doctor who cannot carry 

on a discussion on the thesis topic. Language barrier is an-

other reason to set a high distance value.  

The creation of the distance matrix resembles semi-super-

vised clustering where the user makes a priori known must-

link and cannot-link constraints [25]. The must-link con-

straint between a pair of points requires that the two points 

be assigned to the same cluster. A cannot-link constraint, 

on the other hand, forces the two points to be assigned to 

different clusters. 

The distance matrix is then converted to Euclidean space 

by multidimensional scaling [26]. The result is the data in 

a higher-dimensional space, but with distances preserved. 

We then perform fixed-sized k-means, taking data X, the 

number of tables k, and their sizes nl as input. The output 

is the seating plan. 

We tested the algorithm by creating a seating plan for 

Mikko I. Malinen’s doctoral dissertation evening party (ka-

ronkka) in 2015. There were 22 people invited. In the com-

patibility distance matrix, there are 22∙22 = 484 distances. 

The sizes of the party tables were [4, 4, 5, 6, 3], and we set 

k = 5 accordingly. Data became 10-dimensional.  

We repeated the algorithm 1000 times, which took only a 

few seconds. The result is shown in Figure 4. The average 

within-cluster distances are 0.0, 5.5, 4.3, 4.8, 0.0. During 

the event, we also recognized that people were happy with 

the seating plan, so the result was kind of subjectively ver-

ified as well. The software and data are available here:  

• Software: http://cs.uef.fi/ml/software/ 

• Data: http://cs.uef.fi/sipu/datasets/FKM/. 

Our second example is Finland’s parliament members. We 

position the parties in the traditional left-right axis as 

shown in Figure 5. The distance between each party is 10, 

except for the leftmost and rightmost parties, which are 20 

units apart. The design is ad hoc but roughly follows their 

generally understood position. 

There are 200 parliament members divided into nine par-

ties. We use the original 2023 election results. We created 

k = 5 tables with sizes [55, 46, 36, 35, 28] by scaling up the 

table sizes from the dissertation example to match n = 200. 

We then run the fixed k-means algorithm 100 times. It was 

shown in [27] that the result of k-means can be signifi-

cantly improved by repeating the algorithm multiple times. 

This turned out to be the case here as well. 

Figure 6 shows the table allocations of a single run of the 

algorithm and the best result out of 100 runs. Both are sen-

sible, but the best achieved a much lower average distance 

(MSE = 35.8) compared to the average result (MSE = 77.5). 

The most visible difference is that the PS seating has its 

own table. Left wing party (Vas) is smaller and must share 

the table with SDP in both solutions. 

 

Figure 4  Seating plan data for the doctoral (karonkka) party of Mikko I. Malinen. There are 22 participants and five 

tables of sizes 4, 4, 5, 6, 3. Green color demonstrates a good match (distance 5), and red a poor match (distance >50) 

http://cs.uef.fi/ml/software/
http://cs.uef.fi/sipu/datasets/FKM/


 

Figure 5  Finnish parliament parties, where their distance 

along the traditional left-right axis defines their compliance 

according to our ad hoc positioning 

 

Figure 6  Seating of the parliament members for a single 

run of fixed k-means and the best of 100 repeats (below) 

7 Conclusion 

We have presented a fixed-size k-means algorithm for any 

given cluster sizes as constraints. The algorithm uses opti-

mal assignment by the Hungarian algorithm, which takes 

O(n3) time and is practical only up to about 5000 datapoints. 

For larger datasets, a faster algorithm should be used.  

One possibility would be to model the assignment as an 

optimal transportation problem and solve it using a faster 

O(n2k) time modified Hungarian algorithm [28]. Even this 

solution would still be rather slow.  

Another possibility would be to modify the stochastic var-

iant of the balanced k-means (BKM+) algorithm in [29] to 

handle fixed-size clusters. It was shown to provide better 

global optimization even in the case of normal clustering, 

and therefore, is expected to lead to improved results in 

both quality and processing time. This is left as future work. 

Fixed-size k-means is also sensitive to initialization in the 

same way as standard k-means. This can be addressed by 

better initialization or by repeats [27] as was done in this 

paper. A better local optimizer, such as random swap [8], 

could also be used. 
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