
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Representation Learning and Reinforcement
Learning for Dynamic Complex

Motion Planning System
Chengmin Zhou , Student Member, IEEE, Bingding Huang , and Pasi Fränti , Senior Member, IEEE

Abstract— Indoor motion planning challenges researchers
because of the high density and unpredictability of moving obsta-
cles. Classical algorithms work well in the case of static obstacles
but suffer from collisions in the case of dense and dynamic
obstacles. Recent reinforcement learning (RL) algorithms provide
safe solutions for multiagent robotic motion planning systems.
However, these algorithms face challenges in convergence: slow
convergence speed and suboptimal converged result. Inspired by
RL and representation learning, we introduced the ALN-DSAC:
a hybrid motion planning algorithm where attention-based long
short-term memory (LSTM) and novel data replay combine
with discrete soft actor–critic (SAC). First, we implemented a
discrete SAC algorithm, which is the SAC in the setting of
discrete action space. Second, we optimized existing distance-
based LSTM encoding by attention-based encoding to improve
the data quality. Third, we introduced a novel data replay method
by combining the online learning and offline learning to improve
the efficacy of data replay. The convergence of our ALN-DSAC
outperforms that of the trainable state of the arts. Evaluations
demonstrate that our algorithm achieves nearly 100% success
with less time to reach the goal in motion planning tasks when
compared to the state of the arts. The test code is available at
https://github.com/CHUENGMINCHOU/ALN-DSAC.

Index Terms— Intelligent robot, motion planning, reinforce-
ment learning (RL), representation learning.

I. INTRODUCTION

INDOOR service robots appeared in airports and restau-
rants to provide services to visitors (e.g., luggage deliv-

ery and food delivery). However, these robots suffer poor
motion planning performance in scenarios with dense and
dynamic obstacles (pedestrians) because of obstacle’s motion
unpredictability. This barricades robot’s further commercial
use. Some robot’s motions are controlled by classical path
planning algorithms, such as the graph search algorithm
(e.g., A∗ [1]), sample-based algorithm (e.g., the rapidly

Manuscript received 5 October 2022; revised 30 December 2022; accepted
13 February 2023. (Corresponding authors: Pasi Fränti; Bingding Huang.)

Chengmin Zhou is with the Machine Learning Group, School of Computing,
University of Eastern Finland, 80100 Joensuu, Finland, and also with the
College of Big Data and Internet, Shenzhen Technology University, Shenzhen
518118, China (e-mail: zhou@cs.uef.fi).

Bingding Huang is with the College of Big Data and Internet,
Shenzhen Technology University, Shenzhen 518118, China (e-mail:
huangbingding@sztu.edu.cn).

Pasi Fränti is with the Machine Learning Group, School of Computing, Uni-
versity of Eastern Finland, 80100 Joensuu, Finland (e-mail: franti@cs.uef.fi).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2023.3247160.

Digital Object Identifier 10.1109/TNNLS.2023.3247160

exploring random tree (RRT) [2]), and interpolating curve
algorithms [3], [4], [5], [6], [7]. These algorithms work
well in static and low-speed less-obstacle scenarios. However,
they make robots suffer many collisions in complex cases
because they generate the motions or paths online. Online
motion depends on map update that requires much computing
resource. Reaction-based algorithms, such as dynamic window
approach (DWA) [8] and optimal reciprocal collision avoid-
ance (ORCA) [5], perform fast to handle obstacle’s unpre-
dictability. This enables the robot to fast avoid slow-speed
obstacles. However, these algorithms require environment
update in which consumed time must be considered. Deep
learning (DL) generates robot’s motion by performing trained
models in which consumed time can be ignored. Classical DL,
such as convolutional neural network (CNN) [9], generates
instant motion, which is a one-step prediction and does not
consider task goal, therefore obtaining suboptimal trajectories.
Recent progress in deep reinforcement learning (RL), such as
optimal value RL (e.g., dueling deep Q network (DQN) [10])
and policy gradient RL (e.g., asynchronous advantage actor–
critic (A3C) algorithm [11]), enables robot to consider task
goal and instant obstacle avoidance simultaneously. These
algorithms provide near-optimal solutions to handle complex
cases. However, training of RL algorithms faces many chal-
lenges: slow convergence speed and suboptimal converged
result caused by high bias and variance.

In this article, we conclude that data quality, efficacy of
data replay strategies, and optimality of RL algorithms are
the main aspects, which decide the performance of RL-based
motion planning.

Data Quality (Representation Methods): Bai et al. [9]
and Long et al. [12] learned obstacle features directly from
source images, which are with poor data quality, because of
background noise or unnecessary information. Representation
learning [13] partly alleviates this problem by interpretating
and encoding the feature of the robot and obstacles to improve
data quality. Representation methods that fit motion planning
tasks are the long short-term memory (LSTM) [14], [15],
attention weight (AW) [16], [17], and some graph representa-
tion learning methods [18] such as relation graph (RG) [19].

Efficacy of Data Replay: The data replay strategy makes use
of saved data to improve the convergence speed dramatically
when it is compared to online learning [14], which learns
episodic data with online feature. Typical data replay strategy
consists of the experience replay (ER) [20] and prioritized
experience replay (PER) [21], [22]. ER introduces less bias
and variance when the algorithm learns from a random batch

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-8297-5949
https://orcid.org/0000-0002-4748-2882
https://orcid.org/0000-0002-9554-2827

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of data because sampled data for training have the same data
distribution, independently identical distribution (i.i.d.).

Optimality of RL: RL algorithms basically include the
optimal value RL and policy gradient RL. They are primarily
tested in games such as Atari game. Their representatives
are DQN [20] and actor–critic algorithm [23]. Then, many
variants follow. DQN evolves into double DQN [24], dueling
DQN [10], and soft Q-learning [25], while the actor–critic
algorithm basically evolves from three directions: multithread
direction, deterministic direction, and monotonous direction.
Multithread direction denotes using a multiple-thread method
and policy entropy to accelerate the convergence speed.
Examples are A3C and A2C [11]. Deterministic direction
proves that the policy to select actions is stable or deter-
ministic in one state s and actions are directly decided by
this state a ← µθ (s), while its counterpart, the stochastic
policy, selects actions by the possibility a ← πθ (a | s).
Examples are deterministic policy gradient (DPG) [26] and
deep DPG (DDPG) [27]. Monotonous direction introduces
the trust region constraint, surrogate, and adaptive penalty to
ensure the monotonous update of policy. Examples are trust
region policy optimization (TRPO) [28] and proximal policy
optimization (PPO) [29]. Currently, the double Q-learning
actor–critic is the most efficient architecture. It is applied
to delayed DDPG (TD3) [30] and soft actor–critic (SAC)
algorithm [31], [32], [33], [34].

Technical Difficulties: The mentioned methods above have
many weaknesses.

1) In representation methods, LSTM suffers a suboptimal
encoding strategy when encoding obstacle features. Poor and
suboptimal orders (e.g., random order and the order by dis-
tance of robot and obstacle [14]) cause suboptimal converged
result. Networks of AW and RG suffer from slow convergence.

2) In the data replay, learning from stored batch data in
ER ignores the online feature of episodic data and importance
of each data [35]. PER also lacks the consideration of online
feature of episodic data, but it considers the importance of each
data by the data prioritization. Prioritization in PER finds a bet-
ter tradeoff between stochastic sampling and greedy sampling.
However, this prioritization changes data distribution. Hence,
the bias is introduced in PER, although importance sampling
weight (ISW) [21] is applied to partly alleviate this problem.

3) In RL algorithms, much bias and variance are intro-
duced even in a deterministic case such as DDPG, although
many tricks are used to reduce them, for instance, double Q
network [24] and advantage architecture [10] to reduce the
overestimation of Q value, and one-step/multistep actor–critic
architecture to reduce the variance. Moreover, many RL algo-
rithms, such as A3C and A2C, are not data-efficient. They are
on-policy algorithms, which require more data for training.

Existing trainable motion planning algorithms have many
weaknesses in mentioned three aspects. Trainable motion
planning methods include RG [19], PPO with multiple
robots [12], [29], CADRL [36], LSTM-A2C [11], LSTM-
RL [14], and SARL [16]. RG is the combination of RG
and DQN. Relation graph and DQN face the problems of
data quality and optimality of RL. It is hard to train the
graph network although RG can represent robot–obstacle
relationship. DQN brings high bias and variance, which causes
slow convergence. PPO with multiple robots faces problems
of data quality because it learns obstacle features from source
images with much noise. CADRL learns the pairwise feature

of the robot and one obstacle by DQN. Then, the trained
model is applied to multiple-obstacle case [36]. It faces the
problems of data quality and optimality of RL because it
is myopic and uses the closest obstacle feature for training
instead of all obstacle features. DQN in CADRL also brings
high bias and variance. LSTM-A2C and LSTM-RL face
three problems simultaneously because LSTM encodes the
obstacle features by distance-based order [14], which partly
represents robot–obstacle relationship. A2C/A3C lack data
replay. A2C/A3C and DQN bring high bias and variance.
SARL consists of AW and DQN where the attention network
interprets robot–obstacle features to efficacious neural network
weight [16]. However, it faces the problem in RL optimality
because DQN brings high bias and variance.

Motivation: To address mentioned problems.
1) We first implemented discrete SAC (DSAC) algorithm to

improve the optimality of RL. The architecture of DSAC is
the double Q-learning actor–critic, which is the most efficient
architecture currently.

2) We optimized existing distance-based LSTM encoding
to improve the data quality. Distance-based LSTM encodes
pairwise robot–obstacle features by a distance of the robot and
obstacle. It represents the robot–obstacle relationship partly;
therefore, it is improved by attention-based encoding, which
computes the attention-based importance of obstacles to decide
the way of encoding robot–obstacle features.

3) We introduced a novel data replay method by combining
online learning and offline learning to improve the efficacy
of data replay. Existing RL algorithms are fed with either
online experience or offline experience. We attempted to fuse
them to create a new experience. Moreover, online learning
and offline learning coexist in our novel data replay method.
RL is fed with new experience when RL learns online, while it
is fed experience sampled from replay buffer when RL learns
offline.

Contribution and Benchmarks: In short, our contribution is
ALN-DSAC (Fig. 1), which features: 1) the implementation
of DSAC; 2) attention-based LSTM encoding; and 3) novel
data replay method. The benchmarks include trainable motion
planning algorithms CADRL [36], LSTM-A2C [11], LSTM-
DQN (LSTMRL) [14], and SARL [16], as well as classical
algorithm ORCA, which relies on the relative position and
velocity of the robot and obstacles to compute the possible
velocity of the robot [5], [37], [38].

Interpretability: ALN-DSAC is interpretable or explainable
because it fits human intuitions to learn and make decisions
on nonlinear motion planning tasks. This contributes to better
hidden features of dynamic robot and obstacles. Features
are then learned by explainable RL (DSAC). This means
that.

1) Attention network is derived from human attention mech-
anism; therefore, it is understandable to human. Attention-
based LSTM encoding better describes the robot–obstacle
relationship by attention-based obstacle importance.

2) Human has better learning performance if it learns from
complete experience. Novel data replay better keeps complete,
time-sequential, and episodic online experience. This provides
high-quality inputs. These two factors contribute to better
hidden features.

3) RL is explainable because it derives from the learn-
ing process of humans or other creatures. It is a basic
reward/punishment-action process, which is understandable to
humans.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 3

II. PRELIMINARIES

A. Preliminary of RL
Markov decision process (MDP) is the sequential decision

process based on the Markov chain [39]. Markov Chain is
defined by a variable set X = {Xn : n > 0}, where the
probability p(X t+1 | X t , . . . , X1) = p(X t+1|X t). This means
that the state and action of the next step only depend on the
state and action of the current step. MDP is described as a
tuple ⟨S, A, P, R⟩. S denotes the state, and here, it refers to the
state of robot and obstacles. A denotes an action taken by the
robot. Action A = [θ, v] is selected from action space. In this
article, actions directions θ ∈ {0, (π/8), . . . , 2π}. Speed of
each direction v ∈ {0.2, 0.4, . . . , 1}. Hence, the action space
consists of 81 actions, including a stop action. P denotes the
possibility to transit from one state to the next state. R denotes
the reward or punishment received by the robot after executing
actions. The reward function in this article is defined by

R(s, a)

=



1, if pcurrent = pg

−0.1+
dmin

2
, if 0 < dmin < 0.2

− 0.25, if dmin < 0
dstart_to_goal −

(
pg − pcurrent

)
dstart_to_goal

· 0.5, if t = tmax and

pt ̸= pg

0, otherwise
(1)

where pcurrent denotes the position of the robot, pg denotes
the position of the goal, dmin denotes the minimum distance
of the robot and obstacles, and dstart_to_goal denotes the distance
of the start to the goal. Our reward function (1) is modified
from [16], which cannot work without imitation learning.
Equation (1) accelerates the convergence speed by attaching a
reward to the final position of the robot. This encourages the
robot to approach the goal. Other crucial terms include value,
policy, value function, and policy function. The value denotes
how good one state is or how good one action is in one state.
The value consists of state value (V value) and state–action
value (Q value). A value is defined by the expectation of accu-
mulative rewards V (s) = E[Rt+1+ γ Rt+1+ · · ·+ γ T−1 RT |st]

or Q(s, a) = E[Rt+1+γ Rt+1+· · ·+γ T−1 RT |(s t , at)], where
γ is a discounted factor. The policy denotes the way to
select actions. In the function approximation case, policy is
represented by networks. The value function in RL scope is
represented by networks to estimate the value of environmental
state via the function approximation [40]. The policy function
is also represented by neural networks. Actions are selected
in an indirect way (e.g., a← argmaxa R(s, a)+ Q(s, a; θ) in
DQN [20], [41]) or direct way (e.g., πθ : s → a in actor–critic
algorithm [23]).

B. Problem Formulation
ORCA introduced a competent simulator that includes

dynamic robot and obstacles in a fixed-size 2-D indoor area.
The robot and obstacles move toward their goals simulta-
neously and avoid collisions with each other (Fig. 2). This
simulator creates circle- and square-crossing scenarios that
add predictable complexity to tasks. Let s represent the state
of robot. Let a and v represent the action and velocity of

Fig. 1. Workflow of ALN-DSAC. LSTM/AL-DSAC denotes the DSAC with
LSTM or attention-based LSTM encoders.

Fig. 2. Circle- and square-crossing simulators. Obstacles are randomly
generated near the brink of the circle in a circle-crossing environment. In a
square-crossing environment, obstacles are randomly generated on the left
side or right side.

robot, respectively, and a = v = [vx , vy]. Let p = [px , py]

represent the position of robot. Let st represent the state of
robot at time step t . st consists of observable and hidden parts
st = [sobs

t , sh
t], st ∈ R9. Observable part refers to factors that

can be measured or observed by others. It consists of position,
velocity, and radius sobs

= [px , py, vx , vy, r], sobs
∈ R5. The

hidden part refers to factors that cannot be seen by others.
It consists of planned goal position, preferred speed, and
heading angle sh

= [pgx , pgy, vpref, θ], sh
∈ R4. The state,

position, and radius of obstacles are described by ŝ, p̂, and r̂ ,
respectively

minimize E
[
tg ∨ s0, ŝobs

0 , π, π̂
]

(2)

s.t. ∥pt − p̂t∥2 ≥ r + r̂ ∀t (3)
ptg = pg (4)
pt = pt−1 +1t · π :

(
s0:t , ŝobs

0:t

)
(5)

p̂t = p̂t−1 +1t · π̂ :
(
ŝ0:t , sobs

0:t

)
. (6)

The robot plans its motion by obeying policy : (s0:t , ŝobs
0:t)→

at , while obstacles obey π̂ :(ŝ0:t , sobs
0:t) → at . Robot policy

π :(s0:t , π̂
obs
0:t)→ at denotes that the algorithm is based on the

robot state s0:t and the observable obstacle state ŝobs
0:t to obtain

policy π , which outputs action at at time step t . Obstacle
policy π̂ :(ŝ0:t , sobs

0:t)→ at denotes that the algorithm is based
on the obstacle state ŝ0:t and the observable robot state sobs

0:t to
obtain policy π̂ , which outputs action at at time step t . The
objective of robot is to minimize the time to its goal E[tg] (2)
under the policy π without collisions to obstacles. Constraints
of robot’s motion planning can be formulated via (3)–(6)
that represent collision avoidance constraint, goal constraint,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

kinematics of robot, and kinematics of obstacle, respectively.
Collision avoidance constraint denotes that the distance of
robot and obstacles ∥pt− p̂t∥2 should be greater than or equal
to the radius sum of robot and obstacles r+ r̂ . Goal constraint
denotes that the position of the robot ptg should be equal to
the goal position pg if robot reaches its goal. Kinematics of
robot denotes the position of robot pt that is equal to the sum
of the robot position pt−1 and the change of robot position
1t · π : (s0:t , ŝobs

0:t). π : (s0:t , ŝobs
0:t) is a velocity decided by the

policy π . Kinematics of obstacles is the same as that of the
robot.

III. METHODS

We first present the mechanisms of LSTM, AW, and DSAC.
They are fundamental knowledge. Then, we introduce LSTM-
DSAC and AL-DSAC that work as the ablations for validating
the contributions of DSAC, attention-based LSTM, and novel
data replay. Finally, AL-DSAC is optimized by integrating
novel data replay to form ALN-DSAC.

A. LSTM, AW, and DSAC
1) LSTM: It encodes pairwise robot–obstacle feature

E lstm
= [elstm

1 , . . . , elstm
N] to form the description of obstacle

state Slstm
o . E lstm can be encoded in different orders in LSTM,

such as the order by maximum distance, the order by minimum
distance [14], and the random order

E lstm
=


[
elstm

dmin
, . . . , elstm

dmax

]
← rankmin(di), i ∈ N[

elstm
dmax

, . . . , elstm
dmin

]
← rankmax(di), i ∈ N[

elstm
drandom

, . . . , elstm
drandom

]
← random(di), i ∈ N

(7)

where di denotes the distance of the robot and obstacle,
rankmin(di) denotes that E lstm is ordered by minimum distance
of the robot and obstacles, and rankmax(di) and random(di)
denote that E lstm is ordered by maximum and random dis-
tances, respectively. Environment state for training Slstm is
defined as the combination of the robot state sr and obstacle
state Slstm

o . Slstm and Slstm
o are defined by

Slstm
=

[
sr , Slstm

o

]
, Slstm

o = LSTM
(
E lstm)

(8)

where the pairwise robot–obstacle feature E lstm consists of
pairwise robot–obstacle features elstm

i . The pairwise robot–
obstacle feature is defined as the combination of robot state
sr and the state of each obstacle oi

elstm
i = [sr , oi], i ∈ N (9)

where N denotes the number of obstacles. Note that sr and oi
here are the robot-centric states, which are simply transformed
from the states described in Section II-B. The robot-centric
states are defined by

sr =
[
dg, vpref, θ, r, vx , vy

]
, sr ∈ R6 (10)

oi =
[

px , py, vxi , vyi , ri , di , ri + r
]
, oi ∈ R7 (11)

where dg denotes the distance of the robot to its goal and oi
denotes the robot-centric observable state of the i th obstacle.
Note that the i th denotes the obstacle’s order, which is
generated randomly in the simulator when an episode of the
experiment starts. In oi , radius sum ri+r denotes the collision
constraint of each obstacle to robot. Radius (r and ri) and
radius sum in the feature definition enable the robot to be fast
aware of the safe distance to each obstacle. This contributes
to the convergence.

2) Attention Weight: AW-based [16], [42] obstacle feature
Saw

o combines with the robot feature sr to form the environ-
mental state Saw for training

Saw
=

[
sr , Saw

o

]
(12)

where Saw
o is defined by

Saw
o =

n∑
i=1

[softmax(αi)] · hi (13)

where αi and hi denote the attention score and the interaction
feature of robot and obstacle oi , respectively, and n denotes
the number of obstacles. The interaction feature is defined by

hi = fh(ei ;wh) (14)

where fh(·) and wh denote the multiple-layer perceptron
(MLP) and its weight, respectively. ei denotes the embedded
feature obtained from the pairwise robot–obstacle feature
[sr , oi] or [sr , oi , Mi]. The attention score is defined by

αi = fα(ei , emean;wa) (15)

where fα(·) and wa denote MLP and its weight, respectively,
and emean denotes the mean of all embedded features. The
embedded feature and emean are defined by

ei = fe(sr , oi , Mi ;we), i ∈ N (16)

emean =
1
n

n∑
i=1

ei (17)

where fe(·) and we denote MLP and its weight, respectively.
Mi denotes the occupancy map of obstacle oi and it is defined
by

Mi (a, b, :) =
∑
j∈Ni

δab
[
x j − xi , y j − yi

]
·w′j

w′j =
(
vx j , vy j , 1

)
(18)

where w′j is a local state vector of obstacle o j and Ni denotes
other obstacles near the obstacle oi . The indicator function
δab[x j − xi , y j − yi] = 1 if (x j − xi , y j − yi) ∈ (a, b) where
(a, b) is a 2-D cell [16]. The mechanism of AW is shown in
Fig. 3.

3) DSAC: The policy of classical RL algorithm is obtained
by maximizing the objective

∑T
t=0 E(st ,at)∼ρπ

[r(st , at)]. SAC
considers the reward and entropy simultaneously. The objec-
tive of SAC is defined as the maximum entropy objective

J (π) =

T∑
t=0

E(st ,at)∼ρπ
[r(st , at)+ αH(π(· | st))],H(π(· | st))

= −log π(· | st) (19)

where H(π(· | st)) denotes the entropy. α is the temperature
parameter, which decides the importance of the entropy versus
the reward for controlling the stochasticity of optimal policy.
This means that the temperature further encourages the explo-
rations to find promising avenues and give up unpromising
avenues. In objective maximization, the SAC policy converges
to optimal policy certainly by the soft policy iteration, which
consists of policy evaluation and policy improvement. The
optimal policy is obtained by repeatedly applying policy
evaluation and policy improvement. Policy evaluation [32]
proves that if Qk+1

= T π (Qk), Qk will converge to the soft Q

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 5

Fig. 3. Mechanism of AW. Here, we present the mechanism to compute the
attention-based feature of one obstacle Saw

oi
. It combines with the features of

other obstacle Saw
o j

, j ∈ N , to form the feature of obstacles Saw
o .

value of π when k →∞. T π is a modified Bellman backup
operator given by

T π (Q)(st , at) ≜ r(st , at)+ γ Est+1∼p[V (st+1)] (20)
V (st) = Eat∼π [Q(st , at)− log π(at |st)]. (21)

Applying T π to Q value will bring Q value closer to Qπ .
This means that Q(st , at) ≤ T π (Q)(st , at) ≤ Qπ (st , at).
Policy improvement [32] proves that Qπnew ≥ Qπold in objective
maximization. πnew is defined by

πnew = arg minπ ′∈5 DK L

(
π ′(· | st) ∥

exp (Qπold(st , ·))

Zπold(st)

)
(22)

where Zπold(st) is the partition function for distribution
normalization. It can be ignored because it does not
contribute to the gradient of new policy. Qπold guides the
policy update to ensure an improved new policy. New
policy is constrained to a parameterized family of distribution
π ′ ∈ 5 like Gaussians to ensure the tractable and optimal new
policy. Given the repeated application of policy evaluation
and improvement, policy π eventually converges to the
optimal policy π∗, Qπ∗

≥ Qπ , π ∈ 5.
SAC is the combination of soft policy iteration and function

approximation. In (19), temperature α is either a fixed value or
an adaptive value. In function approximation, networks θ and
φ are used to approximate the action value and policy value.
The action value objective and its gradient are obtained by

J (θ) = E(st ,at)∼D

[
1
2

(
Q(st , at ; θ)− Q̄(st , at)

)2
]

Q̄(st , at) = r(st , at)+ γ Est+1∼p
[
V

(
st+1; θ̄

)]
∇θ J (θ) = ∇θ Q(st , at ; θ)

·
(
Q(st , at ; θ)− r(st , at)+ γ V

(
st+1; θ̄

)
−α log πφ(at+1 | st+1)

)
(23)

where Q̄ is the target action value. A state value V (st+1; θ̄)
is approximated by a target action value network θ̄ . γ is a
discount factor. Policy objective and its gradient are obtained
by

J (φ) = Est∼D

[
DK L

(
πφ(· | st) ∥

exp(Q(st ,·;θ))

Zθ (st)

)]
= Est∼D

[
Eat∼πφ

[
α log πφ(at | st)− Q(st , at ; θ)

]]
∇φ J (φ) = ∇φα log πφ(at | st)

+∇φ fφ(ϵt ; st)

·
(
∇at α log πφ(at | st)−∇at Q(st , at)

)
at = fφ(ϵt ; st)

(24)

where fφ(ϵt ; st) is the network transformation, in which ϵt
is an input noise vector sampled from fixed distribution like
spherical Gaussian. The temperature objective is defined by

J (α) = Eat∼πt

[
−α log πt (at | st)− αH̄

]
(25)

where H̄ is the target entropy. Temperature objective gradient
is obtained by approximating dual gradient descent [43].
Eventually, the networks and temperature are updated by

θ ← θ − γθ∇θ J (θ)

φ← φ − γφ∇φ
J (φ)

α← α − γα∇α J (α)

θ̄ ← τθ + (1− τ)θ̄

(26)

where the discount factor τ ∈ (0, 1).
SAC is used in tasks with continuous action space. However,

the action space in this article is discrete. Hence, SAC should
be modified to suit our task. Some modifications [33] should
be made. They are summarized as follows.

1) The Q function should be moved from Q : S × A→ R
to

Q : S × A→ R|A| (27)

where Q values of all possible actions should be outputted,
instead of a Q value of the action taken by the robot.

2) The outputted policy should be the action distribution

π : S→ [0, 1]|A| (28)

instead of mean and covariance of action distribution of SAC
π : S→ R2|A|.

3) In (25), its expectation Eat∼πt [·] is obtained by the Monte
Carlo estimation, which involves taking an expectation over
action distribution [33]. In discrete action space, expectation
should be calculated directly, instead of Monte Carlo estima-
tion. Hence, the temperature objective changes into

J (α) = π(st)
T [
−α log πt (st)− αH̄

]
. (29)

Similarly, the policy objective changes into

J (φ) = Est∼D
[
π(st)

T [
α log πφ(st)− Q(st ; θ)

]]
. (30)

B. LSTM-DSAC and AL-DSAC
LSTM-DSAC: When designing the architecture of LSTM-

DSAC, it is worthwhile to consider how LSTM connects with
networks. Two options include: 1) one LSTM means that actor
and critic networks share one LSTM and this option is used
in [14] and 2) two LSTMs means that actor network and critic
network have different LSTM. One LSTM encoder indicates
that the actor–critic architecture does not contribute to the
convergence of LSTM. LSTM updates its networks according
to its own gradient

∂ E
∂W
=

k∑
i=1

∂ Ei

∂W
(31)

where k denotes the batch length and W denotes the network
weights in LSTM. E denotes the prediction error, which is
defined by

Ei = h(i)− h(i − 1) (32)

where h(·) is the prediction vector (hidden state). In one LSTM
case, LSTM converges according to the gradient of itself.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Architecture of LSTM-DSAC. (a) LSTM backpropagation.
(b) LSTM-DSAC architecture.

Moreover, there is no constraint here to regulate the gradient
of LSTM. Hence, the gradient of LSTM may be small or
unstable. The consequence is that the LSTM encoder may
converge slowly and unstable. There may be large differences
in the convergence among LSTM encoder, actor network, and
critic network; therefore, overall convergence may be poor.

In two LSTM cases, LSTM combines critic network or actor
network to form two integrated networks [Fig. 4(b)]. Integrated
networks form new actor and critic, which are different from
the original actor network and critic network. These new actor
and critic (with LSTM) are in an actor–critic relationship,
which contributes to the convergence of LSTM according to
the chain rule in the backpropagation process [Fig. 4(a)]. This
means that the gradient received by LSTM encoders changes
from (33) to

∂ Elstm_critic

∂W
=

∑k
i=1

[
∂ Ei_critic

∂W

]
+ χ · ∇θ J (θ)

∂ Elstm_actor

∂W
=

∑k
i=1

[
∂ Eiactor

∂W

]
+ χ · ∇φ J (φ)

(33)

where χ is a discount factor, which decides the portion of
gradient contributed by actor network or critic network. θ and
φ denote the critic network and actor network in function
approximation. The gradient of actor or critic networks works
as the constraint to accelerate and stabilize the convergence
of LSTM. Two LSTMs converge in different pace, but two
encoders fit their connected actor network or critic network.
This contributes to the overall convergence of all networks.
Hence, two LSTMs are used in the design of LSTM-DSAC.
Finally, LSTM-DSAC architecture is designed in Fig. 4(b).

AL-DSAC: [14] shows that the first encoded feature has a
large impact on LSTM gates, while the rear encoded feature
has less impact. This means that the LSTM learns more front

encoded features and forget more rear features when encoding
a state with pairwise robot–obstacle features. In LSTM-DSAC,
the pairwise robot–obstacle features are encoded in minimum-
distance order (7). This indicates that the obstacle, which
is close to the robot, has larger importance [14]. It is not
always true because the obstacle importance also depends on
speed and moving direction of obstacle according to human
intuitions, instead of the distance to robot only.

AW [16] addresses this problem well by introducing
attention score to evaluate the obstacle importance, instead
of the distance. Pairwise obstacle features are ranked by
attention-based importance (attention score). Then, ranked
pairwise obstacle features are encoded by LSTM.

In existing work [16] and LSTM-DSAC, LSTM connects
with actor or critic network to form new actor or critic.
Intuitively, AW can connect with actor or critic network to
form the AW-based DSAC (AW-DSAC). Then, AW is updated
indirectly by the loss gradient. However, this makes the
attention network receive small gradient in backpropagation,
and slow convergence follows.

To solve this problem, we optimize the indirect update
of AW to a direct way by separating AW from actor or
critic network [Fig. 5(a)]. Separate AW, actor, and critic form
a double actor–critic architecture, which means: 1) direct
actor–critic relationship of actor and critic and 2) indirect
actor–critic relationship of attention network and actor/critic
[Fig. 5(b)]. As a result, the actor and critic contribute to
the convergence of each other. The loss gradient of actor
contributes to the convergence of AW. AW also contributes to
the convergence of actor/critic. To be specific, the importance
of each pairwise robot–obstacle feature is computed by AW,
and therefore, pairwise robot–obstacle features are ranked or
reordered by their importance. Then, LSTM encodes reordered
pairwise robot–obstacle feature. Hence, LSTM remembers
more robot–obstacle features with large importance and for-
gets some features with small importance. This improves the
data quality and indirectly contributes to overall convergence.
Finally, the AL-DSAC architecture is designed in Fig. 5(c).

C. ALN-DSAC
Work [35] indicated that episodic data with online feature

contribute more to the convergence than offline data stored
in the replay buffer. Note that the online feature denotes
the priority or weight of environment state in different time
step. This weight is represented by the accumulative reward
received in each state. AL-DSAC considers merely learning
from offline data in replay buffer. It does not make the
best of episodic data with online feature (online weighted
data); therefore, there is space for further improvement in
convergence.

Inspired by [35] and [44], which learns online data and
offline data simultaneously to improve the convergence of RL,
we propose ALN-DSAC to learn online weighted data and
offline data simultaneously. This is achieved by the novel PER,
which prepares the online combined data and offline prioritized
data for training.

To prepare online combined data [Fig. 6(a)], online episodic
data cannot be used for batch learning directly because its data
distribution is different from that of batch data. Data with
different data distribution will cause overfitting in training.
To solve this problem, we first prepare prioritized data-1
(size n). It then combines with online weighted episodic data

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 7

Fig. 5. Mechanism of AL-DSAC. (a) Mechanism for fast convergence of
attention network. (b) Double actor–critic mechanism. (c) Architecture of
AL-DSAC.

(size m) to form the combined data. Prioritized data-1 is
selected from sampled batch data by the weight or priority,
which is the accumulative reward (Monte Carlo return) defined
by

Pt =

∞∑
k

γ k−trk . (34)

To prepare offline prioritized data [Fig. 6(b)], K -batch
experiences are sampled from replay buffer. Offline prioritized
data are then selected from concatenated K experiences by
the weight defined by (34). However, sampled K -batch expe-
riences share the similarity to each other. This makes offline
prioritized data lack diversity in training, and slow conver-
gence speed and suboptimal converged result follow. To solve
the problem of large similarity in sampled K experiences,
we first apply cosine difference [44] to describe the similarity
of sampled K experiences. Then, if the similarity of offline
prioritized data is smaller than the threshold ξ < ξthreshold,
offline prioritized data are selected for training. Otherwise,
a new batch data is randomly resampled from replay buffer
to replace offline prioritized data for training. Similarity ξ is
defined by

ξ = 1− cos−1
(

v1 · v2

∥v1∥∥v2∥

)
(35)

Fig. 6. Architecture of ALN-DSAC. (a) Prioritized sampling method-1
and data combination method to prepare the combined data. (b) Prioritized
sampling method-2 to prepare the prioritized data-2. (c) Architecture of
ALN-DSAC.

where v1 and v2 denote priority vectors of two sampled expe-
riences and cos−1((v1 · v2)/(∥v1∥∥v2∥)) denotes the cosine
difference.

The ALN-DSAC architecture is shown in Fig. 6(c). Actions
are selected to generate online weighted data, which is saved

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 ALN-DSAC
1.Initialize the replay buffer D
2.Initialize attention network θatt , critic networks θc1 and

θc2, and policy network θp

3.Initialize target critic networks θ̄ c1 and θ̄ c2: θ̄ c1 ← θc1,
θ̄ c2 ← θc2

4. For episode i < N do
5. For t ̸= Tterminal in episode i do
6. Execute action: ⟨st , at , rt , St+1⟩∼π(at |st ;θp)

7. Off-Train If length (D) < batch size l
8. Compute priorities of data in entire episode:

Pt =
∑∞

k
γ k−trk

9. Store M episodes data EM_delay

10. Update replay buffer: D← D ∪ EM_delay if i%M = 0
11. On-Off-Train
12. i = i + 1
13.Save models: θatt , θc1, θc2 and θp

in replay buffer (steps 1 and 2). For learning from online data,
at the end of each episode, prioritized sampling method-1 is
used to generate prioritized data-1 (step 3), which combines
with current online weighted data to form combined data
(step 4). In training, combined data are fed to an attention
network to generate AW, which is used to reorder the pair-
wise robot–obstacle features in each state of combined data
(steps 5 and 6). Actor and critic (combination of LSTM and
critic/actor network) then learn from reordered data (step 7).
For learning from batch data, at each state, prioritized sam-
pling method-2 is used to generate prioritized data-2 for
training (step 8). Training with batch data (steps 9–11) is
the same as training with combined data. Previous steps
repeat until the convergence of networks. Eventually, models
(attention model, actor model, and critic model) are saved for
evaluation (step 12).

Algorithm (Pseudocode): ALN-DSAC is described in Algo-
rithm 1, while Algorithms 2–4 are its subalgorithms. In Algo-
rithm 1, replay buffer, networks are first initialized. These
networks include the attention network θatt, critic networks
(θc1 and θc2), target critic networks (θ̄ c1 and θ̄ c2), and policy
network θp. Here, double critic architecture is used to reduce
the overestimation of Q value. Then, the experience of each
state ⟨st , at , rt , St+1⟩ is obtained by

⟨st , at , rt , St+1⟩ ∼ π
(
at |st ;θp

)
. (36)

If length (D) < batch size l, networks learn from the pri-
oritized data-2, which is obtained by subalgorithm Off-Train.
Once the robot reaches the terminal state (finding the goal,
collision, and timeout), priorities of episodic experience are
obtained by Pt =

∑
∞

k γ k−trk .
However, saving only one episodic experience to replay

buffer at the end of every episode will cause poor data diversity
in early stage training. This means that experiences sampled
via subalgorithms Off-Train in each step for batch learning are
the same or almost the same. Networks trained with these sim-
ilar experiences converge slowly. Delayed infusion of recent
experiences [44] is adopted to solve this problem. This means
that M episodic experiences (format ⟨st , at , rt , St+1, Pt ⟩) are
saved in every M episodes, instead of current one episodic

Algorithm 2 Off-Train
1.// Prepare prioritized data-2
2.Sample K batches {E1, E2, . . . , EK } randomly from replay

buffer D
3.Compute data similarity ξ

4. If ξ < ξthreshold

5. Concatenate K -batch data
6. Sort data by their priorities
7. Select largest-priority data Epriori ti zed−data−2 with the

length l
8. else
9. Resample one batch data Erandom⟨s, a, r, S′, P⟩

from D
10. Forward-Backpropagation

Algorithm 3 On-Off-Train
1.// Prepare prioritized data-1 and combined data
2.Sample one batch data Erandom from replay buffe D
3.Sort the data Erandom by its priority
4.Select the largest-priority data Epriori ti zed−data−1 with

length n, n = l − m
5.Concatenate the online and offline data:

Ecombined⟨s, a, r, S′, P⟩ = Ei+Epriori ti zed−data−1

6. Forward-Backpropagation

experience Ei . This is achieved by

EM_delay = {Ei , Ei−1, . . . , Ei−M+1}. (37)

Current episodic experience Ei then combines the prioritized
data-1 to form the combined data, which is fed to subalgorithm
On-Off-Train. Previous steps repeat until the convergence of
networks. Then, networks are saved for evaluations.

Algorithm 2 (network training based on offline data)
is executed in every step of an episode. K -batch experi-
ences {E1, E2, . . . , EK } are randomly sampled from replay
buffer. Experience is in the format with priorities <
sl ′ , al ′ , rl ′ , Sl ′ , Pl ′ >, l ′ ∈ l and its similarity ξ is computed
by ξ = 1 − cos−1((v1 · v2)/(∥v1∥∥v2∥)). If ξ < ξthreshold,
these K experiences are concatenated and sorted by their
priorities to prepare the prioritized data-2 Eprioritized-data-2. Oth-
erwise, new batch experience Erandom < s, a, r, S′, P >
is randomly sampled from replay buffer. Finally, networks
are updated via feedforward and backpropagation processes
Forward-Backpropagation.

Algorithm 3 (network training based on combined data)
is executed at the end of an episode. One batch experience
Erandom is first sampled from replay buffer randomly. Erandom
is sorted or reordered by its priority to prepare the prioritized
data-1 Eprioritized-data-1. Current online experience Ei combines
Eprioritized-data-1 to form a combined experience Ecombined <
s, a, r, S′, P >. Finally, networks are updated using combined
experience in the feedforward and backpropagation processes
Forward-Backpropagation.

Algorithm 4 denotes network feedforward and backprop-
agation. The input E can be one of Erandom, Eprioritized-data-2,
and Ecombined. These experiences have the same length l.
The feedforward process consists of computing four loss
values: 1) critic loss; 2) policy loss; 3) attention loss, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 9

Algorithm 4 Forward-Backpropagation
1. // Calculate critic loss
2.Calculate value of next attention weight:

AW next ← fθatt (S′)
3.Rank next state according to AW next :

S′ranked ← rankmax_weight
(
S′

)
4.Calculate next probability distribution and its log value:

pnext , log pnext ← fθp

(
S′ranked

)
5.Calculate next target Q values:

q̄next_1, q̄next_2 ← fθ̄ c1/c2

(
S′ranked

)
6.Calculate expectation of next state value:

ES′∼p
[
V

(
S′

)]
=

∑ [
pnext ·min

(
q̄next_1, q̄next_2

)
− α · log pnext

]
7.Calculate discounted next target Q value:

Q̄next = r(s, a)+ γ ES′∼p
[
V

(
S′

)]
8.Calculate value of current attention weight:

AW ← fθatt (s)
9.Rank current state according to AW :

sranked ← rankmax_weight (s)

10.Calculate current Q values: q1, q2 ← fθc1/c2(sranked)

11.Calculate critic loss:
Lcri tic = M SE(q1, Q̄next)+ M SE(q2, Q̄next)

12.// Calculate policy loss
13.Calculate current probability distribution and its log

value:

p, log p← fθp (sranked)

14.Calculate current critic values:

q1_policy, q2_policy ← fθc1/c2(sranked)

15.Calculate current entropy:

H(π(· | s)) = −logπ(· | s) = −
∑

p · log p

16.Calculate expectation of current Q value:

Es∼p[Q(s)] =
∑

min
[(

q1policy , q2policy

)
· p

]
17.Calculate policy loss:

Lpolicy = −mean
[
Es∼p[Q(s)]+ α ·H(π(· | s))

]
18.// Calculate attention loss
19.Calculate policy loss:

Lattention = L policy=−mean
[
Es∼p[Q(s)]+α ·H(π(· | s))

]
20.// Calculate temperature loss
21. Calculate temperature loss: Lα = −min[logα ·(H̄−H)]

22.// Update networks and temperature
(backpropagation)
23. Update the critic network:

θci ← θci − γ∇θci
Lcri tic, i ∈ 1, 2

Algorithm (Continue.) Forward-Backpropagation
24. Update the policy network:

θp ← θp − γ∇θp
Lpolicy

25. Update the attention network:
θatt ← θatt − γ∇θatt

Lattention

26. Update the temperature:
α← α − γ∇αLα, α← eα

4) temperature loss. Backpropagation consists of four updates:
1) critic networks; 2) policy network; 3) attention network; and
4) temperature parameter.

Compute Critic Loss: The next target Q value and the
current Q value are required to compute the critic loss.
To compute the next target Q value, the next state S′ is first
fed to the attention network θatt to generate its AW by

AW next ← fθatt

(
S′

)
. (38)

Pairwise robot–obstacle features in S′ are reordered by its AW
to obtain the ranked next state by

S′ranked ← rankmax_weight
(
S′

)
. (39)

S′ranked is fed to the policy network to obtain the next proba-
bility distribution and its log value by

pnext, log pnext ← fθp

(
S′ranked

)
. (40)

Note that here, the policy network is combined with LSTM
to form a new actor. S′ranked is also fed to double target critic
networks θ̄ c1/c2 to obtain the next target Q values by

q̄next_1, q̄next_2 ← fθ̄ c1/c2

(
S′ranked

)
. (41)

However, the next target Q values cannot be used to compute
the critic loss directly. They should combine with entropy to
form the discounted next target Q value. This is achieved by
computing the expectation of next state value via

ES′∼p
[
V

(
S′

)]
=

∑ [
pnext ·min

(
q̄next_1, q̄next_2

)
− α · log pnext

]
(42)

where α is the temperature parameter. Note that the Q value
here is in format Q : S × A → R|A|; hence, the next state
value is the sum of Q values from every action, instead of
Q value of an action taken by the robot. Thus, the next target
Q value is obtained by

Q̄next = r(s, a)+ γ ES′∼p
[
V

(
S′

)]
. (43)

To calculate the current Q value, current state s is first fed
to attention network θatt to generate its AW by

AW← fθatt(s). (44)

Pairwise robot–obstacle features in s are then reordered by
obtained AW via

sranked ← rankmax_weight(s). (45)

Thus, the current Q value is computed by feeding reordered
pairwise robot–obstacle features sranked to double critic net-
works θc1/c2 to obtain current critic values via

q1, q2 ← fθc1/c2(sranked). (46)

Note that here, critic networks are combined with LSTM
to form a new critic. Finally, the critic loss is obtained by
summing the mean square error (mse) of q1/q2 and Q̄next via

Lcritic = mse
(
q1, Q̄next

)
+mse

(
q2, Q̄next

)
. (47)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Compute Policy Loss: The current ranked state sranked is first
fed to the policy network θp to obtain the current probability
distribution and its log value by

p, log p← fθp (sranked). (48)

Simultaneously, sranked is also fed to double critic networks
θc1/c2 to obtain current critic values by

q1_policy, q2_policy ← fθc1/c2(sranked). (49)

The current entropy H(π(· | s)) is computed by

H(π(· | s)) = −logπ(· | s) = −
∑

p · log p. (50)

The expectation of current Q value Es∼p[Q(s)] is computed
by

Es∼p[Q(s)] =
∑

min
[(

q1policy , q2policy

)
· p

]
. (51)

Finally, the policy loss is computed by

Lpolicy = −mean
[
Es∼p[Q(s)]+ α ·H(π(· | s))

]
. (52)

Compute Attention Loss: The attention network and policy
network share the same loss by

Lattention = Lpolicy = −mean
[
Es∼p[Q(s)]+ α ·H(π(· | s))

]
.

(53)

Compute Temperature Loss: The temperature loss is com-
puted by minimizing (30) via

Lα = −min
[
logα ·

(
H̄−H

)]
. (54)

Update of Networks: Critic networks, policy network,
attention network, and temperature parameter are updated by
gradient ascent via

θci ← θci − γ∇θci
Lcritic, i ∈ 1, 2 (55)

θp ← θp − γ∇θp
Lpolicy (56)

θatt ← θatt − γ∇θatt
Lattention (57)

α ← α − γ∇αLα, α← eα (58)

where γ is a discount factor. Note that the update of temper-
ature parameter has extra process after the gradient ascent,
that is, α ← eα , which contributes to the convergence of
temperature.

IV. EXPERIMENTS

A. Model Frameworks for the Experiment

Model frameworks of LSTM-DSAC, AL-DSAC, and ALN-
DSAC are designed in Fig. 7. In the LSTM-DSAC framework,
double critic networks are used to reduce the overestimation
of Q value. Each critic network has three linear layers. Double
critic networks are also used in the framework of AL-DSAC
and ALN-DSAC. The difference of these two frameworks is
the attention network, which consists of one softmax layer
and three MLPs (fe, fh , and fa). The output is the AW value,
which is used to reorder the pairwise robot–obstacle features
in each state. The attention network takes a policy loss gra-
dient to update its weight in backpropagation. Configurations
(parameters) of frameworks are shown in Table I.

Fig. 7. Network frameworks. The first framework is for LSTM-DSAC, while
the second is for AL-DSAC and ALN-DSAC.

B. Model Training

We first implement LSTM-DQN (LSTMRL), LSTM-DSAC,
AW-DSAC, AL-DSAC, and ALN-DSAC as the ablation exper-
iments to check the contributions of DSAC, attention-based
LSTM encoding, and novel data replay method in conver-
gence. Then, experiments are extended to cases with two and
ten obstacles. Finally, LSTM-DSAC, AL-DSAC, and ALN-
DSAC are compared with the state of the arts, which include
CADRL, LSTM-DQN (LSTMRL), SARL, and A2C-LSTM.

Fig. 8(a) shows that: 1) DSAC converges faster than DQN
by comparing the training of LSTM-DQN and LSTM-DSAC;
2) separate two LSTMs converge faster than one shared LSTM
in LSTM-DSAC; and 3) LSTM encoding contributes more to
convergence than that of AW pooling by comparing LSTM-
DSAC and AW-DSAC. Fig. 8(b) shows that: 1) attention-based
LSTM encoding contributes more to convergence than that
of LSTM encoding by comparing the training of AL-DSAC
and LSTM-DSAC and 2) novel data replay method contributes
to the convergence of early stage training by comparing the
training of AL-DSAC and ALN-DSAC. Fig. 8(c) presents the
ALN-DSAC with different configurations in the novel data
replay. Comparisons show that our novel data replay method
with five delayed experiences is the most efficient method to
speed up the convergence.

Fig. 8(d) shows the convergence of LSTM-DSAC,
AL-DSAC, and ALN-DSAC in a two-obstacle case. The con-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 11

TABLE I
PARAMETERS OF ALN-DSAC

vergences of these algorithms are almost the same, although
AL-DSAC performs slightly better than the rest algorithms.
Their differences are small (reward difference <0.1). Fig. 8(e)
shows the convergence of these three algorithms in the five-
obstacle case. AL-DSAC and ALN-DSAC perform almost
the same, but better than LSTM-DSAC. Fig. 8(f) shows the
convergence of these three algorithms in the ten-obstacle case.
ALN-DSAC performs the best and, then, the AL-DSAC and
LSTM-DSAC. Fig. 8(d)–(f) also shows that the number of
delayed experiences matters. When obstacles are less (e.g., two
and five obstacles), small, delayed experience number (e.g., 5)
works well. Large, delayed experience number (e.g., 10) works
well in case with more obstacles (e.g., ten obstacles).

Fig. 8(g)–(i) shows the comparisons of LSTM-DSAC,
AL-DSAC, and ALN-DSAC against the state of the arts in
convergence. In the five-obstacle case, these three algorithms
outperform all state of the arts. In the ten-obstacle case,
AL-DSAC and ALN-DSAC outperform all state of the arts.
LSTM-DSAC converges faster than the state of the arts, but
its converged result is poor than that of SARL.

C. Model Evaluations

We first present the converged reward of all algorithms
in training. Then, all trained models are evaluated according
to evaluation criteria, which consist of qualitative evaluation,
quantitative evaluation, computational evaluation, and robust-
ness evaluation.

1) Converged Reward: Converged rewards are listed in
Table II. AL-DSAC and ALN-DSAC outperform other algo-
rithms in the five-obstacle case. ALN-DSAC outperforms other
algorithms in the ten-obstacle case. Note that LSTM-A2C is

TABLE II
CONVERGED REWARD OF ALL ALGORITHMS IN CASES WITH

FIVE AND TEN OBSTACLES

an on-policy RL algorithm, which is trained with 60k episodic
experiences.

2) Qualitive Evaluation (Trajectory Quality): The motion
planning process and the policy evolvement process are
described before evaluation to clarify: 1) how motion planning
task is accomplished and 2) how the model evolves with the
increase of training data. Motion planning processes with five
and ten obstacles are shown in Fig. 9. The robot is controlled
by ALN-DSAC, while obstacles are controlled by ORCA.
Policy evolvement processes with five and ten obstacles are
shown in Fig. 10, in the supplementary material. Models of
ALN-DSAC trained with a different number of experiences
(1k–30k episodes) are executed. Trajectories are generated
according to trained models. Policy evolvement is observed
by analyzing the time to reach the goal. The policy evolves
stably despite small fluctuations (e.g., 18k and 24k in cases
with five and ten obstacles, respectively).

We analyze trajectories and conclude that trajectories consist
of three types : bypass, wait-cross, and cross. The bypass
strategy is the most efficient and safe strategy, while the
wait-cross and cross strategies lack efficiency and safety. The
bypass strategy means the robot fast bypasses all obstacles
that move toward the center and their goals (Fig. 10). The
wait-cross strategy means that the robot keeps waiting or slow
until obstacles move away from the center. Then, the robot
moves fast and right across the center to reach its goal. The
cross strategy means that the robot moves toward the center
and its goal with medium speed and short distance to obstacles.
Learned motion planning strategies are shown in Table III.
LSTM-DSAC, AL-DSAC, ALN-DSAC, and SARL learned
the bypass strategy (the most efficient and safe strategy).
LSTM-DSAC, LSTM-A2C, LSTMRL, and CADRL learned
the wait-cross strategy. ORCA is the only algorithm, which
uses the cross strategy.

3) Quantitative Evaluation: Quantitative evaluation of algo-
rithms is measured by six criteria: success rate, time to goal,
collision rate, timeout rate, mean distance to obstacles, and
mean discounted reward. The success rate, collision rate, and
timeout rate denote the rates of the case in which the robot
reaches the goal, collides with obstacles, and does not reach
its goal within time limit (25 s), respectively. The 500 tests
are conducted in circle-crossing simulator to evaluate each
algorithm in cases with five or ten obstacles. The detailed
comparisons are shown in Table IV. LSTM-DSAC, AL-DSAC,
and ALN-DSAC outperform near all state of the arts in cases
with five and ten obstacles. LSTM-DSAC performs good
in the five-obstacle case because of two reasons: 1) high
efficiency of DSAC in convergence and 2) the competence

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Training results. In (c), ALN-DSAC-1/5/10Delay denotes the novel data replay with one/five/ten delayed experiences. ALN-DSAC-NoPrioritizedData
denotes that the prioritized sampling method-1/2 is replaced by random sampling in the novel data replay. AL-DSAC-PER denotes that AL-DSAC uses
classical PER. In (g), CADRL does not support multiobstacle training. Its networks are trained in one-obstacle case, and trained models can be applied to
multiobstacle motion planning. Hence, the training of CADRL is presented in independent figure.

Fig. 9. Motion planning process (ALN-DSAC) in cases with five and ten obstacles.

of distance-based LSTM to represent the obstacle impor-
tance. However, distance-based LSTM partly represents the

obstacle importance, and therefore, its weakness appears in
the ten-obstacle case. AL-DSAC improves the distance-based

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 13

TABLE III
LEARNED MOTION PLANNING STRATEGIES

TABLE IV
FIVE HUNDRED TESTS OF ALL ALGORITHMS IN CASES WITH FIVE AND TEN OBSTACLES IN CIRCLE-CROSSING ENVIRONMENT

Fig. 10. Learned motion planning strategy.

encoding by attention-based encoding, which is robust and
shows good convergence either in five or ten obstacle case.
ALN-DSAC moves further in the improvement of convergence
by improving the efficacy of data replay. This is achieved by
learning from full-episodic experience and offline experience
simultaneously.

4) Computational Evaluation: Time costs are recorded in
Table V. The on-policy algorithm LSTM-A2C costs the least
time in training compared to the rest algorithms. LSTM-DSAC
costs the least time in training among off-policy algorithms.

5) Robustness Evaluation: Robustness here is defined by
the value change in a new environment (square-crossing
simulator). The value denotes six criteria used in the

quantitative evaluation. The value comparisons are presented
in Table VI where ALN-DSAC outperforms the rest algo-
rithms in both ten-obstacle case and five-obstacle case. The
value changes are presented in Table VII. LSTM-DSAC, AL-
DSAC, and ALN-DSAC perform stable in square-crossing
environment, while the state of the arts have large fluctuations
in values. Robust evaluation shows good performances of
our ALN-DSAC in two simulators with large differences.
This indicates the potential of our algorithm on other general
motion planning tasks.

Main hardware is Intel Core i7-9750H processor with
16-GB memory. The trainings and evaluations are based on the
CrowdNav simulation system [5], [16]. The robot operation
system (ROS) and physical implementations are shown on
websites: https://www.youtube.com/watch?v=9znVReBmfwI
and https://www.youtube.com/watch?v=bH5FbA14AqE.

V. CONCLUSION

Existing motion planning algorithms face challenges in data
quality (representation learning), efficacy of data replay, and
optimality of RL algorithm. Given these challenges, we first
proposed LSTM-DSAC, which uses DSAC to learn features
pooled by distance-based LSTM. Then, distance-based pooling
is improved by priority-based pooling. This is AL-DSAC,
which uses an attention network to compute the importance of
each obstacle. LSTM then pools the pairwise robot–obstacle
features in a priority-based order. Finally, we proposed ALN-
DSAC where online episodic experience is utilized in training.
Hence, the algorithm learns from online and offline experi-
ences simultaneously. This further improves the convergence.
We did extensive evaluations of ALN-DSAC against the state
of the arts. Experiments show that ALN-DSAC outperforms
the state of the arts in most evaluations. Future research will
focus on the improvement of representation learning such as
attention mechanism. It faces the challenge of overfitting if

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V
TIME COST OF ALGORITHM TRAINING IN CASES WITH FIVE AND TEN OBSTACLES

TABLE VI
FIVE HUNDRED TESTS IN SQUARE-CROSSING ENVIRONMENT IN CASES WITH FIVE AND TEN OBSTACLES

TABLE VII
VALUE CHANGES FROM CIRCLE-CROSSING ENVIRONMENT TO SQUARE-CROSSING ENVIRONMENT

the network is too deep and complex. This is expected to
be solved by integrating the skip connection and other robust
pooling methods such as LSTM pooling.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[2] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2011, pp. 723–730.

[3] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific J. Math., vol. 145, no. 2, pp. 367–393,
Oct. 1990.

[4] J. Funke et al., “Up to the limits: Autonomous Audi TTS,” in Proc.
IEEE Intell. Vehicles Symp., Jun. 2012, pp. 541–547.

[5] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2008, pp. 100–107.

[6] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 2061–2067.

[7] R. T. Farouki and Z. Šír, “Rational pythagorean-hodograph space
curves,” Comput. Aided Geometric Des., vol. 28, no. 2, pp. 75–88,
Feb. 2011.

[8] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[9] Z. Bai, B. Cai, W. ShangGuan, and L. Chai, “Deep learning
based motion planning for autonomous vehicle using spatiotemporal
LSTM network,” in Proc. Chin. Autom. Congr. (CAC), Nov. 2018,
pp. 1610–1614.

[10] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proc. 33rd Int. Conf. Mach. Learn., vol. 48, 2016,
pp. 1995–2003.

[11] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. 33rd Int. Conf. Mach. Learn. (ICML), vol. 4, 2016,
pp. 2850–2869, 2016.

[12] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 6252–6259.

[13] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[14] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018,
pp. 3052–3059.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: REPRESENTATION LEARNING AND RL FOR DYNAMIC COMPLEX MOTION PLANNING SYSTEM 15

[15] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 961–971.

[16] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 6015–6022.

[17] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention
in human crowds,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 4601–4607.

[18] W. L. Hamilton, Graph Representation Learning (Synthesis Lectures
on Artificial Intelligence and Machine Learning), 1st ed. Cham,
Switzerland: Springer, 2020, doi: 10.1007/978-3-031-01588-961-5.

[19] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph
learning for crowd navigation,” 2019, arXiv:1909.13165.

[20] V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[21] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. 4th Int. Conf. Learn. Represent. (ICLR) Conf. Track,
2016, pp. 1–21.

[22] R. Chai, H. Niu, J. Carrasco, F. Arvin, H. Yin, and B. Lennox,
“Design and experimental validation of deep reinforcement learning-
based fast trajectory planning and control for mobile robot in unknown
environment,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Oct. 10, 2022, doi: 10.1109/TNNLS.2022.3209154.

[23] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[24] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. 30th AAAI Conf. Artif. Intell. (AAAI),
2016, pp. 2094–2100.

[25] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in Proc. 34th Int. Conf. Mach. Learn.
(ICML), vol. 3, 2017, pp. 2171–2186.

[26] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. 31st Int. Conf.
Mach. Learn. (ICML), vol. 1, 2014, pp. 605–619.

[27] A. Harutyunyan, T. Stepleton, and M. G. Bellemare, “Safe and efficient
off-policy reinforcement learning,” in Proc. 30th Int. Conf. Neural Inf.
Process. Syst., 2016, pp. 1054–1062.

[28] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
region policy optimization,” in Proc. 32nd Int. Conf. Mach. Learn.
(ICML), vol. 3, 2015, pp. 1889–1897.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[30] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” in Proc. 35th Int. Conf. Mach.
Learn. (ICML), vol. 4, 2018, pp. 2587–2601.

[31] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” 2018,
arXiv:1812.05905.

[32] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. 35th Int. Conf. Mach. Learn. (ICML), vol. 5, 2018,
pp. 2976–2989.

[33] P. Christodoulou, “Soft actor-critic for discrete action settings,” 2019,
arXiv:1910.07207.

[34] L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao, “Safe
reinforcement learning with stability guarantee for motion planning of
autonomous vehicles,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32
no. 12, pp. 5435–5444, Dec. 2021.

[35] P. Christodoulou, “Soft actor-critic for discrete action settings,” 2019,
arXiv:1910.07207.

[36] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 285–292.

[37] S. J. Guyy et al., “ClearPath: Highly parallel collision avoidance
for multi-agent simulation,” in Proc. Comput. Animat. Conf., 2009,
pp. 177–187.

[38] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Proc. Int. Symp. Robot. Res., 2009, pp. 3–19.

[39] E. Bas, “An introduction to Markov chains,” in Basics of Probability and
Stochastic Processes. Wiesbaden, Germany: Vieweg+Teubner Verlag
Wiesbaden, 2019, pp. 179–198.

[40] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Machine Learning Proceedings. San Mateo, CA,
USA: Morgan Kaufmann, 1995, pp. 30–37.

[41] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[42] Z. Lin et al., “A structured self-attentive sentence embedding,” in Proc.
5th Int. Conf. Learn. Represent. (ICLR) Conf. Track, 2017, pp. 1–15.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[44] C. Banerjee, Z. Chen, and N. Noman, “Improved soft actor-critic:
Mixing prioritized off-policy samples with on-policy experiences,” IEEE
Trans. Neural Netw. Learn. Syst., early access, May 19, 2022, doi:
10.1109/TNNLS.2022.3174051.

Chengmin Zhou (Student Member, IEEE) is cur-
rently a Ph.D. Researcher with the University of
Eastern Finland, Joensuu, Finland. He has many
publications, including two articles in top journals.
His research interests include robotics, deep learn-
ing, reinforcement learning, representation learning,
path planning, and motion planning.

Bingding Huang received the master’s degree from
the Max Planck Institute, Munich, Germany, in 2004,
and the Ph.D. degree from the Technical University
of Dresden, Dresden, Germany, in 2007.

He is currently a Distinguished Professor at Shen-
zhen Technology University, Shenzhen, China. His
research interests include machine learning, bioin-
formatic algorithms, and data analysis.

Pasi Fränti (Senior Member, IEEE) has been a
Professor and a Team Leader of the Machine Learn-
ing Group, University of Eastern Finland, Joensuu,
Finland, since 2000.

He is one of the most prolific authors in Finland.
His current research interests include machine learn-
ing, data mining, and location-based services.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1007/978-3-031-01588-961-5
http://dx.doi.org/10.1109/TNNLS.2022.3209154
http://dx.doi.org/10.1109/TNNLS.2022.3174051

