
Aritmetic Compression of Weighted Finite Automata

Jarkko Kari ∗

Academy of Finland

Pasi Fränti

Computer Science Department

University of Turku

20500 Turku, Finland

Abstract

Karel Culik and the first author have demonstrated how Weighted Finite Automata (WFA) provide a

strong tool for image compression [1, 2, 3, 4]. In the present article we introduce an improved method for

the last step of the compression algorithm: for compressing the WFA that approximates the given image.

Our method is based on arithmetic compression of sparse matrices.

1 Introduction

The image compression based on Weighted Finite Automata (WFA) is a relatively efficient fractal com-

pression method that gives good compression results. The principal idea is to infer a WFA A that

represent a good approximation of the image to be compressed, and to remember A instead of the image.

Inference algorithms for finding a suitable WFA have been discussed extensively in [1, 2, 3, 4], but the

the important last step of expressing the WFA as a bitstring has been mostly ignored.

In the present article we introduce a way of writing a WFA in a compressed form that improves the

compression results reported in [1, 2, 3, 4]. The method is based on arithmetic coding with three adaptive

models for different parts of the WFA. First we give a short description of WFA and the recursive inference

algorithm. Then we describe the arithmetic encoding of the WFA. Finally, examples and compression

results are presented.

2 Preliminaries

Weighted Finite Automata (WFA) are finite automata with each edge labeled besides an input symbol

also by a real number. Initial and final states are replaced by initial and final distributions that give

for each state a real number. A WFA A over alphabet Σ with state set Q = {1, 2, . . . , n} is represented

compactly by |Σ| transition matrices Wa, a ∈ Σ, of size n× n, a row vector I of size 1× n and a column

vector F of size n × 1. For all i, j ∈ Q, a ∈ Σ, the element (i, j) of Wa is the weight of the transition

from state i to state j with input symbol a. The initial and final distribution values of state i are the i’th

elements of I and F , respectively.

∗The address of the first author is: Mathematics Department, University of Turku, 20500 Turku, Finland

1

The WFA A defines a function fA : Σ∗ → IR by

fA(a1a2 . . . ak) = IWa1Wa2 . . . Wak
F,

where ordinary matrix products are used. Equivalently, fA can be determined as follows: Define for each

state i ∈ Q a function ψi : Σ∗ → IR recusively by

ψi(ε) = Fi, and (1)

ψi(aw) = (Wa)i,1ψ1(w) + (Wa)i,2ψ1(w) + . . . + (Wa)i,nψn(w), (2)

for all w ∈ Σ∗, a ∈ Σ. Then

fA(w) = I1ψ1(w) + I1ψ2(w) + . . . + I1ψn(w). (3)

If the set {f : Σ∗ → IR} of functions is taken as a linear space where addition and multiplication by a

constant are defined in the natural way pointwise, then (2) can be written as

(ψi)a = (Wa)i,1ψ1 + (Wa)i,2ψ1 + . . . + (Wa)i,nψn, (2’)

where (ψi)a is the function (ψi)a(w) = ψi(aw), ∀w ∈ Σ∗. Similarly (3) becomes

fA = I1ψ1 + I1ψ2 + . . . + I1ψn. (3’)

In other words, the initial distribution gives the coefficients in the linear expression of fA using functions

ψi, and the i’th row of transition matrix Wa provides the coefficients in a similar linear expression for

(ψi)a. Clearly (1), (2’) and (3’) uniquely define fA.

0 2

1 3

Figure 1: The addresses of quadrants

Let Σ = {0, 1, 2, 3}. A correspondence between functions Σ∗ → IR and grey-tone images is obtained

as follows. Words over Σ are understood as addresses of subsquares of the unit square [0, 1]× [0, 1]: Each

letter of Σ refers to one quadrant of a square as shown in Fig. 1. We assign ε as the address of the root of

the quadtree representing an image, i.e. it refers to the whole unit square. Each letter of Σ is the address

of a child of the root, i.e. a quadrant of the unit square. Every word in Σ? of length k, say w, is then an

address of a unique node of the quadtree at depth k, i.e. an address of a subsquare of size 2−k×2−k. The

children of this node have addresses w0, w1, w2 and w3. For example, the squares addressed by words of

length three are shown in Figure 2.

A function f : Σ∗ → IR defines a multiresolution image, that is, an image in every resolution 2k × 2k:

The grey-tone intensity of the pixel with address w ∈ Σk is f(w). Typically the values of f are supposed

to be within the interval [0, 1], in which case 0 is interpreted as ’white’, 1 as ’black’ and intermediate

values as intermediate intensities, but other interpretations are also possible. The different resolutions

are compatible if the multiresolution image f is average preserving :

f(w) =
1
4

[f(w0) + f(w1) + f(w2) + f(w3)]

2

000

001

010

011

100

101

110

111

002

003

012

013

102

103

112

113

020

021

030

031

120

121

130

131

022

023

032

033

122

123

132

133

200

201

210

211

300

301

310

311

202

203

212

213

302

303

312

313

220

221

230

231

320

321

330

331

222

223

232

233

322

323

332

333

Figure 2: The addresses of subsquares in resolution 8× 8.

for each w ∈ Σ?. The function fA computed by WFA A is average preserving if

(W0 + W1 + W2 + W3)F = 4F,

that is, if the final distribution F is an eigenvector of W0 + W1 + W2 + W3 corresponding to eigenvalue 4.

With this interpretation of alphabet Σ = {0, 1, 2, 3} the meaning of (2’) becomes obvious: It states

that the quadrant a of the image ψi is the linear combination of images ψ1, ψ2, . . . , ψn with coefficients

given by the i’th row of matrix Wa.

ÁÀ

Â¿

ÁÀ

Â¿
1, 1

2 0, 1

0, 1, 2, 3 (1/2) 0, 1, 2, 3 (1)1, 2 (1/4)

3 (1/2)

® ®
j

*

(a)

(c)(b)

Figure 3: (a) WFA A defining the linear grayness function fA, (b) fA = ψ1, (c) ψ2.

Example 1: Consider the WFA A shown in Fig. 3(a). The transitions are labeled with symbols of Σ

and weights, which are inside parentheses. The initial and final distribution values of the states are shown

inside the nodes. The images ψ1 and ψ2 are shown in Fig. 3(b) and (c), respectively. Since the initial

distribution is (1, 0), fA = ψ1. Fig. 4 shows the linear expressions indicated by the outgoing transitions

from the first state. The outgoing transitions from the second state simply indicate that all four quadrants

of ψ2 are the same image ψ2.

3

= 1
2 ·

(ψ1)0 ψ1

= 1
2 · + 1

4 ·

(ψ1)1 = (ψ1)2 ψ1 ψ2

= 1
2 · + 1

2 ·

(ψ1)3 ψ1 ψ2

Figure 4: Linear expressions defined by the outgoing transitions from state 1 in Fig. 3.

3 A scetch of the recursive inference algorithm

The inference problem for WFA means finding a WFA that approximates well a given grey-tone image.

Based on the discussion of the previous section this can be rephrased as follows: Try to find multiresolution

images ψ1, ψ2, . . . , ψn such that

(i) all four quadrants of all ψi can be expressed as linear combinations of ψ1, ψ2, . . . , ψn,

(ii) a good approximation of image f can be expressed as a linear combination of ψ1, ψ2, . . . , ψn.

The coefficients of (i) and (ii) define the transition matrices and the initial distribution of the WFA,

respectively, while the final distribution is given by the average intensities of images ψi, 1 ≤ i ≤ n.

Algorithm 1 is a scetch of our implementation of the recursive inference algorithm discussed in [2, 3, 4].

See those references for more details. Basically the algorithm processes all four quadrants of an image

(a) by trying to express the quadrant as a linear combination of existing images ψi and

(b) by choosing the quadrant as a new image that is recursively processed.

The alternative that yields better result is chosen. The alternative (a) corresponds to adding new edges

that express the coefficients of the linear combination, while (b) means adding a new state for the quadrant

and just one transition with weight 1. The alternative is chosen that gives smaller value of

cost = error + G · size,

where G is a real number parameter given to the algorithm, error is the square difference between the

quadrant and its approximation (by square difference we mean the sum of the squares of the differencies

in the pixel values in the two images), and size is the number of bits required to store the the new edges

and states.

4

Global variables:
n : number of states in the automaton,

ψi : image of state i, 1 ≤ i ≤ n,

weight [i][a][j] : the weight of the transition from state i to state j with label a,

child [i][a] : number j such that ψj = (ψi)a, if such j exists, 0 otherwise. (Indicates what

choice was done for quadrant a of state i in function build.)
Functions dk(f, g) =

∑
w∈Σk (f(w)− g(w))2 compute the square distance between images f and g

in resolution 2k × 2k.

Initially, n = the numer of elements in the initial basis, ψ1, ψ2, . . . , ψn are the images in the basis,

and values of weight and child are initiated to 0.

The WFA for image f : Σk → IR of resolution 2k × 2k is constructed by calling build(f, k,∞).

float build(ψ, k, min)

/* Approximates image ψ : Σk → IR of resolution 2k × 2k by a WFA. In the end of the routine the

image ψn of the last state is an approximation of ψ such that the value of cost = error+G·size is

minimized, provided cost < min. In this case the routine returns cost. Otherwise (if min could not

be improved) value ∞ is returned. The function uses local variables s[a] and t[i][a] to remember the

chosen values of child and weight until the end of the routine, that is, until the number of the new

state approximating ψ is known. */

If min ≤ 0 or k = 0 then return(∞);

cost ← 0;

do steps 1–5 with ϕ = ψa for all a ∈ Σ:

1. Find r1, r2, . . . rn such that the value of

cost1 ← dk−1(ϕ, r1ψ1 + . . . + rnψn) + G · size1

is small, where size1 denotes the increase (in bits) in the size of the automaton caused by

adding edges to states 1, 2, . . . , n with label a and weights r1, r2, . . . , rn;

2. n0 ← n;

3. cost2 ← G · size2 + build(ϕ, k − 1,min{min−cost,cost1}−G·size2), where size2 is the increase

in the size of the WFA caused by an edge with weight 1 to a new state;

4. If cost2 ≤ cost1 then cost ← cost + cost2, s[a] ← n, t[n][a] ← 1;

5. If cost1 < cost2 then cost ← cost + cost1, n ← n0, s[a] ← 0, t[i][a] ← ri, ∀i, 1 ≤ i ≤ n0;

If cost > min return(∞);

n ← n + 1;

For all a ∈ Σ set child [n][a] ← s[a];

For all a ∈ Σ and i = 1, 2, . . . , n− 1 set weight [n][a][i] ← t[i][a];

ψn ← the multiresolution image defined to state n;

return(cost);

Algorithm 1: Outline of the recursive inference algorithm for WFA.

5

Parameter G controlls the quality of the approximation and the compression rate. One bit increase

in the size of the compressed file is allowed if the improvement it provides in the image quality is at least

G. The algorithm thus chooses from the square error vs. file size -graph the point where the derivative is

−G.

The Algorithm 1 is slightly different from the algorithm described in [2, 3, 4]. The main difference is

that the new state is added only after its quadrants are processed. Therefore its image is not available

for the linear combinations in its subquadrants. This prevents loops in the automaton. This also means

that before first call to function build , the WFA has to be initiated to a fixed initial basis. See [4] for

more details on this point.

After Algorithm 1 has been executed, the transition matrices of the WFA can be read from the

variable weight. Element (i, j) of Wa is weight [i][a][j]. Images ψi of the states (except the states of the

initial basis) are approximations of some subsquares of the original image. Variable child describes the

relation between the states and the quadtree representation of the image: If state i approximates the

subsquare with address w, then state child [i][a] approximates the subsquare with address wa, provided

child [i][a] 6= 0. If child [i][a] = 0, the quadrant a was expressed as a linear combination of existing states,

so there is no state in the WFA for subsquare wa.

4 Compressing the WFA

Algorithm 1 produces a WFA A that still has to be written as a bitstring. The initial distribution of

the WFA A will always be of the simple form (0, 0, . . . , 0, 1) since the image ψn of the state added in the

end of the outermost recursive call of build , i.e. the last state of A, is the approximation of the original

image. The final distribution, on the other hand, is uniquely determined by the transitions and the initial

basis: Since there are no loops, the transitions tell how each ψi is eventually build up from the images

of the initial basis, and the average intensity of each state (= the final distribution) can be computed.

Therefore, initial and final distributions do not need to be stored — it is sufficient to remember the four

transition matrices.

The transition matrices can be stored in a variety of ways. The only requirement is that during the

execution of Algorithm 1 we have to be able to compute (or at least estimate well) the increase in the

size of the compressed WFA caused by new edges and states on steps 1 and 3. The algorithm is build

in such a way that it takes into account how the WFA is stored in the end, and it attempts to produce

WFA that are well suited for that particular method.

Our choice is to use arithmetic coding with adaptive models. A model is a method for calculating the

probability distribution for the next symbol to be encoded. The model gets as input the context of the

symbol, i.e. some information computable without knowing the symbol. Arithmetic encoder get as input

the probability distribution and the actual next symbol. The decoder uses the same model to compute

the same probability distribution for the same context. Based on this information it can decode from the

compressed string the actual encoded symbol. The model is called adaptive if the probability distribution

it provides depends on the history of symbols already encoded. Consult reference [6] for more details.

In our application the weights will be encoded separately from their positions in the matrices. In

otherwords we store bitmatrices that indicate the non-zero elements of the transition matrices. The edges

added on step 4 of Algorithm 1 are special: their weight is always one. They are stored by encoding the

variable child. So we use three models: one for variable child, one for the bitmatrix of other edges, and

one for the weights. Since adaptive models are used, in order to allow the costs be estimated correctly on

steps 1 and 3, the encoding has to be done in the same order as the edges are added during the execution

6

External routines encode child, encode bitmatrix and encode weight that take care of the arithmetic

encoding and updating the models are used. Routine initiate column initiates the probabilities of 0

and 1 in an unused context of the bitmatrix model.

Before calling encode initiate n ← the numer of elements in the initial basis.

The encoding of the WFA produced by Algorithm 1 is done by calling encode(m, k), where m is the

number of states in the WFA, and the size of the original image is 2k × 2k.

encode(i, k)

/* Encodes the subtree of the quadtree rooted at state i. State i represents a subimage in resolution

2k × 2k. */

For all a ∈ Σ do

If child [i][a] 6= 0

{
encode child(1, k) ;

encode(child [i][a], k − 1);

}
Else

{
encode child(0, k) ;

For all j = 1, 2, . . . , n do

If weight [i][a][j] = 0 encode bitmatrix (0, j) ;

Else

{
encode bitmatrix (1, j) ;

encode weight(weight [i][a][j], k) ;

}
}

n ← n + 1; /* = i */

initiate column(n).

Algorithm 2: Outline of a recursive algorithm for encoding a WFA produced by Algorithm 1.

of Algorithm 1.

Algorithm 2 is a scetch of the encoding algorithm. In the following we exlplain in more details the

algorithm and the models that are used. Algorithm 3 is a scetch of the corresponding decoding algorithm.

4.1 The model for variable child

Four bits are encoded for each state i: For every a ∈ Σ we encode 1 if child [i][a] 6= 0 and 0 otherwise.

This uniquely determines the underlying quadtree structure. Note that the actual value of child [i][a] can

be deduced by numbering the nodes in the same depth first order as Algorithm 1 traverses the tree.

The depth of the state in the tree is used as context. The idea is that the probability of bit 1 is greater

7

External routines decode child, decode bitmatrix and decode weight take care of the arithmetic de-

coding and updating the models. Routine initiate column is used to initiate the probabilities of 0

and 1 in a new context of the bitmatrix model.

Before calling decode initiate n ← the numer of elements in the initial basis.

A WFA produced by by Algorithm 1 is decoded by calling decode(k), if the size of the original image

is 2k × 2k.

decode(k)

/* Decodes a subtree whose root represents an image at resolution 2k × 2k. Local variables s[a] and

t[j][a] are used to remember the values of child and weight until the end of the routine. */

For all a ∈ Σ do

If decode child(k) = 1 decode(k − 1); s[a] = n;

Else

{
s[a] = 0;

For all j = 1, 2, . . . , n do

If decode bitmatrix (j) = 1 then t[j][a] ←decode weight(k);

Else t[j][a] ← 0;

}

n ← n + 1;

For all a ∈ Σ set child [n][a] ← s[a];

For all a ∈ Σ

If s[a] = 0 then, for all j = 1, 2, . . . , n− 1 set weight [n][a][j] ← t[j][a];

Else weight [n][a][s[a]] ← 1;

initiate column(n).

Algorithm 3: Outline of a recursive algorithm for decoding a WFA encoded by Algorithm 2.

8

for the nodes close to the root than for those closer to the leaves. In particular, a node is a leaf iff all four

bits are 0’s.

Initially, in every context the probabilities of both bits are set to 1/2. After encoding x 0’s and y 1’s

at the particular depth, the probabilities are updated to (x + 1)/(x + y + 2) and (y + 1)/(x + y + 2) for 0

and 1, respectively. The same probabilities should be used in Algorithm 1 for calculating size1 and size2

on steps 1 and 3:

size1 = − log2

(
x + 1

x + y + 2

)
+ size1’, and

size2 = − log2

(
y + 1

x + y + 2

)
,

where size1’ is the increase in the size of the automaton due to the new edges with weights r1, r2, . . . , rn.

Bit b at depth k is encoded by routine encode child(b, k) that (i) encodes the bit using arithmetic coding

and (ii) updates the model for context k. The corresponding routine for decoding is decode child(k) that

returns the encoded bit and updates the model.

If child [i][a] 6= 0, nothing else than bit 1 needs to be stored for quadrant a. If child [i][a] = 0, the

weights weight [i][a][j], 1 ≤ j ≤ n found on step 1 have to be encoded in addition to the bit 0. For each j a

bit indicating whether weight [i][a][j] = 0 is encoded using the model of subsection 4.2. If weight [i][a][j] 6= 0

the weight is stored using the method of subsection ??.

4.2 The model for the bitmatrices

A bit indicating whether weight [i][a][j] = 0 is encoded using the column j as the context. This is based

on the observation that some images are more frequently used in linear combinations than others. It is

sufficient to encode a bit for the columns that correspond to states that existed when step 1 of Algorithm 1

was executed. Others correspond to states that were created later and were therefore not yet available.

A new context is initiated when a new state becomes available. The probabilities of bits 0 and 1 are

then initiated to p0 and p1 according to their occurences in the bit matrices (in all contexts) so far. Later,

after encoding x 0’s and y 1’s in the context, the probabilities are updated to (x + p0)/(x + y + 1) and

(y + p1)/(x + y + 1) for 0 and 1, respectively.

Bits are encoded by routine encode bitmatrix (b, j) that also updates the model for context j. The

corresponding routine for decoding is decode bitmatrix (j).

4.3 Encoding the weights

Finally non-zero weights rj =weight [i][a][j] have to be encoded. Consider their precision: Assume p bits

after the binary point are stored. The precision should be increased by one bit if the image quality gets

improved by at least G. The improvement is at most 4p+1 · dk−1(ψj , 0), and on the average

. . .

where

dk−1(ψj , 0) =
∑

w∈Σk−1

ψj(w)2.

Therefore the precision should be increased if

dk−1(ψj , 0)
3 · 4p+1

− dk−1(ψj , 0)
3 · 4p+2

< G,

9

that is, if

p < log4 dk−1(ψj , 0) + log4
1
G
− 2.

Instead of weight rj , normalized weight

r′j = nork−1[j] · rj

is stored, where

nork−1[j] =

√
dk−1(ψj , 0)

4k−1

is the square root of the mean square distance of ψj from zero in resolution 4k−1× 4k−1. For r′j precision

p = k − 2 +

⌊
log4

1
G

⌋

is used. Advantages of using the normalized weight are the uniformity of the precisions (the same number

of bits at the same resolution) and better distribution of the weights.

For encoding the weights, an interval I = [x, x + m · 2−s] is divided into m subintervals of length

2−s. First, information concerning which subinterval contains r′j is encoded using arithmetic encoding

(here (−∞, x) and (y,∞) are possible intervals). If r′j ∈ I, the last p − s bits are written as such. If

r′j < x (or r′j > y), the positive real number r = r′j − x (or r = y − r′j , respectively) is stored as follows:

m = blog2(r + 1)c is written in unary (this requires m + 1 bits), and r + 1− 2m is written as such (m + p

bits).

Weights r′j are encoded in precision p by routine encode weights(r′j , p) that also updates the model.

The corresponding routine for decoding is decode weights(p).

5 Results

Our set of test images consists of four well-known 8-bit gray scale images of resolution 512 × 512 (lena,

airplane), or 256× 256 (bridge, camera). Lena is the green component of the original rgb-image lena.

Recommendations for the compression algorithm was set up by the JPEG (Joint Photographic Experts

Group) working group. The bit rate requirement for ”useful” image quality was set to 0.25 bits per pixel,

and for ’recognizable” image quality to 0.083 bits per pixel [5]. We try to meet the first requirement.

WFA W+WFA JPEG
G Image bpp mse bpp mse bpp mse

0.010 Lena 0.20 70.90 0.19 70.83 0.20 113.91

Airplane 0.23 71.10 0.20 64.67 0.21 117.06

Bridge 0.33 84.15 0.30 76.40 0.30 94.42

Camera

0.005 Lena 0.29 51.87 0.28 46.54 0.28 66.57

Airplane 0.35 45.12 0.29 40.87 0.29 62.68

Bridge 0.52 40.55 0.46 37.45 0.45 55.95

Camera

Table 1: Test results for several well-known images.

10

Table 1 contains the test results for these images when compressed by the recursive inference algorithm

(WFA), by the recursive inference algorithm applied to the Mallat form of the W6 wavelet transform

(W+WFA, see [2]), and by JPEG. The inference algorithm was applied with parameter values G = 0.01

and G = 0.005. For each case the bit rate of JPEG was set to match as closely as possible with the ones

given by the W+WFA method. The results of both WFA and W+WFA clearly outperforms the results

of JPEG. The compression results for Lena and G = 0.005 are illustrated in Fig. 5. The degderations of

the methods are however better visualized in Fig. 6, where magnifications from Lena are shown.

Figure 5: Test image Lena a) original, b) compressed by JPEG, c) by WFA, d) by W+WFA.

The drawback of the WFA inference algorithm is its high compression time. The higher the automaton

size (and thus the image quality) the higher the running time. However, the decoding remains relatively

fast. This is an important property e.g. for an image archieving system where the images are stored only

once, but retrieved often. The compression and decompression times with Sun SparcServer 690M are

given in Table 2.

Finally, Table 3 contains more details about the encoding results of the WFA. For all four WFA for

Lena, we have listed the numbers of bits required to encode the three different parts of the automaton:

the undelying quadtree structure (i.e. variable child), the bitmatrices and the weights. The numbers

reported are the base 2 logarithms of the probabilities provided by the models to the arithmetic encoder.

Also the numbers of states and edges in the WFA are listed. The numbers do not include the initial basis

which does not need to be stored. The number of edges contains only the edges whose weights are stored

— the edges with weight 1 forming the quadtree structure are excluded.

11

Figure 6: Magnifications of Lena.

WFA W+WFA
G Image comp. decomp. comp. decomp.

0.010 Lena 412.9 10.5 518.1 22.0

Airplane 598.9 15.2 547.2 25.7

Bridge 1480.5 64.5 1078.7 44.4

Camera

0.005 Lena 614.6 13.9 981.0 36.0

Airplane 1066.9 23.9 964.6 33.2

Bridge 3101.5 149.0 2341.0 103.2

Camera

Table 2: Compression/decompression times.

On the average, a little more than two bits per state are needed for the quadtree — a clear improvement

to the trivial four bits per state. The numbers of bits per encoded weight varies between 4.0 and 5.9.

For parameter value G = 0.005 one bit higher precision is used for the weights than in case G = 0.01.

Typically the combination with wavelets produces more states but fewer edges, therefore the bitmatrices

occupy a greater share of the compressed file.

12

G type bits in bits in bits in states edges
quadtree bitmatrices weights

0.010 WFA 1 088 25 850 25 072 477 4 843

W+WFA 1 874 32 624 14 431 831 3 534

0.005 WFA 1 368 40 090 34 962 601 5 948

W+WFA 2 326 48 144 23 087 1 145 4 972

Table 3: Entropies for the different parts of the WFA for Lena, and numbers of states and edges.

References

[1] K. Culik II and J. Kari, Image Compression Using Weighted Finite Automata, Computer and

Graphics vol.17 (3), 305-313 (1993).

[2] K. Culik II and J. Kari, Image-data Compression Using Edge-Optimizing Algorithm for WFA

Inference, Journal of Information Processing and Management, to appear.

[3] K. Culik II and J. Kari, Inference Algorithm for WFA and Image Compression, in: Fractal Image,

Encoding and Compression, ed. Y.Fisher, Springer-Verlag, to appear.

[4] K. Culik II and J. Kari, A Recursive Algorithm for Image Compression with Finite Automata,

DCC’94, submitted.

[5] W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand

Reinhold, 1993.

[6] I. Witten, R. Neal, J. Clearly, Arithmetic Coding for Data Compression, Comm. ACM vol. 30 (6),

520–539 (1987).

13

