Aritmetic Compression of Weighted Finite Automata

Jarkko Kari *
Academy of Finland
Pasi Fränti
Computer Science Department
University of Turku
20500 Turku, Finland

Abstract

Karel Culik and the first author have demonstrated how Weighted Finite Automata (WFA) provide a strong tool for image compression $[1,2,3,4]$. In the present article we introduce an improved method for the last step of the compression algorithm: for compressing the WFA that approximates the given image. Our method is based on arithmetic compression of sparse matrices.

1 Introduction

The image compression based on Weighted Finite Automata (WFA) is a relatively efficient fractal compression method that gives good compression results. The principal idea is to infer a WFA A that represent a good approximation of the image to be compressed, and to remember A instead of the image. Inference algorithms for finding a suitable WFA have been discussed extensively in $[1,2,3,4]$, but the the important last step of expressing the WFA as a bitstring has been mostly ignored.

In the present article we introduce a way of writing a WFA in a compressed form that improves the compression results reported in $[1,2,3,4]$. The method is based on arithmetic coding with three adaptive models for different parts of the WFA. First we give a short description of WFA and the recursive inference algorithm. Then we describe the arithmetic encoding of the WFA. Finally, examples and compression results are presented.

2 Preliminaries

Weighted Finite Automata (WFA) are finite automata with each edge labeled besides an input symbol also by a real number. Initial and final states are replaced by initial and final distributions that give for each state a real number. A WFA A over alphabet Σ with state set $Q=\{1,2, \ldots, n\}$ is represented compactly by $|\Sigma|$ transition matrices $W_{a}, a \in \Sigma$, of size $n \times n$, a row vector I of size $1 \times n$ and a column vector F of size $n \times 1$. For all $i, j \in Q, a \in \Sigma$, the element (i, j) of W_{a} is the weight of the transition from state i to state j with input symbol a. The initial and final distribution values of state i are the i 'th elements of I and F, respectively.

[^0]The WFA A defines a function $f_{A}: \Sigma^{*} \rightarrow \mathbb{R}$ by

$$
f_{A}\left(a_{1} a_{2} \ldots a_{k}\right)=I W_{a_{1}} W_{a_{2}} \ldots W_{a_{k}} F
$$

where ordinary matrix products are used. Equivalently, f_{A} can be determined as follows: Define for each state $i \in Q$ a function $\psi_{i}: \Sigma^{*} \rightarrow \mathbb{R}$ recusively by

$$
\begin{align*}
\psi_{i}(\varepsilon) & =F_{i}, \text { and } \tag{1}\\
\psi_{i}(a w) & =\left(W_{a}\right)_{i, 1} \psi_{1}(w)+\left(W_{a}\right)_{i, 2} \psi_{1}(w)+\ldots+\left(W_{a}\right)_{i, n} \psi_{n}(w) \tag{2}
\end{align*}
$$

for all $w \in \Sigma^{*}, a \in \Sigma$. Then

$$
\begin{equation*}
f_{A}(w)=I_{1} \psi_{1}(w)+I_{1} \psi_{2}(w)+\ldots+I_{1} \psi_{n}(w) \tag{3}
\end{equation*}
$$

If the set $\left\{f: \Sigma^{*} \rightarrow \mathbb{R}\right\}$ of functions is taken as a linear space where addition and multiplication by a constant are defined in the natural way pointwise, then (2) can be written as

$$
\begin{equation*}
\left(\psi_{i}\right)_{a}=\left(W_{a}\right)_{i, 1} \psi_{1}+\left(W_{a}\right)_{i, 2} \psi_{1}+\ldots+\left(W_{a}\right)_{i, n} \psi_{n} \tag{2’}
\end{equation*}
$$

where $\left(\psi_{i}\right)_{a}$ is the function $\left(\psi_{i}\right)_{a}(w)=\psi_{i}(a w), \forall w \in \Sigma^{*}$. Similarly (3) becomes

$$
\begin{equation*}
f_{A}=I_{1} \psi_{1}+I_{1} \psi_{2}+\ldots+I_{1} \psi_{n} \tag{3'}
\end{equation*}
$$

In other words, the initial distribution gives the coefficients in the linear expression of f_{A} using functions ψ_{i}, and the i 'th row of transition matrix W_{a} provides the coefficients in a similar linear expression for $\left(\psi_{i}\right)_{a}$. Clearly (1), (2') and (3') uniquely define f_{A}.

1	3
0	2

Figure 1: The addresses of quadrants
Let $\Sigma=\{0,1,2,3\}$. A correspondence between functions $\Sigma^{*} \rightarrow \mathbb{R}$ and grey-tone images is obtained as follows. Words over Σ are understood as addresses of subsquares of the unit square $[0,1] \times[0,1]$: Each letter of Σ refers to one quadrant of a square as shown in Fig. 1. We assign ε as the address of the root of the quadtree representing an image, i.e. it refers to the whole unit square. Each letter of Σ is the address of a child of the root, i.e. a quadrant of the unit square. Every word in Σ^{\star} of length k, say w, is then an address of a unique node of the quadtree at depth k, i.e. an address of a subsquare of size $2^{-k} \times 2^{-k}$. The children of this node have addresses $w 0, w 1, w 2$ and $w 3$. For example, the squares addressed by words of length three are shown in Figure 2.

A function $f: \Sigma^{*} \rightarrow \mathbb{R}$ defines a multiresolution image, that is, an image in every resolution $2^{k} \times 2^{k}$: The grey-tone intensity of the pixel with address $w \in \Sigma^{k}$ is $f(w)$. Typically the values of f are supposed to be within the interval $[0,1]$, in which case 0 is interpreted as 'white', 1 as 'black' and intermediate values as intermediate intensities, but other interpretations are also possible. The different resolutions are compatible if the multiresolution image f is average preserving:

$$
f(w)=\frac{1}{4}[f(w 0)+f(w 1)+f(w 2)+f(w 3)]
$$

111	113	131	133	311	313	331	333
110	112	130	132	310	312	330	332
101	103	121	123	301	303	321	323
100	102	120	122	300	302	320	322
011	013	031	033	211	213	231	233
010	012	030	032	210	212	230	232
001	003	021	023	201	203	221	223
000	002	020	022	200	202	220	222

Figure 2: The addresses of subsquares in resolution 8×8.
for each $w \in \Sigma^{\star}$. The function f_{A} computed by WFA A is average preserving if

$$
\left(W_{0}+W_{1}+W_{2}+W_{3}\right) F=4 F
$$

that is, if the final distribution F is an eigenvector of $W_{0}+W_{1}+W_{2}+W_{3}$ corresponding to eigenvalue 4 .
With this interpretation of alphabet $\Sigma=\{0,1,2,3\}$ the meaning of (2^{\prime}) becomes obvious: It states that the quadrant a of the image ψ_{i} is the linear combination of images $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ with coefficients given by the i 'th row of matrix W_{a}.

Figure 3: (a) WFA A defining the linear grayness function f_{A}, (b) $f_{A}=\psi_{1}$, (c) ψ_{2}.
Example 1: Consider the WFA A shown in Fig. 3(a). The transitions are labeled with symbols of Σ and weights, which are inside parentheses. The initial and final distribution values of the states are shown inside the nodes. The images ψ_{1} and ψ_{2} are shown in Fig. 3(b) and (c), respectively. Since the initial distribution is $(1,0), f_{A}=\psi_{1}$. Fig. 4 shows the linear expressions indicated by the outgoing transitions from the first state. The outgoing transitions from the second state simply indicate that all four quadrants of ψ_{2} are the same image ψ_{2}.

Figure 4: Linear expressions defined by the outgoing transitions from state 1 in Fig. 3.

3 A scetch of the recursive inference algorithm

The inference problem for WFA means finding a WFA that approximates well a given grey-tone image. Based on the discussion of the previous section this can be rephrased as follows: Try to find multiresolution images $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ such that
(i) all four quadrants of all ψ_{i} can be expressed as linear combinations of $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$,
(ii) a good approximation of image f can be expressed as a linear combination of $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$.

The coefficients of (i) and (ii) define the transition matrices and the initial distribution of the WFA, respectively, while the final distribution is given by the average intensities of images $\psi_{i}, 1 \leq i \leq n$.

Algorithm 1 is a scetch of our implementation of the recursive inference algorithm discussed in $[2,3,4]$. See those references for more details. Basically the algorithm processes all four quadrants of an image
(a) by trying to express the quadrant as a linear combination of existing images ψ_{i} and
(b) by choosing the quadrant as a new image that is recursively processed.

The alternative that yields better result is chosen. The alternative (a) corresponds to adding new edges that express the coefficients of the linear combination, while (b) means adding a new state for the quadrant and just one transition with weight 1 . The alternative is chosen that gives smaller value of

$$
\text { cost }=\text { error }+G \cdot \text { size },
$$

where G is a real number parameter given to the algorithm, error is the square difference between the quadrant and its approximation (by square difference we mean the sum of the squares of the differencies in the pixel values in the two images), and size is the number of bits required to store the the new edges and states.

```
Global variables:
    \(n \quad: \quad\) number of states in the automaton,
    \(\psi_{i} \quad: \quad\) image of state \(i, 1 \leq i \leq n\),
    weight \([i][a][j]\) : the weight of the transition from state \(i\) to state \(j\) with label \(a\),
    child \([i][a] \quad: \quad\) number \(j\) such that \(\psi_{j}=\left(\psi_{i}\right)_{a}\), if such \(j\) exists, 0 otherwise. (Indicates what
    choice was done for quadrant \(a\) of state \(i\) in function build.)
```

Functions $d_{k}(f, g)=\sum_{w \in \Sigma^{k}}(f(w)-g(w))^{2}$ compute the square distance between images f and g in resolution $2^{k} \times 2^{k}$.

Initially, $n=$ the numer of elements in the initial basis, $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ are the images in the basis, and values of weight and child are initiated to 0 .

The WFA for image $f: \Sigma^{k} \rightarrow \mathbb{R}$ of resolution $2^{k} \times 2^{k}$ is constructed by calling build (f, k, ∞).

float build (ψ, k, \min)

$/^{*}$ Approximates image $\psi: \Sigma^{k} \rightarrow \mathbb{R}$ of resolution $2^{k} \times 2^{k}$ by a WFA. In the end of the routine the image ψ_{n} of the last state is an approximation of ψ such that the value of cost $=$ error $+G \cdot$ size is minimized, provided cost < min. In this case the routine returns cost. Otherwise (if min could not be improved) value ∞ is returned. The function uses local variables $s[a]$ and $t[i][a]$ to remember the chosen values of child and weight until the end of the routine, that is, until the number of the new state approximating ψ is known. */

If $\min \leq 0$ or $k=0$ then return (∞);
cost $\leftarrow 0$;
do steps $1-5$ with $\varphi=\psi_{a}$ for all $a \in \Sigma$:

1. Find $r_{1}, r_{2}, \ldots r_{n}$ such that the value of

$$
\operatorname{cost} 1 \leftarrow d_{k-1}\left(\varphi, r_{1} \psi_{1}+\ldots+r_{n} \psi_{n}\right)+G \cdot \operatorname{size} 1
$$

is small, where size1 denotes the increase (in bits) in the size of the automaton caused by adding edges to states $1,2, \ldots, n$ with label a and weights $r_{1}, r_{2}, \ldots, r_{n}$;
2. $n_{0} \leftarrow n$;
3. cost2 $\leftarrow G \cdot \operatorname{size} 2+\operatorname{build}(\varphi, k-1, \min \{\min -$ cost,cost1\}$-G \cdot \operatorname{size} 2)$, where size2 is the increase in the size of the WFA caused by an edge with weight 1 to a new state;
4. If $\operatorname{cost2} \leq \operatorname{cost1}$ then $\operatorname{cost} \leftarrow \operatorname{cost}+\operatorname{cost2}, s[a] \leftarrow n, t[n][a] \leftarrow 1$;
5. If cost $1<$ cost2 then cost \leftarrow cost $+\operatorname{cost1}, n \leftarrow n_{0}, s[a] \leftarrow 0, t[i][a] \leftarrow r_{i}, \forall i, 1 \leq i \leq n_{0}$;

If cost $>\min$ return (∞);
$n \leftarrow n+1$;
For all $a \in \Sigma$ set child $[n][a] \leftarrow s[a]$;
For all $a \in \Sigma$ and $i=1,2, \ldots, n-1$ set weight $[n][a][i] \leftarrow t[i][a]$;
$\psi_{n} \leftarrow$ the multiresolution image defined to state n;
return(cost);

Algorithm 1: Outline of the recursive inference algorithm for WFA.

Parameter G controlls the quality of the approximation and the compression rate. One bit increase in the size of the compressed file is allowed if the improvement it provides in the image quality is at least G. The algorithm thus chooses from the square error vs. file size -graph the point where the derivative is $-G$.

The Algorithm 1 is slightly different from the algorithm described in $[2,3,4]$. The main difference is that the new state is added only after its quadrants are processed. Therefore its image is not available for the linear combinations in its subquadrants. This prevents loops in the automaton. This also means that before first call to function build, the WFA has to be initiated to a fixed initial basis. See [4] for more details on this point.

After Algorithm 1 has been executed, the transition matrices of the WFA can be read from the variable weight. Element (i, j) of W_{a} is weight $[i][a][j]$. Images ψ_{i} of the states (except the states of the initial basis) are approximations of some subsquares of the original image. Variable child describes the relation between the states and the quadtree representation of the image: If state i approximates the subsquare with address w, then state child $[i][a]$ approximates the subsquare with address $w a$, provided child $[i][a] \neq 0$. If child $[i][a]=0$, the quadrant a was expressed as a linear combination of existing states, so there is no state in the WFA for subsquare $w a$.

4 Compressing the WFA

Algorithm 1 produces a WFA A that still has to be written as a bitstring. The initial distribution of the WFA A will always be of the simple form $(0,0, \ldots, 0,1)$ since the image ψ_{n} of the state added in the end of the outermost recursive call of build, i.e. the last state of A, is the approximation of the original image. The final distribution, on the other hand, is uniquely determined by the transitions and the initial basis: Since there are no loops, the transitions tell how each ψ_{i} is eventually build up from the images of the initial basis, and the average intensity of each state ($=$ the final distribution) can be computed. Therefore, initial and final distributions do not need to be stored - it is sufficient to remember the four transition matrices.

The transition matrices can be stored in a variety of ways. The only requirement is that during the execution of Algorithm 1 we have to be able to compute (or at least estimate well) the increase in the size of the compressed WFA caused by new edges and states on steps 1 and 3 . The algorithm is build in such a way that it takes into account how the WFA is stored in the end, and it attempts to produce WFA that are well suited for that particular method.

Our choice is to use arithmetic coding with adaptive models. A model is a method for calculating the probability distribution for the next symbol to be encoded. The model gets as input the context of the symbol, i.e. some information computable without knowing the symbol. Arithmetic encoder get as input the probability distribution and the actual next symbol. The decoder uses the same model to compute the same probability distribution for the same context. Based on this information it can decode from the compressed string the actual encoded symbol. The model is called adaptive if the probability distribution it provides depends on the history of symbols already encoded. Consult reference [6] for more details.

In our application the weights will be encoded separately from their positions in the matrices. In otherwords we store bitmatrices that indicate the non-zero elements of the transition matrices. The edges added on step 4 of Algorithm 1 are special: their weight is always one. They are stored by encoding the variable child. So we use three models: one for variable child, one for the bitmatrix of other edges, and one for the weights. Since adaptive models are used, in order to allow the costs be estimated correctly on steps 1 and 3 , the encoding has to be done in the same order as the edges are added during the execution

External routines encode_child, encode_bitmatrix and encode_weight that take care of the arithmetic encoding and updating the models are used. Routine initiate_column initiates the probabilities of 0 and 1 in an unused context of the bitmatrix model.

Before calling encode initiate $n \leftarrow$ the numer of elements in the initial basis.
The encoding of the WFA produced by Algorithm 1 is done by calling encode (m, k), where m is the number of states in the WFA, and the size of the original image is $2^{k} \times 2^{k}$.

```
encode(i,k)
2}\mp@subsup{}{}{k}\times\mp@subsup{2}{}{k}..*
For all }a\in\Sigma\mathrm{ do
    If child[i][a]\not=0
    {
        encode_child(1,k);
        encode(child[i][a],k-1);
    }
    Else
    {
        encode_child(0,k);
        For all j=1,2,\ldots,n do
            If weight[i][a][j]=0 encode_bitmatrix ( }0,j)\mathrm{ ;
            Else
            {
            encode_bitmatrix (1,j);
            encode_weight(weight [i][a][j],k) ;
            }
    }
n\leftarrown+1; /* = i*/
initiate_column(n).
```

$/^{*}$ Encodes the subtree of the quadtree rooted at state i. State i represents a subimage in resolution

Algorithm 2: Outline of a recursive algorithm for encoding a WFA produced by Algorithm 1.
of Algorithm 1.
Algorithm 2 is a scetch of the encoding algorithm. In the following we exlplain in more details the algorithm and the models that are used. Algorithm 3 is a scetch of the corresponding decoding algorithm.

4.1 The model for variable child

Four bits are encoded for each state i : For every $a \in \Sigma$ we encode 1 if $\operatorname{child}[i][a] \neq 0$ and 0 otherwise. This uniquely determines the underlying quadtree structure. Note that the actual value of child $[i][a]$ can be deduced by numbering the nodes in the same depth first order as Algorithm 1 traverses the tree.

The depth of the state in the tree is used as context. The idea is that the probability of bit 1 is greater

External routines decode_child, decode_bitmatrix and decode_weight take care of the arithmetic decoding and updating the models. Routine initiate_column is used to initiate the probabilities of 0 and 1 in a new context of the bitmatrix model.

Before calling decode initiate $n \leftarrow$ the numer of elements in the initial basis.
A WFA produced by by Algorithm 1 is decoded by calling decode (k), if the size of the original image is $2^{k} \times 2^{k}$.

decode(k)

$/^{*}$ Decodes a subtree whose root represents an image at resolution $2^{k} \times 2^{k}$. Local variables $s[a]$ and $t[j][a]$ are used to remember the values of child and weight until the end of the routine. */

```
For all \(a \in \Sigma\) do
    If decode_child \((k)=1 \quad \operatorname{decode}(k-1) ; s[a]=n\);
    Else
    \{
        \(s[a]=0 ;\)
        For all \(j=1,2, \ldots, n\) do
            If decode_bitmatrix \((j)=1\) then \(t[j][a] \leftarrow\) decode_weight \((k)\);
            Else \(t[j][a] \leftarrow 0\);
    \}
\(n \leftarrow n+1 ;\)
For all \(a \in \Sigma\) set child \([n][a] \leftarrow s[a]\);
For all \(a \in \Sigma\)
    If \(s[a]=0\) then, for all \(j=1,2, \ldots, n-1\) set weight \([n][a][j] \leftarrow t[j][a]\);
    Else weight \([n][a][s[a]] \leftarrow 1\);
    initiate_column( \(n\) ).
```

Algorithm 3: Outline of a recursive algorithm for decoding a WFA encoded by Algorithm 2.
for the nodes close to the root than for those closer to the leaves. In particular, a node is a leaf iff all four bits are 0's.

Initially, in every context the probabilities of both bits are set to $1 / 2$. After encoding $x 0$'s and y 1's at the particular depth, the probabilities are updated to $(x+1) /(x+y+2)$ and $(y+1) /(x+y+2)$ for 0 and 1, respectively. The same probabilities should be used in Algorithm 1 for calculating size1 and size2 on steps 1 and 3:

$$
\begin{aligned}
& \text { size1 }=-\log _{2}\left(\frac{x+1}{x+y+2}\right)+\text { size1', and } \\
& \text { size2 }=-\log _{2}\left(\frac{y+1}{x+y+2}\right)
\end{aligned}
$$

where size 1 ' is the increase in the size of the automaton due to the new edges with weights $r_{1}, r_{2}, \ldots, r_{n}$.
Bit b at depth k is encoded by routine encode_child (b, k) that (i) encodes the bit using arithmetic coding and (ii) updates the model for context k. The corresponding routine for decoding is decode_child (k) that returns the encoded bit and updates the model.

If child $[i][a] \neq 0$, nothing else than bit 1 needs to be stored for quadrant a. If child $[i][a]=0$, the weights weight $[i][a][j], 1 \leq j \leq n$ found on step 1 have to be encoded in addition to the bit 0 . For each j a bit indicating whether weight $[i][a][j]=0$ is encoded using the model of subsection 4.2 . If weight $[i][a][j] \neq 0$ the weight is stored using the method of subsection ??.

4.2 The model for the bitmatrices

A bit indicating whether weight $[i][a][j]=0$ is encoded using the column j as the context. This is based on the observation that some images are more frequently used in linear combinations than others. It is sufficient to encode a bit for the columns that correspond to states that existed when step 1 of Algorithm 1 was executed. Others correspond to states that were created later and were therefore not yet available.

A new context is initiated when a new state becomes available. The probabilities of bits 0 and 1 are then initiated to p_{0} and p_{1} according to their occurences in the bit matrices (in all contexts) so far. Later, after encoding x 0's and y 1's in the context, the probabilities are updated to $\left(x+p_{0}\right) /(x+y+1)$ and $\left(y+p_{1}\right) /(x+y+1)$ for 0 and 1 , respectively.

Bits are encoded by routine encode_bitmatrix (b, j) that also updates the model for context j. The corresponding routine for decoding is decode_bitmatrix (j).

4.3 Encoding the weights

Finally non-zero weights $r_{j}=$ weight $[i][a][j]$ have to be encoded. Consider their precision: Assume p bits after the binary point are stored. The precision should be increased by one bit if the image quality gets improved by at least G. The improvement is at most $4^{p+1} \cdot d_{k-1}\left(\psi_{j}, 0\right)$, and on the average
where

$$
d_{k-1}\left(\psi_{j}, 0\right)=\sum_{w \in \Sigma^{k-1}} \psi_{j}(w)^{2}
$$

Therefore the precision should be increased if

$$
\frac{d_{k-1}\left(\psi_{j}, 0\right)}{3 \cdot 4^{p+1}}-\frac{d_{k-1}\left(\psi_{j}, 0\right)}{3 \cdot 4^{p+2}}<G
$$

that is, if

$$
p<\log _{4} d_{k-1}\left(\psi_{j}, 0\right)+\log _{4} \frac{1}{G}-2 .
$$

Instead of weight r_{j}, normalized weight

$$
r_{j}^{\prime}=n o r_{k-1}[j] \cdot r_{j}
$$

is stored, where

$$
n o r_{k-1}[j]=\sqrt{\frac{d_{k-1}\left(\psi_{j}, 0\right)}{4^{k-1}}}
$$

is the square root of the mean square distance of ψ_{j} from zero in resolution $4^{k-1} \times 4^{k-1}$. For r_{j}^{\prime} precision

$$
p=k-2+\left\lfloor\log _{4} \frac{1}{G}\right\rfloor
$$

is used. Advantages of using the normalized weight are the uniformity of the precisions (the same number of bits at the same resolution) and better distribution of the weights.

For encoding the weights, an interval $I=\left[x, x+m \cdot 2^{-s}\right]$ is divided into m subintervals of length 2^{-s}. First, information concerning which subinterval contains r_{j}^{\prime} is encoded using arithmetic encoding (here $(-\infty, x)$ and (y, ∞) are possible intervals). If $r_{j}^{\prime} \in I$, the last $p-s$ bits are written as such. If $r_{j}^{\prime}<x$ (or $r_{j}^{\prime}>y$), the positive real number $r=r_{j}^{\prime}-x$ (or $r=y-r_{j}^{\prime}$, respectively) is stored as follows: $m=\left\lfloor\log _{2}(r+1)\right\rfloor$ is written in unary (this requires $m+1$ bits), and $r+1-2^{m}$ is written as such $(m+p$ bits).

Weights r_{j}^{\prime} are encoded in precision p by routine encode_weights $\left(r_{j}^{\prime}, p\right)$ that also updates the model. The corresponding routine for decoding is decode_weights (p).

5 Results

Our set of test images consists of four well-known 8-bit gray scale images of resolution 512×512 (lena, airplane), or 256×256 (bridge, camera). Lena is the green component of the original rgb-image lena.

Recommendations for the compression algorithm was set up by the JPEG (Joint Photographic Experts Group) working group. The bit rate requirement for "useful" image quality was set to 0.25 bits per pixel, and for 'recognizable" image quality to 0.083 bits per pixel [5]. We try to meet the first requirement.

\mathbf{G}			WFA		W+WFA		JPEG	
	bpp	mse	bpp	mse	bpp	mse		
	Lena	0.20	70.90	0.19	70.83	0.20	113.91	
	Airplane	0.23	71.10	0.20	64.67	0.21	117.06	
	Bridge	0.33	84.15	0.30	76.40	0.30	94.42	
	Camera							
0.005	Lena	0.29	51.87	0.28	46.54	0.28	66.57	
	Airplane	0.35	45.12	0.29	40.87	0.29	62.68	
	Bridge	0.52	40.55	0.46	37.45	0.45	55.95	
	Camera							

Table 1: Test results for several well-known images.

Table 1 contains the test results for these images when compressed by the recursive inference algorithm (WFA), by the recursive inference algorithm applied to the Mallat form of the W6 wavelet transform (W+WFA, see [2]), and by JPEG. The inference algorithm was applied with parameter values $G=0.01$ and $G=0.005$. For each case the bit rate of JPEG was set to match as closely as possible with the ones given by the W+WFA method. The results of both WFA and W+WFA clearly outperforms the results of JPEG. The compression results for Lena and $G=0.005$ are illustrated in Fig. 5. The degderations of the methods are however better visualized in Fig. 6, where magnifications from Lena are shown.

Figure 5: Test image Lena a) original, b) compressed by JPEG, c) by WFA, d) by W+WFA.
The drawback of the WFA inference algorithm is its high compression time. The higher the automaton size (and thus the image quality) the higher the running time. However, the decoding remains relatively fast. This is an important property e.g. for an image archieving system where the images are stored only once, but retrieved often. The compression and decompression times with Sun SparcServer 690M are given in Table 2.

Finally, Table 3 contains more details about the encoding results of the WFA. For all four WFA for Lena, we have listed the numbers of bits required to encode the three different parts of the automaton: the undelying quadtree structure (i.e. variable child), the bitmatrices and the weights. The numbers reported are the base 2 logarithms of the probabilities provided by the models to the arithmetic encoder. Also the numbers of states and edges in the WFA are listed. The numbers do not include the initial basis which does not need to be stored. The number of edges contains only the edges whose weights are stored - the edges with weight 1 forming the quadtree structure are excluded.

Figure 6: Magnifications of Lena.

\mathbf{G}			WFA		W+WFA	
	comp.	decomp.	comp.	decomp.		
	Lena	412.9	10.5	518.1	22.0	
	Airplane	598.9	15.2	547.2	25.7	
	Bridge	1480.5	64.5	1078.7	44.4	
	Camera					
	Lena	614.6	13.9	981.0	36.0	
	Airplane	1066.9	23.9	964.6	33.2	
	Bridge	3101.5	149.0	2341.0	103.2	
	Camera					

Table 2: Compression/decompression times.

On the average, a little more than two bits per state are needed for the quadtree - a clear improvement to the trivial four bits per state. The numbers of bits per encoded weight varies between 4.0 and 5.9. For parameter value $G=0.005$ one bit higher precision is used for the weights than in case $G=0.01$. Typically the combination with wavelets produces more states but fewer edges, therefore the bitmatrices occupy a greater share of the compressed file.

G	type	bits in quadtree	bits in bitmatrices	bits in weights	states	edges
0.010	WFA	1088	25850	25072	477	4843
	W+WFA	1874	32624	14431	831	3534
0.005	WFA	1368	40090	34962	601	5948
	W+WFA	2326	48144	23087	1145	4972

Table 3: Entropies for the different parts of the WFA for Lena, and numbers of states and edges.

References

[1] K. Culik II and J. Kari, Image Compression Using Weighted Finite Automata, Computer and Graphics vol. 17 (3), 305-313 (1993).
[2] K. Culik II and J. Kari, Image-data Compression Using Edge-Optimizing Algorithm for WFA Inference, Journal of Information Processing and Management, to appear.
[3] K. Culik II and J. Kari, Inference Algorithm for WFA and Image Compression, in: Fractal Image, Encoding and Compression, ed. Y.Fisher, Springer-Verlag, to appear.
[4] K. Culik II and J. Kari, A Recursive Algorithm for Image Compression with Finite Automata, DCC'94, submitted.
[5] W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand Reinhold, 1993.
[6] I. Witten, R. Neal, J. Clearly, Arithmetic Coding for Data Compression, Comm. ACM vol. 30 (6), 520-539 (1987).

[^0]: *The address of the first author is: Mathematics Department, University of Turku, 20500 Turku, Finland

