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Abstract—Classification of interbeat interval time-series which fluctuates in an irregular and complex manner is very challenging. 

Typically, entropy methods are employed to quantify the complexity of the time-series for classifying. Traditional entropy methods 

focus on the frequency distribution of all the observations in a time-series. This requires a relatively long time-series with at least 

a couple of thousands of data points, which limits their usages in practical applications. The methods are also sensitive to the 

parameter settings. In this paper, we propose a conceptually new approach called attention entropy, which pays attention only to 

the key observations. Instead of counting the frequency of all observations, it analyzes the frequency distribution of the intervals 

between the key observations in a time-series. The advantages of the attention entropy are that it does not need any parameter 

to tune, is robust to the time-series length, and requires only linear time to compute. Experiments show that it outperforms fourteen 

state-of-the-art entropy methods evaluated by real-world datasets. It achieves average classification accuracy of AUC=0.71 while 

the second-best method, multiscale entropy, achieves AUC=0.62 when classifying four groups of people with a time-series length 

of 100. 

Index Terms—Attention entropy, the complexity-loss, peak points, heart rate variability, HRV, RR interval, interbeat interval, 

time-series, synthetic signals. 

——————————   ◆   —————————— 

1 INTRODUCTION

IOLOGICAL signals are space, time, or space-time rec-

ords of biological events such as the heart beating or a 

muscle contracting [1]. Biological signals including electro-

encephalogram (EEG) [2], electrocardiogram (ECG) [3], [4], 

electro-oculography (EOG) [5], surface electromyogram 

(sEMG) [6], [7], galvanic skin response (GSR) [8], [9] and res-

piration, are widely used in fields such as clinical disease 

diagnosis. 

Living systems exhibit self-regulating mechanisms that 

process inputs with a broad range of characteristics [10], 

[11]. Many biological time-series such as heart rate varia-

bility (HRV) also called interbeat intervals extracted from 

ECG are extremely inhomogeneous, non-stationary, and 

fluctuate in an irregular and complex manner [12]. Fig. 1 

shows four time-series of interbeat intervals from different 

subjects. We can see that they vary in an irregular manner. 

HRV is used to physiological analysis, such as depressive 

disorder analysis [2], stress recognition [13], [14], [15], and 

affective states analysis [16]. There also has been consider-

able interest in quantifying the complexity of HRV to un-

cover hidden information, such as heart failures [17], [18], 

[19] and coronary artery disease [20]. Typical methods such 

as multiscale entropy (MSE) [21] and grouped horizontal 

visibility graph entropy (GHVE) [22] analyze complexity by 

segmenting the signals into equal-length sub-series and 

calculating the entropy based on how frequently the artifi-

cial patterns occur extracted from the sub-series. The pro-

cess of a typical method is illustrated in Fig. 2 (top). Given 

a time-series X, the method segments it into over-lapping 

sub-series of equal length, extracts patterns from the sub-

series, and then calculates the entropy based on the fre-

quencies of the patterns. The result depends on the length 

of the sub-series and the definition of the artificial patterns. 

 

 

Fig. 1. Interbeat interval time-series from a young subject with age 55, 
an elderly subject with age > 55, a subject with congestive heart failure 
(CHF), and a subject with atrial fibrillation (AF). 

There are three main challenges with typical entropy 

methods. One is that the patterns in the time-series data 

must be complex enough to be able to model the data. 

Therefore, it requires a lot of data to populate all histogram 
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bins to obtain a dense histogram. Typical entropy methods 

need a time-series length of at least 30,000 samples to 

model the data [21]. This takes more than 30 minutes to 

collect which induces high cost in the clinical diagnosis and 

therefore limits their usage in the real-world applications.  

The second challenge is that it can take considerable 

time to extract the patterns. Most methods require 

O(𝑚𝑎𝑛𝑏) time, where m is the dimension of the vector (see 

Section 2), n is the time-series length, and a, b >1. This is a 

dilemma as the methods need a lot of data to calculate re-

liable entropy value, but having more data means also 

more time required. This prevents the use of the methods 

from large-scale data.  

The third challenge is that the artificial patterns also lack 

clear intuitive interpretation. As a result, the patterns have 

no direct analytical capability which limits its contribution 

to the medical analysis of different diseases. 

To overcome these challenges, we propose a conceptu-

ally new method called attention entropy, which pays at-

tention only to the key observations and focuses on how 

regularly they repeat in the time-series. Fig. 2 (bottom) il-

lustrates the process of computing the attention entropy. 

Given a time-series X, attention entropy extracts the key 

patterns and uses the intervals between the key patterns to 

calculate the entropy value. 

 

 

Fig. 2. Main process of calculating the entropy of series. 

2 ENTROPY METHODS 

Entropy is a quantitative measure of the randomness and 

disorder of a system. Rudolf Clausius [23] was the first to 

introduce a mathematical version of the concept to meas-

ure the proportion of heat energy transferred from a body 

to another. Boltzmann and Gibbs [24], [25] extended the 

concept into statistical mechanics to model the molecular 

disorder and chaos. Shannon later defined the entropy as 

the smallest size that a message can be encoded without 

loss [26]. In this section, we review the entropy measures 

that are most relevant to our study. 

2.1 Existing methods 

The process of typical entropy methods has four compo-

nents as summarized in Fig. 3: (1) convert the original series 

into another series; (2) construct the sub-series; (3) extract 

the patterns from the sub-series; (4) analyze the frequency 

distribution of the patterns. Different entropy methods are 

based on the different combinations of these four compo-

nents, as summarized in Table 1.  

From Table 1, we can see some entropy methods convert 

the original series into another series and then segment the 

converted series into sub-series to extract patterns. For ex-

ample, spectral entropy [27], average entropy [28], and 

MSE [21] convert the series using the discrete Fourier trans-

form [27], the grid [28], and the coarse-graining function 

[21], respectively. 

We can also see that there are three typical methods to 

construct the sub-series: single value, template vector, and 

delay vector. They can be formed as 𝑧𝑖
𝑚,𝜏 = [ 𝑥𝑖, 𝑥𝑖+𝜏, . . . , 

𝑥𝑖+(𝑚−1)𝜏] for 1 ≤ i ≤ n–(m-1)𝜏, where 𝜏 is the time delay, 

and m is the dimension of the vector, given a finite time-

series X = 𝑥1, . . . , 𝑥𝑛 with the length n. Single value is the 

case of 𝑧𝑖
𝑚,𝜏 with m = 1 and 𝜏 = 0. Template vector is the 

case of 𝑧𝑖
𝑚,𝜏 with m > 1 and 𝜏 = 1. Delay vector is the case 

of 𝑧𝑖
𝑚,𝜏 with m > 1 and 𝜏 > 0.  

 

 
Fig. 3. Typical components of entropy methods. 

TABLE 1 Summary of Entropy Methods 

Entropy methods 
Convert 

series 
Sub-series Patterns 

Fre-

quency 

of… 

Shannon [26] 

NO 

Single  

value 

Single  

value 

Patterns 

Rényi [29] 

Tsallis [30] 

Permutation [31] 

Template 

vector 

Permutation 

Approximate [33] Similar template 

vectors Sample [34] 

Bubble [35] Swaps 

Horizontal  

visibility [36] 
Visibility graph 

Grouped horizon-

tal visibility [22] 

Grouped  

visibility graph 

SVDE [38] 
Delay 

vector 

Singular values 

Edge  

permutation [32] 
Permutation 

Spectral [27] 

YES 

Single 

value 

Single  

value Average [28] 

Multiscale [21] 
Template 

vector 

Similar template 

vectors 

Attention (new) NO - Peak points Intervals 

 

Different entropy methods have major difference in the 

way they extract the patterns from the sub-series. Shannon 
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entropy [26], Rényi entropy [29], Tsallis entropy [30], spec-

tral entropy [27], and average entropy [28] use the values 

directly. Permutation entropy [31] and edge permutation 

entropy (EPE) [32] use the permutations of the rankings of 

each value in the template vectors as the patterns. Approx-

imate entropy [33], sample entropy [34], and multiscale en-

tropy [21] use similar template vectors as the patterns. Bub-

ble entropy [35] uses the swaps of sorting sub-series with 

bubble sort algorithm as the patterns. Horizontal visibility 

entropy (HVE) [36] uses visibility graphs [37] and GHVE [22] 

uses grouped visibility graphs as the patterns. The singular 

value decomposition entropy (SVDE) [38] uses the singular 

values obtained by performing singular value decomposi-

tion on the embedding space spanned by the delay vectors 

as the patterns. 

Once the patterns are defined, the entropy values will be 

calculated by analyzing the frequency distribution of these 

patterns. Approximate entropy [33] and sample entropy 

[34] analyze the frequency distribution of the patterns de-

fined with m and m+1 dimensional template vector, re-

spectively. They calculate the entropy value from the differ-

ence of these two distributions. 

From Table 1, we can also see that the proposed atten-

tion entropy does not need to convert the series. It uses 

peak points in the series as the patterns. It analyzes the fre-

quency distribution of patterns’ intervals, which will be dis-

cussed in Section 3. 

2.2 Discussion 

Each method introduced above has its advantages and dis-

advantages. Shannon entropy [26], Rényi entropy [29], and 

average entropy [28] can be applied globally to all data, or 

locally only to points around specific points [39]. However, 

they ignore the temporal order of the patterns in the signal 

[40].  

Permutation entropy [31] and edge permutation en-

tropy [32] use the temporal information [39], but they rely 

on the occurrence of equal values in the sub-series [41]. 

Approximate entropy [33] has the advantage of lower com-

putational demand and less effect from noise, but it 

strongly depends on the time-series length and therefore 

lacks consistency [40]. Sample entropy [34] is invariant to 

the time-series length and it performs more consistently 

under various conditions. However, it has a strong depend-

ency on the input parameters [39].  

Bubble entropy [35] and GHVE [22] are not sensitive to 

the parameter settings. However, they have high computa-

tional costs, and therefore, they are not practical for large-

scale data [35], [36].  

MSE [21] is capable of discovering the multiscale feature 

of data but it requires long time-series to work. SVDE [38] 

allows analyzing even very short and non-stationary data, 

but it has high computational costs when applied to large-

scale data [38]. Spectral entropy [27] has the advantage of 

simplicity, but it is sensitive to noise and relies on the as-

sumption that the data error is independent of time [27].  

3 ATTENTION ENTROPY 

To overcome the shortcomings of the typical entropy meth-

ods, we propose attention entropy. We first introduce the 

general principle and then give a suggestion of how to se-

lect the key patterns. 

3.1 The general principle of attention entropy 

Attention entropy is calculated in three main steps: (1) de-

fine the key patterns; (2) calculate the intervals between 

two adjacent key patterns; (3) calculate Shannon entropy of 

intervals. The difference between classical entropy meth-

ods and attention entropy is demonstrated in Fig. 4. Clas-

sical frequency-based entropy methods cannot separate 

Series 1 and 2, as both have the same frequency distribu-

tion of the patterns. Attention entropy can do it because 

the distribution of the intervals of the key patterns (Apple) 

in the series are different. 

Formally, given a finite series X, we first define the key 

pattern 𝛺. Second, we calculate the intervals 𝐼𝛺 = {v | v = j-
i} for any given sub-series 𝑢𝑖 , 𝑢𝑘 , and 𝑢𝑗 of X which satisfy 

that 𝑢𝑖  and 𝑢𝑗  match in the pattern 𝛺 , but 𝑢𝑘  does not 

match in 𝛺 for any i < k < j. We finally calculate Shannon 

entropy over 𝐼Ω as the attention entropy. 

 

 

Fig. 4 Difference between attention entropy and other entropies. 

3.2 Peak points as the key patterns 

We define a point 𝑥𝑖 as a peak point, including local max-
ima and local minima, if it satisfies one of the conditions 

below: 

• 𝑥𝑖−1 < 𝑥𝑖 and 𝑥𝑖 > 𝑥𝑖+1 (𝑥𝑖 is defined as local maxima) 

• 𝑥𝑖 < 𝑥𝑖−1 and 𝑥𝑖 < 𝑥𝑖+1 (𝑥𝑖 is defined as local minima) 
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If each point in a time-series is considered as one state of 

a system, the change of the state can then be seen as the 

system’s adjustment to the environment. A complex system 

is expected to have a complex process of the state changes 

when adapting to the environment. The peak points repre-

sent the local upper and lower bounds of the state changes. 

This makes them as the potential key patterns.  

A time-series then can be represented by the series of 

the peak points. We then calculate the intervals between 

two successive peak points. We consider four cases:  

• Intervals of local maxima to local maxima (Max-Max) 

• Intervals of local minima to local minima (Min-Min) 

• Intervals of local maxima to local minima (Max-Min) 

• Intervals of local minima to local maxima (Min-Max) 

We can use any one of these four cases individually by 

calculating the entropy of the respective interval distribu-

tion. We can also merge the results by analyzing the four 

distributions separately and then taking the average of the 

four individual entropy values. In the rest of the paper, we 

use this merging strategy as our recommended method 

and denote it as Average-4. 

Fig. 5 shows an example of how to calculate the atten-

tion entropy when defining peak points as the key patterns. 

In general, the individual entropy values are not expected 

to differ much from each other. In most cases, the result is 

about the same regardless which of the four cases we use. 

However, using all the four cases brings two additional 

benefits. First, it can smooth possible abnormalities in the 

data. Second, we have four times more data. This can po-

tentially make the method work with shorter time-series. 

 

 

Fig. 5 A simulated time-series {𝑥0, . . ., 𝑥20} to illustrate the procedure 
of calculating attention entropy. First, we find local minima (circle 
points): {𝑥1, 𝑥6, 𝑥13, 𝑥17} and local maxima (squared points): {𝑥4, 𝑥9, 
𝑥15 , 𝑥19 }. Second, we calculate the intervals of Max-Max, Min-Min, 

Max-Min, Min-Max: {5, 6, 4}, {5, 7, 4}, {2, 4, 2}, and {3, 3, 2， 2}. Third, 

we calculate their Shannon entropies: 1.58, 1.58, 0.92, and 1.01. Fi-
nally, the attention entropy is calculated as the average of these four 

entropy values: 1.27. 

Fig. 6 shows the expected behavior of the attention en-

tropy; it increases with increasing the randomness of peak 

points. Fig. 7 shows sample distributions of the intervals 

among peak points of the four different subjects from Fig. 

1. We can see that all intervals of AF are smaller than 10 

and the distribution of AF always concentrates on the lower 

values, leading to low entropy. Some intervals of CHF are 

bigger than 10 but all of that are smaller than 20, and the 

distribution of CHF drops faster than young and elderly. 

The difference between the distributions of young and el-

derly is less visible from the graphs, but the average of the 

four entropy values, however, makes the distraction clear 

(young=2.68, elderly=2.25).  

 

 

Fig. 6 The more randomly the peaks “^” and “v” appear, the greater is 
the attention entropy. 

Algorithm 1: AttentionEntropy(X, 𝛺) 

Input: X: Time-series of length n, 𝛺: key patterns 

Output: E: Entropy value 

FOR i = 1 TO n: 

   IF matchKeyPatterns(𝑥𝑖 , 𝛺) THEN: 

   interval = i - previous 

   𝐹𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙=  𝐹𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+ 1 

   previous = i 

E= calculateShannonEntropy(F) 

3.3 Implementation  

Implementation of attention entropy is shown in Algo-

rithm 1. It requires O(n) time, where n is the length of time-

series X. The algorithm contains the following steps:  

(1) Detect whether the point is a key pattern; 

(2) Calculate the interval between two key patterns;  

(3) Count the frequencies of all intervals.  

When a point 𝑥𝑖 is detected as a key pattern, we calculate 

the interval as i – j, where 𝑥𝑗 is the previous key pattern be-

fore 𝑥𝑖 . We store the counts of the interval values to 

𝐹𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 . Once the algorithm has analyzed all the points it 

then calculates the Shannon entropy over the frequency 

distribution of the intervals.  
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Fig. 7 Frequency distributions of the intervals between points of four subjects from Fig. 1. The numbers are the attention entropy values. The 
average entropies (Average-4) are: Young=2.82, Elderly=2.68, CHF=2.25, AF=1.49.

Similar to Algorithm 1, Average-4 is implemented by 

checking the peak point type (local maxima or local min-

ima) and updating the respective frequency histogram. 

This, the original O(n) time complexity still remains though. 

Both the basic algorithm and Average-4 require extra space 

for storing the frequency histograms, which is upper lim-

ited by O(n). 

4 EXPERIMENTAL SETUP 

Datasets: we first tested with simulated Gaussian distrib-

uted white and 1/f noises [42]-[45], and then tested with 

real-world data of healthy and pathological subjects: the 

interbeat intervals dataset which is downloaded from 

PhysioNet [46]. There are 72 healthy subjects divided into 

two groups: subjects with age  55 (young) and subjects 

with age >55 (elderly). There are also 44 subjects with con-
gestive heart failure (CHF), and 24 subjects with atrial fibril-
lation (AF). The information about the dataset is shown in 

Table 2, and the selected sub-series of different subjects are 

shown in Fig. 1. The length is the number of samples in the 

time-series with a sampling frequency of 128 Hz [46]. 

 

TABLE 2. Dataset Information 

Group Instance Min. length Avg. length Max. length 

Young 26 75,100 101,277 126,945 

Elderly 46 76,926 106,234 136,527 

CHF 44 74,985 111,144 147,879 

AF 24 34,837 48,701 61,915 

 

Define key patterns: we used the peak points introduced in 

Section 3 as key patterns. The same attention entropy (Av-

erage-4) calculation illustrated in Fig. 5 was applied to the 

experiments.  

Baseline methods: we compared the proposed method to 

all the entropy methods in Table 1. We used the parameters 

suggested from the original paper of each method.  

Measurements: we used the analysis of variance (ANOVA) 

[47] and the area under the receiver operating characteris-

tic curve (ROC AUC) [48] as the measurements. ANOVA can 

determine if the means of groups of data are significantly 

different from each other. ANOVA outcomes a p-value, and 

if the p-value is below the threshold chosen for statistical 

significance (usually 0.1, 0.05, or 0.01), there are significant 

differences among the groups. The idea of 
receiver operating characteristic (ROC) curve is to plot the 

true-positive rate against the false-positive rate over the 

ranked entropy values at various threshold values. The area 
under the ROC curve (ROC AUC) serves as the accuracy 

evaluation ranging from 0 to 1. The value 1 corresponds to 

a perfect classification result. 

5 RESULTS 

5.1 Simulated white and 1/ f noises 

We applied the attention entropy method to the simulated 

Gaussian distributed white and 1/f noises, and the results 

are shown in Fig. 8. We can see that the attention entropy 

values of 1/f noise are significantly higher (p-value < 0.01) 

than white noise. This result is consistent with the fact that, 

unlike white noise, 1/f noise contains complex structures 

[42], [43]. 

 

 

Fig. 8 Attention entropy analysis of 30 simulated Gaussian distributed 
(mean zero, variance one) white and 1/f noise time-series. Symbols 
represent the mean values of entropy, and bars represent the stand-
ard error (SE =standard deviation / √𝑛, where n is the number of sub-
jects). 

5.2 Real-world heart-rate data 

We next tested the interbeat interval time-series dataset 

with time-series length=100. The p-value results are shown 

in Table 3. We used the star symbol (*) to mark the results 

that are statistically significant (p-values<0.01). We can see 

that the results of attention entropy are statistically signifi-

cant in all the important cases of separating healthy and 

non-healthy subjects. The differences of the entropy values 

in case of young-vs-elderly and CHF-vs-AF are as we ex-

pected but not statistically significant. The possible reason  
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TABLE 3 P-value Results  

Time-series 

length 

Entropy 

methods 

Shannon  

[26] 

Rényi 

[29] 

Tsallis 

[30] 

Per. 

[31] 

App. 

[33] 

Sample  

[34] 

Bub.  

[35] 

HVE  

[36] 

GHVE  

[22] 

SVDE  

[38] 

EPE  

[32] 

Spe. 

[27] 

Ave. 

[28] 

MSE  

[21] 

Atten-

tion 

100 

Young, Elderly 0.115 0.159 0.213 0.484 0.376 0.570 0.516 0.922 0.060 0.335 0.482 0.212 0.040 0.463 0.021 

Young, CHF 0.001* 0.001* 0.002* 0.352 0.318 0.029 0.139 0.006* 
<0.001

* 
0.037 0.343 0.003* 0.002* 0.017 

<0.001

* 

Young, AF 0.019 0.025 0.109 
<0.001

* 
0.856 0.025 0.754 0.020 0.015 <0.001* <0.001* 0.011 0.064 

<0.001

* 

<0.001

* 

Elderly, CHF 0.012 0.006* 0.002* 0.675 0.705 0.060 0.307 0.030 0.018 0.002* 0.663 
<0.001

* 
0.143 0.025 0.007* 

Elderly, AF <0.001* <0.001* 0.003* 0.002* 0.572 0.059 0.334 0.094 0.347 <0.001* 0.002* 
<0.001

* 

<0.001

* 

<0.001

* 
0.001* 

CHF, AF <0.001* <0.001* 
<0.001

* 
0.021 0.463 0.785 0.086 0.970 0.250 0.026 0.022 0.967 

<0.001

* 
0.116 0.116 

AVG. 0.025 0.032 0.055 0.256 0.548 0.255 0.356 0.34 0.115 0.067 0.252 0.199 0.042 0.104 0.024 

Stars 3 4 4 2 0 0 0 1 1 3 2 3 3 2 4 

1000 

Young, Elderly 0.226 0.151 0.212 0.087 0.477 0.546 0.463 0.716 0.018 0.422 0.086 0.575 0.151 0.211 
<0.001

* 

Young, CHF <0.001* <0.001* 
<0.001

* 
0.175 0.798 0.902 0.096 0.014 

<0.001

* 
0.077 0.165 

<0.001

* 
0.012 

<0.001

* 

<0.001

* 

Young, AF 0.104 0.233 0.771 
<0.001

* 
0.361 0.149 0.909 0.315 

<0.001

* 
<0.001* <0.001* 

<0.001

* 
0.039 

<0.001

* 

<0.001

* 

Elderly, CHF <0.001* <0.001* 
<0.001

* 
0.827 0.714 0.679 0.235 0.004* 

<0.001

* 
0.006* 0.797 

<0.001

* 
0.098 

<0.001

* 

<0.001

* 

Elderly, AF 0.005* 0.014 0.174 0.005* 0.101 0.022 0.393 0.304 
<0.001

* 
<0.001* 0.004* 

<0.001

* 
0.001* 

<0.001

* 

<0.001

* 

CHF, AF <0.001* <0.001* 0.001* 0.042 0.239 0.093 0.080 0.344 0.591 0.020 0.043 0.014 
<0.001

* 
0.148 0.004* 

AVG. 0.056 0.066 0.193 0.19 0.448 0.398 0.362 0.283 0.101 0.087 0.183 0.098 0.05 0.06 0.001 

Stars 4 3 3 2 0 0 0 1 4 3 2 4 2 4 6 

10000 

Young, Elderly 0.145 0.105 0.187 0.009* 
<0.001

* 
<0.001* 0.953 0.857 

<0.001

* 
0.345 0.008* 0.830 

<0.001

* 

<0.001

* 

<0.001

* 

Young, CHF <0.001* <0.001* 
<0.001

* 
0.128 0.018 0.013 0.130 0.098 

<0.001

* 
0.042 0.120 

<0.001

* 
0.004* 

<0.001

* 

<0.001

* 

Young, AF <0.001* 0.008* 0.052 
<0.001

* 
0.812 0.383 0.545 0.071 

<0.001

* 
<0.001* <0.001* 

<0.001

* 
0.013 

<0.001

* 

<0.001

* 

Elderly, CHF <0.001* <0.001* 
<0.001

* 
0.564 0.075 0.223 0.090 0.065 0.001* 0.001* 0.583 

<0.001

* 
0.883 0.249 0.038 

Elderly, AF <0.001* <0.001* 0.001* 
<0.001

* 
0.004* 0.082 0.572 0.040 0.377 <0.001* <0.001* 

<0.001

* 

<0.001

* 

<0.001

* 

<0.001

* 

CHF, AF <0.001* <0.001* 
<0.001

* 
0.001* 0.124 0.401 0.046 0.572 0.127 <0.001* 0.001* 0.019 

<0.001

* 
0.014 0.004* 

AVG. 0.024 0.019 0.040 0.117 0.172 0.184 0.389 0.284 0.084 0.065 0.119 0.141 0.15 0.044 0.007 

Stars 5 5 4 4 2 1 0 0 4 4 4 4 4 4 5 

The “*’ symbol means the p-values <0.01. 
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TABLE 4 ROC AUC Results 

Time-series 

length 

Entropy  

methods 

Shannon  

[26] 

Rényi 

[29] 

Tsallis 

[30] 

Per.  

[31] 

App. 

[33] 

Sample  

[34] 

Bub.  

[35] 

HVE  

[36] 

GHVE  

[22] 

SVDE  

[38] 

EPE  

[32] 

Spe. 

[27] 

Ave. 

[28] 

MSE  

[21] 

Atten-

tion 

100 

Young, Elderly 0.63 0.63 0.63 0.43 0.58 0.56 0.56 0.45 0.62 0.73 0.43 0.58 0.65 0.52 0.68 

Young, CHF 0.75 0.76 0.76 0.36 0.56 0.67 0.61 0.32 0.74 0.40 0.36 0.29 0.73 0.62 0.78 

Young, AF 0.36 0.36 0.36 0.17 0.55 0.71 0.54 0.34 0.68 0.20 0.17 0.26 0.39 0.71 0.85 

Elderly, CHF 0.65 0.65 0.66 0.43 0.53 0.63 0.55 0.38 0.65 0.30 0.43 0.24 0.60 0.59 0.67 

Elderly, AF 0.27 0.27 0.27 0.22 0.47 0.66 0.51 0.41 0.56 0.12 0.22 0.25 0.29 0.68 0.72 

CHF, AF 0.18 0.18 0.19 0.29 0.45 0.50 0.48 0.53 0.41 0.34 0.29 0.50 0.23 0.60 0.56 

AVG. 0.47 0.47 0.48 0.32 0.52 0.62 0.54 0.41 0.61 0.35 0.31 0.35 0.48 0.62 0.71 

SD 0.23 1.16 0.16 0.11 0.05 0.08 0.04 0.08 0.11 0.21 0.11 0.15 0.21 0.07 0.10 

1000 

Young, Elderly 0.59 0.61 0.60 0.35 0.55 0.52 0.55 0.53 0.68 0.61 0.35 0.54 0.63 0.60 0.77 

Young, CHF 0.75 0.77 0.77 0.33 0.51 0.52 0.61 0.30 0.88 0.46 0.33 0.22 0.73 0.80 0.90 

Young, AF 0.38 0.42 0.42 0.15 0.43 0.40 0.46 0.27 0.85 0.19 0.15 0.06 0.41 0.87 0.96 

Elderly, CHF 0.70 0.72 0.72 0.43 0.48 0.49 0.57 0.27 0.80 0.39 0.43 0.21 0.66 0.77 0.71 

Elderly, AF 0.33 0.35 0.35 0.22 0.41 0.38 0.40 0.25 0.81 0.16 0.22 0.08 0.33 0.88 0.82 

CHF, AF 0.21 0.21 0.21 0.30 0.42 0.41 0.34 0.44 0.57 0.30 0.30 0.33 0.24 0.62 0.67 

AVG. 0.49 0.56 0.56 0.30 0.47 0.45 0.49 0.34 0.77 0.35 0.30 0.24 0.50 0.76 0.81 

SD 0.22 0.18 0.18 0.10 0.06 0.06 0.11 0.11 0.12 0.17 0.10 0.18 0.20 0.12 0.11 

10000 

Young, Elderly 0.59 0.61 0.60 0.30 0.79 0.77 0.49 0.52 0.85 0.60 0.30 0.53 0.79 0.82 0.80 

Young, CHF 0.75 0.80 0.79 0.32 0.69 0.69 0.55 0.35 0.92 0.40 0.32 0.16 0.76 0.83 0.87 

Young, AF 0.22 0.30 0.28 0.10 0.62 0.67 0.48 0.27 0.79 0.05 0.10 0.03 0.32 0.95 0.94 

Elderly, CHF 0.71 0.74 0.74 0.49 0.42 0.45 0.56 0.35 0.70 0.37 0.48 0.17 0.54 0.60 0.61 

Elderly, AF 0.18 0.26 0.24 0.19 0.35 0.45 0.49 0.27 0.58 0.04 0.19 0.05 0.18 0.77 0.80 

CHF, AF 0.12 0.15 0.14 0.20 0.42 0.49 0.43 0.39 0.40 0.21 0.20 0.31 0.19 0.67 0.71 

AVG. 0.43 0.54 0.54 0.27 0.55 0.59 0.50 0.36 0.71 0.28 0.26 0.21 0.46 0.77 0.79 

SD 0.29 0.16 0.16 0.14 0.18 0.14 0.05 0.09 0.19 0.22 0.13 0.19 0.27 0.12 0.12 

is that the number of samples in the data is too small for 

this. Attention entropy is the only method capable to sep-

arate all six groups when time-series length = 1000 so that 

the result is statistically significant (p-values <0.01). 

Another measurement of the results of classifying binary 

groups is shown in the AUC in Table 4. We can see that at-

tention entropy outperforms other entropy methods on av-

erage (AUC: 0.71 vs. 0.62 with time-series length = 100, 0.81 

vs. 0.77 with time-series length = 1000, 0.79 vs. 0.77 with 

time-series length = 10000). This indicates that the atten-

tion entropy is more powerful to separate the groups than 

the other methods are. It gives evidence that analyzing the 

frequencies of the intervals between patterns is more ben-

eficial than analyzing the frequencies of patterns, especially 

when the time-series length is short, for example, 100. 

5.3 Effect of the time-series length 

We studied the effect of the time-series length and the re-

sults are summarized in Table 3, Table 4 and Fig. 9. From 

Table 3 and Table 4, we can see that, except for the case of 

CHF-and-AF with the times-series length of 100 (p-value = 

0.116) and the case of elderly-and-CHF with the time-series 

length of 10000 (p-value = 0.038), the attention entropy 

values between each group are always statistically and sig-

nificantly different (p-values < 0.01). This indicates that the 

attention entropy can differentiate the groups at the same 

time very well and is robust to the time-series length. How-

ever, all the other methods are sensitive to the length of the 

time-series. 

 

 

Fig. 9 Attention entropy analysis of interbeat intervals time-series derived 
from healthy subjects with age ≤55 (young), healthy subjects with age >55 
(elderly), subjects with congestive heart failure (CHF), and subjects with 
atrial fibrillation (AF). Symbols represent the mean values of entropies, 
and bars represent the standard error (SE =standard deviation / √𝑛, where 
n is the number of subjects). 

From Fig. 9, we found that, regardless of the time-series 

length, the attention entropy values decrease by following 

the order: entropy (young) > entropy (elderly) > entropy 

(CHF) > entropy (AF). These results are consistent with the 

concept that the cardiac dynamics of healthy young sub-

jects are the most complex [43] and provide stronger sup-

port for the hypothesized complexity-loss of aging and dis-
ease theory [49] than multiscale entropy. The attention en-

tropy method reflects the regularity of repeating patterns 

of signals and plays more critical roles behind the complex-

ity-loss of aging and disease. The regularity-loss ignored by 

conventional entropy methods is explicitly addressed by 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAFFC.2020.3031004, IEEE Transactions on Affective Computing

8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

the attention entropy. 

5.4 Intervals between peak points 

To study the intervals among peak points further, we tested 

the intervals between local maxima and local maxima 

(Max-Max intervals), the intervals between local minima 

and local minima (Min-Min intervals), the intervals between 

local maxima and local minima (Max-Min intervals and 

Min-Max intervals). We calculated Shannon entropy of 

these four intervals and the average of Shannon entropy of 

these four intervals (Average-4). The AUC results are sum-

marized in Table 5. We can see that the choice of the inter-

val does not matter regardless of which time-series length 

is used. To simplify the choice, we recommend using Aver-

age-4 by default. 

 
TABLE 5 Average AUC of Binary Groups 

Time-series 

length 
100 1000 10000 

Max-Max 0.68 0.81 0.80 

Min-Min 0.71 0.80 0.78 

Max-Min 0.64 0.75 0.75 

Min-Max 0.68 0.75 0.76 

Average-4 0.72 0.81 0.79 

5.5 Compared with basic statistics 

Basic statistics such as mean, standard deviation, root mean 

square, and the number of pairs of successive interbeat in-

tervals that differ by more than 50 ms (NN50 defined in 

[50]) are also used to analyze the interbeat time-series [50]. 

We make comparison with attention entropy and the re-

sults are summarized in Table 6. We can see attention en-

tropy outperforms all basic statistics regardless of the time-

series length. 

 
TABLE 6 Average AUC of Binary Groups 

Time-series length 100 1000 10000 

Attention entropy 0.72 0.79 0.78 

Mean 0.57 0.56 0.54 

Root mean square 0.58 0.56 0.54 

Standard deviation 0.61 0.48 0.55 

NN50 0.57 0.63 0.58 

 

 

Fig. 10 Effects of different amounts of Gaussian distributed white 
noise on attention entropy curves. SNR corresponds to a single-noise-
ratio. The attention entropy curve labeled original corresponds to the 
attention entropy results for the interbeat intervals from a healthy sub-
ject. 

5.6 Effect of noise and outliers 

The result of an experiment may be affected by the type of 

noise. Here, we discuss the effects of superimposing uncor-

related (Gaussian distributed white) noise on a physiologic 

time-series. Fig. 10 shows that the attention entropy 

method is sensitive to the noise. The same observation in 

Fig. 11 holds for the effects of outliers. This is because noise 

and outliers affect the key patterns, namely the peak points.  

 

 

Fig. 11 Contour plot showing how the percentage of outliers and their 
amplitude (relative to the mean value of the time-series) affect the at-
tention entropy. 

 

Fig. 12 Log-log plot of running time over time-series in Table 7. 

5.7 Computational complexity 

Attention entropy takes O(n) time, where n is the time-se-

ries length. To measure the actual processing time of the 

algorithm, the algorithm was implemented in Python 3.7, 
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which can be found from the web1 and tested using PC with 

CPU Intel Core i7, 16GB RAM, and clock frequency 2.3 GHz. 

Fig. 12 and Table 7 show the relationship between the run-

ning time and the time-series length of one young subject. 

We can see that with the increase of the time-series length, 

attention entropy requires much less computing time than 

most of the competing entropy methods, including the 

competitive MSE [21]. 

5.8 Discussion 

In this section, we discuss the potential usability of the 

method in affective computing, its limitations, and the 

threats to the validity of the results of the proposed 

method. Many methods based on HRV have been devel-

oped for affective states analysis. This is because plenty of 

affective computing researches consider that specific emo-

tional states can elicit changes in the autonomic nervous 

system, which can be exactly monitored by HRV analyses 

as shown by studies over the decades. However, quantify-

ing HRV with entropy-based methods has been rarely used 

for affective analysis although it has been widely adopted 

in many tasks such as disease detection and classification. 

This may be because conventional entropy methods were 

proposed for long-term HRV analysis as introduced in Sec-

tion 2, therefore, they were not applicable to short-term 

HRV analysis. This obstacle is expected to be removed by 

attention entropy, which can work well with short duration 

HRV signals and, therefore, can be potentially applied to 

affective state analysis. Moreover, attention entropy may 

be able to capture the change of affective states in a timely 

manner considering its advantage of requiring linear time 

complexity. 

One limitation of the proposed method is that it needs 

to define key patterns in advance. The limitation of using 

peak points as key patterns is that it is sensitive to outliers 

and noise. The key patterns may be application-specific, 

which may be a threat to the validity of the results. How-

ever, these threats may be overcome by defining different 

key patterns and combining the results from multiple key 

patterns; future work could explore this strategy. The 

mechanisms behind the key patterns such as peak points 

could also be explored in future work. 

 6. CONCLUSION 

A novel complexity analysis method called attention 

entropy is proposed, which does not need any parameter 

tuning when using peak points as key patterns. It has linear 

time complexity and is robust to the time-series length. We 

compared it to fourteen state-of-the-art complexity analy-

sis methods with real-world datasets. The results show that 

attention entropy outperforms all the compared methods 

and is the only method to be able to separate all groups 

with statistical significance using time-series length of 

1000. This shows attention entropy has higher discrimina-

tion power in short-duration HRV signals and has potential 

in other tasks such as affective computing. Future work 

could uncover more key patterns and the hidden mecha-

nisms behind them.  

 

 

TABLE 7 Running Time over Time-Series Length (Milliseconds). 

Time-series 

length 

Shannon  

[26] 

Rényi 

[29] 

Tsallis 

[30] 

Per.  

[31] 

App.  

[33] 

Sample  

[34] 

Bub.  

[35] 

HVE  

[36] 

GHVE  

[22] 

SVDE  

[38] 

EPE  

[32] 

Spe. 

[27] 

Ave.  

[28] 

MSE  

[21] 

Attention 

100 <1 <1 <1 59 68 50 78 85 91 206 1 41 <1 <1 <1 

1000 3 5 5 60 74 53 7714 8763 253 206 5 42 5 2 2 

10000 36 77 75 67 254 237 795821 885471 1935 223 523 43 44 160 16 

100000 636 1328 1374 133 7599 8236 >1h >1h 19019 229 5001 106 448 16404 166 
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