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diverse information (news, opinions, and personal experi-
ences) that users share with others on the application [1]. 
Through interactional links (mutually following each other), 
users create social networks that can be helpful in analyzing 
societal behaviors [2], information dissemination [3], and 
impact on other users and public debates [3]. Within these 
networks, virtual communities can also be identified. The 
abundance of data on Twitter has meant that it has become a 
vast repository that is utilized in both applied fields, such as 
marketing [1], and in extracting novel insights and knowl-
edge in fundamental research [2, 4].

For over a decade, researchers have studied national or 
language-specific Twitter communities, analyzing aspects 
like network structures, clustering, and user interaction 
dynamics [5–7]. In [5], authors studied a follower/followee 
network of 120,000 accounts in Australia (called Australian 
Twittersphere). They used Australian-themed hashtags veri-
fied by the time-zone settings of the users (unique to Austra-
lia). Their study delivers insights into the spread of hashtags 
on Twitter and highlights the discovery of a significant por-
tion of Australian Twitter users, paving the way for innova-
tive data collection methods.

The authors in [7] compared a single-day activity to a 
long-term activity using 177,000 unique accounts in the 
Australian Twittersphere. They observed more diversity in 

Introduction

This study focuses on clustering social media users’ loca-
tions based on their connections. The study uses data from 
X (previously known as Twitter). As is widely known, it 
is a prominent social media platform that has a significant 
influence on our daily lives [1]. This is primarily due to the 
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Abstract
We analyze Nordic social media users by clustering them based on their connections on Twitter. The data consists of 
15,794 users in the five Nordic countries: Finland, Sweden, Norway, Denmark, and Iceland. We first create an undirected 
graph from the friendship relations (mutually following each other), then divide the graph into five clusters using a recent 
M-algorithm, and finally compare the results to users’ locations. The results demonstrate that the users are strongly clus-
tered according to their home country. There is surprisingly little interaction across the countries despite the fact that they 
are, except for Iceland, physically close to each other and have cultural and linguistic similarities. The main language of 
the four countries belongs to the Germanic languages, while Finnish is typologically distinct. We further explore content 
from users in each country, analyzing its alignment with connectivity patterns. Our findings reveal a discrepancy between 
user-generated content similarity in the Nordic region and their connectivity patterns.
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the single-day activity patterns. They also highlighted the 
limitations of hashtag-driven methods. Van Geenen et al. 
in [8] made an attempt to analyze one week of activity on 
Twitter by detecting accounts of politicians, media organi-
zations, and journalists. However, no significant findings 
were reported.

Kwak et al. in [9] investigated Twitter’s dynamics by 
examining a network among 41.7 million users. They used 
PageRank and the number of followers to identify influen-
tial users. The results revealed unique characteristics, such 
as non-standard follower distributions and fast information 
diffusion, primarily through retweets.

In a series of papers [10–12], Münch et al. analyzed the 
German and Italian Twitter networks. The first paper intro-
duces a sub-sampling method based on rank-degree [10]. 
The authors focus only on nodes with higher connection 
degrees. In the follow-up paper, they examined the relation-
ship between the Italian and German Twitter communities 
using a sample of 14,685 nodes extracted based on the lan-
guage of the Tweets [11]. Their third paper showed that the 
sub-sampling approach was able to identify the top influen-
tial accounts in the German Twittersphere based on 1–10% 
sub-sample size [12].

The main limitation of these studies is that analyzing large 
networks requires good tools. Sub-sampling is one possibil-
ity to reduce the size of the data that would be impractical 
to analyze manually. However, clustering would be more 
appropriate in summarizing extensive amounts of data [13]. 
For example, multimorbidity graph was constructed from 
58 million patient diagnoses in Finland and then partitioned 
into diagnosis clusters [14]. The summarization by the clus-
tering made it easier to analyze the content, which would 
have been an overwhelming task if examined the full data 
as such. Clustering has been in various fields, such as health 
science, online marketing, and transportation [14–16].

In social networks, clustering has been employed to 
detect communities [13, 17–19]. The authors in [20] applied 
the Louvain clustering algorithm for the Australian Twit-
tersphere to extract 30 major clusters. They compared the 
thematic content of the clusters and found a shift from a 
technology-centric base to more diverse ones encompass-
ing sports, politics, and celebrity culture. The same cluster-
ing algorithm was applied to the Norwegian Twittersphere 
selected based on the interface language and the profile 
location information in [6]. The study focused on the echo 
chamber phenomenon, but the extracted clusters revealed 
very little evidence for it.

In [21] authors presented a hierarchical clustering algo-
rithm with an information-theoretic clustering criterion 
focusing on the hierarchical aspect of the network. Peixoto 
introduced another information-theoretic clustering method 
based on the minimum description length principle to 

estimate the number of clusters [22]. If the data had natural 
clusters, this approach could potentially find their correct 
number. A follow-up paper by Peixoto provides a theoretical 
background of clustering via extensive discussion of several 
myths that sometimes appear in the literature [23]. We fully 
agree with the arguments made in the paper.

In this paper, we apply cluster analysis to analyze the 
Nordic Twittersphere. Similar to [20], we use the mutual 
follower/followee relationship with the assumption that a 
mutual relationship creates a stronger link than a simple fol-
lowing relation. We use a recent M-algorithm with conduc-
tance criterion, which has been shown to be more robust on 
Lancichinetti data than the widely used Louvain algorithm 
[19]. We do not claim the M-algorithm as a novel contribu-
tion; however, to our knowledge, this is the first time it has 
been applied to community detection in Twittersphere data.

Contrary to the Australian Twittersphere [5], we do not 
have an obvious shortcut like the unique time zone to select 
the Nordic users. Instead, we rely on the geo-tagged data 
collected in the Nordic Tweet Stream (NTS) project [24]. 
Although location data is not always available due to privacy 
or other concerns [25], some Twitter users still share their 
locations to provide us with a large dataset on which to base 
our analysis. Without such geo-tagged database, researchers 
would need to develop methods to infer location.

We compare the clustering result with the physical loca-
tions of the users. Specifically, we aim to determine whether 
a correlation exists between the clustering results and the 
users’ home countries in the Nordic region. The focus on 
Nordic countries is justified given that the five countries 
share substantial socio-cultural similarities, and the region 
has been suggested to be a “laboratory” for research into 
the contexts and consequences of globalization and mobility 
[26]–[27].

The process we followed involve several steps. We first 
collected tweets from the Nordic region between November 
2016 and November 2022. We selected users whose tweet 
locations matched their profile locations in the five Nordic 
countries. We then excluded users who had location-tagged 
tweets in another country than their home country indicated 
by their profile. The resulting graph was then clustered 
using a state-of-the-art graph clustering [19]. We opted for 
five clusters representing the five countries in the data, but 
we also examined the impact of adding a sixth cluster.

The study seeks to answer the following research ques-
tions. First, we aim to determine how accurately the clus-
tering results align with the country division of the users. 
Second, we explore whether there are any hidden or undis-
covered clusters that were not initially apparent. Third, we 
investigate which clustering criterion is the most appropri-
ate for the given data. We make a brief content analysis of 
the country clusters on their use of hashtags although we are 
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aware of its limitations. Our primary goal is to explore the 
existence of clusters, not extensive content analysis.

While previous studies have explored Twitter networks 
in national contexts, our work contributes a novel regional 
perspective by analyzing the Nordic Twittersphere as a uni-
fied yet culturally diverse space. The clear correspondence 
between social connectivity and national borders in our 
results, despite geographic proximity and shared cultural 
features, reveals new insights into how digital communities 
mirror offline identities. This approach not only deepens 
understanding of social clustering in a multilingual, multi-
country context, but also provides a replicable framework 
for analyzing regional networks elsewhere.

While authors in [5] have mapped national Twitter net-
works and observed that users often cluster based on geo-
graphic and cultural lines, our study extends this analysis 
to the Nordic Twittersphere using more recent data from 
2022. By applying a state-of-the-art clustering algorithm to 
a large-scale [19], multilingual dataset, we aim to uncover 
the nuances of regional digital communities in the Nordic 
context, offering comparative insights across multiple coun-
tries with shared and divergent cultural traits.

The structure of the paper is as follows. Section “Nor-
dic Twitter Data” documents the data collection process and 
summarizes the properties of the data. Section “Clustering” 
reviews previous research on network clustering and their 
result analysis. It also details the selected clustering algo-
rithm and studies the effect of the different objective func-
tions. The clustering results are discussed in Sect. “Results”. 
Sect “Conclusions” concludes the paper and suggests poten-
tial future research.

Nordic Twitter Data

Our main data source is the Nordic Tweet Stream (NTS), 
which has been collected continuously since November 
2016 [24]. NTS is a constantly growing dataset that includes 
geolocation-enabled tweets from the Nordic countries from 
November 2016 up to the present [24]. For this study, we 
selected users who had tweets between November 1, 2016, 
and November 31, 2022, resulting in a dataset called Nordic 
Twitter Network (hereafter NTN-2022). This dataset com-
prised a total of 691,521 user accounts.

The time frame was selected to cover only the era before 
the change of Twitter to X. We wanted to minimize the 
impact of external factors such as ownership changes can 
have on a social media platform and its user communities. 
Our choice also allows the data to be used later for compara-
tive studies between Twitter and X.

We opted to use geo-location as the selection criterion for 
the users in the Nordic Twittersphere for two reasons. First, 

in this way, we directly address the challenge of targeting 
research findings to specific geographical areas. This is par-
ticularly valuable for understanding regional nuances and 
how local contexts influence Twitter interactions. Second, 
a country hashtag such as #Finland gives no guarantee that 
the person is from Finland. We do not have similar unique 
time-zone verification as Australia. Limitations of Hashtag 
as a selection criterion have been widely noted in literature 
[28–30].

Instead, we rely on the geo-tagged data collected in the 
Nordic Tweet stream (NTS) project [24]. This may filter 
out many users and have a strong sub-sampling effect on 
the data with possible bias. However, the selected users are 
likely more knowledgeable than those not using geo-loca-
tion. This aligns well with the other researchers focusing on 
expert users [31].

Location Information

Twitter offers two types of locations. The first is the user’s 
self-reported location (text field) in the Bio section. This 
field is not standardized and may be inaccurate, as users can 
enter any location they choose, even a fictional one [32]. 
The second is the geolocation feature, which can be added 
to every tweet by users who enable this option in their pro-
file settings. This location is provided automatically, and it 
is in a standardized format, including the latitude, longitude, 
and the country code. NTS consists of tweets that have this 
secondary location in one of the five Nordic countries: Fin-
land, Sweden, Norway, Denmark, and Iceland.

Nordic Twitter Network

The process of creating the NTN-2022 dataset included the 
following steps: (1) user extraction, (2) user labeling, (3) 
user filtering, and (4) collecting the tweets in the entire net-
work, see Fig. 1. In the first step, we extracted all users who 
had tweets included in the NTS between November 2016 
and November 2022. In the second step, we labeled all users 
based on the country they tweeted from. Users form five 
distinct sets representing the five Nordic countries.

Users who had tweets from more than one country were 
excluded. Including such users may introduce inconsisten-
cies, making it difficult to accurately categorize and analyze 
their generated content. We intend to focus exclusively on 
topics or discussions in Nordic countries. Including users 
who had tweeted from more than one Nordic country might 
dilute the data set intended geographical focus. Moreover, 
excluding users with tweets spanning multiple countries 
improves the data quality and simplifies data analysis and 
interpretation for more straightforward comparisons and 
insights. In this step, 88,381 accounts were excluded.
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number of edges relative to all possible edges in a complete 
graph. For readability purposes, density values are multi-
plied by 1,000. Figure  2 illustrates a sample graph from 
NTN-2022 with 3,273 nodes and 13,483 edges drawn by the 
Gephi open-source network analysis software [36] using the 
Force Atlas 2 algorithm [37].

Clustering

We next describe the clustering algorithm and the compo-
nents it includes and explain the choices behind each of 
them.

In the standard clustering problem, we have a set of points 
as X = {x1, x2, . . . , xN }, and the goal is to find the parti-
tion of these points as P = {p1, p2, . . . , pN } and then the 
center points of the partitions as C = {c1, c2, . . . , ck}. 
This happens by minimizing an objective function such as 
the sum of squared errors in (1) [38]:

SSE =
∑ N

i=1
∥ xi − cj∥ 2� (1)

In graph clustering and community detection, the input data 
is a graph consisting of a set of nodes and edges. The goal is 
to identify subsets of nodes (called clusters or communities) 
so that in each subset, nodes are strongly connected within 
the set and loosely connected to nodes outside the set [39]. 
As in the standard clustering problem, an objective function 
needs to be optimized.

Existing Approaches

Graph clustering algorithms can be categorized into three 
approaches: agglomerative, divisive, and iterative [18]. 
Agglomerative algorithms merge nodes recursively until 
the desired number of clusters is reached [40]. Divisive 
algorithms do the opposite and remove connections until 
a desired number of isolated components are reached 

In the third step, we filtered out abnormal users and users 
with some uncertainty in their location. Specifically, we 
only selected users who self-reported their location in their 
profile, and it matched to the location of their tweets. Con-
sequently, another 484,064 accounts were excluded from 
the data set. In addition, we excluded verified accounts that 
(at the time of data collection) were common for celebrities 
and politicians so that the network consists of mainly real 
genuine people.

As for the network size, we assume the size of a typical 
human network to be over 30–50 [33], and 150–200 is the 
estimated average human network size that one can main-
tain and interact with [34]–[35]. To adjust to these assump-
tions of human networks, we filtered out users who had 
more than 500 contacts. We also excluded the top 1% (very 
active) and bottom 1% (very passive) accounts based on the 
number of tweets. As a result, the initial dataset of 691,521 
users was reduced to 37,057 users.

Once the user list was finalized, we collected the connec-
tions between these users as well as their tweets (up to 3,200 
latest messages, excluding retweets). Directed links were 
established between the users based on the interactional 
relationships. Isolated nodes and smaller disjoint sub-net-
works parts were excluded, and only the largest connected 
component was kept as the final NTN-2022 dataset.

Table 1 summarizes the statistics of the NTN-2022 data-
set. The network includes 15,794 nodes and 54,027 links. 
Most users are from Finland (37%) and Sweden (43%). Ice-
land is the smallest country in this data (2%). Density is the 

Table 1  Statistics of the NTN-2022 dataset
Country Nodes Edges Average 

Degree
Density
(∙1000)

Tweets

Finland 5,872 27,855 4.8 0.83 2,392,135
Sweden 6,871 18,555 2.7 0.39 6,137,063
Denmark 1,490 3,434 2.3 1.55 1,275,974
Norway 1,390 2,357 1.7 1.22 1,613,866
Iceland 261 561 2.1 8.27 178,925
NTN 15,794 54,027 3.4 0.22 11,597,963

Fig. 1  An overview of NTN construction steps
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Louvain algorithm is the most common algorithm for 
detecting communities in social networks, possibly because 
it has been implemented in Gephi [18]. It is an agglomera-
tive algorithm that optimizes modularity as the cost function. 
Modularity is a measure that compares the number of edges 
within a cluster to the expected number if the edge weights of 
the same nodes were randomly distributed (null hypothesis) 
[48]. Clustering is considered good if there are more edges 
within the clusters than expected. The algorithm is fast.

Embedding-based methods, such as DeepWalk [49] and 
GraphSAGE [50], offer an alternative approach by learn-
ing node representations that can then be clustered using 
standard algorithms like k-means. However, our method 
directly clusters the graph based on link structure, which is 
more suitable for our analysis.

The authors in [51] argue that in real-world graphs, 
there might be several partitions that are close to the global 
optimum. They discussed that an expert could select the 
best among the several good partitions using their domain 
knowledge. However, in the case of large communities, it 
would be an overwhelming task to do. Hence, they proposed 
to split the large partitions into smaller and similar parts to 
provide an abstract interpretation and adequate information 
about the primary partition.

[41]–[42]. Iterative algorithms use an objective function 
which is either minimized or maximized via local optimiza-
tion steps [42]–[43].

Users may also belong to multiple communities as they 
naturally overlap. The seed expansion method in Whang et 
al. grows communities in an overlapping manner [44]. In 
[44] the authors utilized the conductance cost function and 
tried to optimize it.

In graph theory, a highly irregular graph is a graph in which 
for each node, all the neighbors (nodes directly connected to 
it) have different degrees [45]. Karypis and Kumar in [46] 
aimed to partition irregular graphs using a three-step process: 
collapsing nodes and edges (coarsen), detecting communities 
in the coarsen graph through a seed expansion, and refinement 
of the coarsen graph. The algorithm forms balanced clusters, 
which is not the case with NTN-2022 data (see Fig. 2).

The authors in [47] developed a machine learning model 
for simultaneous graph embedding and clustering. Graph 
embedding refers to transforming complex and nonlinear 
nodes and edges into a low dimensional Euclidean space 
(usually vector space) while preserving the main criteria of 
the graph. In social network embedding, preserving commu-
nity membership is a priority. The model uses a parameter 
to control the proximity of nodes during the transformation.

Fig. 2  A sample of NTN-2022 
dataset visualized according to 
the country of the users
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Euclidean distance. This makes it fast but works only for the 
SSE objective function. It is not possible to apply k-means 
directly to networks or graphs without embedding the data 
into vector space. This would degrade the clustering quality 
by adding an extra approximation layer to the process.

The M-algorithm finds the nearest cluster for a given 
node by estimating the change (delta) on the objective func-
tion when switching the node from one cluster to another 
[19]. This can be done fast because the delta depends only 
on the neighbors of the node. This delta approach makes it 
possible to use the M-algorithm with many other objective 
functions.

The algorithm includes two main phases [19]. The first 
phase, called K-algorithm (Algorithm 2), works in a simi-
lar way as k-means. It first constructs an initial clustering 
by growing clusters in random locations. The partitions are 
then gradually fine-tuned by switching nodes to another 
partition if there exists one that improves the cost function. 
The algorithm repeats these phases as long as there are any 
changes in the clusters.

The K-algorithm always converges to a local optimum, 
which is sometimes far from the global optimum. To 
improve the result, the second phase is implemented. It fol-
lows a merge-and-split strategy. First, a random pair of clus-
ters is merged. Then, a random cluster is split. Finally, the 
new clustering is fine-tuned using the K-algorithm. The new 
clustering is kept if it improves the objective function over 
the current best candidate. This process is repeated a user 
specified number of times, allowing a flexible compromise 
between clustering quality and processing time.

It is possible to obtain more information from a single 
network by repeating measurements over different time 
periods [52]–[53]. A stochastic framework and a Gibbs sam-
pling procedure have been used in [54] to cluster similar 
structures within a population of networks instead of focus-
ing on a single network.

We will use a newly proposed graph clustering algorithm 
due to its good clustering accuracy. It was shown to provide 
significantly more accurate results than the other algorithms 
tested in [19] including the widely used Louvain algorithm. 
It is important to have an accurate and reliable clustering 
algorithm so that we can focus on the clustering results 
instead of needing to worry about algorithm performance 
or artifacts.

M-Algorithm

The algorithm is called M-algorithm (see Algorithms 1–2) 
[19]. It is a direct derivative of the k-means algorithm 
adapted for graphs with an additional split-and-merge step. 
The algorithm has several advantages [55]. First, it is com-
putationally efficient and relatively simple compared to 
many other algorithms used for graph clustering. Second, 
it is versatile in the sense that it can be applied for several 
types of objective functions, depending on the application. 
For example, it can be utilized to detect clusters with either 
balanced or unbalanced cluster sizes.

K-means finds the best cluster (one that minimizes objec-
tive function) indirectly by calculating distances to the mean 
vectors of the clusters and selecting the nearest according to 
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Objective Functions

We consider three objective functions: conductance (CND) 
[56], inverse internal weight (IIW) and mean internal weight 
(MIW) introduced in [19]. They are defined as follows:

CND = 1
k

∑ k

i=1

Ei

Ti
� (2)

IIW = M

k2

∑ k

i=1

1
Wi

� (3)

MIW = 1
k

∑ k

i=1

Wi

ni
� (4)

where ni is the size ith cluster, k is the number of clusters, 
Wi is the sum of internal weights in cluster i, Ei is the sum 
of external weights from cluster i, and Ti is the total weight 
of the edges connecting to the nodes in cluster i (Ei + Wi). 
All the objective functions consist of individual components 
for each of the k clusters. The total objective function value 
is calculated as the average of these.

Based on Formula 2, for each state, the CND value 
(between 0 and 1) equals the summation over all the weights 
of all external edges from each cluster divided by the total 
weight of the nodes in that cluster. A small value for con-
ductance represents a good clustering. Minimizing con-
ductance denotes a lower value for the sum of the external 

weights ( Ei) and a higher value for the sum of internal 
weights ( Wi). Conductance also avoids creating overly 
small clusters.

The IIW objective function, see Formula 3, has a value in 
the [1, ∞] range and is the summation of internal weights for 
each cluster ( Wi) multiplied by a constant. Like CND, min-
imizing IIW leads to better clustering results. For example, 
in the case of optimal clustering where k completely sepa-
rated and balanced clusters are calculated from the network, 
all Wi would equal M/k , and the IIW value would be 1.

The MIW proposed in [19] is the weighted version of the 
objective function introduced in [57]. Based on Formula 4, 
it normalizes the internal weights for each cluster ( Wi) by 
dividing by the cluster size ( ni). The MIW objective func-
tion must be maximized to result in more disjoint clusters. 
Maximizing MIW tends to form small dense clusters and 
one large “garbage cluster” for non-dense parts of the graph.

Results

In this section, we take an in-depth look at the NTN-2022. 
We first examine the actual network and the links between 
and within countries. We then apply the Malgorithm dis-
cussed in Sect. “Clustering” and evaluate the impact of the 
objective function on the clustering results. Lastly, we con-
sider data created by users, namely hashtags, to determine 
the similarity of content produced by users from various 
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clustering by the M-algorithm with three different objec-
tive functions (CND, IIW, and MIW). The results in Fig. 3 
illustrate that utilizing CND clustering results is highly cor-
related with the grouping by country.

The other objective functions (IIW and MIW) were 
reported to achieve accurate clustering results both with 
the benchmark data and with the diagnosis clusters in [14, 
19]. Especially IIW gained the best overall results and 

countries and explore the similarity in content and connec-
tion patterns between countries.

Clustering Objective

The visualization in Fig. 2 suggests that the data is strongly 
clustered according to the home country of the users. We, 
therefore, fix the number of clusters to 5 and perform 

Fig. 4  Detected five clusters 
using the M-algorithm with 
conductance function. The result 
matches very closely the home 
countries of the users

 

Fig. 3  Clustering with three different objective functions
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Five Clusters

The clustering results are visualized in Fig.  4, illustrating 
a clear correspondence to the country clusters. The cluster 
borders are quite clear, and very few users are clustered 
differently based on the interactional links than what their 
home country is. There are some weakly connected (almost 
isolated) components that are clustered differently. One 
visible is the small sub-cluster above the Iceland cluster, 
which contains mostly internal links within the cluster and 
very few links to other users in Iceland. In the case of con-
ductance, it is put into the same cluster with Sweden. This 
appears to be an artifact of the algorithm.

The proportion of links between the different country 
clusters are summarized in Table  2. These numbers dem-
onstrate that most links (> 90%) are to users in the same 
country. This shows that users have strong connections 
within their home country and only weak connections with 
other users. Consequently, we can argue that there are five 
intrinsic clusters in the NTN-2022 corresponding to the five 
Nordic countries. A possible explanation is the different lan-
guages used in each country.

outperformed the other objective functions [19]. However, 
the goal of the application was to create balanced clusters, 
and the benchmark data was created accordingly. This is not 
the case here, as there is one much smaller cluster, Iceland. 
In clustering, it will be merged with the Denmark cluster 
when using the IIW function, and the Finland and Sweden 
clusters are split in an arbitrary manner. MIW also detects 
the communities quite poorly. Another difference is that the 
health data in is much more dense (average degree 139 for 
a network of 205 nodes) compared to the NTN-2022 data 
[14], which is much sparser (average degree 3.4). For this 
reason, we use only the conductance objective function in 
the rest of this paper.

Table 2  Proportion of links between country clusters (%)
Source Target

Finland Sweden Norway Denmark Iceland
Finland 99.0 0.6 0.2 0.1 < 0.0
Sweden 1.1 97.5 0.9 0.4 0.1
Norway 1.7 7.2 89.3 1.3 0.4
Denmark 1.8 2.2 1.0 94.8 0.2
Iceland 0.7 2.6 3.6 1.0 92.1

Fig. 5  Clustering results on 
map. Users are plotted at their 
home location and colored by 
the cluster it belongs to (Fin-
land = blue, Sweden = yellow, 
Norway = purple, Denmark = red, 
Iceland = brown). Note: The 
geographical location of Iceland 
is artificially moved closer to 
Norway for making the figure 
more compact for easier analysis
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apparent when the two clusters are plotted separately 
(Fig. 9). Most users are in the bigger dense cluster, whereas 
the second cluster contains merely multiple disconnected 
subgraphs and nodes. These are mainly outliers that lack 
connections. We conclude that, based on the result here, 
it is unlikely that there would be any natural clusters pres-
ent within any of the country clusters. The country clusters 
are strong, but users within one country cannot be divided 
further in a stable manner based on the interactional links 
alone.

Hashtag Analysis

We deepen the clustering based on interactional patterns in 
social networks with a content analysis by exploring the use 
of hashtags in the Tweets by the users in each home country 
cluster. Hashtags (#) are metadata tags used on social media 
platforms to allow users to label their posts by keywords 
[58]. Twitter supports hashtags by making it very easy for 
users to find tweets using a specific hashtag, which creates a 
discussion thread around any topic defined by a user. Other 
users can discover and join public conversations on partic-
ular topics, making hashtags a powerful tool for tracking 
social networks around user-generated content of specific 
themes.

For this purpose, we collected the most recent tweets 
from all users in the NTN-2022, with a maximum of 3,200 
messages (the number of retrieved messages is limited by 
the Twitter API), and extracted the hashtags used in these 
tweets. We then calculated the number of unique hashtags 
for each country. The results in Table 3 display the percent-
age of tweets that include hashtags. The average number of 
hashtags per tweet is higher in the Finland cluster (0.72) 
than in the other countries (Sweden = 0.42, Norway = 0.46, 
Denmark = 0.50, Iceland = 0.45).

Top 10 hashtags of each country are then displayed 
in Table  4 (see supplementary material for hashtags 

Connections to other clusters are asymmetric. Finland 
is the most homogenous among the five countries, having 
99% within cluster connections, possibly explained by its 
linguistic divergence from the other four (all Scandina-
vian) countries. Norway has the most links to other clusters 
(10.7%), of which most are to Sweden (7.2%). Sweden is 
the most linked from other clusters, probably explained by 
its central geographical location.

Visualizing the Clustering Results on Map

The users and their clusters are further visualized in Fig. 5 
so that the users are plotted in their home locations and col-
ored according to the country cluster they were assigned to. 
We did not detect any clear patterns in the user locations. 
One might expect that users in Finland who are clustered 
into the Sweden cluster might live in western Finland as 
most Swedish-speaking Finns live there. This is partly the 
case, but since there are so few users clustered outside their 
own home country, we cannot draw any strong conclusion.

Sixth Cluster

We investigated the data further by adding the sixth cluster 
to see if it would affect the result, see Fig. 6. The main obser-
vation is that the clustering result is no longer stable, and the 
result varies from one run to another because of random-
ness in the algorithm. Sometimes, it divides Denmark (left, 
also in Fig. 7), sometimes Sweden (middle), or it allocates 
the extra cluster to the small, almost isolated sub-cluster in 
Iceland (right). Sometimes, the extra cluster is merely a col-
lection of borderline users that do not clearly belong to one 
country according to their interactional links. This instabil-
ity indicates that the choice for the number of clusters (six) 
is inappropriate for the data [38].

We studied the situation further by dividing the Finland 
cluster into two sub-clusters (Fig. 8). This time, the result 
is stable, but there is only one real cluster. This becomes 

Fig. 6  Having six clusters does not lead to stable clustering results, and the additional cluster is highly sensitive to the initialization
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other topics (1 occurrence), and the country hashtag holds 
the top ranking (#1).

By analyzing the most popular hashtags of each country 
separately, we can make a further observation that strength-
ens the conclusions based on clustering.

First, all countries have their country-specific hashtags 
in their corresponding top 10 lists (#finland, #sweden, #nor-
way, #dksocial, #iceland). We observed that the smaller 
and less central countries among these five had the country 
hashtag higher in the rankings: Finland and Iceland (1st) and 
Norway (3rd). A possible interpretation is that the people in 
such countries have a stronger need to display their origin 
than people in bigger or more central countries. The largest 
country in the region in terms of population and the size 
of the economy are Sweden (6th) and Denmark (9th). Den-
mark is also more connected to continental Europe, which 
may further enhance this phenomenon.

descriptions). They are country-specific, and not even one 
hashtag appears in the top 30 lists of the other countries.

In Finland, the hashtags that appear most frequently 
are related to sports (7 occurrences) and location (2 occur-
rences), and the country-specific hashtag is ranked at #1. 
In Sweden, the most common hashtags include sports (3 
occurrences), music (2 occurrences), politics (1 occur-
rence), location (1 occurrence), and other topics (2 occur-
rences), with the country hashtag ranked at #6.

Norway’s most frequently used hashtags revolve around 
sports (9 occurrences), with the country hashtag ranked 
at #3. In Denmark, the prominent hashtags are politics (4 
occurrences), sports (2 occurrences), awareness (2 occur-
rences), business (1 occurrence), and the country hashtag 
ranking is #9. Lastly, in Iceland, the hashtags that appear 
most frequently relate to sports (3 occurrences), tourism (3 
occurrences), politics (1 occurrence), music (1 occurrence), 

Fig. 7  Geographical distribution 
of the clusters in case when the 
additional cluster is allocated 
to Denmark. The statistics also 
showed high value of between 
these two clusters (14%) com-
pared to the corresponding value 
of the Denmark cluster (5.2%)
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Fig. 9  The two sub-clusters inside Finland cluster consist mainly one large cluster. The second smaller cluster consists only isolated and weakly 
connected sub-clusters, i.e., outliers

 

Fig. 8  Dividing Finland to two 
clusters seemed arbitrarily chosen 
without any natural explaining 
factor. The statistics also showed 
same value of between these 
two clusters (1%) compared to 
the corresponding value of the 
Finland cluster (1%)
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of common hashtags divided by the number of different 
hashtags in the two sets. The outcomes are shown in Table 6, 
where the maximum value of each row is emphasized.

Based on the results, Denmark and Norway share the 
most (10%) of all unique hashtags, whereas Iceland and 
Sweden have the least common hashtags (2.3%). The simi-
larity in hashtags use does not align with the connectivity 
pattern between countries. Based on connectivity percent-
ages in Table 2, the majority of the countries are mostly con-
nected to Sweden, but hashtag use demonstrates the highest 
similarity to Norway.

Our results align with prior sociolinguistic studies high-
lighting strong national clustering patterns in multilingual 
digital spaces. Münch et al. [12] identified clear divisions 
between Italian and German Twitter communities based on 
language, similar to how our clusters correspond to national 
borders. Likewise, the authors in [6] found limited evidence 
of cross-national echo chambers in the Norwegian Twit-
tersphere, which supports our observation of weak inter-
country links. These parallels reinforce the conclusion that 
national identity and language are central in shaping social 
media interaction patterns, even in culturally and geographi-
cally close regions like the Nordics.

Limitations

We have focused on establishing a Nordic Twitter network 
based on the following/followee relations. One limitation 
of this approach is that it does not indicate the strength of 
the connections. An alternative approach would have been 

The content also demonstrated interesting differences. 
We further categorized the top 10 hashtags subjectively 
based on our understanding of their content, see Table  5. 
Sports-related hashtags were the most common. Norway 
had 9 hashtags (all except the country tag) about sports, and 
Finland had 7. They were mostly football (soccer) related, 
with the exceptions of ice hockey and horse race (Finland) 
and handball (Norway). The other countries had only 3 or 
4 sports-related hashtags. Other common themes were poli-
tics (4 hashtags in Denmark), tourism (3 in Iceland), music 
(2 in Sweden) and awareness (2 in Denmark).

What we also examined is the similarity of the countries 
based on the overall use of hashtags. For this, we form the 
sets of all hashtags used in the same country. Jaccard Simi-
larity Coefficient (JSC) [59] is then calculated as the number 

Table 3  Statistics for the retrieved hashtags from up to 3,200 latest messages for NTN-2022 users
Tweets Tweets

with hashtags
Hashtags Hashtags

frequencies
Hashtags per tweet

Finland 2,392,135 28% 308,085 1,734,491 0.72
Sweden 6,137,063 22% 430,957 2,587,983 0.42
Norway 1,613,866 24% 169,009 748,077 0.46
Denmark 1,275,947 24% 138,010 641,646 0.50
Iceland 178,925 11% 26,756 81,231 0.45
Total 11,597,963 23% 1,072,817 5,793,428 0.50

Table 4  Top 10 most frequent hashtags for each country. For each country, hashtags are discerningly sorted based on their shares
Finland Sweden Norway Denmark Iceland

1 finland hundralappen VierHBK Dkpol iceland
2 liiga nowplaying 2pl Sldk fotboltinet
3 helsinki twittpuck Norway dkmedier 12stig
4 ravit Timraik kolbotn dkgreen inspiredbyiceland
5 veikkausliiga svpol ffk1903 Obdk fotbolti
6 huuhkajat Sweden 2fx Dkbiz menntaspjall
7 sinipaidat Ifkgbg mufc sundpol lavacentre
8 tampere Melfest raufossfotball Uddpol kosningar
9 valioliiga årebageri bcfc dksocial skeidin
10 esportsfi vitmagi obosligae Eudk tiujardarnir

Table 5  Categorization of the most frequent hashtags
Finland Sweden Norway Denmark Iceland
Sports 7 Sports 3 Sports 9 Politics 4 Sports 3
Location 2 Music 2 Sports 2 Tourism 3

Politics 1 Awareness 2 Politics 1
Location 1 Business 1 Music 1
Other 2 Other 1

Table 6  Hashtag similarity results (%)
Finland Sweden Norway Denmark Iceland

Finland - 7.2 7.4 6.8 2.7
Sweden 7.2 - 8.0 7.0 2.3
Norway 7.4 8.0 - 10.0 4.6
Denmark 6.8 7.0 10.0 - 5.0
Iceland 2.7 2.3 4.6 5.0 -

SN Computer Science

Page 13 of 16    815 



SN Computer Science           (2025) 6:815 

The main finding is that the clustering highly correlates 
with the home country of the users with only minor differ-
ences. Finland had the highest share (99%) of interaction 
connections within the same country, and Sweden had the 
smallest (89%). The result is surprising considering that 
four of the five countries share similar (typologically Ger-
manic) languages and similar cultures [26]–[27]. However, 
their topics on Twitter are very country-specific, and most 
friends are in the same country.

We also added a sixth cluster, but the result was either 
unstable or, in the case of Finland, the algorithm just created 
an additional location outlier cluster. It implies that there 
is no natural additional cluster within any of the countries 
based on the interactional links. Further analysis of the 
hashtag data within country clusters indicated a clear pat-
tern: every country had mainly their own topics. The results 
also showed some country specific behavior in the selection 
of hashtags. For example, Finland and Iceland had the coun-
try name as the #1 hashtag. Another example is that sports 
themes were highly popular in Norway and Finland but less 
so in Sweden and Denmark.

Despite shared geography and cultural similarities, social 
media users in the Nordic region cluster strongly along 
national lines, indicating that digital interactions continue 
to reflect offline national identities. This insight benefits 
policymakers and sociologists exploring digital cohesion 
and platform designers seeking to enhance cross-border or 
multilingual engagement.

Further research should focus more on combining net-
work-related information with more extensive user-gener-
ated textual content, including detecting trends and how the 
topics evolve over time. The data would also allow compari-
son of more profound linguistic differences that vary over 
time and across geographical locations. Similar to [60], it 
would be possible to examine linguistic factors associated 
with English usage in non-native English-speaking coun-
tries by considering the interactional patterns, topological 
properties, and connections among Nordic Twitter users.
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to create a weighted network from the interactions (replies, 
mentions, and retweets) with a more fine-tuned network 
having potentially more information on the relations of the 
users. It would also allow different perspectives by consid-
ering the intensity and frequency. The chosen clustering 
algorithm would generalize to such network structure as 
well. This is a promising direction for future work.

A second limitation is the use of geo-location of users for 
the selection. It has the advantages of being more reliable 
and also having more expert users in the selection. How-
ever, it has a clear sub-sampling effect, which may become 
a limitation if we lack data from where to draw the sample. 
Fortunately, we had enough data.

We also excluded travelling users, i.e. those whose geo-
location mismatches with some of the user’s tweet location. 
This filtering was done to guarantee that we are selecting 
users only from the countries in question. As a side-effect, 
we might have lost some of the nuances in the data, which 
also made it easier for the clustering algorithm to detect 
country clusters. However, the filtering did not help to find 
any sub-clusters either. The method is a compromise of 
location accuracy and the richness of data.

A limitation of using hashtags as a selection criterion has 
also been noted in the literature [28–30]. However, we do 
not use hashtags for the selection, but only for the summari-
zation of the content. Our focus is not to perform an exten-
sive content analysis but to study whether there are natural 
clusters and, if yes, what they are. We found country clus-
ters but no evidence of sub-clusters within a country. Future 
work could explore content-based clustering using embed-
ding methods to extract deeper thematic insights from user-
generated hashtags.

Other papers have reported intra-country clusters. How-
ever, it is possible to create some clusters by an algorithm 
even if the data (within a country) does not naturally divide 
into smaller clusters. In such cases, clustering just serves as 
a sub-sampling method. The smaller the clusters, the more 
differences there are in their content. However, we tried to 
find additional clusters but did not find evidence of them in 
data. A similar result was reported by the authors in [6], who 
did not find evidence of the echo chambers effect. While 
they might exist, a network built from the following/fol-
lowee links is not able to reveal them.

Conclusions

We created a very large social network of Twitter users from 
the Nordic region. The data includes Nordic Twitter users 
who tweeted between 1 November 2016 and 31 December 
2022. We then clustered the users according to their inter-
actional links.
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