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A B S T R A C T   

Objective: Early recognition and prevention are crucial for reducing the risk of disease progression. This study 
aimed to develop a novel technique based on a temporal disease occurrence network to analyze and predict disease 
progression. 
Methods: This study used a total of 3.9 million patient records. Patient health records were transformed into 
temporal disease occurrence networks, and a supervised depth first search was used to find frequent disease se
quences to predict the onset of disease progression. The diseases represented nodes in the network and paths 
between nodes represented edges that co-occurred in a patient cohort with temporal order. The node and edge 
level attributes contained meta-information about patients’ gender, age group, and identity as labels where the 
disease occurred. The node and edge level attributes guided the depth first search to identify frequent disease 
occurrences in specific genders and age groups. The patient history was used to match the most frequent disease 
occurrences and then the obtained sequences were merged together to generate a ranked list of diseases with 
their conditional probability and relative risk. 
Results: The study found that the proposed method had improved performance compared to other methods. 
Specifically, when predicting a single disease, the method achieved an area under the receiver operating charac
teristic curve (AUC) of 0.65 and an F1-score of 0.11. When predicting a set of diseases relative to ground truth, the 
method achieved an AUC of 0.68 and an F1-score of 0.13. 
Conclusion: The ranked list generated by the proposed method, which includes the probability of occurrence and 
relative risk score, can provide physicians with valuable information about the sequential development of dis
eases in patients. This information can help physicians to take preventive measures in a timely manner, based on 
the best available information.   

1. Introduction and background 

The International Classification of Diseases, tenth revision (ICD-10) is a 
coding system used to record patient diagnoses, maintain procedure 
histories, and facilitate cost reimbursement [1,2]. The World Health 
Organization (WHO) recognizes these codes,1 and they are used as a 
standard across the globe. In recent years, researchers have used codes 
to model disease co-occurrence and progression for disease prediction 
purposes [3–10]. Davis et al. [11–13] introduced the concept of 
collaborative filtering for disease prediction using patient histories 
based on ICD-9-CM codes. The recommendation engine relies on the 
behavior of similar patients to produce a recommendation for a given 
patient. Steinhaeuser and Chawal [14] constructed disease networks 

and studied their structural properties to better understand disease re
lationships and behavior over time. They trained a generalized predic
tive model that takes patient history as input, extracts patient networks 
based on the concept of nearest neighbors, and generates a ranked list of 
medical conditions. 

Jensen et al. [15] used a sequential approach to identify pairs of 
diagnoses with temporal directions that are statistically significant. 
These pairs were combined to form longer disease trajectories. Folino 
and Pizzuti [16,17] proposed a recommendation engine using associa
tion rules mining with and without the Markov model. The results 
presented in the study showed that combining the association rule with 
the Markov model improved prediction performance. 

Another study developed a phenotypic comorbidity network to 
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investigate the structural properties of diseases network and a prediction 
model to predict disease comorbidity [18]. Ding et al. [18] combined 
association rule mining with clustering and collaborative filtering to 
predict the future conditions of patients from health insurance data. The 
method merged patient disease codes together which resulted in a loss of 
information. The prediction results showed that 71 % of acute and 82 % 
of chronic conditions are predictable. 

Khan et al. [9] proposed a comorbidity network to study the pro
gression of type 2 diabetes. However, the study was limited to selective 
patient cohorts having type 2 diabetes or heart disease. Lu et al. [5] 
proposed a bipartite graph to map patient and disease interactions, 
which was later transformed into an undirected graph. The graph 
convolution network was applied to the features obtained from the 
disease network and patient information to achieve prediction accuracy. 
However, the diseases and comorbidity relations relied on missing links 
that were predicted using the bipartite graph which may have intro
duced bias. Thygesen et al. [19] used the approach developed by Siggard 
and colleagues [4] to study COVID-19 event trajectory networks to 
chronologically sort COVID-19 events. 

Previous research has also used link prediction algorithms [20–25], 
artificial neural networks [10,26], Markov chains [17], and clustering 
algorithms [11,27] to study disease risks by analyzing the frequency of 
different disease conditions that may occur simultaneously among pa
tient cohorts. Although neural network-based algorithms and matrix 
factorization-based algorithms showed good performance, they cannot 
generate easily understandable rules due to the complexity of their in
ternal decision-making process. Thus, the results generated by these 
models are not interpretable for physicians and patients. 

The aforementioned studies were mostly successful, however, there 
are a few fundamental elements that need to be addressed. First, these 
studies introduced disease co-occurrence networks [16], comorbidity 
networks [5–7,9,16,28], and disease progression [4,15,29] but they did 
not take into account that by retaining patient information, a general
ized network can be developed that combines the characteristics of 
different networks. These networks transform patient information into 
an intermediate format that results in the loss of key information such as 
temporal information, disease progression (transition from one disease 
to another), prevalent cohorts, the disease starting point, and disease 
mortality. Second, while they have proposed different networks, 
extracting useful information from these networks is still an open 
research problem. Finally, these studies are limited to immediate de
scendants and were not able to extend beyond direct immediate de
scendants (i.e. A|B and B|C can model disease progression, but not A|B, 
C). Therefore, these models are not capable of modeling dependencies 
that have higher disease sequence lengths. 

In this paper, we propose a new method for creating a temporal 

disease occurrence network that is capable of retaining patient infor
mation along with temporal information. This method can be used to 
transform networks into sub-networks to study the morbidities, disease 
progression, and risk prediction in specific patient cohorts. This 
approach uses a patient’s medical record as input and generates a ranked 
list of future disease progression along with conditional probabilities and 
relative risks. The supervised depth first search approach is used to find 
the k-frequent diseases from the current state of disease progression. A 
ranked list containing diseases and their probability of occurrence in the 
future is generated in the next step. The higher the probability score the 
more likely the disease will occur in the future, whereas higher relative 
risk values indicate a higher association between two diseases. The 
proposed model can help physicians with diagnosis and prognosis by 
providing an understandable score. 

To evaluate the performance of the proposed method, we used an 
area under the receiver operating characteristic curve (AUC) and an F1- 
score to quantify the prediction accuracy. Experimental results show 
that the proposed approach is suitable for studying patient cohorts with 
certain morbidities and disease progression by taking into account the 
patient’s recent past illnesses. 

2. Method 

2.1. Temporal disease occurrence network 

This section describes a network-based approach that captures the 
patterns of morbidities and comorbidities as they occur over time, 
allowing for the prediction of a patient’s future conditions. The temporal 
disease occurrence network represents disease progression based on the 
availability of overall health sequences of a population in terms of dis
ease progression over time. This network incorporates both the prop
erties of a disease occurrence network and the temporal aspect of 
diseases. 

First, we constructed the health trajectory of an individual patient 
that revealed the patient’s transition from one disease to another during 
the patient’s healthcare visits over time. Second, an overall disease 
progression network was generated by aggregating individual disease 
networks and iteratively updating the node and edge level attributes 
(shown in Fig. 1). The node and edge level attributes maintain the in
formation of associated diseases that have occurred in patients, as well 
as the basic information (e.g. patient labels, gender, and age group) of 
patients who exhibit similar progression between two diseases. 

2.2. Frequent disease occurrences 

Depth first search is a graph traversal algorithm used to search graph 

Fig. 1. Process to construct temporal disease occurrence network from disease sequences. Transform a patient record into an individual temporal disease occurrence 
network. Combine individual temporal disease occurrence networks into a combined temporal disease occurrence network. S represents the start of the disease 
progression and T represents the terminal disease. 

G.I. Choudhary and P. Fränti                                                                                                                                                                                                                



International Journal of Medical Informatics 175 (2023) 105068

3

data structures. The algorithm explores all the nodes as far as possible 
before backtracking. The supervised depth first search strategy explores 
the branches based on patients’ gender and age groups and stops 
exploring depth when a relative threshold is reached. The supervised 
depth first search traversal algorithm was used to extract the frequent 
disease sequences which occurred in the selected patient cohorts and 
temporal disease occurrence network. The algorithm uses patients’ 
gender, age group, and relative support count threshold in its application. 

The support threshold determines how often a group of diseases 
appear together in patients of a particular gender and age group. A 
simple intersection between the patient labels stored on every node of di 
and dj determines whether the sequence is frequent based on the relative 
support threshold. The meta-information, such as patient labels under 
gender and age group, guides the depth first search to explore the related 
frequent sequences. It stops exploring the depth when a given threshold 
is reached and then moves to unexplored paths. All the paths visited 
during the traversing are labeled as frequent disease sequences that co- 
occurred (shown in Fig. 2). However, if a group of diseases appears 
too infrequently, it is likely just by chance and it will not be considered 
significant. Thus, a frequent disease sequence must have a support 
greater than a threshold value. The frequency of a diagnosis from a 
single diagnosis to its successor and variations in patient disease se
quences is shown in Fig. 3. 

2.3. Prediction model 

After obtaining the k-frequent disease sequences for each gender and 
age group, the next step was to select the most prevalent disease se
quences based on patient history. To achieve this, we selected the dis
ease sequences that had a higher length and showed progression from 
the diseases that the patients in the corresponding group had. We sorted 
the disease sequences based on length and merged them one by one until 
we had the desired number of diagnoses. To make the results easier to 
understand, we ranked the list based on conditional probabilities and 
relative risk scores. We defined the conditional probability for an event 
di given dj and relative risk for a sequence di and dj as: 

CP(di|dj) =
p(didj)

p(di)
(1)  

where di occurred before dj. The higher value indicates that di and dj will 
occur together in a temporal order. The relative risk is defined as: 

RRdi ,j =
observed
expected

=
p
(
di, dj

)

p(di)p(dj)
(2)  

where p(di) and p(dj) are the probabilities that a patient has the disease di 
and dj, respectively, and p(didj) is the probability that a randomly chosen 
patient has both diseases in a temporal order. An RR value > 1.0 in
dicates that the two diseases are highly associated. An example is shown 
in Fig. 4. 

The proposed prediction method utilizes the patient’s gender and age 
group along with the diagnosis history as a base to find the frequent 
sequences of pre-existing diagnoses, merging the most commonly 
occurring diagnoses together based on their frequencies, conditional 
probabilities, and relative risk scores. These factors are used to rank the 
likelihood of future disease progression. 

2.4. Evaluation criteria 

In order to perform a fair evaluation of the prediction algorithm we 
divided the dataset into a training set and a testing set using the k-fold 
cross validation method with k = 20. The sequence from the test set is 
further split into two distinct parts in a temporal order. The first part of 
the sequence is used as patient history and the latter as ground truth to 
validate the result. 

The algorithm assigns a higher score to a diagnosis that has a higher 
probability to occur in the temporal disease occurrence network. The 
score quantifies the likelihood of a disease co-occurrence with existing 
diseases. If a conditional probability score shows that diagnosis has a 
higher chance to occur, then the occurrence of the disease is confirmed 
and considered likely to occur in the near future. The AUC and F1-score 

Fig. 2. k-Frequent disease sequences using node and edge level attributes to 
guide depth first search. The support threshold 2 is used. k-Frequent disease 
sequences for a female of age group 51–60 and k-frequent disease sequence for 
a male of age group 41–50 and corresponding patient clusters. 

Fig. 3. Examples of infrequent diseases in temporal disease occurrence network. A rare disease (P00: fetus and newborn affected by maternal factors and by 
complications of pregnancy, labor, and delivery) with lower support count and slower progression. Huntington’s disease (G10) with higher progression rate than 60 
different diseases and has high probability to occur as the final disease in a sequence. A real patient sequence containing malignant neoplasms at multiple sites (C97) 
as a disease with lowest support and sequences with higher support values. 
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are used as evaluation criteria to assess the performance of the algorithm 
on the selected diagnosis. AUC values indicate the probability that a 
randomly chosen existing diagnosis is given a higher score than a 
randomly chosen non-existent diagnosis. The AUC is obtained by 
comparing the score of existing (true positive) and non-existing (false 
positive) diagnoses. From n independent observations, let ne observation 
result in a higher score for existing diagnosis and nne observation have 
resulted in the same score, then the AUC is calculated as follows [30], 

AUC =
ne + 0.5nne

n
(3) 

A good diagnosis prediction algorithm should have an AUC value 
close to 1. We also use precision and recall defined as follows: 

Precision =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5)  

where TP is the number of true positives, FP is the number of false 
positives, and FN is the number of false negatives. Based on the precision 
and recall, we calculate the F1-score as their harmonic mean: 

F1 − score = 2*
Precision*Recall

Precision + Recall
(6)  

3. Experimental setup 

3.1. Dataset 

We use a patient dataset that was used in previous studies [13]; 
supplementary information about the dataset can be found online.2 The 
patient data was acquired from the national administrative Care Reg
ister for the years 2015–2018. The Health Care Registers include pa
tients’ basic information (age, gender, municipality of residence) and 
service events such as the type of contact (visit, phone call, inpatient 
admission), and the reason for the visit (recorded using ICD-10 or ICPC-2 
codes). The database contains information about 4.3 million patients 
that are over 18 years old along with patient identity code, gender, age, 
date of visit, and disease code. Patients diagnosed with a disease are 
marked in the register during their visits to healthcare centers. Patients 
received 1.6 diagnoses on average during a single visit to healthcare 
centers. 

Let n represent the total number of patients obtained from the clin
ical data set of the patient histories. The data preparation module 
transforms the raw patient data into a new data set R = {r1, r2, r3…, rm}, 
where R is a patient health center visit record, and summarizes the pa
tient medical histories related to m number of diseases. Running ana
lyses on m number of codes individually makes it difficult to study, 
comprehend, and visualize the results. As the ICD-10 system has a hi
erarchical structure, we used two different structures to round diagnosis 
codes which are aligned with WHO’s recommended block codes. These 
codes comprise initial 3-digit codes (e.g. E11: E11.9) and block codes 
with the first 3-digits (e.g. A00: A00–A09, A15: A15–A19). 

Extending the diagnosis selection process further excludes duplicate 
diagnosis codes that were used for general symptoms and signs, 
administrative purposes, and external causes (shown in Table 1). The 
process is repeated for both the 3-digit and block codes. The data is 
transformed into a sequence of medical disease history as shown in 
Table 2, which consists of a unique set of diagnoses against every 

Fig. 4. Measuring the likelihood of future progression (I10->I30) using relative risk and conditional probability. Here hypertension and heart disease show low 
correlation but higher likelihood to occur in the future. If they were independent of each other, the probability of a person having both should be p(A) p(B) = 3.4 % 
while their observed co-occurrence is 10 %. 

Table 1 
Criteria for diagnosis selection.  

ICD-10 3-Digits Block Codes 

All 1,383 250 
Serious Diagnosis 1,232 196 
Minus {R, U, V, W, Y, Z} 1,152 196  

2 https://cs.uef.fi/ml/impro/prediction/. 
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patient. The first occurrence of diagnosis is considered as evidence of 
disease progression. Then we filter out the patients with<5 diagnosis 
codes in any sequence. After filtering, there are 3,987,382 patient re
cords when diagnoses are rounded to 3-digit codes and 3,084,556 pa
tient records for block codes. The selected data contains 351,652 
patients, of which 11 % of the patient population has been diagnosed 
with diabetes (E10), 1,542,285 patients (45 %) with dental caries (K00), 
and there are 196 distinct ICD-10 block codes. The number of diagnoses 
for each patient ranges from 5 to 72. 

3.2. Compared methods 

We compare the performance of the proposed algorithm with the 
following set of link prediction algorithms. 

Common Neighbor: Common Neighbor [20] is a simple approach 
used for link prediction. Two diseases from a patient’s recent history are 
likely to form a link if they have common neighbors (CN) in the temporal 
disease occurrence network. Index CN(di, dj) for the common neighbor 
method is computed as: 

CN(di, dj)= |Γ(di) ∩ Γ(dj)| (7)  

where di and dj are two diseases and Γ(di) and Γ(dj) denote the set of 
neighbor diseases of disease di and dj. 

Aggregate Common Co-occurrence (ACC): This algorithm com
putes the pointwise mutual information to determine the degree of as
sociation between given diseases and their common co-occurred 
diseases [20]. The frequency of co-occurrences is counted for every 
single disease that co-occurred with another disease. ACC is defined as: 

ACC(di, dj)= |Γ(di) ∩ Γ(dj)| (8)  

where Γ(di) and Γ(dj) are sets of neighbors of nodes di and dj, respec
tively, and the aggregate common co-occurrence of diseases is calcu
lated by summing the number of co-occurrences of common diseases. 

Jaccard Index (JI): The JI [21] considers only the common co- 
occurrence between the diseases and is defined as follows: 

JI
(
di, dj

)
=

|Γ(di) ∩ Γ(dj)|

|Γ(di) ∪ Γ(dj)|
(9) 

Preferential Attachment (PA): The PA algorithm depends on the 
growth of diseases co-occurred with diseases di and dj [22]. Note that ki 
represents the degree of disease di and ki represents the degree of disease 
dj. PA is defined as follows: 

PA
(
di, dj

)
= ki⋅kj (10) 

Common Neighbor and Centrality-Based Parameterized 

Algorithm (CCPA): CCPA uses the common neighbor and centrality to 
identify the potential future connection between nodes [23]. 

CCPA
(
di, dj,α

)
= α⋅

( ⃒
⃒Γ(di) ∩ Γ

(
dj
) ⃒
⃒
)
+ (1 − α)⋅C

(
di, dj

)
(11) 

Supervised Random Walk (SRW): SRW is a Markov chain that 
visits a sequence of nodes using a random walker [24]. This process 
involves state transition, where a random walk is started from a given 
node, and at each step, the walker decides the next node using the 
transition probability. The walk ends when a termination node is 
reached [25]. 

4. Results and discussions 

To discuss and analyze the temporal disease occurrence network and 
prediction, we divide this section into two parts: network analysis and 
prediction model. 

4.1. Disease sequence analysis 

We select patients that have>5 diagnoses from a total of 4.3 million 
patients’ health records. The selected patient records include 1,383 
distinct diseases as shown in Table 3. We transformed these records into 
a temporal disease occurrence network, where every node in the 
network represents a unique disease. The path between diagnoses rep
resents the temporal occurrence of diseases in patients, whereas node 
and edge level attributes contain patient meta-information such as 
gender and age group. Constructing temporal disease occurrence 
network from unique sequences avoid the self-loop in temporal disease 
occurrence networks. The temporal disease occurrence network is 
shown in Fig. 5. This network allows us to study different characteristics 
that show the highly probable diseases with a higher risk of morbidity 
progression. We applied community detection algorith with resolution 
0.5 and found 17 diagnosis communities having similar structural 
structural characteristics [31]. 

Our analysis first focused on the frequencies of individual diseases 
within the temporal disease occurrence network, which was constructed 
using ICD-10 block codes (196 nodes). We observed that diseases of the 
oral cavity, salivary glands, and jaws (K00–K14 = 1,542,285) occur at a 
higher rate in the Finnish population, followed by hypertension (I10 =
724,298). The results indicate that disease groups such as oral cavity, 
salivary glands, and jaws (K00), hypertension (I10), acute upper respi
ratory infections (J00), deforming dorsopathies (M40), disorders of the 
muscles (M60), and acute pericarditis (I30) are prominent and highly 
likely to occur in a large patient cohort with a higher risk of progression. 

To investigate sequential disease progression, we analyzed the suc
cessors of all nodes and identified 23,994 pairs of directional diagnoses. 
The directional strength of a diagnosis d1->d2 or d2->d1 is determined 
by RR > 1 or CP > 1 %. The RR value reveals the correlation strength 
between the diagnosis in a direction whereas the conditional probability 
measures the likelihood of one disease occurring based on the presence 
of another. During this process, we identified a significant population- 
wide disease progression (shown in Table 4) and their link statistics. 
We identified 932 pairs of diagnoses with high correlation (RR > 1) and 
likelihood (CP > 1 %) to occur in the near future. Among these, 89 pairs 
of diagnoses had a higher occurrence rate in terms of their unconditional 
probability but lower correlation (RR < 1), and 111 of them appeared to 
have a low occurrence rate in terms of their unconditional probability 
and high correlation and progression. We found that a proportion of the 
Finnish patient population (39 %) were diagnosed with periodontal or 
gum disease and is at significant risk of metabolic syndrome (710,707), 
which is consistent with evidence from a recent study that showed 
periodontal disease and metabolic syndrome were linked [32]. We also 
observed a strong correlation (RR > 1) between neurotic stress-related 
disorders (F40) and mood disorders in 53,750 patients in both 
directions. 

Table 2 
Sample patient records.  

Patient Gender Age Group Diagnosis 

1 M 41–50 E11 K02 
2 M 41–50 E11 K02 K04 
3 F 51–60 I10 M54 
4 M 41–50 E11 K02 K04 
5 F 51–60 K02 I10 M54  

Table 3 
Temporal disease occurrence statistics after filtering sequences with < 5 
diseases.   

3-Digits Block Codes 

Average Sequence Size 8 5 
Patients 3,987,382 3,084,556 
Nodes 1,383 196 
Edges 567,881 31,800  
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Fig. 5. Visualization of temporal disease occurrence network and diagnoses communities. The node size shown is proportional to disease occurrence and nodes with 
same color represent communities associated with the same characteristics. A large node has higher occurrence, higher connections, and is very central in the 
temporal disease occurrence network. 

Table 4 
Comparison of disease occurrences using individual, forward, and backward link frequencies, their conditional probabilities, and relative risk values. RR > 1 shows a 
higher risk of disease progression.  

ICD Description Patients Forward Backward 

f CP RR f CP RR 

F00 Mental disorders 114,873 27,715 24 % 7.19 11,760 11 % 3.05 
G30 Degenerative disease of the nervous system 103,427 
F40 Neurotic stress-related disorders 74,895 20,793 7.59 % 0.92 32,957 13 % 1.46 
F30 Mood disorders 254,328 
H25 Disorders of lens 188,262 11,564 6 % 1.69 8,493 8 % 1.24 
H30 Disorders of choroid and retina 112,153 
F70 Mental retardation 11,816 327 3 % 8.17 142 1 % 3.56 
G80 Cerebral Palsy 10,453 
F70 Mental retardation 11,816 34 2 % 4.87 26 0 % 3.72 
Q00 Congenital malformation 1,824 
I100 Acute rheumatic fever 114 5 0 % 3.51 5 4 % 3.51 
L50 Urticaria and erythema 38,518 
G35 Demyelinating diseases 11,477 147 3 % 7.76 194 2 % 10.24 
H46 Disorders of the optic nerve 5,091 
A50 Predominantly sexual transmission 35,289 46 11 % 9.64 35 0 % 7.34 
A70 Disease caused by chlamydia 417 
K00 Oral cavity 1,542,285 21,462 6 % 0.12 16,877 1 % 0.09 
E10 Diabetes mellitus 351,652 
E10 Diabetes mellitus 351,652 35,440 10 % 0.86 10,409 3 % 0.25 
E70 Metabolic disorders 359,055 
J00 Acute upper respiratory infections 569,295 22,485 4 % 0.19 22,529 4 % 0.19 
M40 Deforming dorsopathies 626,253 
J00 Acute upper respiratory infections 569,295 23,514 4 % 0.19 22,931 4 % 0.18 
M60 Disorders of muscles 679,583 
I10 Hypertensive diseases 724,298 47,277 10 % 0.44 36,219 5 % 0.34 
I30 Heart disease 455,734 
I30 Heart disease 455,734 23,321 10 % 0.66 27,720 6 % 0.78 
I20 Ischaemic heart diseases 239,119 

** Forward: F00–>G30 Backward: G30–>F00. 
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To study larger sequences (shown in Table 5), we use depth first 
search to find the longer sequences from the temporal disease occur
rence network. The process finds the sequences of sizes 2 to 6. To 
maintain a unique list of sequences, we filtered out all the sequences of 
smaller size that co-exist within another sequence of higher size. We 
found a total number of 23,517 unique sequences and their frequencies 
{1,760, 8,946, 9,427, 3,111, 273}, ranging from 2 to 6. This highlights 
the complexity of disease heterogeneity and disease progression. We 
applied this method to patients with diagnoses of oral cavity, hyper
tension, mental disorder, and epilepsy (ICD-10 codes K00, I10, F00, and 

G40 respectively) on two different cohorts. The number of resulting 
subsequent underlying conditions are 6,667 for K00, 2,637 for I10, and 
2,388 for F00 or G40. The results show that these sequences are complex 
in nature and have a high multimorbidity spectrum that necessitates 
protocols and strategies for studying multiple diseases and multiple 
therapies jointly [4,33]. Note that the underlying data reflects that pa
tients received 1.6 diagnoses per visit, which may not accurately 
represent the true temporal relationships between diseases. 

Our approach of using a temporal disease occurrence network and 
supervised depth first search is a better fit for identifying directional 
pairs of diagnosis and longer disease sequences occurring in patient 
cohorts of different genders and age groups. In comparison, using as
sociation rule mining algorithms to find temporal pairs of diagnosis and 
longer disease trajectories requires every pair of diseases to be itera
tively added and the number of times the trajectory occurred in the 
patient population counted [4,15,19]. That method requires a series of 
scans to extend the directed pair of diagnosis into a longer disease tra
jectory and takes O(2T) time to obtain the longer disease trajectory of 
size T. Therefore, the number of scans grow exponentially, resulting in 
higher time complexity which is not suitable for larger datasets with 
many longer disease trajectories. In contrast, our approach requires a 
single scan to construct the temporal disease occurrence network in O(n) 
time and a single supervised depth first search to obtain a temporal 
disease sequences O(v + e + log(p)) time, where v represents the diag
nosis on each node, e represents the directed edge between diagnoses, 
and p is the number of patients on each edge. In addition, our method 
also retrieves the prevalent disease cohorts of a given gender and age 

Table 5 
Selected frequent and rare sub-sequences from temporal disease occurrence 
network constructed using ICD-10 block codes.  

Frequent Patterns Patients 

Forward Backward Both 

K00–>M15–>M70 4,160 3,852 8,012 
I10–>K00–>M15–>M70 143 107 250 
H30–>E10–>I10 459 243 702 
I10–>E10–>K00 905 3,320 4,225 
I10–>E10–>I20 589 1,142 1,731 
F40–>F30–>I30 155 200 355 
F30–>F40–>I30 234 180 414 
F40–>I30–>F30 81 71 152 
J20–>J40–>I20 115 106 221 

Forward: K00–>M15–>M70 Backward: M70–>M15–>K00. 

Fig. 6. Prediction on a real patient record from the test set. The gender of the 
patient is female, and the age group is 51–60. The test set is divided into history 
and future diagnosis (on top). k-Frequent sequences occurrence (on right), and 
N-ranked list of diagnoses that are likely to occur in the future (on left). 

Table 6 
Comparison of algorithms’ accuracy quantified by AUC and F1-score. Each algorithm applied on temporal disease occurrence network constructed using ICD-10 3-digit 
disease codes and block codes. The obtained ranked list of size 1 and relative to ground truth is used to compare the results with selected ground truth.   

3-Digit Codes Block Codes 

List Size Next Disease Relative Next Disease Relative  

AUC F1-score AUC F1-score AUC F1-score AUC F1-score 

*FDO (Proposed) 0.65 ± 0.21  0.11 0.58 ± 0.09  0.16 0.68 ± 0.20  0.13 0.62 ± 0.09  0.23 
**FDO (Proposed) 0.66 ± 0.19  0.12 0.60 ± 0.08  0.17 0.72 ± 0.13  0.16 0.64 ± 0.06  0.25 
***FDO (Proposed) 0.66 ± 0.19  0.12 0.60 ± 0.08  0.17 0.72 ± 0.13  0.16 0.64 ± 0.06  0.25 
CN [20] 0.63 ± 0.22  0.09 0.58 ± 0.09  0.16 0.66 ± 0.23  0.12 0.61 ± 0.09  0.22 
SRW [24] 0.60 ± 0.15  0.10 0.54 ± 0.07  0.05 0.62 ± 0.22  0.12 0.56 ± 0.06  0.15 
ACC [20] 0.53 ± 0.11  0.02 0.56 ± 0.07  0.11 0.53 ± 0.11  0.02 0.58 ± 0.09  0.16 
JI [21] 0.55 ± 0.15  0.04 0.54 ± 0.07  0.07 0.55 ± 0.16  0.04 0.55 ± 0.08  0.14 
PA [22] 0.60 ± 0.20  0.07 0.54 ± 0.03  0.12 0.63 ± 0.22  0.10 0.55 ± 0.03  0.16 
CCPA [23] 0.50 ± 0.01  – 0.56 ± 0.07  0.12 –  – 0.55 ± 0.03  0.16  

* Evaluation set k ¼ 20. 
** Evaluation set k ¼ 10. 
*** Training set k ¼ 10. 

Fig. A3. Patients by gender and age group.  
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and updates to patient diagnoses are easy and changes reflect in real- 
time. 

4.2. Prediction 

We used disease sequences to predict future disease progression and 
tested the proposed prediction method in the following way. We 
randomly divided the disease sequences into two sets, with 80 % being 
used for training and 20 % for testing. The sequences selected for 
training were used to construct the temporal disease occurrence network 
and generate frequent disease sequences using the supervised depth first 
strategy. The supervised depth first strategy approach reveals comor
bidity relations and generates predictions about which diseases a patient 
may incur based on their gender, age group, and disease history. 

Each sequence of diagnosis in the testing set t is divided into two 
parts based on past and future diagnoses. The first part of diagnosis, 
called thead along with patient gender and age group, is used for 
generating predictions, while the remaining diagnosis, referred as ttail, is 
used to evaluate the predictions generated. The length of thead is closely 
related to the maximum window size allowable for the experiments. 
Thus, given a window size w ≤ |t|, we select the first w diseases for 
generating the predictions and the remaining for |t|– w for testing the 
predictions. With a fixed thead and a method specific threshold T, we 
produce the prediction set P(thead,T) containing all the predictions 
whose score is ≥ T. Then we compared the predicted set with ttail. 

For example, we used a real patient record from test set t = {51–61, 
F, C50, J40, J00, I10, N80, M70, G40, J20, F40, K00} that is divided into 
two parts thead = {51–61, F, C50, J40} and ttail = {J00, I10, N80, M70, 
G40, J20, F40, K00}. The prediction set relative to ground truth pro
duced T = 8 and is shown in Fig. 6. The result suggests that 5 out of 8 
diagnoses exist in the ranked list whereas 3 diagnoses are non-existent in 
the ranked list. The probability score and relative risk score show that 
non-existent diagnoses are highly likely to occur as the disease pro
gresses further. The probability score along with the ranked list is easier 
to understand for patients, physicians, and decision-makers [16,34]. 
Both physicians and decision-makers can combine their domain-specific 
knowledge with probability-based generated future conditions with our 
proposed algorithm in clinical decision-making and planning. Patients 
can understand the risk and follow the guidelines provided by physi
cians to prevent or delay disease progression. 

We measured the accuracy of the predictions using the AUC and an 
F1-score on the temporal disease occurrence network constructed based 
on 3-digit ICD-10 and block codes (shown in Table 6). We used two 
different ranked list sizes to calculate the F1-score and AUC. In general, 
the frequent disease occurrence (FDO) method outperforms other 
methods. The FDO method had higher accuracy for AUC and F1-score 
compared to other methods, except for the PA method, for all net
works constructed on different diagnosis selection criteria. The im
provements in the temporal disease occurrence network constructed on 
ICD-10 block codes were particularly significant. Our analysis showed 
that CN-based algorithms assign equal weight to the common neighbors 
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Fig. A4. Frequency distribution of diseases (on top) shows the prevalent and 
rare ICD-10 disease codes in the dataset, different lengths of disease sequences 
in patients (middle), and average diagnosis assigned per visit during a patient 
visit to a health unit (bottom). 

Fig. A1. Process to construct disease co-occurrence network from disease sequences. Transform a patient record into disease co-occurrence network. Combine 
individual disease co-occurrence networks into a combined disease co-occurrence network. 
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whereas the FDO effectively utilizes the frequent disease sets and the 
conditional probability of all possible diagnoses that can co-occur with a 
given diagnosis. 

For validating the consistency across different folds of data we per
formed additional tests. First, we divided the dataset into a training set 
and a testing set using the k-fold cross validation method with k = 10. 
The performance of the prediction algorithm slightly improves and a 
slight decrease in STD values is observed. However, STD remains rela
tively high due to the nature of data distribution in temporal disease 
occurrence network. Secondly, we randomly obtained k = 10 from the 
training set to separately validate the performance of prediction method 
on training dataset. The results obtained are align with the earlier ob
servations which indicates that performance of proposed method is 
consistent across different folds of the data. 

One of the major challenges with machine learning, deep learning, 
and depth first search is that they are often considered “black box” ap
proaches because the internal processes are not easily explainable to 
stakeholders. This lack of transparency can be problematic in critical 
applications where stakeholders such as physicians, decision makers, 
and patients need to understand the reasoning behind the decisions 
made by the model. In this regard, the depth first strategy reveals more 
information for the stakeholder with little effort. It is also important for 
stakeholders to be aware of the limitations and assumptions of the 
models being used and approach them with a critical eye. 

5. Conclusion 

Our study introduces a new approach for predicting the onset of 
diseases using a temporal disease occurrence network and supervised 
depth first search strategy to obtain frequent disease sequences. The 
rank list of disease sequences is then ranked based on conditional 
probability to predict disease onset. The advantage of this method is that 
it can determine the role of various diagnoses that are performed and 
assigns them different weights based on the computed probabilities. The 
proposed method is compared to existing neighbors-based algorithms 
such as aggregated common occurrence, SRW, JI, PA, and CCPA. We 
found that our approach outperformed these algorithms in terms of 
accuracy. In addition, our approach provides a rank list with probability 
and relative risk scores, which can help physicians to understand the 
sequence of disease events in patients. 

6. Future work 

Future work should aim to incorporate additional patient health 
information such as lab history and physician observations to better 
understand disease progression and improve disease prediction accu
racy. Future work should also address inconsistencies in the dataset, 
such as patients receiving multiple diagnoses during a single visit (in the 
current dataset the average number of diagnoses received per visit is 
1.6), which can make the temporal disease occurrence network sparse 

and reduce the accuracy of disease prediction algorithms. Furthermore, 
information on polypharmacy (increases harmful drug effects) [35], 
physical and physiological activities [36], and other laboratory tests 
should be included as they can help to improve prediction accuracy. To 
improve the awareness and early warning system, deceased patients 
should be marked on a termination node and a temporary termination 
node should be used for patients who are still alive and have a disease in 
progression. These future improvements will help us to develop more 
effective disease prediction models and provide better insights into 
disease progression. (See Fig. A3 and A4 for data statistics and in
consistencies in the dataset). 

7. Summary points  

• This study reports a novel prediction approach based on a temporal 
disease occurrence network and supervised depth first search algo
rithm to predict disease progression.  

• The frequent disease occurrence algorithm creatively combines the 
frequent disease sequences based on relative risk and likelihood to 
occur in the future.  

• The ranked list with conditional probability and relative risk score 
provides useful insights to understand disease progression.  

• The method has reliable performance assessed by an AUC and F1- 
score. 

8. Summary Table 

What is already known on this topic?  

• Phenotypic comorbidity networks are developed to investigate the 
connections between diseases.  

• Co-occurrence networks and data mining approaches are used to 
predict disease co-occurrences.  

• Pairwise disease progression is studied to analyze the morbidity 
progression. 

What did this study add to our knowledge?  

• To study highly probable diseases with a higher risk of morbidity 
progression, we can extract forward and backward disease progres
sion, as well as meta-information, from the temporal disease occur
rence network.  

• Conditional probability determines the possibility of a disease 
occurring in the future and relative risk can be used to measure the 
correlation between diseases.  

• Supervised depth first search strategy is a useful approach to obtain 
prevalent and longer sequences, identify patient clusters with prev
alent disease progression and eliminate diseases that have a lower 
chance to occur in a specific gender and age group. 

Fig. A2. Process to transform temporal disease occurrence network into co-occurrence matrix.  
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Appendix A 

Disease Co-Occurrence Network. 
A disease co-occurrence network [16,27] represents the diseases that co-occurred in many patients. The disease co-occurrence network has also been 

called the phenotypic disease network [37], the comorbidity network [16], and the disease comorbidities network [38]. It has been used in previous 
studies [13,16,28,37–39]. In the disease co-occurrence network, we represent disease d as a node in the network and a connection between nodes 
represents the co-occurrence. First, we construct an individual patient disease co-occurrence network by connecting every di with dj that co-occurred 
in an individual patient. Second, these individual co-occurrence networks are merged to form a combined disease co-occurrence network. The node- 
level attribute list maintains the unique identity list of the patient and the number of times a disease is recorded in the patient’s electronic record. An 
edge exists between di and dj if both diagnoses co-occurred in an individual patient. The disease co-occurrence network is shown in Fig. A1. 

Disease Co-Occurrence Matrix. 
The temporal disease occurrence network can be transformed into a disease co-occurrence matrix (shown in Fig. A2) that is used to construct a 

disease co-occurrence network. Two diseases di to dj co-occurred if there is a path between di to dj in the temporal disease occurrence network and can 
be defined as follows: 

CM
(
di, dj

)
=

{
|Γ(di) ∩ Γ(dj)| if path

(
di, dj

)

0 (1)  

Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijmedinf.2023.105068. 
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