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Abstract—Solving large-scale clustering problems requires an 

efficient algorithm which can be implemented also in parallel. K-

means would be suitable but it can lead to an inaccurate 

clustering result. To overcome this problem, we present a 

parallel version of random swap clustering algorithm. It 

combines the scalability of k-means with high clustering 

accuracy. The new clustering method is experimented on top of 

Java parallel streams and lambda expressions, which offer 

interesting execution time benefits. The method is applied to 

standard benchmark datasets, with a varying population size and 

distribution of managed records, dimensionality of data points 

and the number of clusters. The experimental results confirm 

that high quality clustering can be obtained by parallel random 

swap together with a high time efficiency. 

Keywords—Clustering problem, K-Means, Random swap, 

Parallelism, Streams, Lambda Expressions, Java. 

I. INTRODUCTION 

The clustering problem occurs in many application areas such 

as physics, bioinformatics, image segmentation, machine 

learning, medicine, and artificial intelligence. It can be stated 

as follows. There are 𝑁  data points { 𝑥𝑖 } (records or data 

vectors), here assumed to have numerical attributes, that is 𝑥𝑖 ∈
𝑅𝐷, which are to be partitioned into 𝐾 ≪ 𝑁 clusters, in a such 

a way that points within a same cluster are similar and points in 

different clusters are dissimilar. Each cluster is represented by 

its central point (centroid or prototype). Finding the optimal 

solution to the problem is NP-hard, and only relatively small 

problem sizes can be solved optimally [1]. Heuristic algorithms 

are therefore necessary to generate sub-optimal solutions.  

K-means is well-known clustering algorithm which 

partitions data points according to Euclidean nearest centroid 

by minimizing the Sum of Squared Error (𝑆𝑆𝐸 ) objective 

function (a measure of internal variance in clusters). Although 

more sophisticated clustering algorithms have been defined [2-

5], K-means is often used due to its simplicity and efficiency. 

K-means behaviour, though, strongly depends on the centroids 

initialization method [6-8] and will get stuck to a local sub-

optimal solution. 𝐾  random points of the dataset are often 

chosen as initial centroids. 

To overcome the limitations of K-means, random swap 

technique was proposed in [4] together with a formal 

characterization of its properties. Most operations of random 

swap can be executed in parallel.  

 The original contribution of this paper is to propose and 

develop in Java1  [9] Parallel Random Swap as a clustering 

method, and to provide experimental evidence of its efficiency 

from both the execution performance and clustering quality.  

II. RANDOM SWAP 

Random swap algorithm [4] was designed to solve the cluster 

structure by a sequence of centroid swaps (global search), and 

by fine-tuning the result by K-means (local search). The 

algorithm significantly improves K-means because it almost 

never gets stuck in a sub-optimal local solution. The results in 

[6] showed that it reaches the correct global allocation of the 

clusters with all benchmark datasets. 

K-means operation 

Let {𝐶1, 𝐶2, … , 𝐶𝐾} be the 𝐾 clusters, and {𝑐1, 𝑐2, … , 𝑐𝐾} the 

corresponding representative centroid points. The 𝑆𝑆𝐸  is 

defined as: 

𝑆𝑆𝐸 = ∑‖𝑥𝑖 − 𝑛𝑐(𝑥𝑖)‖2

𝑁

𝑖=1

 

where 𝑛𝑐(𝑥𝑖)  is the nearest centroid 𝑐𝑗 to 𝑥𝑖  according to 

Euclidean distance, that is: 

𝑛𝑐(𝑥𝑖) = 𝑐𝑗 , where 𝑗 is: 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑗≤𝐾

 ‖𝑥𝑖 − 𝑐𝑗‖
2
 

 
1 https://github.com/uef-machine-learning 
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It is often preferable to use the normalized mean SSE, 

indicated as 𝑛𝑀𝑆𝐸 , defined as: 𝑛𝑀𝑆𝐸 = 𝑆𝑆𝐸/(𝑁 ∗ 𝐷). 
Starting from an initialization of centroids, K-means iterates 

the two steps shown in Fig. 1 a maximum number of iterations 

or until convergence is sensed (the new centroids equals to the 

previous ones). 

1. Partition data points {𝑥𝑖} into clusters according to 𝑛𝑐(𝑥𝑖); 

2. Update centroids as the mean point of each cluster:  

𝑐𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗

, ∀𝑗 in [1, 𝐾] 

Fig. 1. The two steps of a K-means iteration. 

Random swap algorithm 

A main point of the algorithm in Fig. 2 is the Swap step 3, 

where a new globally defined centroid configuration is 

established. The new centroids are then locally fine-tuned, and 

corresponding cluster boundaries redefined by K-means at 

step 4. Steps from 3 to 5 are repeated for a fixed number of 

iterations constituting the most processing time. 

 

1. Centroids initialization. Define initial centroids as 𝐾 

randomly selected points in the dataset.  

2.  Initial partition. Partition data points according to the 

initial centroids. 

Repeat T times: 

3.  Swap. A centroid is randomly selected, and replaced by 

a randomly chosen data point in the data space: 

𝑐𝑠  ←  𝑥𝑖  , 𝑠 = 𝑟𝑎𝑛𝑑(1, 𝐾), 𝑖 = 𝑟𝑎𝑛𝑑(1, 𝑁) 

4.  K-means. A few iterations of K-means (e.g., 2) are 

executed (partition and centroids update). 

5. Test. Check if the new solution (new centroids and 

associated partition) has a lower 𝑛𝑀𝑆𝐸 cost than the   

solution from the previous step. If it is, it is accepted 

and made as the current. Otherwise, previous centroids 

and corresponding data partition are restored. 

6. Final tuning. The last defined solution is improved by a 

final execution of K-means, which is iterated until 

convergence or after a maximum number of iterations 

were executed. 

Fig. 2. Steps of the random swap algorithm. 

Evaluation of clustering quality 

Random swap iterations are controlled by the values of the 

𝑛𝑀𝑆𝐸  function cost, which monotonically decreases as the 

swap iterations proceed. This quantity guides the search. The 

clustering quality can also be evaluated by an internal index or 

by external quality indexes if ground truth (GT) centroids are 

known.  

Centroid Index (CI). It measures how well the centroid 

locations match to that of the ground truth centroids [10]. It 

can be used with synthetic datasets constructed by some 

specific distribution of points around pre-defined centroids 

(prototypes). The CI value of a clustering solution C can be 

understood intuitively by counting in C the number of real 

clusters not having any centroid and those which have more 

than one centroid. The CI value is the greater of these 

numbers. CI can be computed by mapping C onto GT and vice 

versa and counting dissimilarities. In the case the bijection 

evaluates to 0 (each element of C maps exactly on one point of 

GT by minimal Euclidean distance and vice versa, that is there 

are “no orphan” in the two directions), the obtained solution 

has high probability to be correct. 

Silhouette Index (SI). It is a classic measure of clustering 

accuracy [8,11]. First for each point 𝑥  two quantities are 

computed: 𝑎𝑥  and 𝑏𝑥 . The 𝑎𝑥  component is an intra-cluster 

measure, that is the average distance of 𝑥  from the other 

points of the same cluster. The 𝑏𝑥  expresses the minimum 

average distance of 𝑥  from all other points in different 

clusters. The Silhouette value associated to the point 𝑥 is 

calculated as: 

𝑆𝑥 =
𝑏𝑥 − 𝑎𝑥

max (𝑏𝑥 , 𝑎𝑥)
 

Finally, the SI of the clustering solution is given by: 

𝑆 =
1

𝑁
∑ 𝑆𝑥𝑖

𝑁
𝑖=1 . 

The SI value ranges in [-1,1]. A value 1 indicates well 

separated clusters (reduced overlap). A value close to 0 

mirrors high overlap of clusters. A value toward -1 indicates 

incorrect clustering. 

III. ENABLING PARALLEL RANDOM SWAP IN JAVA 

The initial partition (step 2 of Fig. 2), the partition and update 

phases of K-means (steps 4 and 6) and the restore partition at 

step 5, can purposely be carried in parallel. Further operations 

which benefit of parallelism include the computation of 

clustering indexes like the Silhouette (𝑆𝐼) with cost 𝑂(𝑁2). 

The dataset and centroids were mapped onto native arrays 

of DataPoint objects, from which data streams are derived. 

DataPoint exposes methods for point arithmetic (e.g. addition 

and mean), distance calculation and so forth. A data point also 

holds a field 𝑐𝑖𝑑 , i.e. the index of the centroid it was 

partitioned to. 

Fig. 3 shows the partition operation (see also [12]) which, 

depending on the value of the PARALLEL parameter, can be 

executed in parallel or sequentially. The map operation 

receives a lambda expression (Function) whose parameter p is 

a point, whose 𝑐𝑖𝑑 is set to the index of the nearest centroid. 

Each individual point only modifies itself. No shared data are 

modified. 

 Stream<DataPoint> p_stream=Stream.of( dataset ); 
 if( PARALLEL ) p_stream=p_stream.parallel(); 
 p_stream 
  .map( p -> {  
   double md=Double.MAX_VALUE; 
   for( int k=0; k<K; ++k ) { 
    double d=p.distance( centroids[k] ); 
    if( d<md ) { md=d; p.setCID(k); } 
   } 
   return p; } ) 
  .forEach( p->{} ); 
Fig. 3. The partition operation. 
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The partition operation also occurs in the kmeans(…) method 

which can be iterated a fixed number of times or until 

convergence. Fig. 4 depicts an excerpt of the parallel update 

centroids step of kmeans(…).  

 

 //update centroids 

 Stream<DataPoint> c_stream=Stream.of( centroids ); 

 if( PARALLEL ) c_stream=c_stream.parallel(); 

 c_stream 

  .map( c -> { 

   for( int i=0; i<N; ++i ) { 

    if( dataset[i].getCID()==c.getCID() ) c.add(dataset[i]) ; 

   } 

   c.mean(); 

   return c; } ) 

  .forEach( c->{} ); 
Fig. 4. An excerpt of the update centroids step of K-means. 

IV. EXPERIMENTAL SETUP 

Correctness of parallel random swap, that is clustering quality 

and time efficiency, were checked by applying it to 12 basic 

benchmark datasets [6,13]. For all the datasets the ground 

truth (GT) centroids are publicly available. The datasets (see 

Table 1) characterize for the number and shape of clusters and 

point distributions used to construct the dataset.  

Table 1. Parameters of benchmark datasets [13] 

dataset N D K 

A1,A2,A3 3000,5250,7500 2 20,35,50 

S1,S2,S3,S4 5000 2 15 

G2-1024-100 2048 1024 2 

DIM32 1024 32 16 

UNBALANCE 6500 2 8 

BIRCH1,BIRCH2 100000 2 100 

 

The A sets contain spherical clusters and are organized as 

subsets of each other: 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 . The S sets contain 

Gaussian clusters with varying degree of overlap. The G2 sets 

contain 1024 points distributed according to 2 Gaussian 

clusters at fixed locations. Overlap is created by varying the 

standard deviation from 10 to 100. A particular dataset is 

named G2-dim-std accordingly. The G2-1024-100 dataset was 

selected for the experiments. The DIM sets contain well-

separated clusters in high-dimensional space. For the 

experiments DIM32 was chosen: 32 dimensions for each of 

1024 points. Points are randomly distributed among clusters 

by Gaussian distribution. The Unbalance dataset has eight 

clusters organized in two well-separated groups. The first 

three clusters are dense with 2000 points each. The remaining 

five clusters contain 100 points each. The two Birch sets 

contain spherical clusters organized on a 10x10 grid (Birch1), 

and to a sine curve (Birch2).  

V. RESULTS 

Parallel random swap was applied to the 12 benchmark 

datasets described in Section IV. Although only 2 iterations of 

K-means per swap were suggested in [4] to refine a local 

solution at each swap iteration, we increased this to 5 

motivated by the parallel support. In addition, not originally 

used in [4], we also refine the final solution after the swap 

iterations by executing K-means exhaustively until 

convergence. The maximum number of swap iterations and 

the maximum number of steps of the final invocation of 

K-means were fixed, in all the executions, to 𝑇 = 5000. 

All the execution experiments were carried on a Win10 

Pro, Dell XPS 8940, Intel i7-10700 (8 physical cores which 

with the hyperthreading give support to 16 threads), 

CPU@2.90 GHz, 32GB Ram, Java 17.  

Testing 

Preliminary runs were devoted to assessing the correctness 

of the developed random swap program, in particular that the 

program delivers exactly the same result in sequential and in 

parallel mode on all the benchmark datasets.  

Fig. 5 shows an extract of the output generated by 1 run of 

Birch1. Steps 2 and 3 are examples of successful steps. 

Unsuccessful steps (nMSE did not improve) are omitted in the 

listing. Sometimes nMSE improved but CI did not. Such 

changes are also accepted although not considered successful 

steps like those that failed to improve nMSE. The results 

confirm the monotonic decrease of nMSE. Starting from step 

237, CI stabilizes to value 0. From 4347 to 5000 all swaps are 

unproductive as nMSE did not improve further. 

 
Step   nMSE             CI 

1     6.622308508119364E8   13 
2     6.05899752096259E8     9 

3     5.74568446939268E8     8 

5     5.73673847218781E8     8 
… 

14    5.629913152219414E8   7 

… 
19    5.385070562725195E8    6 

20    5.3324325081301624E8   5 

27    5.213528313807281E8   4 
… 

32    5.052130404197854E8   3 

… 
100   4.815435483122903E8    1 

… 

237    4.7379832580636716E8   0 
255   4.664072159088196E8    0 

265   4.6386566539892936E8   0 

330   4.6386462201360106E8   0 
706   4.638641013410574E8    0 

1968   4.638640964116055E8    0 

2071   4.638640668751212E8    0 
2559   4.638640333827571E8    0 

4346   4.638640290995247E8    0 

R 5001 4.638640290995247E8    0 

Fig. 5. Debugging example of Birch1. 

Computational efficiency 

To check the computational efficiency, five runs of the Java-

based random swap program were executed on the Birch1 

dataset (see Table 1), both in sequential and parallel modes.  

The overall wall-clock time required for completing the 

T=5000 swap iterations (see Fig. 2) was measured. The two 

times are referred to as RS Sequential Elapsed Time (RS-SET) 

and RS Parallel Elapsed Time (RS-PET). After that, the 

Sequential Average Swap Time (SAST) and the Parallel 
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Average Swap Time (PAST) were estimated. The speedup 

was then evaluated as the ratio of SAST/PAST.  

In a similar way, the SI-SET and SI-PET were measured 

by computing the Silhouette index (SI) both in sequential and 

parallel mode. The average execution times, namely aSI-SET 

and aSI-PET, were then calculated, and the corresponding 

speedup evaluated as the ratio aSI-SET/aSI-PET. The 

recorded execution times are summarized in Table 2. 

 
Table 2. Run times of Random Swap and Silhouette Index (P=16 threads) 

#run RS-SET (ms) RS-PET (ms) SI-SET (ms) SI-PET (ms) 

1 1224352 132090 42788 4600 
2 992717 142649 43239 4733 
3 996234 144315 43238 4942 
4 1000580 151051 42916 5186 
5 986371 157491 42824 5382 

 

From Table 2, we derive an average value of SAST=208.1 ms 

per swap iteration, and PAST=29.10 ms. This results in a 

speedup of 7.15.  

The average times for SI emerged to be: aSI-SET=43001 

ms and aSI-PET=4968 ms, with a speedup of 8.65. 

Clustering accuracy 

The quality of clustering solutions generated by parallel 

random swap was estimated by 10 runs, each of 𝑇 = 5000 

swap iterations, executed in parallel mode, for each dataset in 

Table 1. A clustering solution consists of final centroids and 

the index (label) of the clusters in which the data points were 

assigned to. The quality of the solution is captured by the 

values of nMSE cost, Silhouette index (SI) and Centroid index 

(CI) calculated between the proposed solution and the ground 

truth centroids.  

Table 3 contains the recorded results for all the 12 

selected benchmark datasets. As a notable property, parallel 

random swap was capable, almost deterministically, to find 

the correct solution of the various datasets but with low 

runtime. For the Birch1 (𝑁 = 100000, 𝐾 = 100, 𝑇 = 5000) 

the result is generated in about 2.5 min instead of the 17 min 

required by the sequential approach. The always obtained 

CI=0 confirms the same result predicted in [4]. 

 
Table 3. Clustering accuracy results. 

dataset nMSE SI CI 

A1 2.02E6 0.595 0 

A2 1.93E6 0.598 0 

A3 1.93E6 0.601 0 

S1 8.92E8 0.711 0 

S2 1.33E9 0.626 0 

S3 1.69E9 0.493 0 

S4 1.57E9 0.480 0 

G2-1024-100 9.98E3 0.183 0 

DIM32 7.096 0.946 0 

UNBALANCE 1.65E7 0.858 0 

BIRCH1 4.64E8 0.460 0 

BIRCH2 2.28E6 0.736 0 

 

VI.CONCLUSIONS AND FUTURE WORK 

This paper proposes Parallel Random Swap [4], a novel 

method which provides efficient and reliable clustering on 

nowadays multi-core machines. The new method leverages 

on the lock-free concurrency support which Java supplies 

when dealing with parallel streams of non-trivial datasets. 

The tool was applied to a set of benchmark datasets thus 

confirming careful clustering solutions can be achieved with 

significant time efficiency.  

Prosecution of the work will address the following 

points.  

First, to identify possible heuristics for early termination 

of method. Preliminary experiments seem to suggest that 

when a certain number of consecutive accepted iterations 

occur with a 0 value of the local Centroid index (that is, 

evaluated between the new centroids configuration and the 

one existing at the beginning of the swap iteration), followed 

by a few hundred unproductive iterations, the last found 

solution, with great success frequency, is the correct one. 

More investigation, though, is deemed necessary using both 

synthetic and real-world datasets. 

Second, to port Parallel Random Swap on the efficient 

Theatre actor-system with message-passing [14-15], which 

enables a better exploitation of the computing resources 

through a custom split of the dataset into blocks to be 

managed in parallel by a specific number of theatres/threads. 
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