

978-1-6654-9799-2/22/$31.00 ©2022 IEEE

Efficient and Reliable Clustering by

Parallel Random Swap Algorithm

Libero Nigro1, Franco Cicirelli2, Pasi Fränti3
1DIMES - Department of Informatics Modelling Electronics and Systems Science

University of Calabria, 87036 Rende, Italy

Email: l.nigro@unical.it
2CNR - National Research Council of Italy - Institute for High Performance Computing

and Networking (ICAR) - 87036 Rende, Italy

Email: f.cicirelli@icar.cnr.it
3School of Computing, Machine Learning Group

University of Eastern Finland

P.O.Box 111, 80101 Joensuu, Finland

Email: franti@cs.uef.fi

Abstract—Solving large-scale clustering problems requires an

efficient algorithm which can be implemented also in parallel. K-

means would be suitable but it can lead to an inaccurate

clustering result. To overcome this problem, we present a

parallel version of random swap clustering algorithm. It

combines the scalability of k-means with high clustering

accuracy. The new clustering method is experimented on top of

Java parallel streams and lambda expressions, which offer

interesting execution time benefits. The method is applied to

standard benchmark datasets, with a varying population size and

distribution of managed records, dimensionality of data points

and the number of clusters. The experimental results confirm

that high quality clustering can be obtained by parallel random

swap together with a high time efficiency.

Keywords—Clustering problem, K-Means, Random swap,

Parallelism, Streams, Lambda Expressions, Java.

I. INTRODUCTION

The clustering problem occurs in many application areas such

as physics, bioinformatics, image segmentation, machine

learning, medicine, and artificial intelligence. It can be stated

as follows. There are 𝑁 data points { 𝑥𝑖 } (records or data

vectors), here assumed to have numerical attributes, that is 𝑥𝑖 ∈
𝑅𝐷, which are to be partitioned into 𝐾 ≪ 𝑁 clusters, in a such

a way that points within a same cluster are similar and points in

different clusters are dissimilar. Each cluster is represented by

its central point (centroid or prototype). Finding the optimal

solution to the problem is NP-hard, and only relatively small

problem sizes can be solved optimally [1]. Heuristic algorithms

are therefore necessary to generate sub-optimal solutions.

K-means is well-known clustering algorithm which

partitions data points according to Euclidean nearest centroid

by minimizing the Sum of Squared Error (𝑆𝑆𝐸) objective

function (a measure of internal variance in clusters). Although

more sophisticated clustering algorithms have been defined [2-

5], K-means is often used due to its simplicity and efficiency.

K-means behaviour, though, strongly depends on the centroids

initialization method [6-8] and will get stuck to a local sub-

optimal solution. 𝐾 random points of the dataset are often

chosen as initial centroids.

To overcome the limitations of K-means, random swap

technique was proposed in [4] together with a formal

characterization of its properties. Most operations of random

swap can be executed in parallel.

 The original contribution of this paper is to propose and

develop in Java1 [9] Parallel Random Swap as a clustering

method, and to provide experimental evidence of its efficiency

from both the execution performance and clustering quality.

II. RANDOM SWAP

Random swap algorithm [4] was designed to solve the cluster

structure by a sequence of centroid swaps (global search), and

by fine-tuning the result by K-means (local search). The

algorithm significantly improves K-means because it almost

never gets stuck in a sub-optimal local solution. The results in

[6] showed that it reaches the correct global allocation of the

clusters with all benchmark datasets.

K-means operation

Let {𝐶1, 𝐶2, … , 𝐶𝐾} be the 𝐾 clusters, and {𝑐1, 𝑐2, … , 𝑐𝐾} the

corresponding representative centroid points. The 𝑆𝑆𝐸 is

defined as:

𝑆𝑆𝐸 = ∑‖𝑥𝑖 − 𝑛𝑐(𝑥𝑖)‖2

𝑁

𝑖=1

where 𝑛𝑐(𝑥𝑖) is the nearest centroid 𝑐𝑗 to 𝑥𝑖 according to

Euclidean distance, that is:

𝑛𝑐(𝑥𝑖) = 𝑐𝑗 , where 𝑗 is: 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑗≤𝐾

 ‖𝑥𝑖 − 𝑐𝑗‖
2

1 https://github.com/uef-machine-learning

2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)

978-1-6654-9799-2/22/$31.00 ©2022 IEEE 25

20
22

 IE
EE

/A
C

M
 2

6t
h

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
D

is
tri

bu
te

d
Si

m
ul

at
io

n
an

d
R

ea
l T

im
e

A
pp

lic
at

io
ns

 (D
S-

R
T)

 |
97

8-
1-

66
54

-9
79

9-
2/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
S-

R
T5

55
42

.2
02

2.
99

32
09

0

Authorized licensed use limited to: University of Eastern Finland. Downloaded on November 24,2022 at 06:49:32 UTC from IEEE Xplore. Restrictions apply.

It is often preferable to use the normalized mean SSE,

indicated as 𝑛𝑀𝑆𝐸 , defined as: 𝑛𝑀𝑆𝐸 = 𝑆𝑆𝐸/(𝑁 ∗ 𝐷).
Starting from an initialization of centroids, K-means iterates

the two steps shown in Fig. 1 a maximum number of iterations

or until convergence is sensed (the new centroids equals to the

previous ones).

1. Partition data points {𝑥𝑖} into clusters according to 𝑛𝑐(𝑥𝑖);

2. Update centroids as the mean point of each cluster:

𝑐𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗

, ∀𝑗 in [1, 𝐾]

Fig. 1. The two steps of a K-means iteration.

Random swap algorithm

A main point of the algorithm in Fig. 2 is the Swap step 3,

where a new globally defined centroid configuration is

established. The new centroids are then locally fine-tuned, and

corresponding cluster boundaries redefined by K-means at

step 4. Steps from 3 to 5 are repeated for a fixed number of

iterations constituting the most processing time.

1. Centroids initialization. Define initial centroids as 𝐾

randomly selected points in the dataset.

2. Initial partition. Partition data points according to the

initial centroids.

Repeat T times:

3. Swap. A centroid is randomly selected, and replaced by

a randomly chosen data point in the data space:

𝑐𝑠 ← 𝑥𝑖 , 𝑠 = 𝑟𝑎𝑛𝑑(1, 𝐾), 𝑖 = 𝑟𝑎𝑛𝑑(1, 𝑁)

4. K-means. A few iterations of K-means (e.g., 2) are

executed (partition and centroids update).

5. Test. Check if the new solution (new centroids and

associated partition) has a lower 𝑛𝑀𝑆𝐸 cost than the

solution from the previous step. If it is, it is accepted

and made as the current. Otherwise, previous centroids

and corresponding data partition are restored.

6. Final tuning. The last defined solution is improved by a

final execution of K-means, which is iterated until

convergence or after a maximum number of iterations

were executed.

Fig. 2. Steps of the random swap algorithm.

Evaluation of clustering quality

Random swap iterations are controlled by the values of the

𝑛𝑀𝑆𝐸 function cost, which monotonically decreases as the

swap iterations proceed. This quantity guides the search. The

clustering quality can also be evaluated by an internal index or

by external quality indexes if ground truth (GT) centroids are

known.

Centroid Index (CI). It measures how well the centroid

locations match to that of the ground truth centroids [10]. It

can be used with synthetic datasets constructed by some

specific distribution of points around pre-defined centroids

(prototypes). The CI value of a clustering solution C can be

understood intuitively by counting in C the number of real

clusters not having any centroid and those which have more

than one centroid. The CI value is the greater of these

numbers. CI can be computed by mapping C onto GT and vice

versa and counting dissimilarities. In the case the bijection

evaluates to 0 (each element of C maps exactly on one point of

GT by minimal Euclidean distance and vice versa, that is there

are “no orphan” in the two directions), the obtained solution

has high probability to be correct.

Silhouette Index (SI). It is a classic measure of clustering

accuracy [8,11]. First for each point 𝑥 two quantities are

computed: 𝑎𝑥 and 𝑏𝑥 . The 𝑎𝑥 component is an intra-cluster

measure, that is the average distance of 𝑥 from the other

points of the same cluster. The 𝑏𝑥 expresses the minimum

average distance of 𝑥 from all other points in different

clusters. The Silhouette value associated to the point 𝑥 is

calculated as:

𝑆𝑥 =
𝑏𝑥 − 𝑎𝑥

max (𝑏𝑥 , 𝑎𝑥)

Finally, the SI of the clustering solution is given by:

𝑆 =
1

𝑁
∑ 𝑆𝑥𝑖

𝑁
𝑖=1 .

The SI value ranges in [-1,1]. A value 1 indicates well

separated clusters (reduced overlap). A value close to 0

mirrors high overlap of clusters. A value toward -1 indicates

incorrect clustering.

III. ENABLING PARALLEL RANDOM SWAP IN JAVA

The initial partition (step 2 of Fig. 2), the partition and update

phases of K-means (steps 4 and 6) and the restore partition at

step 5, can purposely be carried in parallel. Further operations

which benefit of parallelism include the computation of

clustering indexes like the Silhouette (𝑆𝐼) with cost 𝑂(𝑁2).

The dataset and centroids were mapped onto native arrays

of DataPoint objects, from which data streams are derived.

DataPoint exposes methods for point arithmetic (e.g. addition

and mean), distance calculation and so forth. A data point also

holds a field 𝑐𝑖𝑑 , i.e. the index of the centroid it was

partitioned to.

Fig. 3 shows the partition operation (see also [12]) which,

depending on the value of the PARALLEL parameter, can be

executed in parallel or sequentially. The map operation

receives a lambda expression (Function) whose parameter p is

a point, whose 𝑐𝑖𝑑 is set to the index of the nearest centroid.

Each individual point only modifies itself. No shared data are

modified.

 Stream<DataPoint> p_stream=Stream.of(dataset);
 if(PARALLEL) p_stream=p_stream.parallel();
 p_stream
 .map(p -> {
 double md=Double.MAX_VALUE;
 for(int k=0; k<K; ++k) {
 double d=p.distance(centroids[k]);
 if(d<md) { md=d; p.setCID(k); }
 }
 return p; })
 .forEach(p->{});
Fig. 3. The partition operation.

2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)

26Authorized licensed use limited to: University of Eastern Finland. Downloaded on November 24,2022 at 06:49:32 UTC from IEEE Xplore. Restrictions apply.

The partition operation also occurs in the kmeans(…) method

which can be iterated a fixed number of times or until

convergence. Fig. 4 depicts an excerpt of the parallel update

centroids step of kmeans(…).

 //update centroids

 Stream<DataPoint> c_stream=Stream.of(centroids);

 if(PARALLEL) c_stream=c_stream.parallel();

 c_stream

 .map(c -> {

 for(int i=0; i<N; ++i) {

 if(dataset[i].getCID()==c.getCID()) c.add(dataset[i]) ;

 }

 c.mean();

 return c; })

 .forEach(c->{});
Fig. 4. An excerpt of the update centroids step of K-means.

IV. EXPERIMENTAL SETUP

Correctness of parallel random swap, that is clustering quality

and time efficiency, were checked by applying it to 12 basic

benchmark datasets [6,13]. For all the datasets the ground

truth (GT) centroids are publicly available. The datasets (see

Table 1) characterize for the number and shape of clusters and

point distributions used to construct the dataset.

Table 1. Parameters of benchmark datasets [13]

dataset N D K

A1,A2,A3 3000,5250,7500 2 20,35,50

S1,S2,S3,S4 5000 2 15

G2-1024-100 2048 1024 2

DIM32 1024 32 16

UNBALANCE 6500 2 8

BIRCH1,BIRCH2 100000 2 100

The A sets contain spherical clusters and are organized as

subsets of each other: 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 . The S sets contain

Gaussian clusters with varying degree of overlap. The G2 sets

contain 1024 points distributed according to 2 Gaussian

clusters at fixed locations. Overlap is created by varying the

standard deviation from 10 to 100. A particular dataset is

named G2-dim-std accordingly. The G2-1024-100 dataset was

selected for the experiments. The DIM sets contain well-

separated clusters in high-dimensional space. For the

experiments DIM32 was chosen: 32 dimensions for each of

1024 points. Points are randomly distributed among clusters

by Gaussian distribution. The Unbalance dataset has eight

clusters organized in two well-separated groups. The first

three clusters are dense with 2000 points each. The remaining

five clusters contain 100 points each. The two Birch sets

contain spherical clusters organized on a 10x10 grid (Birch1),

and to a sine curve (Birch2).

V. RESULTS

Parallel random swap was applied to the 12 benchmark

datasets described in Section IV. Although only 2 iterations of

K-means per swap were suggested in [4] to refine a local

solution at each swap iteration, we increased this to 5

motivated by the parallel support. In addition, not originally

used in [4], we also refine the final solution after the swap

iterations by executing K-means exhaustively until

convergence. The maximum number of swap iterations and

the maximum number of steps of the final invocation of

K-means were fixed, in all the executions, to 𝑇 = 5000.

All the execution experiments were carried on a Win10

Pro, Dell XPS 8940, Intel i7-10700 (8 physical cores which

with the hyperthreading give support to 16 threads),

CPU@2.90 GHz, 32GB Ram, Java 17.

Testing

Preliminary runs were devoted to assessing the correctness

of the developed random swap program, in particular that the

program delivers exactly the same result in sequential and in

parallel mode on all the benchmark datasets.

Fig. 5 shows an extract of the output generated by 1 run of

Birch1. Steps 2 and 3 are examples of successful steps.

Unsuccessful steps (nMSE did not improve) are omitted in the

listing. Sometimes nMSE improved but CI did not. Such

changes are also accepted although not considered successful

steps like those that failed to improve nMSE. The results

confirm the monotonic decrease of nMSE. Starting from step

237, CI stabilizes to value 0. From 4347 to 5000 all swaps are

unproductive as nMSE did not improve further.

Step nMSE CI

1 6.622308508119364E8 13
2 6.05899752096259E8 9

3 5.74568446939268E8 8

5 5.73673847218781E8 8
…

14 5.629913152219414E8 7

…
19 5.385070562725195E8 6

20 5.3324325081301624E8 5

27 5.213528313807281E8 4
…

32 5.052130404197854E8 3

…
100 4.815435483122903E8 1

…

237 4.7379832580636716E8 0
255 4.664072159088196E8 0

265 4.6386566539892936E8 0

330 4.6386462201360106E8 0
706 4.638641013410574E8 0

1968 4.638640964116055E8 0

2071 4.638640668751212E8 0
2559 4.638640333827571E8 0

4346 4.638640290995247E8 0

R 5001 4.638640290995247E8 0

Fig. 5. Debugging example of Birch1.

Computational efficiency

To check the computational efficiency, five runs of the Java-

based random swap program were executed on the Birch1

dataset (see Table 1), both in sequential and parallel modes.

The overall wall-clock time required for completing the

T=5000 swap iterations (see Fig. 2) was measured. The two

times are referred to as RS Sequential Elapsed Time (RS-SET)

and RS Parallel Elapsed Time (RS-PET). After that, the

Sequential Average Swap Time (SAST) and the Parallel

2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)

27Authorized licensed use limited to: University of Eastern Finland. Downloaded on November 24,2022 at 06:49:32 UTC from IEEE Xplore. Restrictions apply.

Average Swap Time (PAST) were estimated. The speedup

was then evaluated as the ratio of SAST/PAST.

In a similar way, the SI-SET and SI-PET were measured

by computing the Silhouette index (SI) both in sequential and

parallel mode. The average execution times, namely aSI-SET

and aSI-PET, were then calculated, and the corresponding

speedup evaluated as the ratio aSI-SET/aSI-PET. The

recorded execution times are summarized in Table 2.

Table 2. Run times of Random Swap and Silhouette Index (P=16 threads)

#run RS-SET (ms) RS-PET (ms) SI-SET (ms) SI-PET (ms)

1 1224352 132090 42788 4600
2 992717 142649 43239 4733
3 996234 144315 43238 4942
4 1000580 151051 42916 5186
5 986371 157491 42824 5382

From Table 2, we derive an average value of SAST=208.1 ms

per swap iteration, and PAST=29.10 ms. This results in a

speedup of 7.15.

The average times for SI emerged to be: aSI-SET=43001

ms and aSI-PET=4968 ms, with a speedup of 8.65.

Clustering accuracy

The quality of clustering solutions generated by parallel

random swap was estimated by 10 runs, each of 𝑇 = 5000

swap iterations, executed in parallel mode, for each dataset in

Table 1. A clustering solution consists of final centroids and

the index (label) of the clusters in which the data points were

assigned to. The quality of the solution is captured by the

values of nMSE cost, Silhouette index (SI) and Centroid index

(CI) calculated between the proposed solution and the ground

truth centroids.

Table 3 contains the recorded results for all the 12

selected benchmark datasets. As a notable property, parallel

random swap was capable, almost deterministically, to find

the correct solution of the various datasets but with low

runtime. For the Birch1 (𝑁 = 100000, 𝐾 = 100, 𝑇 = 5000)

the result is generated in about 2.5 min instead of the 17 min

required by the sequential approach. The always obtained

CI=0 confirms the same result predicted in [4].

Table 3. Clustering accuracy results.

dataset nMSE SI CI

A1 2.02E6 0.595 0

A2 1.93E6 0.598 0

A3 1.93E6 0.601 0

S1 8.92E8 0.711 0

S2 1.33E9 0.626 0

S3 1.69E9 0.493 0

S4 1.57E9 0.480 0

G2-1024-100 9.98E3 0.183 0

DIM32 7.096 0.946 0

UNBALANCE 1.65E7 0.858 0

BIRCH1 4.64E8 0.460 0

BIRCH2 2.28E6 0.736 0

VI.CONCLUSIONS AND FUTURE WORK

This paper proposes Parallel Random Swap [4], a novel

method which provides efficient and reliable clustering on

nowadays multi-core machines. The new method leverages

on the lock-free concurrency support which Java supplies

when dealing with parallel streams of non-trivial datasets.

The tool was applied to a set of benchmark datasets thus

confirming careful clustering solutions can be achieved with

significant time efficiency.

Prosecution of the work will address the following

points.

First, to identify possible heuristics for early termination

of method. Preliminary experiments seem to suggest that

when a certain number of consecutive accepted iterations

occur with a 0 value of the local Centroid index (that is,

evaluated between the new centroids configuration and the

one existing at the beginning of the swap iteration), followed

by a few hundred unproductive iterations, the last found

solution, with great success frequency, is the correct one.

More investigation, though, is deemed necessary using both

synthetic and real-world datasets.

Second, to port Parallel Random Swap on the efficient

Theatre actor-system with message-passing [14-15], which

enables a better exploitation of the computing resources

through a custom split of the dataset into blocks to be

managed in parallel by a specific number of theatres/threads.

REFERENCES

[1] P. Fränti, O. Virmajoki. Optimal clustering by merge-based branch-and-
bound. Applied Computing and Intelligence, 2(1):63–82, 2022.

[2] P. Fränti, Genetic algorithm with deterministic crossover for vector
quantization. Pattern Recognit Lett., 21(1):61–8, 2000.

[3] A. Likas, N. Vlassis, JJ. Verbeek. The global k-means clustering
algorithm. Pattern Recognit., 36:451–61, 2000.

[4] P. Fränti. Efficiency of random swap algorithm. J. Big Data, 5(1), 1-29,
2018.

[5] A. Rodriguez, A. Laio. Clustering by fast search and find of density
peaks. Science, 344(6191), 14.92–14.96, 2014.

[6] P. Fränti, S. Sieranoja. K-means properties on six clustering benchmark
datasets. Applied Intelligence, 48(12), 4743-4759, 2018.

[7] P. Fränti, S. Sieranoja. How much can k-means be improved by using
better initialization and repeats? Pattern Recognition, 93, 95-112, 2019.

[8] A. Vouros, S. Langdell, M. Croucher, E. Vasilaki. An empirical
comparison between stochastic and deterministic centroid initialization
for K-means variations. Machine Learning, 110, 1975–2003, 2021.

[9] R.G. Urma, M. Fusco, A. Mycroft. Modern Java in Action. Manning,
Shelter Island, 2019.

[10] P. Fränti, M. Rezaei, Q. Zhao. Centroid index: cluster level similarity
measure. Pattern Recognition, 47(9), 3034-3045, 2014.

[11] P.J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20, 53-65, 1987.

[12] L. Nigro. Performance of parallel K-means algorithms in Java.
Algorithms, 15(4), 117, 2022.

[13] Benchmark datasets, http://cs.uef.fi/sipu/datasets/.

[14] L. Nigro. Parallel Theatre: An actor framework in Java for high
performance computing. Simulation Modelling Practice and Theory,
106, https://doi.org/10.1016/j.simpat.2020.102189, 2021.

[15] F. Cicirelli, L. Nigro. Parallel simulation of Stochastic Reward Nets
using Theatre. 25th ACM/IEEE Int. Symp. on Distributed Simulation
and Real-Time Applications (DS-RT 2021), IEEE Xplore, 2021.

2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)

28Authorized licensed use limited to: University of Eastern Finland. Downloaded on November 24,2022 at 06:49:32 UTC from IEEE Xplore. Restrictions apply.

