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Abstract. Mumford-Shah model has been used for image segmentation by 

considering both homogeneity and the shape of the segments jointly. It has been 

previously optimized by complex mathematical optimization methods like Douglas-
Rachford, and a faster but sub-optimal k-means. However, they both suffer from 

fragmentation caused by non-convex segments. In this paper, we present 

hierarchical algorithm called Pairwise nearest neighbor (PNN) to optimize the 
Mumford-Shah model. The merge-based strategy utilizing the connectivity of the 

pixels prevents isolated fragments to be formed, and in this way, reaches better 

quality in case of images containing complex shapes. 
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1. Introduction 

Image segmentation is a fundamental pre-processing task applied in more complex 

machine vision applications. The goal is to find regions of interest in an image that 

possess homogeneity and spatial connectivity. Let function ℎ(𝑥, 𝑦) ∈ 𝑅3 represent RGB 

color of a pixel in the image at location (𝑥, 𝑦). We aim to find k segments Ω1, Ω2, … Ω𝑘so 

that the pixel colors or some other feature would have smooth variation within the 

segments but discontinuous over the segment borders. We characterize the problem in 

terms of approximation theory, as the problem of finding an approximation 𝑓 of ℎ so that 

each 𝑓𝑖 represents the segment Ω𝑖  via a piecewise smooth function.  

Existing approaches to image segmentation [1] include thresholding, clustering and 

classification methods [2], [3], [4], region-based methods [5], and edge based active 

contour methods [6], [7], [8]. The segmentation problem has also been dealt as an energy 

minimization problem. Obtaining a generalized solution that works without prior 

knowledge about the objects, their characteristics like shape, color, texture, appearance 

of shadows and overlapping of objects, is still an open problem. 

Clustering has also been applied to image segmentation via grouping the pixels by 

minimizing intra segment similarity using k-means algorithm [9]. K-means is known to 

be sensitive to initialization, but it can be improved significantly by better initialization 

technique and by repeating the algorithm 100 times [10]; or by using random swap 

algorithm [11] which practically never gets stuck to an inferior local minimum.  
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K-means and random swap minimize sum-of-squared error (sse) between the pixels 

and centroids:  

𝑠𝑠𝑒 =
1

𝑛
∑ ‖𝑓 − ℎ‖2

𝑖  (1) 

However, minimizing sse leads to color quantization where every pixel is mapped 

to its nearest color regardless of its neighbors resulting in a fragmented segmentation. 

This is typically solved by adding spatial constraint to the equation or by using explicit 

convexity criterion in the algorithm.  

Mumford-Shah is an energy minimization model that has been applied for image 

segmentation [12]. Its simplified version is defined as follows: 

𝐸(𝑓, 𝜏) = ∫ ∫ ‖𝑓 − ℎ‖2𝑑𝑥𝑑𝑦 + 
Ω

𝜆𝐿(𝜏) (2) 

where the first term equals to sse, 𝐿(𝜏) denotes the total length of the segment boundaries, 

and 𝜆 is a control parameter. Large values of 𝜆 will produce shorter boundaries whereas 

smaller values of 𝜆 will put more emphasis on the homogeneity of the segments. The 

Mumford-Shah model has been extensive used in the areas of image denoising, 

segmentation and restoration [13].  

Algorithmic techniques to minimize the Mumford-Shah includes Douglas-Rachford 

algorithm [14], implicit methods [15], and k-means [16]. The last one is virtually as fast 

as standard k-means and significantly faster than the other optimization techniques using 

Mumford-Shah model [15], [17], [18], [19], [20], [21]. However, the algorithm itself 

does not control the convexity and it can still lead to fragmentation with isolated sub-

segments. 

In this paper, we propose hierarchical merge-based clustering algorithm for 

optimizing Mumford-Shah model. It allows only neighbor segments to be merged, and 

in this way, prevents isolated sub-segments to be formed. Classical agglomerative 

clustering itself is a slow algorithm, but we show that utilizing the 2-D neighborhood we 

can reach 𝑂(𝑛2) time complexity by rather straightforward implementation. 

2. Pairwise nearest neighbor using Mumford-Shah 

Agglomerative clustering [22], [23] is a popular alternative to k-means but a simple 

implementation can be several orders of magnitude slower. Initially, each pixel forms its 

own segment 𝑠𝑖. Two segments are then repeatedly merged until the desired number of 

segments is reached. The segment pair to be merged are selected using the Ward's method 

[24] so that the increase in sse is the least among all possible merges. Thus, it generates 

clusters by a sequence of locally optimal merge operations. 

2.1. Pairwise nearest neighbor method 

In the context of vector quantization, agglomerative clustering is known as the pairwise 

nearest neighbor (PNN) method due to Equitz [25]. Many variants of PNN exist. Most 

of them try to speed up the algorithm while some also try to improve the clustering 

quality. We next give a brief literature review of the agglomerative clustering. 

A straightforward implementation of the PNN algorithm takes 𝑂(𝑛3) time because 

there can be 𝑛 steps in total, and every step takes 𝑂(𝑛2) time. Even if the merge costs 

were stored in a matrix, the search for the best merge would still require exhaustive 



search [26]. In [27] an alternative variant called fast exact PNN was proposed to reduce 

the time complexity to 𝑂(𝜏𝑛2), where 𝜏 is significantly smaller than n with all realistic 

data sets. The main idea is to maintain a nearest neighbor to store the lowest merge cost 

for each segment to avoid repeating unnecessary calculations [25]. The method is exact 

in a sense that it does not compromise the accuracy of the PNN. 

In [28], an improved variant called Lazy-PNN was developed. The running time of 

the algorithm is dominated by 𝑂(𝑛𝑘) time operations [25], [29]. However, some of the 

merge cost calculations can be delayed and a remarkable number of calculations can be 

avoided completely. Practical tests indicated that the lazy-PNN is about 35% times faster 

than the fast exact PNN [30], and 200-500 times faster than the original PNN [23], [30]. 

In [31], the fast exact PNN was also applied to multilevel nonparametric image 

thresholding, achieving 𝑂(𝑛𝑙𝑜𝑔𝑛) but this does not generalize to segmentation in RGB 

space. In [32], the algorithm uses a heap data structure in which all pairwise merge costs 

are stored and the smallest merge cost is always found as the element of the root node of 

the heap. The computation time of the algorithm is at most 𝑂(𝑛2𝑙𝑜𝑔𝑛) at the cost of 

𝑂(𝑛2) memory consumption, which is not suitable for segmenting large images. 

In [33], a more general approach called iterative shrinking is proposed. Instead of 

merging, the number of clusters is reduced by a sequence of cluster removal operations. 

Clusters are removed one at a time by reassigning the objects from the removed cluster 

to the nearby clusters. The PNN method can be considered as a special case of the 

iterative shrinking, in which the objects of the removed cluster are all forced to move to 

the same cluster selected for the merge [25].  

In [34], an approximate k-nearest neighbor graph is used for reducing the number of 

merge cost calculations.  The graph is utilized so that the search for the cluster with the 

smallest merge cost is limited only to the clusters that are directly connected by the graph. 

This reduces the time complexity from 𝑂(𝑛)  to 𝑂(𝑘)  for a single node. The graph 

construction becomes then the bottleneck but fast approximate variants using k-d tree, 

divide-and-conquer or projection-based search were considered in [35]. The time 

complexity of the algorithm can be improved accordingly from 𝑂(𝜏𝑛2) to 𝑂(𝜏𝑛Log 𝑛)  

at the cost of slight increase in sse [22], [35]. All the above variants of agglomerative 

clustering aim at faster speed except the iterative shrinking which aims at better quality. 

2.2. Adopting Mumford-Shah to PNN 

In this paper, we adopt the PNN variant from [34] to image segmentation using 

Mumford-Shah model. The main difference is that we take spatial connectivity of the 

pixels into account instead of merely minimizing sse. 

The basic structure of the PNN method is shown in Algorithm 1. Given a set of n 

pixels 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛 , } , the method starts by assigning each pixel 𝑥𝑖  to its own 

segment represented by centroid 𝑐𝑖. In each step, the number of segments is reduced by 

merging two segments a and b. The merge cost is calculated as follows: 

𝑐𝑜𝑠𝑡𝑖,𝑛𝑏 =  
𝑛𝑖𝑛𝑛𝑏

𝑛𝑖+𝑛𝑛𝑏
‖𝑐𝑖 − 𝑐𝑛𝑏‖2 − 𝜆 ∙ 2 ∙ 𝑐𝑜𝑚𝑚𝑜𝑛𝑖,𝑛𝑏 (3) 

The first term calculates how much sse is increased by the merge, and second term 

how much the boundary length is reduced. It can be calculated as follows:  

𝑐𝑜𝑚𝑚𝑜𝑛𝑖,𝑛𝑏 = (𝑏𝑙𝑒𝑛𝑖 + 𝑏𝑙𝑒𝑛𝑛𝑏 − 𝑏𝑙𝑒𝑛𝑖+𝑛𝑏) 2⁄  (4) 



where 𝑏𝑙𝑒𝑛i is the boundary length of the segment i. The PNN method applies a local 

optimization strategy: all possible cluster pairs are considered and the one increasing the 

Mumford-Shah model according to (3) is always chosen: 

𝑎, 𝑏 = arg min
𝑖,𝑗∈[1,𝑘]

𝑖≠𝑗

𝑐𝑜𝑠𝑡𝑖,𝑗 (5) 

Algorithm 1: Pairwise nearest neighbor 

PNN(𝑋, 𝑘) → 𝑆  
 FOR 𝑖 ← 1 to 𝑛 DO 

  𝑆𝑖 → {𝑥𝑖} ; 

 REPEAT 
  (𝑆𝑎,𝑆𝑏 ) ← SearchNearestClusters(𝑆) 

  Merge(𝑆𝑎,𝑆𝑏 ) 

 UNTIL |𝑆| = 𝑘 

2.3. Implementation of Mumford-Shah PNN 

The proposed algorithm follows the basic structure of the PNN method in [34] with two 

main differences. First, we use merge cost derived from Mumford-Shah model. Second, 

since we operate on image pixels, we can implement the search for the nearest neighbors 

more efficiently by utilizing the connectivity of the segments.  

In the beginning, each pixel forms its own segment. The centroid of the segment is 

the pixel value as such, 𝑐𝑖 = 𝑥𝑖, and the segment size is set to 𝑐𝑠𝑖𝑧𝑒𝑖 = 1.  An array of 

its four neighbors is recorded (𝑛𝑏𝑖 ). For each segment, we also maintain its nearest 

neighbor (𝑛𝑛𝑖 ) and the corresponding merge cost value (𝑛𝑛𝑐𝑖 ). These are found by 

calculating the merge cost (3) of the segment and with its all neighbors. We explain next 

how these data structures are updated during the merge process. 

The next merge is always found by linear search among all the nearest neighbors. In 

case the merge cost of two or more neighbors are equal, we select the neighbor as per the 

row-major order. While the merging process, the algorithm considers only spatially 

connected neighbors. This prevents fragmentation to appear which happens with the 

k-means variants that only minimizes (3) without explicit connectivity constraint.  

We maintain a heap structure of all the segments according to the descending order 

of 𝑛𝑛𝑐. After the merge, the centroid of the merged cluster is updated as: 

𝑐𝑖 ←  
𝑐𝑖∙𝑐𝑠𝑖𝑧𝑒𝑖+ 𝑐𝑛𝑏𝑖

∙𝑐𝑠𝑖𝑧𝑒𝑛𝑛𝑖

𝑐𝑠𝑖𝑧𝑒𝑖+𝑐𝑠𝑖𝑧𝑒𝑛𝑛𝑖

 (6) 

The boundary length is also updated using (4), and the list of neighbors of cluster i 

is updated by selecting the unique neighbors of the two merged clusters avoiding 

duplicates. The nearest neighbor of the merged cluster i is then resolved by recalculating 

the merge cost to all its neighbors. 

We reach slightly better time complexity than in [27], 𝑂(𝑛2) < 𝑂(𝜏𝑛2) although 

the difference is not huge because 𝜏 is data dependent variable which is usually small. In 

comparison to [34], our algorithm is still slower as 𝑂(𝑛log𝑛) < 𝑂(𝑛2). The main reason 

is that the original PNN does not need to maintain the partition whereas we need to 

update the pixel labels in order to calculate the boundary length. The Mumford-Shah 

PNN is slower than the Mumford-Shah k-means. This is the price we need to pay for the 

better segmentation quality. 



3. Experiments 

We compare the proposed method (MS-PNN) with two other methods: regularized 

k-means (reg-KM) [36], and Mumford-Shah k-means (MS-KM) [16]. The experiments 

were conducted on desktop with Intel Core i5 processor with 2.50GHz speed, 8 GB RAM, 

64-bit Windows 10 operating system. To evaluate the quality of the segmentations we 

used two measures: bi-directional consistency error (BCE*) [37] and structural 

similarity index (SSIM) [38]. As test set, we use 11 images from the Weizmann dataset 

[37] which has human segmented ground truths. 

The results are summarized in Table 1. They show that the proposed method 

outperforms the other methods by clear margin. The average BCE* values are 0.33 (MS-

PNN), 0.38 (MS-KM), 0.46 (KM) and 0.47 Reg-KM. The SSIM values are best among 

9 out 11 images. The better quality comes at the cost of higher processing time; 476s for 

MS-PM compared to, 166s (Reg-KM) and <1s (KM and MS-KM).  

The visual quality in Fig. 1 shows the main benefit of MS-PNN; it is the only method 

without isolated fragments which is observed in all k-means variants. While k-means is 

reasonably good in optimizing the Mumford-Shah model, these isolated sub-segments 

are persistent and only the merge-based algorithm can avoid them completely. 

The main limitation of the algorithm is the λ parameter of the Mumford-Shah model 

which needs to be manually tuned. Fig. 2 shows it effects on few sample images. Here 

we have used the values of λ=0.25 and λ=0.50. 

 

Table 1. BCE* (the lower the better) and SSIM (the higher the better) for the three methods. 

Image 
BCE* SSIM 

KM 
Reg-

KM 

MS-

KM 

MS-

PNN 
KM 

Reg-

KM 

MS-

KM 

MS-

PNN 

1 0.22 0.65 0.54 0.05 0.77 0.57 0.82 0.96 
2 0.73 0.72 0.44 0.46 0.43 0.43 0.54 0.74 

3 0.53 0.57 0.42 0.51 0.52 0.52 0.63 0.72 

4 0.05 0.03 0.31 0.03 0.95 0.95 0.81 0.95 
5 0.18 0.23 0.24 0.08 0.80 0.80 0.82 0.94 

6 0.76 0.65 0.52 0.62 0.59 0.59 0.70 0.56 

7 0.44 0.20 0.20 0.16 0.61 0.77 0.78 0.89 
8 0.57 0.58 0.23 0.21 0.42 0.42 0.83 0.82 

9 0.44 0.58 0.41 0.33 0.57 0.57 0.72 0.80 

10 0.61 0.53 0.50 0.79 0.46 0.46 0.46 0.60 
11 0.54 - 0.35 0.38 0.41 - 0.50 0.66 

Average 0.46 0.47 0.38 0.33 0.59 0.61 0.69 0.79 

4. Conclusions 

We have introduced a new approach by embedding the well-known Mumford-Shah 

model into the merge-based hierarchical PNN algorithm. The results of the proposed 

MS-PNN are much better than the k-means variants in terms of segmentation quality 

(BCE*) and reconstruction quality (SSIM) of the images. The resulting segment 

boundaries of MS-PNN are much smoother without fragmentation. The drawback of the 

algorithm is slower than the corresponding k-means variant using Mumford-Shah but 

this can be tolerated as much better segmentation quality is obtained. Furthermore, it is 

quite possible to speed-up the method further from O(n2) to O(nlogn) by utilizing better 

data structures. This is our future work. 



 

 

Figure 1. Visual comparison of the segmentation results using three methods. 

 

 



 

Figure 2. Examples of the effect of  on the segmentation result. 
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