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Abstract

In the present paper we study the use of vector quantization in the BTC-VQ image compression system. We propose an
inverted order of proceeding in the BTC-VQ algorithm, so that the interaction of coding the bit-plane and the quantization
data will be taken into consideration. The quality of the image depends radically on the codebook used in VQ. The use
of frequencies in the selection of the initial codebook turns out to be superior to random selection.
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1. Introduction

Block truncation coding (BTC) [2] is a simple way
to compress digital gray-scale images. The basic idea
in the method is to divide the pixel matrix into blocks
and quantize the pixels to two different values, a and
b. These along with a bit-plane (bit-matrix), indicat-
ing the choice between « and b, are transmitted as a
compressed image.

A large number of variants of the basic BTC-
algorithm have been proposed during the past 15
years [6]. Their performance can be compared using
the bit-rate (bits per pixel), the mean square error
(MSE) of the reconstructed image, and the overall
complexity of the algorithm. Efficient variants of BTC
typically achieve bit-rates of the order of magnitude
1.25 with MSE 32.5 for the test image Lena [5,13].
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Several approaches have been proposed for reduc-
ing the volume of the bit-plane by the use of vector
quantization (VQ) [3,13,17,19-21]. The basic idea of
VQ is to select a small set of representative vectors
(binary blocks) and to code all possible vectors by an
index to this set.

In this paper we propose a new hierarchical BTC
algorithm (HBTC-VQ). A hierarchy of blocks is con-
sidered in the algorithm and vector quantization is
applied when the distortion caused by the VQ is ex-
pected to be small. We consider different design alter-
natives while constructing the codebook, performing
best match search, and coding the quantization data.
The new algorithm competes well in respect to bit-
rate, MSE, and speed. With the bit-rate of 1.24, the
algorithm gives MSE of 22.79 for Lena. For an ex-
tended summary of the present paper, see [4].

We start in Section 2 by shortly reviewing the previ-
ous works on BTC-VQ algorithms. The new algorithm
is given in Section 3. Choices in the implementation;
including the codebook generation, search method, re-
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vision of the VQ-organization (called inverted order
VQ) and coding of the quantization data are discussed
in Section 4. A summary of the test results is docu-
mented in Section 5, and finally conclusions are drawn
in Section 6.

2. Background

The use of VQ for coding the bit-plane and the quan-
tization levels was first introduced by Udpikar and
Raina [17]. They apply vector quantization for cod-
ing both the bit-plane and the quantization data (a, b)
separately. The codebook of the vector quantization is
generated off-line on the basis of training vectors by
the generalized Lioyd algorithm [7,12]. In the coding
phase, the element to be coded is matched for each
code vector in the codebook, and the one which min-
imizes the given distortion function is chosen.

Several improvements and modifications of the
above scheme have been proposed in the literature. In
the present paper we consider VQ only for coding the
bit-plane, but compress the quantization levels (a, b)
by other means.

Most of the previous works [3,17,19-21] rely on
the generalized Lloyd algorithm as the codebook gen-
eration method, or select the codebook ad hoc [13].
The size of the codebook was 256 in [3,17,19,21] and
128 in [13], giving the bit-rate of the bit-plane 0.5 and
0.44, respectively. Several codebooks of different sizes
were used by Weitzman and Mitchell [20]. The size
depends on the contrast of a block (as measured by
b—a): the greater the contrast the larger the codebook.

Nasiopoulos et al. {13] coded only blocks whose
contrast is in a given range (not too large but not too
small either) by VQ. The codebook was formed so
that edge blocks are well represented. This also re-
duces the so-called staircase effect, which is otherwise
impaired by VQ. A clussified VQ algorithm was pro-
posed by Efrati et al. [3] for avoiding the staircase
effect. BTC-VQ is used in this method for the low
contrast blocks, and a three-level quantizer is applied
for the high contrast blocks. Thus, the algorithm uses
two different codebooks, one for the low contrast and
another for the high contrast blocks.

The representative for a bit-plane is usually cho-
sen by a full search, i.e. by testing each candidate

codevector and selecting the one which minimizes the
given distortion function. A Jocalized search was pro-
posed by Weitzman and Mitchell [19]. They divide
the codebook into several overlapping sub-codebooks.
For each bit-plane, its combination index is calculated.
It determines the sub-codebook in which the search is
performed.

3. HBTC-VQ algorithm

It is a well-known fact that BTC performs poorly
in the regions of high contrast. The problem can be
attacked by using variable block sizes [10,14]. With
large blocks, one can decrease their total number and
therefore reduce the bit-rate. On the other hand, small
blocks improve the image quality.

Here we consider rectangular raster images consist-
ing of X * Y pixels each represented by 8 bits. The im-
age is segmented into blocks of size mxm; (m; = 2").
If standard deviation ¢ of a block is less than a prede-
fined threshold o, the block is coded by a BTC-VQ
algorithm. Otherwise, it is divided into four subblocks
and the same process is repeated until the threshold
criterion is met, or the minimal block size (m; * m;)
is reached. The hierarchy of the blocks is represented
by a quadtree structure.

A compressed block appears as a triple (a,b,B),
where B stands for the bit-plane giving the quantiza-
tion of the pixel values. The image is reconstructed
at the decoding phase by assigning the value a to the
0-value pixels and b to the 1-value pixels of the bit-
plane, where a and b are given by

1
= i 1
a miqu (1)

X <X

b:éz,\",. )

X; 22X

Here x; stands for a pixel value, ¥ the average of
their values, m is the total number of the pixels, and
g is the number of 1-bits in the block. This selection
of a and b is known as the absolute moment BTC
(AMBTC) [11]. It preserves the first moment (X) and
the first absolute central moment (L3 |x; — %|) of
the coded block, and is optimal in the MSE-sense in
respect to the quantization threshold.
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Main()
WHILE unprocessed rows of the image exists DO
Read the next m, lines of the image into the buffer.
Split the lines into nxzr X/m,] blocks of m,*m, pixels.
FOR i:=1to n, DO
EncodeBlockByBTC(block;).
END-WHILE.

EncodeBlockByBTC(block)
Calculate mean (X ) and standard deviation () of the pixels in block.
IF o<o,, or the block size is m,*m, THEN
IF block size > m,*m, THEN encode hierarchy bit 1 (=leaf node).
Construct the bit plane B.
IF block size is 2*2 THEN
Output the bit plane.
ELSE
EncodeBitPlaneBy VQ(B).
Calculate (a,b) for the reconstructed bit plane.
Quantize (a,b) to 6+6 bits.
Compress (a,b) by FELICS.
ELSE
Encode hierarchy bit 0 (=internal node).
Divide the block into four subblocks.
Process the subblocks recursively in the same manner.

EncodeBitPlaneByVQ(B)

IF block size is 4*4 THEN
v := SearchNearestMatch(B).
Output the index v of the codevector.
Replace the bit plane B by the codevector C,,.

ELSE
Divide the bit plane into four subplanes.
Encode the subplanes recursively.

SearchNearestMatch(B)
w := Combination index [19] of the bit plane B.
For each candidate codevector Cj in subbook w DO:
Calculate (a,b) corresponding to Cj

Calculate the MSE for this part of the block when compressed with C;.

Select the one with smaller MSE as the best match.
Return the index je [1,256] of the best match.

Fig. 1. The HBTC-VQ algorithm.
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Variable block sizes cause problems in the VQ me- straightforward solution to the problem is proposed

thod. One can apply VQ to blocks of variable size as next.

proposed in [7, 22], but we have not found in the lit- In HBTC-VQ we apply vector quantization for the
erature a BTC-VQ scheme for this case. A simple and bit-planes of 4 * 4-blocks only. Whenever a block is
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larger than that, the bit-plane of the block (not the
block itself!) is divided into four subplanes of equal
sizes. This process is continued until a 4 * 4 subplane
is reached and VQ can be applied. No extra bits are
needed to code the subplane hierarchy. If the block
size is 2 *2 we simply disallow the use of VQ. This
is argued by the fact that 2 *2-blocks usually lie
in the high contrast regions, which are unfavorable
for VQ.

The HBTC-VQ algorithm includes the following
methods:
— Quadtree block decomposition of the image [10,14].
— Absolute moment BTC [11].
— Vector quantization [17] with localized search [19]

and MSE criterion.
— FELICS [9] for coding of (a, b).
In the implementation, (a, b) are first quantized
(by rounding) to 6+46 bits and then encoded by
FELICS (Fast and Efficient Lossless Image Com-
pression System). The parameter selections for the
hierarchy are m; = 32, m; = 2, and the threshold val-
ues for the levels 32 %32, 16« 16 and 8 = 8 is gy, = 6,
as proposed in [6]. For the 4 *4-level the threshold
value is left as an adjusting parameter. The size of the
VQ codebook is fixed to 256, thus the compression
effect will be 0.5bpp for every block coded by VQ.
The main structure of the algorithm is given in Fig. 1.

4. Implementation aspects

Though the algorithm of the last section seems to
be straightforward and clear, there remain a number
of questions to be solved. We next analyze different
design alternatives to find a good compromise between
them. All the results are for the non-hierarchical BTC
with 4 x4 block size, unless otherwise noted.

4.1. Vector quantization of the bit-plane

Traditionally, VQ is used for coding the bit-plane
independently from the quantization level values
(a, b), which are calculated on the basis of the orig-
inal bit-plane. Now, if the representative of the bit-
plane differs from the original, the quantization levels
(a, b) do not anymore correspond to the mean values
of the two partitions as they are assumed to, and thus
they are no more optimal in the MSE-sense. We have

therefore reorganized the BTC algorithm so that the
bit-plane is constructed and coded by VQ before the
pair (a, b) is calculated. The quantization levels (a, b)
are then calculated according to the reconstructed bit-
plane C,, so that a corresponds to the mean value of
the pixels belonging to the O-partition and b the pixels
belonging to the 1-partition. In the compressed file,
the pair (a, b) can still appear before the bit-plane,
since the inversion is invisible at the decoding phase.
The bit-plane is thus omitted if @ and b are equal.

In this perspective, vector quantization serves as an
indirect quantization method of the block, not as a
sole coding phase of the bit-plane. The effect of this
is studied in more detail in Section 4.4. Until then, we
assume the original order of processing in VQ.

4.2. Codebook generation

The codebook is constructed off-line on the basis
of training vectors by using a suitable algorithm.
Then the same codebook is used for whatever im-
ages are to be coded. Adaptive vector quantization
[8] was considered in [21] but the results of their
investigations indicate that the non-adaptive, univer-
sal codebook VQ should be preferred because of the
speed.

We use the Generalized Lloyd algorithm (GLA)
[7,12] for generating the codebook. The method needs
an initial codebook which is then improved by Lloyd’s
iteration algorithm. This gives a locally optimal code-
book in respect to the training set and the initial code-
book. We select the initial codebook heuristically as
the m most frequent matrices of the training set. An-
other simple method would have been to select the
matrices randomly from the training set [3,17]. How-
ever, the results of the frequency-based method are
clearly superior, see Table 1. The codebooks in GLA
are here iterated until no improvement is achieved.
The number of iterations, corresponding to the code-
book sizes of (128, 256, 512), were (3, 3, 2) for the
case of random heuristic, and (2, 1, 2) for the case
of frequency heuristic. The small number of iterations
(originating from the binary source) emphasize the
importance of the choice of the initial codebook. The
training set consists of four images (different from the
test images of Table 1) with in total 23 944 different
matrices.
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Table 1

Performance comparison (in MSE) of the heuristics for constructing the initial codebook in GLA. Full scarch is applied over the codebooks

using MSE as a distortion function

Heuristics Random Frequency
Codebook size
128 256 512 128 256 512

Airplane 84.67 70.49 64.07 50.02 45.78 43.46
Bridge 230.23 190.27 162.61 158.13 143.44 131.75
Galaxy 1.60 1.38 1.29 1.42 1.34 1.20
Lena 78.17 64.62 61.59 53.42 49.99 47.46
New Orleans 32.27 2747 25.28 22.70 20.77 19.36
X-ray 47.33 22.94 22.02 19.63 18.71 18.09

ORIGINAL OUTPUT OF

BIT PLANE FILTERING STEPWISE PROCESSING OF THE 3rd ROW:
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Fig. 2. INlustration of horizontal 1D-median filtering with a window of three pixels.

Another approach to bit-plane compression was
proposed by Arce and Gallagher [1]. They apply
filtering techniques, which are in a sense related
to vector quantization in this context. Median fil-
tering [15] is a signal processing technique where
the input signal is processed by replacing each in-
put value with the median of the original values
within a given window. The signal can be filtered
over and over again until it reaches its roots, ie.
it is not affected by the filtering anymore. The
root signal set includes all the signals that are
roots. The root signal set can be considered as a
codebook of a vector quantization method, where
the number of roots determines the size of the
codebook.

In the comparison we included three filtering tech-
niques. These are the /D-median filtering (1D-MF)
[11, separable median filtering (SMF) [18], and cross
median filtering (CMF) [18]. The codebooks of these
methods were selected as subsets of their root signal
sets, so that the size of the particular codebooks are
close to exact powers of two, that is (2030, 4096,
8112) for (SMF, 1D-MF, CMF). For details see
[1,18].

In the 1D-MF, the window was set to three pixels
including the current pixel and its two neighboring
pixels in the same row. For the border pixels, the
outer ones are assumed to be of the same intensity as
the border pixel, see Fig. 2. SMF is a two-stage pro-
cedure where filtering with a three pixel window is
first applied in horizontal direction and then in verti-
cal direction. In CMF a symmetrical two-dimensional
window is used and only one stage is needed for one
filtering pass.

Table 2 gives a comparison of several methods for
generating the codebook. Here we apply full search
over the codebooks using MSE as a distortion func-
tion. ACC (Adaptive Compression Coding) refers to
the codebook proposed in [13]. It has been primarily
designed for edge blocks only, but it is rather good
for all blocks in the MSE-sense. It is observed that
the size is the most important factor in the selection
of the codebook: the larger the codebook, the smaller
is the distortion in MSE. The choice of a codebook
building method turns out to be of minor importance.
In most cases GLA is slightly better when compared
to the filtering methods (SMF, 1D-MF, CMF), but the
difference is small.
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Performance comparison (in MSE) of methods for generating the codebook. Full search is applied over the codebooks using MSE as a

distortion function

Method GLA GLA GLA GLA GLA GLA
Codebook size 128 256 512 2048 4096 8192
Airplane 50.02 45.78 43.46 40.96 40.30 39.81
Bridge 158.13 143.44 131.75 114.40 107.85 103.16
Galaxy 1.42 1.34 1.20 1.05 0.99 0.94
Lena 53.42 49.99 47.46 42.63 41.22 40.29
New Orleans 22,70 20.77 19.36 17.27 16.72 16.30
X-ray 19.63 18.71 18.09 16.90 16.41 16.03
Method ACC SMF 1D-MF CMF AMBTC Optimal
Codebook size 128 2030 4096 8112 — 65536
Airplane 53.58 41.03 42.65 3991 41.32 34.51
Bridge 162.34 118.17 116.71 105.26 99.37 87.67
Galaxy 1.43 1.14 1.08 1.03 0.86 0.82
Lena 57.03 42.39 44.66 40.37 40.51 35.54
New Orleans 24.08 16.89 17.61 16.22 16.44 14.21
X-ray 2227 18.39 18.11 17.59 15.57 14.69

GLA = Generalized Lloyd algorithm [7,12].
ACC = Codebook proposed in [13].

SMF = Separable median filtering codebook [18].
CMF = Cross median filtering codebook [18].
AMBTC = Absolute moment BTC [11,16].
Optimal = Optimal quantization.

An interesting observation is that if the codebook is
large enough, BTC-VQ may outperform BTC without
any vector quantization (cf. the results for Airplane).
This rather surprising effect originates from the non-
optimal quantization of AMBTC (in the MSE-sense).
Therefore, it is possible to find a better quantization
matrix from a large codebook than to quantize the
block according to the mean value of the block. The
optimal quantization, on the other hand, can be found
by testing all the pixel values in the block as a candi-
date threshold, and by choosing the one that gives the
lowest MSE-value.

4.3. Search method

We consider three alternative search methods:
— Full search with MSE distance.
— Localized search with MSE distance.
— Look-up table (LUT) implementation using
Hamming distance (or filtering).
The full search is always optimal (in respect of the
distortion function) but it is somewhat impractical for

large codebooks. In HBTC-VQ we thus use the local-
ized search as proposed in [19]. Here the codebook is
divided into several (overlapping) sub-codebooks. For
each bit-plane, its so-called combination index is cal-
culated. This index determines the codebook in which
the search is performed.

The performance of a search method depends
not only on the organization of the codebook,
but also on the distortion function. In HBTC-VQ
we use MSE, which is the most obvious mea-
sure. However, it cannot be calculated indepen-
dently from the quantization data (a, ). Most of
the previous works have thus used Hamming dis-
tance as a distortion measure [13,17,21]. If there
are two or more codevectors with the same Ham-
ming distance from the original bit-vector, the
one with the same number of 1-bits is chosen
[21].

The advantage of using Hamming distance is that
it can be implemented by look-up table (LUT). In
fact, this is possible whenever the distortion function
can be calculated independently from (a, b). The
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Table 3
Performance comparison {in MSE) of look-up table methods
Codebook SMF (2030) 1D-MF (4096) CMF (8112)
Search/dist.

Hamming Filtering Hamming Filtering Hamming Filtering
Airplane 45.28 45.85 47.87 47.29 43.40 42.85
Bridge 139.45 154.98 137.22 138.95 118.49 121.15
Galaxy 1.31 1.51 1.25 1.32 1.15 1.30
Lena 46.79 49.30 51.65 43.59 44.35
New Orleans 18.63 19.50 19.94 19.96 17.62 17.52
X-ray 20.39 22.24 21.47 19.61 2135

criterion is also met in the filtering schemes. Filtering
can be considered as a search technique, where the re-
sult (root) corresponds to the reconstructed bit-plane
from the codebook (i.e. root signal set). A drawback
of the filtering techniques is that they only produce
codevectors in a root signal set, whereas the Hamming
distance can be calculated between any two codevec-
tors, no matter what the codebook is.

We compared the use of Hamming distance and
filtering for different codebooks, see Table 3. The
codebooks were selected corresponding to the filtering
methods, and for each codebook, both search methods
were applied. The results favor Hamming distance for
two reasons: it gives slightly better MSE-values, and
does not restrict the choice of the codebook as the fil-
tering methods do.

Finally, the three different search methods are com-
pared in Table 4. MSE is used as a distortion measure
both in the full and localized search, and Hamming
distance is used in the LUT-search. The results show
that full search is superior to the LUT-method. How-
ever, if the encoding time is critical, LUT-search is a
proper choice. Localized search offers a suitable com-
promise between the speed and MSE, and we thus pre-

Table 4
Performance comparison (in MSE) of the search methods. The
codebook has been determined by GLA and contains 256 code-
vectors

Search method Fuli Localized LUT

Airplane 45.78 45.96 50.33
Bridge 143.44 145.33 164.11
Galaxy 1.34 1.35 1.49
Lena 49.99 50.31 55.16
New Orleans 20.77 20.89 23.07
X-ray 18.71 18.82 20.20

fer it as the primary search method. Note that the de-
coding phase is independent from the search method
in the coding, and thus it is always fast.

4.4. Inverted order VQ

In the HBTC-VQ, the values of (a, b) must be
known at the moment of vector quantization, since
MSE is used as a distance measure. Unfortunately,
they are not yet known because of the inverted order
of proceeding. Therefore, it is necessary to determine
temporary (a, b) for each candidate vector (given by
the search method). Value « is calculated as the mean
value of the pixels assigned by the 0-bits, and 4 as the
mean value of the pixels assigned by the 1-bits. (Note
that X is not used in this process.) In this way the VQ
phase can be optimized in the MSE-sense. A side ef-
fect is that for some candidate vector B, the value of a
can become greater than b, see Fig. 3. In the HBTC-
VQ algorithm this is prevented by disallowing the use
of such candidate vectors at a time.

Candidate codevectors

0011 ,_«
Original block 0011 b=8
558 8 001 1| MeE=00
55 8 8 0011
55 8 8 T 00
558 8 a=8
1100 b=5
110 0 Mepogp
1100

Fig. 3. Example of candidate codevectors.



558 P. Frinti et al. | Signal Processing: Image Communication 8 (1996) 551-562
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Fig. 4. Example of the dipolarity.

Table 5

Performance comparison (in MSE) of the inverted order VQ.
The codebook has been determined by GLA and contains 256
entries. Full search is applied over the codebooks using MSE as
a distortion function

Order Original VQ Inverted order VQ

Dipolarity Non-dipolar Non-dipolar Dipolar
Airplane 45.78 39.99 37.70
Bridge 143.44 124.34 113.82
Galaxy 1.34 1.23 1.13
Lena 49.99 44.11 41.52
New Orleans 20.77 18.00 16.75
X-ray 18.71 17.32 16.75

A dipolar HBTC-VQ is accomplished if no re-
striction is made about (@, b). The benefit is that more
vectors in the codebook can be utilized at a time.
For example, the second candidate vector of Fig. 3 is
applicable as well as the first one. In fact, these code-
vectors are complements of each other, and therefore
one of them can be eliminated from the codebook (or
replaced by another). A drawback of the method is
the decrease in the intra- and interblock correlation,
which makes the coding of (a, b) less efficient, see
Section 4.5.

For fully exploiting the dipolar algorithm, the code-
book generation method (GLA) should be revised so
that the distance measure (Hamming distance), and the
centroid computation take care of the complements.
Define the new distance measure by

d* = min[d(B, C),d(B, C)], 3)

where C is the complement of the codevector
C, and d is the original distance function. Each
vector in the training set is now mapped to the
closest original codevector, or to the closest com-
plement. By this change, the covered area of the
codevectors can be doubled in the best case, see
Fig. 4.

The centroid of a partition is the average of the
training vectors within the partition, with one excep-
tion: all vectors B that were connected to the comple-
ment C of the codevector C, must be inverted to their
complement B before including in the calculation. The
codevectors are thus dipolar.

Performance comparison of the inverted or-
der VQ against the original order VQ is given
in Table 5. The same codebook (GLA/256) has
been applied for each case except for the dipo-
lar VQ, which uses a dipolar codebook of the
same size. The results for the inverted order
methods are significantly better than those for
the original VQ. The gain due to dipolarity is
also significant. The effect of the dipolar vector
quantization on the overall compression system
is examined in more detail in Sections 4.5 and
in 5.

4.5. Coding the quantization data

Two subsample images are formed, one from the a-
values and another from the h-values of the blocks. In
[5] the subsample images were coded by arithmetic
coding with a suitable prediction and context models.
The arithmetic coding, however, makes the compres-
sion system rather complex. In HBTC-VQ we apply
FELICS coding [9] because of its simple implemen-
tation and speed.

FELICS coding uses the information of two adja-
cent pixels when coding the current one. These are the
one to the left of the current pixel, and the one above

probability
1 T
‘ below in :\ above
. range range . range
L — I I
Ao e & .
L H intensity

Fig. 5. Probability distribution of intensity values.
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Table 6

Bit-rate comparison of different coding methods. The results show
the number of bits per (@, b). Note that the pair (a, b) is quantized
to 6-+6 bits before compression, and thus the volume of the source
data is 12 bits

vQ Non-dipolar Dipolar
Coding method
EC FELICS EC FELICS

Airplane 6.43 6.50 7.52 7.15
Bridge 8.48 8.67 10.26 9.97
Galaxy 3.18 434 3.65 4.50
Lena 6.75 7.01 8.29 7.89
New Orleans 6.50 6.37 7.82 725
X-ray 5.71 6.32 7.02 6.82

it. Denote the values of the neighboring pixels by L
and H so that L is the smaller of the two. Howard
and Vitter [9] have found that the probability of
individual pixels obeys a distribution of the type
given in Fig. 5. Our experiments indicate that the
same distribution holds very well for the pixels of the
subsample images, too.

The coding scheme is as follows. A code bit indi-
cates whether the actual value falls into the in-range.
If so, an adjusted binary coding is applied. Here the
hypothesis is that the in-range values are uniformly
distributed. Otherwise, the above/below-range deci-
sion requires another code bit, and the value is then
coded by Rice coding with adaptive k-parameter
selection.

Table 6 gives a performance comparison of
the entropy coding scheme (EC) and FELICS,
both in the case of dipolar and non-dipolar VQ.
In FELICS, the intrablock correlation between a
and b is not properly taken into consideration.
In spite of this, the results are still surprisingly
close to EC, and sometimes even better. Dipolar
VQ decreases both the intra- and interblock cor-
relation, and the coding of (a, b) becomes less
efficient. This affects FELICS in lesser extent be-
cause it does not rely on the intrablock correla-
tions. The usefulness of the dipolarity depends
overall on whether the gain in bit-plane compres-
sion outweights the loss in the coding of (a, b), see
Section S.

5. Test results

Two versions (HBTC-VQ and dipolar HBTC-
VQ) of the new algorithm are experimented here,
with the parameter selections of Table 7. The per-
formance of BTC (Block Truncation Coding [2]),
ACC (Adaptive Compression Coding [13]), HBTCE
(Hierarchical Block Truncation Coding with En-
tropy coding [5]), and the HBTC-VQ (the method
of this paper) is profiled in Table 8 and Fig. 6.
Different bit-rates can be achieved by changing
the hierarchy threshold parameter oy at the 4 %4-
level. The results of Table 8 are for Lena and Air-
plane. For our other test images the results were
similar.

The results of HBTC-VQ compare favorable
with the other BTC variants, cf. for the bit-
rate 1.25 the MSE-values of (ACC, HBTCE,
HBTC-VQ) were (32.5, 32.3, 22.8). The origi-
nal BTC is ineffective because of the lack of hi-
erarchy, and because it omits the compression

Table 7
Parameters of the HBTC-VQ algorithms

HBTC-VQ

Dipolar HBTC-VQ

VQ codebook
Search method
Order of process

GLA/256
Localized, with MSE
Inverted

Dipolar GLA/256
Localized, with MSE
Inverted

Allow a > b? NO YES

Coding of (a,b) FELICS FELICS

Block sizes 32 -2 32 -2

Table 8

Performance comparison of several BTC-variants

Method LENA AIRPLANE
Bit-rate MSE Bit-rate MSE

BTC 2.00 44.76 2.00 44.46

ACC 1.36 29.90 1.21 33.06

ACC 1.25 32.50 1.14 34.81

ACC 0.76 82.80 0.81 49.56

HBTCE 1.74 14.40 1.49 11.99

HBTCE 1.50 19.28 1.26 17.18

HBTCE 1.25 32.32 1.01 39.18

HBTC-VQ 1.75 16.01 1.51 13.41

HBTC-VQ 1.52 17.96 1.24 15.46

HBTC-VQ 1.24 22.79 1.00 22.62

HBTC-VQ 1.00 33.82 0.75 45.81
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Fig. 6. MSE as a function of bit-rate for Lena.
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Fig. 7. The number of blocks in Lena for different bit-rates.

of (a4, b) and the bit-plane. The hierarchical de-
composition is advantageous since it allows adap-
tation to the variations in the image, with only
a small penalty in the bit-rate. Moreover, for a
high quality of the compressed image the use
of 2x2-blocks is essential in the high contrast
regions.

HBTCE is a hierarchical BTC variant, in which the
pair (a, &) and the bit-plane are compressed by en-
tropy coding. A drawback of the method is that very
low bit-rates cannot be achieved by it. This originates
from the entropy coding applied for the bit-plane
compression.

In dipolar HBTC-VQ benefit is gained from
an effectively greater codebook, which is applied
frequently at the lower bit-rates, see Fig. 7. On
the other hand, the efficiency of FELICS de-
creases in the dipolar algorithm due to the in-
creased variation of a and b. This effect is greater
at the higher levels of the bit-rate, because the
total number of blocks is greater, and thus there
are more (a, b) pairs to be coded. The num-
ber of different blocks of size (2*2, 4%4, 8%8,
16 %16, 32*32) in Lena is (3608, 8546, 794, 139,
24) at the bit-rate of 1.0bpp in the non-dipolar
case.

6. Concluding remarks

A new hierarchical BTC-VQ algorithm was pro-
posed. Variable block sizes complicate the use of
VQ, but a straightforward solution was proposed. The
order of VQ was inverted so that the quantization
levels are calculated corresponding to the recon-
structed bit-plane. The most frequent bit-planes were
selected to the initial codebook in order to improve
the quality of the codebook generated by the GLA
algorithm.

The full search of VQ was replaced by the local-
ized search which is a compromise between speed
and quality: the average number of candidate vectors
was ca % in comparison to the full search. Quanti-
zation data (a, b) was coded fast and efficiently by
FELICS.

Note that the search of VQ was optimized only in
the case of 4 4 blocks because of simplicity. For a
bit-plane of a 4 = 4 block there are only 2'¢ possible
combinations. On the other hand, in each 8 * 8 block
there are 4 bit-planes of the size 4 4, and thus the
number of all possible combinations is 2%, which is
clearly impractical.

The greatest deficiency of the proposed algorithm
is that the method cannot adapt from image to image,
like adaptive VQ. This emphasizes the importance of
a proper selection of the training set and the initial
heuristic. The problem of the universal codebook VQ
approach should be studied further.
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Appendix A. Test images

Airplane (512%512) Bridge (256*256)

New Orleans (512*512) Galaxy (512*512)

Lena (512%512) A X-ray (512*512)
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Reconstructed Lena
HBTC-VQ with 1.24 bpp
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