
Fast PNN-based Clustering Using K-nearest Neighbor Graph 

Pasi Fränti, Olli Virmajoki and Ville Hautamäki
Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland. 

franti@cs.joensuu.fi, ovirma@cs.joensuu.fi, villeh@cs.joensuu.fi

Abstract 

 Search for nearest neighbor is the main source of 

computation in most clustering algorithms. We propose 

the use of nearest neighbor graph for reducing the 

number of candidates. The number of distance 

calculations per search can be reduced from O(N) to O(k) 

where N is the number of clusters, and k is the number of 

neighbors in the graph. We apply the proposed scheme 

within agglomerative clustering algorithm known as the 

PNN algorithm. 

1. Introduction 

Agglomerative clustering is popular method for 

generating the clustering hierarchically by a sequence of 

merge operations. Ward’s method [1] selects the cluster 

pair to be merged that minimizes the increase in distortion 

function value. In vector quantization, it is known as the 

pairwise nearest neighbor (PNN) method [2]. 

The main drawback of the PNN is its slowness. The 

original implementation requires O(N3
) distance 

calculations. An order of magnitude faster algorithm has 

been introduced in [3] but the method is still lower 

bounded by �(N2
). The main source of computation 

originates from the search of the nearest neighbor cluster. 

Another approach is to use graph theoretical methods. 

In [4], a complete undirected graph is created where the 

nodes correspond to the data vectors, and the edge costs to 

vector distances according to a given distortion measure. 

The resulting graph can be trimmed to a minimal spanning 

tree. Clustering can then be generated by iteratively 

dividing the cluster by removing longest edges from the 

graph. In the final graph, clusters are defined by the 

separate components in the graph. This can be seen as a 

variant of a split-based clustering with single-linkage

criterion. 

In this work, we introduce fast agglomerative clustering 

algorithm motivated by the graph-based approaches. In 

our approach, however, we process the data at the cluster 

level so that every node in the graph represents a cluster, 

not a single vector. The edges of the graph represent inter 

cluster connections between nearby clusters. The graph is 

used as a search structure for reducing the number of 

distance calculations. 

The proposed approach has two specific problems to 

solve: (1) how to generate the graph efficiently, and (2) 

how to utilize it. Standard solutions for minimum spanning 

tree take O(N2
) time, which would prevent any speed-up. 

We propose solution for the first problem by considering 

Mean-distance ordered partial search [5]. We study the 

second sub-problem in detail and propose double-linked 

list, and use heap for efficient search for the cluster pair to 

be merged. We will show by experiments that a relatively 

small neighborhood size is sufficient for preserving the 

good quality clustering results. 

2. Pairwise nearest neighbor method 

The clustering problem is defined here as 

a combinatorial optimization problem. Given a set of N

data vectors X={x1, x2, …, xN}, partition the data set into 

M clusters so that a given distortion function is minimized. 

Partition P={p1, p2, …, pN} defines the clustering by 

giving for each data vector the index of the cluster where it 

is assigned to. A cluster sa is defined as the set of data 

vectors that belong to the same partition a.

The clustering is then represented as the set S={s1, s2,

..., sM}. In vector quantization, the output of the clustering 

is a codebook C={c1, c2, …, cM}, which is usually the set 

of cluster centroids. We assume that the vectors belong to 

Euclidean space, and use the mean square error (MSE) as 

the distortion function. 

The pairwise nearest neighbor (PNN) method [1,2] 

generates the clustering hierarchically by a sequence of 

merge operations. At each step, two nearby clusters are 

merged. The method uses greedy strategy by choosing the 

cluster pair that increases the MSE least. A fast variant 

with linear memory consumption is given in [3]. 

3. K-nearest neighbor graph 

We define k-nearest neighbor graph (kNN graph) as 

a weighted directed graph, in which every node represents 

a single cluster, and the edges correspond to pointers to 

neighbor clusters. Every node has k neighbors. The 

distance of clusters is defined by the merge distortion 

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Eastern Finland. Downloaded on August 18,2020 at 05:40:21 UTC from IEEE Xplore.  Restrictions apply. 



function. Note that this is not the only possible definition:

others have been given in [6], [7].

The graph is utilized as a search structure: every time

we need to search for the nearest neighbor, we consider

only the clusters that are neighbors in the graph structure.

Thus, the use of the graph approximates the O(N) time full

search by a faster O(k) time search method.

3.1. MPS for searching nearest neighbor

The graph can be constructed by brute force but at the

cost of O(N2
) time. We therefore propose a faster method

based on the Mean-distance ordered partial search

(MPS). It was originally proposed for K-means clustering

(GLA) in [5] but generalized to the PNN in [8]. 

The MPS method stores the component sums of each

cluster centroid (code vectors). The component sums

correspond to the projections of the vectors to the diagonal

axis of the vector space. In typical data sets, the code

vectors are highly concentrated along the diagonal axis,

and therefore, the distance of their component sums highly

correlate to their real distance. Then, given the cost

function value of the best candidate found so far, vectors

outside the radius defined by a given pre-condition can be

excluded in the calculations, see Fig. 1. 

The pre-condition is utilized as follows. The vectors

are sorted according to their component sums, and then

proceed in the order given by the sorting. The search starts

from the given cluster, and proceeds bi-directionally along

the projection axis. If the pre-condition holds true, the

calculation the candidate cluster can be rejected.

3.2. MPS for searching k neighbors

For finding the k nearest clusters, we relax the

condition of the graph and find any k neighbors instead of

the nearest ones. This is a reasonable modification because

the optimality of the graph cannot be guaranteed during

the process of the PNN algorithm. Thus, by relaxing the

definition of the k-nearest neighbor graph, speed-up can be 

obtained at a slight increase in the distortion.

A

A '

B

B '

C '

C

A

A '

B

B '

C '

C

Fig. 1. Vectors (black dots) and their projections (empty dots)

according to the component sums.

In particular, we use the exact MPS method for finding

the nearest neighbor but stop the search immediately when

it has been found. In addition to this, we maintain ordered

list of the k best candidates found so far. The rest of the

neighbors are then chosen simply from the list of the

candidates no matter whether they are actually the k-1

nearest or not. It is expected that the rest of the candidates

are nearby vectors although not necessarily the nearest

ones. Even if some links were missing, vectors in the same

cluster are most likely to be connected anyhow.

4. Graph-PNN

The proposed Graph-PNN is based on the exact PNN

method but we utilize the graph structure in the search of

nearest neighbor clusters.

4.1. Simple implementation

The main structure of the algorithm is given in Fig. 2.

The algorithm starts by initializing every data vector as its 

own clusters, and by constructing the neighborhood graph.

The algorithm iterates by removing nodes from the graph

until the desired number of clusters has been reached.

At first, the edge with smallest weight is found, and the

nodes (sa and sb) are merged. The algorithm creates a new

node sab from the clusters sa and sb, which are removed

from the graph. The corresponding edge costs are updated.

The algorithm must also calculate cost values for the

outgoing edges from the newly created node sab. The k

nearest neighbors is found among the 2k neighbors of the

previously merged nodes sa and sb. The merge procedure

is illustrated in Fig. 3 for a sample 2NN graph (k=2).

GraphPNN(X, M) � S

FOR i�1 to N DO 

si � {xi};

      FOR  DO� �),1;( Nisi ��

Find k nearest neighbors;

REPEAT

(sa, sb) � SearchNearestClustersInGraph(S);

sab � Merge(sa, sb);
Find the k nearest neighbors for sab;
Update the nodes that had sa and sb as neighbors;

UNTIL |S|=M;

Fig. 2. Structure of the Graph-PNN.

4.2. Double linked list 

The PNN iterations take O(1) time to find the smallest

distance if we use heap structure. The update of the data

structures and recalculation of the distances for merged

node takes O(2k2
 + log N + kN + N) time. The first term

(2k2
) originates from the update of the data structures and

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Eastern Finland. Downloaded on August 18,2020 at 05:40:21 UTC from IEEE Xplore.  Restrictions apply. 



recalculation of the distances. The second term (log N)

comes from the update of the heap structure. The third and

fourth terms (kN+N) comes from updating edges that

pointed to the obsolete nodes, and the time needed to

recalculate those edge values.

j

a b

e

f

g

k

c

d
h

i

Fig. 3. Illustration of the graph where a and b are to be merged.

To sum up, one step requires O(kN) time, which sums

up to O(�N2
), where � is the number of incoming pointers.

In general, this is too much and we therefore consider the

double linked list (Fig. 4), in which we maintain for every

node two lists: the first list points to the neighbor clusters,

and the second list contains so called “back pointers” to 

clusters that have the node as their nearest neighbors. In

this way, we can eliminate O(N) time loops, and the time

complexity becomes O(�N log N), see Tables 1 and 2.

a
b

c

�

insert to head

k

fe

Fig. 4. Illustration of the update of the linked list in the merge

procedure of the clusters a and b in the neighborhood graph.

5. Experiments

We consider three data sets from [3], [10], and number

of clusters fixed to M=256. The illustrations in Fig. 5 show

that the PNN iterations can be performed efficiently and

that the graph creation is the bottleneck of the algorithm.

The results also indicate that a very small neighborhood

size, such as k=3, is sufficient for obtaining high quality

clustering.

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20

k

s
e
c
o
n
d
s

PNN iterations

Graph creation

Bridge

169
170

171
172

173
174

175
176

2 4 6 8 10 12 14 16 18 20

k

M
S
E

Bridge

Fig. 5. Effect of the neighborhood size on running time.

The running times and the number of distance

calculations are summarized in Table 3. Comparative

results are given for the fast exact PNN [3], and the fast

exact PNN with several speed-up methods as proposed in

[8]. The results show that the graph PNN is significantly

faster than the fast exact PNN. The graph creation is

evidently a bottleneck in the Graph-PNN. We therefore

consider limiting the search of MPS by a control

parameter, see Fig. 6. 

Comparative results are shown in Table 4 including

Fast PNN [3], and its faster variant [8] using three

practical speed-up techniques such as the PDS, MPS and

Lazy evaluation of the distances. The GLA has also two

variants: the original method [9], and a faster variant that

uses PDS, MPS and activity detection for speed-up [10]. 

Results are given also for Graph-PNN + GLA, in which

the data is first processed by the Graph-PNN and the result

is input to the GLA.

165

170

175

180

185

190

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seconds

M
S
E

Fast PNN

f = 100

f = 500

f = 1000

GLA

full MPS

Bridge

Fig. 6. Time-distortion performance of the limited search MPS.

6. Conclusion 

Fast Graph-based PNN has been proposed. We found

out that a relatively small neighborhood size (k = 2, 3, 4 

or 5) can produce clustering results close to the exact PNN

method but with a significantly smaller number of distance

calculations and shorter running time.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Eastern Finland. Downloaded on August 18,2020 at 05:40:21 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Estimated number of steps and distance calculations of the PNN iterations (Bridge).

Steps: Fast PNN Graph PNN (simple) Graph PNN (double-linked) 

Steps Distances Steps Dists Steps Dists 

SearchNearest( ) N - 1 - 1 - 

Merge(a, b) N - 2 k2 + log N 2 k 2 k2 +�k + log N 2 k

FindNeighbors(a, b) N - k N - �k -

RemoveLast( ) N - k + 2log N - log N -

UpdateDistances( ) N (1+�) �N N + �logN / k � � (1+ log N / k ) �

Table 2: Observed number of steps and distance calculations of the PNN iterations (Bridge).

Fast PNN Graph PNN  

(simple) 

Graph PNN  

(double-linked) 

Steps Distances Steps Distances Steps Distances 

SearchNearests( ) 8 357 760 - 3 840 - 3 840 - 

Merge(a, b) 8 357 760 - 67 362 8 210 108 410 8 217 

FindNeighbors(a, b) 8 357 760 - 16 715 520 - 30 868 - 

RemoveLast( ) 8 349 185 - 90 979 - 45 514 - 

UpdateDistances( ) 48 538 136 40 166 328 8 478 587 11 285 145 722 11 261 

Total 81 960 601 40 166 328 25 356 288 19 495 334 354 19 478 

Table 3. Summary of the running times and the number of distance calculations. 

Bridge House Miss America

Distance 

calculations 
Run time

Distance 

calculations 
Run time 

Distance 

calculations 
Run time

Fast PNN 48 552 888 79 2 237 460 562 1574 128 323 740 229

Fast PNN +MPS+PDS+lazy 6 167 439 9 37 752 863 190 83 323 889 106

Graph creation 2 341 547 3 19 017 163 17 32 440 442 46

Iterations 24 431 < 1 166 475 1 40 446 < 1 Graph PNN 
Total 2 365 978 3 19 183 638 18 32 480 888 46

Table 4. Comparison of the Graph-PNN with other methods. 

Bridge (N=) House Miss America 

Run time MSE Run time MSE Run time MSE 

Full search 79 168.92 1574 6.27 229 5.36Fast PNN 

+PDS+MPS+Lazy 9 168.92 190 6.26 106 5.37

Full MPS 3 172.96 18 6.47 46 5.49Graph PNN 

Limited search MPS  3 173.46 13 6.59 5 5.67

Full MPS 4 166.85 19 6.14 48 5.31Graph PNN + GLA 

Limited search MPS 3 167.06 14 6.16 8 5.38

Full search 13 179.95 22.8 7.77 19.7 5.95GLA 

+PDS+MPS+Activity 1.6 180.02 3 7.80 8.3 5.95

7. References 

[1] J.H. Ward, "Hierarchical grouping to optimize an objective 

function," J. Amer. Statist.Assoc., 58, 236-244, 1963. 

[2] W.H. Equitz, "A new vector quantization clustering 

algorithm," IEEE-ASSP, 37(10), 1568-1575, Oct. 1989. 

[3] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, 

"Fast and memory efficient implementation of the exact 

PNN," IEEE-IP, 9(5), 773-777, May 2000. 

[4] J.C. Cover and G.J.S. Ross, "Minimum spanning trees and 

simple-linkage cluster analysis," Applied Statistics, 18, 54-

64, 1969. 

[5] S.-W. Ra and J.K. Kim, “A fast mean-distance-ordered 

partial codebook search algorithm for image vector 

quantization,” IEEE-CS, 40(9), 576-579, September 1993. 

[6] S. Arya and D.M. Mount, "Algorithm for fast vector 

quantization," IEEE Data Compresion Conference,

Snowbird Utah, 381-390, 1994. 

[7] A.D. Constantinou, R.D. Bull and C.N. Canagarajah, 

"A new class of VQ codebook design algorithms using 

adjacency maps," SPIE Electronics Imaging 2000, San 

Jose, 3974, 625-634, 2000. 

[8] O. Virmajoki, P. Fränti, T. Kaukoranta, "Practical methods 

for speeding-up the pairwise nearest neighbor method", 

Optical Engineering, 40(11), 2495-2504, November 2001. 

[9] Y. Linde, A. Buzo and R.M. Gray, "An Algorithm for 

Vector Quantizer Design," IEEE-COM, 28(1), 84-95, Jan. 

1980.

[10] T. Kaukoranta, P. Fränti and O. Nevalainen, "A fast exact 

GLA based on code vector activity detection", IEEE-IP,

9(8), 1337-1342, Aug. 2000. 

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Eastern Finland. Downloaded on August 18,2020 at 05:40:21 UTC from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


