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A fixed point implementation of speaker recognition based on MFCC signal processing is considered. We analyze the numerical
error of the MFCC and its effect on the recognition accuracy. Techniques to reduce the information loss in a converted fixed point
implementation are introduced. We increase the signal processing accuracy by adjusting the ratio of presentation accuracy of the
operators and the signal. The signal processing error is found out to be more important to the speaker recognition accuracy than
the error in the classification algorithm. The results are verified by applying the alternative technique to speech data. We also
discuss the specific programming requirements set up by the Symbian and Series 60.
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1. INTRODUCTION

The speech research and application development deal with
three main problems: speech synthesis, speech recognition,
and speaker recognition. We are working in a speech tech-
nology project, where one of the main goals is to integrate
automatic speaker recognition technique into Series 60 mo-
bile phones.

In speaker recognition, we have a recorded speech sam-
ple and we try to determine to whom the voice belongs. This
study involves closed-set speaker identification, where an un-
known sample is compared to previously trained voice mod-
els in a speaker database.

The speaker identification is a speech classification prob-
lem. Based on the training material, we create speaker-
specific voice models, which divide the feature space into dis-
tinct classes. Unknown speech is transformed to a sequence
of features, which are scored against voice models. That
speaker is identified and his model has the best overall match

with the input features. There are many ways to choose the
used features and how they are used. Our research team has
studied, for example, how the feature design [1], or the con-
current use of multiple features [2], affects the recognition
accuracy.

Our speaker identification method is a generic automatic
learning classification with mel-frequency cepstral coefficient
(MFCC) features. The classification algorithm that we use in
this study is a common unsupervised vector quantizer. We
have ported the identification system to a Series 60 Symbian
mobile phone. In this study, we introduce the Series 60 plat-
form and the ported system. In particular, we focus on the
numerical analysis of the signal processing algorithms which
had to be converted to fixed point arithmetic.

When the system is run on a mobile phone, the two
biggest problems are sound quality and the numerical er-
ror in FFT. Straightforward fixed point implementation re-
duces accuracy dramatically. We obtain good recognition
accuracy by decreasing the numerical error in critical parts of
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Figure 1: Closed-set speaker identification system.

our proposed system. For example, with 100 TIMIT speak-
ers, the recognition rates for different implementations are
100% (floating point), 9.7% (straightforward fixed point),
and 95.8% (proposed system).

2. SPEAKER IDENTIFICATION SYSTEM

We consider a speaker identification system with separate
modules for speech signal processing, training and classifi-
cation, and speaker database (Figure 1). The system oper-
ates in training mode or recognition mode. The two different
chains of arrows starting from the signal processing module
describe the data flow (Figure 1).

The system input in training mode is a collection of
speech samples from N different speakers. A signal process-
ing model is applied to produce a set of feature vectors for
each speaker separately. Then a mathematical model is fitted
to the feature vector set. We use the vector quantization (VQ)
model to represent the statistical distribution of the features
of each speaker. Each feature vector set is replaced by a code-
book, which is a smaller set of code vectors with fixed size.
Codebooks are stored in the speaker database to represent the
speakers. A common goal of the codebook design is to min-
imize the quantization distortion of the training data, that
is, we look for code vectors which minimize the distortion,
when training vectors are replaced by their nearest neigh-
bors in the codebook. We use the generalized Lloyd algorithm
(GLA) [3] to generate the codebook.

In the recognition mode, the input speech sample is pro-
cessed by the same signal processing methods as in the train-
ing. The features are quantized using each codebook in the
database. The speaker whose codebook gives the least dis-
tortion is identified. If needed, the system lists the smallest
distortions and corresponding speakers.

The signal processing module computes MFCC features
(Figure 2). They are commonly used in speech recognition
[4]. The speech is divided into overlapping frames. Within a
frame, the signal is preemphasized and multiplied by a win-
dowing function before computing the Fourier spectrum.
A mel-filter bank is applied to the magnitude spectrum,
and logarithm of the filter bank output is finally cosine

Feature
vector

DCT

LogFilter
bank

AbsoluteDFT
Time

windowing

Preemphasis
Digital speech
signal frame

Figure 2: MFCC signal processing steps.

transformed. The first coefficient of the cosine transform is
omitted as it depends on the signal energy. We want to dis-
card absolute energy information which depends, for exam-
ple, on the distance to the microphone, or on the voicing de-
gree. If we kept the first coefficient, then the vectors with high
overall intensity, for example vowels, would dominate the
distance computations. Only part of the cosine-transform
output coefficients are used as the feature vector.

3. SYMBIAN ENVIRONMENT

The small size of mobile phones is demanding for manufac-
turers. A hardware design must be cheap to manufacture, fit
in small space, and have low power consumption.

The company Advanced RISC Machines (ARM) has de-
veloped the most commonly used mobile phone processors.
They are fully 32-bit RISC processors with a 4 GB address
range. A three-stage pipeline is used, which allows execution
of one instruction per every cycle [5].

One drawback of the ARM processors is that they have
no floating point support because of its complexity and hard
power consumption.

3.1. Symbian OS and Series 60

In order to reduce phone development costs, the leading
manufacturers started developing an industry standard op-
erating system for advanced, data-enabled mobile phones
[6]. The company Symbian was formed in 1998 by the
leaders of the mobile industry: Nokia, Ericsson, Panasonic,
Motorola, Psion, Siemens, and Sony Ericsson. They devel-
oped the Symbian OS operating system [7], which evolved
from the EPOC operating system developed by Psion. It has
a modular microkernel-based architecture [6], whose core
consists of base (microkernel and device drivers), middleware
(system servers), and communications (telephony, messaging,
etc.) [6].

The Symbian OS is fully multitasking. It supports simul-
taneously running processes, threads, separate address space,
and preemptive scheduling [7]. However, because of the lim-
ited hardware performance, it is recommended that most ap-
plications use the built-in active objects framework for non-
preemptive multitasking [6]. Symbian OS also has a file sys-
tem. Files are stored in the ROM or RAM of the phone, or on
removable flash disks. Dynamically linked libraries are also
supported [6].
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The Symbian OS can be combined with different user
interface (UI) platforms. A UI platform is a set of pro-
grammable UI controls, which all have similar style. There
are three UI platforms known to the authors: UIQ (devel-
oped by Sony Ericsson), Series 60, and Series 80 (both devel-
oped by Nokia).

3.2. Programming for Symbian OS

Programs for Symbian OS can be written in Java and C++.
The Java API and execution speed are limited, so C++ is used
for computationally intensive programs. A lot of APIs are
available for the C++ programmer, and there is also a lim-
ited ANSI C standard library [6, 7].

The main difference to conventional PC programming in
Symbian OS is that the program must always be ready for ex-
ceptional situations. Device can easily use all available mem-
ory or program can be interrupted by incoming phone call,
which has higher priority. Programs must also be as small
and efficient as possible to not overwhelm the limited hard-
ware resources. Robustness is also important, because mobile
phones are supposed to work without restart for months or
even more [7].

The used algorithms must be selected carefully, numer-
ically stable low-time complexity methods are preferred.
There is no hardware floating point support. There exists a
software implementation of double-precision floating point
arithmetic but it should be used rarely because of its com-
plexity and higher power consumption. Also there is a 64-bit
integer type available for the programmer, but it is a software
implementation where the data is stored in a pair of 32-bit
integers. The ported algorithms must be efficient, therefore
we use fixed point arithmetic and only native data types, that
is, integers whose basic operations are directly supported by
the processor.

3.3. C++ restrictions

The Symbian OS restricts the use of C++ features. There
is no standard exception handling. Symbian designers im-
plemented their own mechanism for it, mainly because the
GCC compiler used in target builds did not support it at the
time [7]. Consequently, a C++ class constructor cannot cre-
ate other objects. It might cause an exception, and Symbian
has no way to handle exceptions thrown from a constructor.
Therefore, a two-phase construction must be used, where ob-
ject creation and initialization are separated [7]. As another
consequence, the memory stack is not unrolled after an ex-
ception, so the programmer must use a cleanup stack frame-
work, which unrolls the stack automatically after an excep-
tion [7]. That is why all objects allocated from the heap must
be derived from a common base class (CBase), added to the
stack immediately after allocation, and removed only just be-
fore deletion [7]. Here, conventional C++ compiler duties
have become manual programming tasks.

Efficiency requirements dictate another important aspect
of Symbian programming. Applications or DLLs can be ex-
ecuted from the ROM without copying them first to the
RAM. It creates another programming limitation: an appli-
cation stored in a DLL has no modifiable segment and cannot

use static data [7]. However, Symbian provides a thread-local
storage mechanism for static data [7]. Basically, any applica-
tion interacting with the user is stored in a DLL and loaded
by the framework, when a user selects to execute the particu-
lar program [7].

We implemented most of the computational algorithms
in the ANSI C language and used the POSIX standard where
applicable. The reasons were good portability, an existing
prototype written in C, and the ANSI/POSIX support of the
system. The Symbian OS has a standard C library, so pro-
grams are easy to port to it. The main limitation is that
static data, that is, global variables cannot be used. Also file
handling is restricted: fopen and other file-processing func-
tions may not work as expected in multithreaded programs.
The developers are encouraged to use the provided file server
mechanisms instead.

4. NUMERICAL ANALYSIS OF MFCC AND
VQ IN FIXED POINT ARITHMETIC

During the recognition, the speaker information carried
by the signal propagates through the signal processing
(Figure 2) and classification to a speaker identity decision.
The mappings involved in the MFCC process are smooth and
numerically stable. In fact, the MFCC steps are one-to-one
mappings, except those where the mapping is to a lower-
dimensional vector space, for example, computing magni-
tudes of the elements of the complex Fourier spectrum.

The MFCC algorithm consists of evaluations of different
vector mappings f between vector spaces, denote such eval-
uation by f (x). A computer implementation evaluates val-

ues f̂ (x̂), where x̂ is an approximation of x represented in
a finite-accuracy number system, and the computer imple-

mentation f̂ tries to capture the behavior of f . When im-

plementing f̂ , we aim at minimizing the relative error of the

values f̂ (x̂),

ε =
∥∥ f (x̂)− f̂ (x̂)

∥∥∥∥ f (x̂)
∥∥ , (1)

instead of their absolute error ‖ f (x̂)− f̂ (x̂)‖. The motivation
for using relative error is that all elements of all vectors, dur-
ing all MFCC stages, may carry information that is crucial to
the final identification decision. The importance of each el-
ement to the final speaker discrimination is independent of
the numerical scale of the data in the subspace correspond-
ing to the element. The input x̂ is usually the output of the
previous step.

Most MFCC processing steps are linear mappings and the
two nonlinear ones behave well. The real-valued magnitudes
of complex Fourier spectrum elements are computed before
applying the filter bank, and later filter bank output loga-
rithms are used in order to bring the numerical scale of the
outputs closer to linear relation with human perception scale
[4]. However, in fixed point arithmetic, not even computing
the value of a well-behaving mapping is always straightfor-
ward.
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We consider a system capable of fixed point arithmetic
with signed integers stored in at most 32 bits. The input con-
sists of sampled signal amplitudes represented as signed 16-
bit integers. In many parts, we use different integer value in-
terpretation, a scaling integer I > 1 represents 1 in the normal
algorithm. Often we must also divide input, output, or inter-
mediate result to ensure that it fits in a 32-bit integer. We now
analyze the system.

4.1. Preemphasis

Many speech processing systems apply a preemphasis filter to
the signal before further processing. The difference formula
yt = xt − αxt−1 is applied to the signal xt, our choice is a
common α = 0.97. The filter produces output signal yt where
higher frequencies are emphasized and lowest frequencies are
damped.

4.2. Signal windowing

Numerically speaking, there is nothing special in the signal
windowing. A signal frame is pointwise multiplied with a
window function. The motivation is to avoid artifacts in the
Fourier spectrum that are likely to appear because of the
signal periodicity assumption in the Fourier analysis the-
ory. Therefore, the window function has usually a taper-
like shape, such that the multiplied signal amplitude is near-
original in the middle of the frame but gradually forced to
zero near the endpoints. Getting the multiplied signal grad-
ually to zero requires using enough bits to represent the win-
dow function values. For example, in the extreme case of us-
ing only one bit, the transition from original signal to a ze-
roed multiplied signal is sudden, not gradual. We use 15 bits
in the experiments.

4.3. Fourier spectrum

The frequency spectrum is computed as the N-point discrete
Fourier transform (DFT) F : CN → CN ,

F (x) =
N−1∑
k=0

e−2π iωk/N xk, ω = 0, . . . ,N − 1. (2)

As a linear map, F has a corresponding matrix F ∈ CN×N ,
and F (x) can be computed as the matrix-vector product Fx
using O(N2) operations. The radix-2 fast Fourier transform
(FFT) [8] utilizes the structure of F and computes Fx in
O(N logN) operations for N = 2m, m > 0. The FFT executes
the computations in log2 N layers of N/2 butterflies,

f l+1
k = f lk + Wl

k f
l
k+T ,

f l+1
k+T = f lk −Wl

k f
l
k+T .

(3)

Superscripts denote the layer and the constants Wl
k ∈ C

are called twiddle factors. The first layer input is the signal
f 0
k = xk, k = 0, . . . ,N − 1. The offset constant T varies be-

tween layers, the value depends on whether the FFT element
reordering [8] is done for input or output.

4.3.1. Existing fixed point implementations

The FFT efficiency is based on the layer structure. However,
fixed point implementations introduce significant error. The
round-off errors accumulate in the repeatedly applied but-
terfly layers.

Our reference FFT is C code generated by the fftgen soft-
ware [9]. he generated code computes the squared FFT mag-
nitude spectrum (Section 4.4) of a signal in fixed point arith-
metic. The butterfly layers and the element reordering are all
merged in few subroutines, with all loops unrolled. It uses
16-bit integer representation for the input signal, intermedi-
ate results between layers, and the automatically computed
power spectrum output. Multiplication results in (3) are 32-
bit integers, but stored in 16-bit integers after shifting 16 bits
to the right in order to keep the next layer input in proper
range. Overflowing 16-bit result of addition and subtraction
in (3) is avoided by shifting their inputs 1 bit to the right. The
truncations increase error and introduce information loss.

We employed the generated FFT code in the fixed point
MFCC implementation and compared it to the floating point
counterpart. The MFCC outputs computed from identical
inputs with the two implementations did not correlate much.
It might originate from the accumulation of errors in the
MFCC process. However, detailed analysis showed that the
greatest error source is FFT (DFT in Figure 2). We also ver-
ified that the error does not originate from the final trunca-
tion of the power spectrum elements to 16 bits, but from the
FFT algorithm itself. In order to verify it, we tuned the gen-
erated code to output the complex FFT spectrum instead of
the power spectrum.

Many techniques have been developed for decreasing the
error in fixed point implementations. A comprehensive anal-
ysis of various possibilities was presented by Tran-Thong and
Liu in [10]. There are also many improvements tailored for
specific microprocessors and applications. For example, Sa-
yar and Kabal consider an implementation for a TMS320 dig-
ital signal processor [11].

4.3.2. Proposed FFT

Our approach is more general than the implementations
listed above. We consider any processor capable of integer
arithmetic with signed 32-bit integers. We use an existing
radix-2 complex FFT implementation [12] as the starting
point. First, we change the data types, additions, and mul-
tiplications similar to the fftgen-generated code.

The generated code uses 16 bits for the real and imagi-
nary parts of the layer inputs, and for the real-valued trigono-
metric constants arising from (3), after the Euler formula
eiϕ = cosϕ + i sinϕ has been applied in (2). We changed
the data type used for the intermediate results in (3) from
16-bit to 32-bit integers. But this alone does not really help
to preserve more than 16 bits of the intermediate results if
operator constants still use 16 bits. The multiplication result
must fit in 32 bits. Our solution is to reduce the DFT opera-
tor representation accuracy in order to increase the amount
of preserved signal information.
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Consider the DFT in the operator form f = Fx, and our

implementation f̂ = F̂x̂. The approximation error f − f̂
consists of the input error x − x̂ and the implementation
error. Since F and F̂ are linear, the implementation error is
F − F̂. This is not exactly true, as we have a limited-accuracy
numeric implementation, which is only linear up to the nu-
meric accuracy.

Now repeat the same analysis but consider a linear but-
terfly layer in the FFT algorithm g = Gy, and its implementa-
tion ĝ = Ĝŷ. The inputs ŷ carry information about accurate
values y, that is, information about the signal x. In the butter-
fly (3), each multiplication of the layer input element f lk ∈ C
with the operator constant Wl

k ∈ C expands to two additions
and four multiplications of real values. If we use more than
16 bits for the real values that correspond to f lk , then we must
use less bits for the real values that correspond to the oper-
ator constant Wl

k, in order to represent the real values that
correspond to the multiplication result with 32 bits.

We allow increase in the relative error of the layer op-
erator ‖G − Ĝ‖/‖G‖, meanwhile the relative input error
‖y − ŷ‖/‖y‖ is decreased so that more information about
y fits into ŷ, and more is preserved in the multiplication re-
sult. Consequently, more information about y propagates to
the next layer input ĝ in all layers, therefore less informa-
tion is lost in the whole FFT. We increase the FFT opera-
tor error ‖F − F̂‖/‖F‖ little but preserve more information
about x. Consequently, the relative error ‖Fx̂ − F̂x̂‖/‖Fx̂‖
decreases. This is the main idea and it can also be applied
to other algorithms implemented in fixed point arithmetic.
Here the norm of a linear operator A is defined as ‖A‖ =
max‖x‖=1 ‖Ax‖/‖x‖, and the difference A − B of the opera-
tors A and B is defined by (A− B)x = Ax − Bx, for all x.

4.3.3. Bit allocation

The twiddle factors of an N-point DFT are constructed from
the values± sinπk/N and± cosπk/N , k = 0, . . . ,N/2−1. Be-
fore deciding how the bits are allocated for the signal and the
operator, we look at the relative trigonometric value round-
off errors for different FFT sizes N and bit allocations B > 0.
For each B, we look for a scaling integer c which gives small
value of the maximum error

E(c,N) = max
k=0,...,N/2−1

∣∣ sk − ŝk
∣∣∣∣sk∣∣ , (4)

where sk = c sinπk/N and ŝk denotes sk rounded to the near-
est integer. It is enough to consider only the positive sines,
since the cosine values are in the same set. For N = 256, 512,
1024, 2048, and 4096, there are several peaks downwards in
the graph of E(c,N) as a function of c. They are good choices
of c, even if they do not minimize E(c,N). Table 1 shows the
pairs of good values of c and E(c,N) for different N . The bit
allocation B is defined as the number of bits needed to store
c.

We decided to limit the FFT size to N ≤ 1024 and not
minimize E(c,N) for each N separately. For all N = 256, 512,
and 1024, the value c = 980 is the best choice with B = 10.

Table 1: Pairs of values c and E(c,N) for different FFT sizes N , the
pairs are selected where E is small; the values of the function E have
been multiplied by 103.

N

256 512 1024 2048 4096

c E c E c E c E c E

82 16.6 164 9.7 327 6.4 654 3.7 1306 2.4

164 9.5 327 6.4 328 6.3 1306 2.4 1307 2.5

246 7.1 328 6.3 653 4.1 1307 2.5 2610 1.6

327 5.9 490 4.8 654 3.7 1958 1.9 2611 1.5

409 5.3 491 4.4 979 3.1 1959 1.8 3915 1.1

491 4.2 653 4.0 980 2.9 2610 1.6 3916 1.2

572 4.0 654 3.6 — — 2611 1.5 — —

654 3.3 815 3.8 — — 3262 1.3 — —

735 3.5 816 3.6 — — 3263 1.3 — —

736 3.5 817 3.1 — — 3915 1.1 — —

817 3.1 979 3.1 — — 3916 1.2 — —

899 2.9 980 2.7 — — — — — —

980 2.7 981 3.2 — — — — — —

FFT twiddle factor
16-bit integer

×

FFT layer input
16-bit integer

32-bit multiplication result

16 used bits 16 crop-off bits

16-bit integer
FFT layer output

Figure 3: Multiplication of a 16-bit integer, followed by a bit shift
in a layer of the fftgen FFT.

That leaves 22 bits for the signal information. Thus, we re-
place the signal/operator bit allocation 16/16 with 22/10. The
choice with one c for all N and B = 10 is good enough for
us, as we mostly use N = 256. The diagrams in Figures 3-
4 illustrate the bit allocation in integer multiplications and
truncations in a layer of the fftgen FFT and the proposed FFT.

4.3.4. Evaluation of the accuracy

We compare the proposed fixed point solution to the fftgen
generated FFT code. In our floating point MFCC implemen-
tation, we compute FFT using the Fastest Fourier Transform
in the West (FFTW) C library [13]. The FFTW relative error
is very small. We refer to FFTW output as the accurate so-
lution when comparing the fixed point algorithms. We use
a TIMIT speech segment as the input signal, resampled at
8 kHz (Figure 5).

Figure 6 shows two scatter plots of pairs of logarithms of
absolute values of the fftgen FFT and the floating point FFT.
If there were no errors, all dots would reside on the diagonal.
Figure 7 shows the same for the proposed FFT.
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FFT twiddle factor
16-bit integer, 10 bits used

×

FFT layer input
32-bit integer, 22 bits used

32-bit multiplication result

22 used bits 10 crop-off bits

32-bit integer, 22 bits used
FFT layer output

Figure 4: Multiplication of a 22-bit integer, followed by a bit shift
in a layer of the proposed FFT.

0 2000 4000 6000
−7000

0

7000

P
C

M
sa

m
pl

e
va

lu
e

Sample index

Figure 5: A speech sample from the TIMIT corpus.

Comparison of the FFT magnitude scatter plots in Fig-
ures 6-7 shows that in fixed point arithmetic, we may de-
crease the error by using the integer scale more efficiently.
The proposed FFT is accurate without scaling also. Also note
that the proposed FFT has an increased range of accurate val-
ues, that is, the distance along the diagonal from the right-
most observation to the place where the observations start to
deviate from the diagonal is much longer for the proposed
FFT than the fftgen FFT.

The statistical distribution of the relative error of the
fixed point FFT elements is very skew, but the logarithmic
error behaves nearly like a normal distribution. The his-
tograms in Figures 8-9 illustrate the distribution of log10 ε =
log10(| fk − f̂k|/| fk|), which is the same as the signal-to-noise

ratio in decibels divided by −10. Here fk and f̂k are elements
of the correct FFT and the fixed point FFT, correspondingly.
The fftgen FFT error histogram is shown in Figure 8, whereas
Figure 9 shows the error of the proposed FFT. For statistical
analysis, it makes sense to consider the logarithmic errors.
Their interpretation is easier because of the original skew er-
ror distribution.

Table 2 summarizes the logarithmic error statistics. The
numbers −0.775 and −2.118, for example, suggest that for
the test signal, the proposed method has less than 1% error
per element on average, whereas the same value is more than
10% for the fftgen. In terms of signal-to-noise ratio, the ad-
vantage of our method is 13.43 dB for the original signal, and
also a significant 10.32 dB for the more optimally scaled sig-
nal. The statistics state clearly that the proposed FFT is a lot
more accurate.
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Figure 6: Scatter plot of fftgen FFT output against FFTW output for
the TIMIT signal x (a) and 4x (b), scales are logarithmic.

Until now, we have only described the advantages of the
proposed FFT but it also has little drawbacks. The scaling of
the numbers between the FFT layers requires more opera-
tions than the fftgen implementation.

The fftgen input signal is represented by 16-bit integers.
In our case, we wanted to replace the fftgen program module
with minimal effect to the other parts, and therefore, we need
to scale the input and output. We input 16-bit integers also
to the proposed algorithm. They are first scaled up to use
22 bits, so that minimal amount of signal information will
be lost when the 32-bit multiplication results are truncated
back to 22-bit representation for the next FFT layer. There
are other multiplications and bit shifts involved besides the
scaling related to the multiplications in (3). In contrast to
floating point FFT algorithms, the twiddle factors are rep-
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Figure 7: Scatter plot of proposed FFT output against FFTW out-
put for the TIMIT signal x (a) and 4x (b), scales are logarithmic.

resented using integers. Therefore, before the addition and
subtraction in a butterfly (3), we must scale up f lk before
adding it to the result of the complex multiplication Wl

k f
l
k .

In other parts of the MFCC algorithm, the more accurate
22-bit representation of the proposed FFT output could be
utilized instead of scaling down to 16 bits. However, based
on our error analysis and the statistic in Table 2, the 16-bit
output of fftgen FFT is really not accurate up to 16 bits, and
neither is the proposed FFT. On average, there are 3–5 most
significant bits correct in the fftgen FFT output and 7-8 most
significant bits correct in the proposed FFT. Thus, there is no
need to use more than 16 bits for the real part and 16 bits for
the imaginary part of the FFT output elements.
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Figure 8: Histogram of logarithmic relative error values for the fft-
gen FFT with input signals x (a) and 4x (b), the error increases to
the right.

4.4. Magnitude spectrum

The Fourier spectrum is { fk ∈ C; k = 0, . . . ,N/2 − 1}, the
power spectrum is {| fk|2 ∈ R}, and the magnitude spec-
trum is {| fk| ∈ R}. The squaring has no significant effect in
the recognition rate for the floating point implementation. In
fixed point arithmetic, the usage of the number range is not
uniform for the power spectrum. The distribution of values
| fk|2 is dense for small | fk| and sparse for large | fk|. The val-
ues | fk| are more uniformly distributed when the real and
imaginary parts of fk take all possible values within the inte-
ger range. We use the magnitude spectrum approximated as
follows.
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Figure 9: Histogram of logarithmic relative error values for the pro-
posed FFT with input signals x (a) and 4x (b), the error increases to
the right.

Without loss of generality, assume that |a| ≥ |b| and
|a| > 0 for fk = a + i b. We may write

∣∣ fk∣∣ = √a2 + b2 = |a|
√√√

1 +
(
b

a

)2

, (5)

where 1 + (b/a)2 ∈ [1, 2] always. By introducing a parameter
t = |b/a| ∈ [0, 1], we can approximate | fk| with

∣∣ fk∣∣ = |a|√1 + t2 ≈ |a|Pn(t), (6)

Table 2: Average (AVG) and standard deviation (SD) of the base-
10 logarithm of the relative error, and signal-to-noise ratio (SNR)
in decibels for two FFT implementations, applied to the same signal
on two different scales.

Used FFT Input AVG SD SNR (dB)

fftgen x −0.775 0.797 7.75

fftgen 4x −1.374 0.797 13.74

Proposed x −2.118 0.590 21.18

Proposed 4x −2.406 0.687 24.06

where Pn : [0, 1] → [1,
√

2] is a polynomial of order n ≥ 1
with the boundary conditions

Pn(0) = 1, Pn(1) = √2. (7)

In order to satisfy boundary conditions, we actually find the
orthogonal projection of

√
1 + t2 − (1 + (

√
2 − 1)t) into the

function space spanned by the set of functions S = {t− t2, t−
t3, t − t4, t − t5}, that is, fit a least-squares polynomial. Our
approximation is

√
1 + t2 ≈ 1 +

(√
2− 1

)
t

− 0.505404
(
t − t2) + 0.017075

(
t − t3)

+ 0.116815
(
t − t4)− 0.043182(t − t5),

(8)

with the maximum relative error 1.30× 10−5.
The motivation for our boundary conditions (7) is that a

least-squares polynomial often has a relatively large maximal
error in the endpoints of the approximation interval. Here
the polynomial is used for evaluation of MFCCs, and accu-
rate approximation is needed regardless of t, the ratio of real
and imaginary parts of fk.

4.4.1. Complex magnitude with fixed point numbers

There probably are numerically better choices for the basis
besides S. However, it is straightforward to evaluate tp+1 from
tp and t in our scaled integer arithmetic. Moreover, the basis
S meets the boundary conditions. Note also that 0 ≤ t, tp, t−
tp ≤ 1 for t ∈ [0, 1] so that all intermediate results in the
polynomial evaluation are always within our number range.

In the fixed point implementation, we choose an integer
scaling factor d ∈ [1, 215) to represent 1, because the mul-
tiplication results must always fit in 32 bits. The value t and
coefficients of 1, t, . . . , t − t5, are evaluated to rescaled inte-
gers before the polynomial evaluation. We chose d = 20263
because it minimizes the average relative round-off error in
the scaled polynomial coefficients. The fixed point arithmetic
square root approximation is

20263
√

1 + t2 ≈ 20263 + 8393t

− 10241
(
t − t2) + 346

(
t − t3)

+ 2367
(
t − t4)− 875

(
t − t5),

(9)
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where the original t ∈ [0, 1] is multiplied with d and trun-
cated to integer before the evaluation. During the evaluation,
all multiplication inputs are within [0,d] and multiplication
results are always divided with d. The maximum relative er-
ror is 1.855× 10−5 for t = 0.9427.

4.5. Filter bank

Applying a linear filter in the frequency domain is techni-
cally similar to the signal windowing in the time domain, a
spectrum is pointwise multiplied with a frequency response.
Each filter output is a weighted sum of the magnitude spec-
trum or power spectrum values. Applying a linear filter bank
(FB) means applying several filters, and it is the same as com-
puting a matrix-vector product where matrix rows consist of
the filter frequency responses.

Numerically, the fixed point implementation is not com-
plicated, we just need enough bits to represent the frequency
response values. By our standard, we are using enough bits
if a graphical visualization of the filter bank filters realizes
our visual idea of the desired filter shape. We use 7 bits in
the experiments, Technically, the purpose of filter bank is to
measure energies in subbands of the frequency domain of the
signal, with possible overlap between adjacent subbands. It is
commonplace to define the filter bank so that

(i) for all input spectrum elements, the sum of weights
over all filters is the same;

(ii) the width of the filters is defined by a monotonic
frequency-warping function [4], such that

(a) in the warped frequency domain, all filters have
equal spacing, width, and overlap;

(b) in the warped frequency domain, all filters have
the same shape, for example, triangular or bell.

The shape of filters is not important for speaker recognition
but the choice of the frequency warping function has sig-
nificant effect on the recognition accuracy [1]. Our choice
is the commonly used, although not optimal mel-frequency
warped FB with triangular filter shape.

One could argue that the FB smoothing effect compen-
sates the numeric error of the FFT and magnitude computa-
tions. However, discrimination information will be lost both
in the numeric round-off and in the smoothing.

4.6. Logarithm

The nonnegative FB outputs are transformed into logarith-
mic scale during the MFCC processing. Several methods for
evaluation of log2 have been introduced in [14] and there is
a thorough error analysis in [15].

We use a modification of the method in [14], which uses
a lookup table and linear interpolation. Consider an integer
n > 0 whose bit representation is

n = 0 0 0 0 1 bm . . . b1︸ ︷︷ ︸
m+1 bits

. (10)

The integer part of log2 n is m. The decimal part is en-
coded in the bits bm, . . . ,b1. We use the 8 most significant bits
bm, . . . ,bm−7 as an index to a lookup table consisting of the
values log2(1+ j/256), j = 0, . . . , 256. The next 7 bits form the
interpolation coefficients between two consecutive lookup
table values. The maximum relative error 4.65× 10−6 occurs
for n = 272063, where the correct value is log2 272063 =
18.053581 and our approximation is 18.053497.

4.7. Discrete cosine transformation

Discrete cosine transformation (DCT) is a linear invertible
mapping, which is most efficiently computed using the FFT
and some additional processing. In our application, we trans-
form 25–50-dimensional vectors to 10–15-dimensional vec-
tors and use only part of the DCT output, so we compute
it with the direct formula without FFT. We utilize the most
common DCT form called DCT-II [16],

µj =
NFB−1∑
k=0

lk cos
(

π

NFB

(
k +

1
2

)
j
)

, (11)

where j = 0, . . . ,NMFCC − 1, and NMFCC is the number of
the MFCC coefficients needed. The input lk consists of the
FB outputs or their logarithms, k = 0, . . . ,NFB − 1. Usually,
µ0 is ignored as it only depends on the signal energy. The
DCT-II form is orthogonal if µ0 is multiplied by 1/

√
2 and all

coefficients are output [16]. DCT is applied to FB outputs in
speech applications for many reasons. Here the rescaling and
decorrelating of the FB outputs improves the clustering and
the VQ classification.

We did not carefully analyze the DCT error in the fixed
point implementation. The reason is that we found out that
the FFT and the logarithm were the MFCC accuracy bottle-
necks. We simply assign the scaling factor 32767 for cosine
values and truncate 16 bits from the 32-bit input values. We
might gain accuracy by similar analysis that we did with the
FFT but not much. In contrast to the FFT, the direct DCT
computation has only one layer.

4.8. Model creation and recognition

The GLA algorithm [3] constructs a codebook {ck} that aims
at minimizing the MSE distortion

MSE(X ,C) =
N∑
j=1

min
1≤k≤K

∥∥xj − ck
∥∥2

(12)

of the training data {xj}. This is our speaker modeling. The
algorithm is simple and does not really involve parts that
require floating point arithmetic. The differences between
floating point and fixed point implementations are due to
limited accuracy in the relative MSE change near the con-
vergence, and most importantly, the accumulating round-off
error during the iteration. The round-off error in the MSE
distance computations is also different in fixed point arith-
metic.
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Table 3: Recognition rate average and standard deviation for five different implementations of the MFCC-based speaker recognition system,
varying number of speakers taken from the TIMIT corpus and number of repeated cycles of training, and recognition.

Number of speakers 16 25 100 16 25 100

Number of repeats 25 10 6 25 10 6

Feature extraction Classification AVG (%) SD (%)

Float Float 100 100 100 N/A N/A N/A

Float Fixed 100 100 100 N/A N/A N/A

Fixed (proposed FFT) Float 100 99.2 98 N/A 1.69 0.63

Fixed (fftgen FFT) Fixed 30.8 25.6 9.7 6.94 7.59 1.63

Fixed (proposed FFT) Fixed 100 99.6 95.8 N/A 1.27 1.17

In speaker identification, the distortion (12) of input
speech is computed for codebooks of all speakers stored in
the speaker database. The result is a list of speakers and
matching scores, sorted according to the score.

5. SPEAKER RECOGNITION EXPERIMENTS

In our training-recognition experiments, we use 8 kHz signal
sampling rate, α = 0.97 for the preemphasis, 30-millisecond
frame length, 10-millisecond frame overlap, Hamming win-
dow, FFT size 256, 30 filters in mel FB, and 12 coefficients
from the DCT. The GLA speaker modeling uses 5 different
random initial solutions picked from the training data. The
codebook size is 64. We use 1-norm in (12) instead of the
usual 2-norm. Everything else is kept as defined above. The
motivation for using the 1-norm is the decreased computa-
tional complexity. Before the experiments, we compared two
systems where the only difference was the norm in (12) and
there was no difference in recognition rates between 1-norm
and 2-norm.

5.1. Simulations with PC

The TIMIT corpus has 630 speakers, 10 speech files per
speaker. We divided them into independent training and test
data consisting of 7 and 3 files, correspondingly. The results
of the TIMIT experiments are listed in Table 3.

There are three columns of average recognition rates
and three corresponding columns of standard deviations in
Table 3. The statistics are computed for recognition rates in
repeated cycles of training and recognition for subsets of 16,
25, and 100 speakers from the TIMIT corpus. The effect of
the random initial solutions for the GLA, that are sampled
from the training data, is taken into account in two ways.
First, for each of the three TIMIT subsets, we use the same
randomly picked GLA initial solutions in all experiments
with the different computational techniques. On the other
hand, repeating the same run with same technique but dif-
ferent GLA initial solutions informs us about the effect of
randomness in the recognition accuracy. The standard devi-
ation of the recognition rate measures it. If the recognition
rate was the same in all repeats, we inserted “not available”
(N/A) for the standard deviation. The used number of re-
peated training and recognition cycles was 25 repeats for the

16-speaker subset, 10 repeats for the 25-speaker subset, and
6 repeats for the 100-speaker subset.

For all used database sizes, the accurate floating point im-
plementation of the MFCC-based speaker identification per-
forms perfectly. The same is true even if we use the accurate
features with a less accurate fixed point classification. If we
use the fixed point features (proposed FFT) in combination
with the floating point classification, the recognition rate de-
creases slightly. Based on this, we conclude that the numer-
ical accuracy of the signal processing is more important to
the recognition accuracy than the numerical accuracy of the
classification.

When we use the straightforward fixed point implemen-
tation, less than 10 out of 100 speakers are identified cor-
rectly. The reason is the FFT inaccuracy. When the fftgen
FFT is replaced by the proposed FFT, the recognition rate in-
creases near the 100% level again.

5.2. Mobile phone

We tested our implementation in a Nokia 3660 mobile phone
for some time outside the laboratory conditions. The recog-
nition accuracy was poor and we decided to investigate the
effect of different signals. We created a 16-speaker GSM/PC
corpus of dual recordings, which was later extended to con-
sist of 25 speakers. The speech was recorded to two files si-
multaneously with a Symbian phone via the Symbian API,
and with a laptop that was equipped with a basic PC mi-
crophone. The PC microphone was attached to the side of
the phone with a rubber band. Each recorded file consists of
nearly 1 minute of speech. All speakers spoke the same text.

For each speaker, the recording program was started
manually in both devices, so the signal contained in the pairs
of recorded sound files are little misaligned. The first 16 files
were clear speech. The extended data set has many files with
a mixture of speech and a lot of impulsive noise caused by
scratching the microphones. However, we used all available
data in the experiments.

A visual spectrum analysis showed systematically dif-
ferent frequency content in all pairs of recorded files. The
highest and lowest frequencies were attenuated in Symbian
recordings. We wanted to measure the exact effect of it in
the recognition rate. Therefore, before the experiment, the
speech contained in all pairs of sound files was aligned in
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Table 4: Recognition rate average and standard deviation for
GSM/PC experiments with 25 speakers, 5 repeated cycles of train-
ing, and recognition.

Audio Software AVG SD

PC Float 100.0 N/A

PC Fixed 100.0 N/A

Symbian Float 83.2 4.38

Symbian Fixed 76.0 2.83

time by using a multiresolution algorithm, so that we have
file pairs where the only difference is the used microphone.
There were 3 pairs in the extended data set where our auto-
matic time-alignment method could not perfectly align the
pair of signals. Those files were used as such regardless of a
possible misalignment. After the MFCC computation, fea-
tures resulting from all files were similarly split into separate
training and test segments.

We repeated the training and recognition cycle 5 times
for all combinations of GSM and PC data, and two im-
plementations (the floating point implementation and the
proposed algorithm). We eliminated the effect of the random
GLA initial solutions by using the same initial solutions for
both data sets and for the different implementations. Table 4
lists the results. If the recognition rate was the same in all
repeats, we inserted “not available” (N/A) for standard devi-
ation.

Based on the statistics in Table 4, we conclude that the
Symbian sound recordings have a negative effect on the
speaker recognition accuracy, when compared to PC micro-
phone recordings of the same speech. Also we notice that
the recognition rate depends on whether we use floating
point arithmetic or fixed point arithmetic. However, the au-
dio source is the most significant factor.

6. CONCLUSION

We ported an MFCC-based speaker identification method to
Series 60 mobile phone. We encountered four problems: lim-
ited memory, numeric accuracy, processing power, and Sym-
bian programming constraints. A careful numerical analy-
sis helped us to achieve good recognition accuracy in the
fixed point implementation. The memory usage and compu-
tational complexity of the speaker identification algorithms
are low enough for interactive operation in today’s mo-
bile phones. The Symbian programming constraints require
some learning effort from a programmer familiar with more
common platforms.

The numerical accuracy of the MFCC signal processing
is important to the speaker recognition, especially the FFT
accuracy. Recognition is accurate with floating point sig-
nal processing, even if fixed point arithmetic is used for the
classifier. If we combine fixed point signal processing (pro-
posed FFT) and the accurate classification, the recognition
rate slightly decreases. The signal processing accuracy is more
important for correct recognition than the classifier accuracy.

The recognition results are poor when only fixed point
arithmetic is used by the system and we are using the fftgen
FFT. When the FFT is replaced by the proposed FFT, the re-
sults are good again. The FFT seems to be the most critical
part in the fixed point implementation.

Further improvement could be obtained by utilizing a
better filter bank [1], and replacing DCT with a transforma-
tion which is optimized for discrimination of speakers.

The FFT we implemented has a double loop. The inner-
most loop table indexes are computed from the outermost
loop index. A better solution would integrate the proposed
accuracy improvements in the fftgen method.

We also plan to include in our Symbian port the speed
improvements that were introduced in [17].

The sound quality is currently the biggest problem. The
audio system of the phone attenuates frequencies below
400 Hz and above 3400 Hz, because these are not needed in
telephone networks. This has a negative effect on the recog-
nition rate.
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