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a b s t r a c t 

We present two new clustering algorithms called k-sets and k-swaps for data where each object is a set. 

First, we define the mean of the sets in a cluster, and the distance between a set and the mean. We then 

derive the k-sets algorithm from the principles of classical k -means so that it repeats the assignment 

and update steps until convergence. To the best of our knowledge, the proposed algorithm is the first 

k -means based algorithm for this kind of data. We adopt the idea also into random swap algorithm, 

which is a wrapper around the k -means that avoids local minima. This variant is called k-swaps . We 

show by experiments that this algorithm provides more accurate clustering results than k-medoids and 

other competitive methods. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Clustering is unsupervised learning that aims to group a set of 

ata objects so that similar objects are located in the same cluster 

nd dissimilar objects in different clusters [1] . Most previous clus- 

ering algorithms focus on numerical data whose inherent geomet- 

ic properties can be exploited naturally to define distance func- 

ions between data points [2] . However, other types of data such 

s categorical data exist in educational sciences, sociology, market 

tudies, and bioinformatics [3] . Algorithms such as k -medoids [ 4 , 5 ],

 -modes [6] , k -histograms [2] , k -entropies [3] , and k -distributions

7] have been proposed for clustering categorical data. 

Another type of data is sets data, where each data object con- 

ists of a subset of a large selection of possible items. This can 

e called bag-of-items . Typical applications include text documents 

8] , videos [ 9 , 10 ], services [11] , and web pages [ 12 , 13 ], which

an be represented by a set of predefined keywords called tags . 

ustomer-product data is another popular application of such data, 

hich is used for recommender systems. A user is modelled by 

he set of products that he purchases, likes, or even just browses 

n the web site. New products are then recommended to the user 

ased on the similarity of the items, or based on what was pur- 

hased by similar users [14–16] . 
∗ Corresponding author. 
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Another important application of the sets data can be found in 

lectronic health systems where patient records are represented by 

 set of diagnosis. These are either the ICD-9 or ICD-10 codes. For 

xample, the set {K02, E11, T12} represents a patient with three 

iseases: dental caries, type 2 diabetes and unspecified fracture of 

ower limb . This information have been used for modeling tempo- 

al disease progression [17] , analysis of diagnosis progression [18] , 

nd inferring medical diagnoses from patient similarities [19] . A 

isease prediction system has been built in [20] using clustering 

nd association analysis. Local prediction models are produced for 

ubgroups of similar patients based on the patient disease history, 

o determine the set of possible future illnesses an individual could 

evelop. 

The above-mentioned sets data have been typically addressed 

y application-specific algorithms and heuristics. So far, k -means 

lgorithm [21] has been adopted for clustering categorical data 

 5 , 6 , 22 ], mixed numerical and categorical data [ 23 , 24 ], sequential

ata [ 25 , 26 ], and for document clustering [ 27 , 28 ]. However, to the

est of our knowledge, no general-purpose algorithm derived from 

 -means exists for the sets data. 

In this paper, we propose two general-purpose algorithms to 

luster sets data: k-sets and k-swaps . The first algorithm is a di- 

ect modification of the classical k -means algorithm [21] to work 

ith sets. However, k -means has strong dependency to the initial 

olution [29] . If there are lots of well-separated clusters in the data, 

 -means is incapable to re-allocate the centroids and the result de- 

ends mainly on the initialization [30] . For this reason, we intro- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Example of representing a cluster of m = 5 objects by histogram (above) and 

by normalized histogram (below). 
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uce the second algorithm called k-swaps . It is a direct modifica- 

ion of the existing random swap algorithm [31] , which has been 

hown to reach the correct centroid allocation even with high di- 

ensional data. 

The main challenges in both algorithms are how to define suit- 

ble distance measure between data objects, and how to define 

ean of a set of sets. Distance function in k -means is needed to 

valuate the cost of an object to belong to a cluster, which is done 

y measuring the distance between the object and the mean of the 

luster. In case of sets, this reduces to a set-matching problem . The 

imilarity of two sets can be measured by coefficients like Jaccard, 

ice , and Correlation . 

The second problem, how to calculate the mean, is a trickier 

roblem. Existing clustering algorithms usually avoid this problem 

ntirely. For example, k -medoids replaces the mean by medoid, 

hich is straightforward to calculate but requires quadratic pro- 

essing time with the cluster size. Medoid is defined as the object 

n the cluster which has minimal total distance to all other objects 

n the set [32] . 

Agglomerative merge-based clustering avoids the need for 

ean simply by evaluating only the cost of the entire clusters, be- 

ore and after the merge. The merge-based clustering always se- 

ects the next pair of clusters as the ones whose merge increases 

he cost least. However, this leads to a slow O( n 2 )-O( n 3 ) algo-

ithm or requires huge amount of memory even for moderate size 

atasets ( n > 10,0 0 0). 

Graph-based clustering has also been used for sets data [15] , 

here each set is considered as a node and a weighted graph is 

onstructed. The weight on each edge is the similarity between 

wo sets, which can be calculated by different measures such as 

accard similarity. Several graph-based clustering algorithms can 

hen be applied. For example, graph-partitioning algorithm builds 

he clusters by minimizing the number of intra-cluster edge cuts 

nd maximizing the number of inter-cluster connections [15] . K- 

eans have also been applied to graphs in [33] . 

The original k -means algorithm and its variants, including ran- 

om swap, need the mean, which limits their applicability to nu- 

erical data, and thus, unsuitable for categorical and sets data as 

uch. One solution is to map categorical data to numerical space 

y using a set of (artificial or real) reference objects. The new 

ata object is the distance vector of the original objects to these 

eference objects [34] . However, such conversion usually leads to 

igh dimensional and sparse data even for a moderate number of 

ossible category values. For example, if we have attribute profes- 

ion with 100 possible values: { teacher, farmer, police, baker , …} we 

ould have 100-dimensional binary vector for that attribute alone. 

or this reason, we will work in the original data space and tune 

he methods to fit the data rather than trying to fit the data to the

ethods. 

The rest of the paper is organized as follows. In Section 2 , we

ntroduce the new k -means based algorithm called k-sets , and the 

andom swap variant called k-swaps . In Section 3 , we introduce ar- 

ificial datasets specifically generated for sets data. We create 15 

atasets divided into 4 groups so that only one parameter varies 

ithin each group: number of clusters, cluster overlap, resolution, 

nd cluster size imbalance. In Section 4 , we provide experimental 

esults for these datasets and a brief case study for patient diagno- 

is records obtained from Siun Sote in North Karelia, Finland. 

. K -sets and k -swaps 

The input for the clustering is a dataset of N objects, where 

ach object X i consists of l i items: 

 i = 

{ 

x 1 i , x 
2 
i , . . . , x 

l i 
i 

} 

(1) 
b

2 
The items are labels from a predefined set of L possible items. 

he number of items can be different for every data object. We 

onsider two well-known measures including Jaccard ( J ij ) and Co- 

ine coefficients ( C ij ) to calculate the similarity between two objects 

 i and X j . Other set similarity measures such as Overlap or Dice 

ould be used as well. Cosine similarity between two sets is also 

nown as Otsuka–Ochiai coefficient. 

 i j = 

∣∣X i ∩ X j 

∣∣∣∣X i X j 

∣∣ (2) 

 i j = 

∣∣X i ∩ X j 

∣∣√ ∣∣X j 

∣∣ ×
∣∣X j 

∣∣ (3) 

The size of the set L defines the resolution of the data. If L is

arge, it may happen that the intersections of two sets becomes 

ery small or empty and the similarity can become meaningless. 

n such case, the cardinality of the sets (intersection and union) 

ould be replaced by a soft cardinality [35] . In other words, the in-

ersection of X i and X j would not be based on exact matches of 

he items but using some application-specific similarity measure 

o produce soft counts for the cardinality. If the items are natural 

ords, we can use semantic relatedness [36] or syntactic similarity 

37] . 

Another possible approach is to use so-called pivot tree 

38] where each item is represented by a path in a product tree. 

he idea is to represent the items via hierarchical categorization so 

hat every item has multiple labels from high level (generic label) 

o a low level (very specific). This allows better similarity measure- 

ent in case of large item set. In the rest of this paper, we use the

riginal hard cardinality, i.e., the mere counts of the matched items 

s the set size. This keeps the method simple and independent of 

he application with wider generalization potential. 

.1. Cluster representative 

From every cluster we form a histogram by counting how of- 

en each item appears in the cluster, see Fig. 1 . Histograms have 

lso been used for categorical data and document clustering . K- 

eans variants for clustering categorical include k - histograms [2] , 

-representatives [39] and k-entropies [3] . The difference to our 

ata is that categorical attribute can have only one possible item 

category) whereas sets can have any number of items selected. 

he histograms are also calculated for each attribute separately, 

hereas the set data has a common item set. Categorical data can 

e represented as sets data where all sets have the same length. 
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herefore, our proposed algorithms can be applied to categorical 

ata as well but not vice versa. 

In document clustering, histograms are constructed from the 

ords in all documents. This approach has been referred to as bag- 

f-words, bag-of-items or bag-of-X . A document is then represented 

sing vector-space model where each document is considered to 

e a vector. The most popular approach for setting the values in 

he vector is the combination of term frequencies (TF) and inverse 

ocument frequency (IDF) leading to TF-IDF. Numerical clustering 

ethods are then employed. The difference to sets is that docu- 

ents have (relative) frequencies for every item whereas our data 

tem can take only binary value {0,1}. We apply histogram only for 

he cluster representatives, not for the data objects. 

Medoid is another possible representative, which can have been 

sed for numerical, categorical and also for sets data. It is defined 

s the object in the cluster, which has maximum average similar- 

ty (or minimum average distance) to all the objects in the clus- 

er [32] . Other types of representatives include modes [6] , distri- 

utions [7] , and entropies [3] which have all been used for cate- 

orical data. 

The histogram is constructed as follows. Suppose that a cluster 

ncludes m distinct items y i … y m 

. The cluster representative has 

ength m , and is formulated as follows: 

y 1 y 2 · · · y m 

n ( y 1 ) n ( y 2 ) · · · n ( y m 

) 

]
(4) 

here n ( y i ) is the frequency of the item y i . Other cluster represen-

atives can be defined similarly. For example, the values in the rep- 

esentative can be normalized to the number of sets in the cluster 

o provide a representative with normalized values, see Fig. 1 . 

To avoid sparsity of the histogram, we limit its dimension to 

 ≤ 20. If there are more items in the cluster, we simply select 20 

ost frequent items. Larger histograms would also work but the 

parsity has slight negative effect to the clustering performance. 

.2. Distance calculation 

For comparing histograms, classical approach is to use some 

etric. Hamming and Euclidean distance have been used but Co- 

ine distance has become more popular due to its superior perfor- 

ance over Euclidean distance despite it is not metric. As observed 

n [40] , after normalizing it becomes equal to Euclidean distance. 

ifferent divergence measures [41] have also been used, of which 

he most popular is Kullback-Leibler. 

However, in our case the data objects are simple item sets and 

nly the cluster representative is histogram. We therefore tailor 

ur distance measures suited for this case. The distance of a set 

 of size l to the cluster representative h in (4) is defined corre- 

ponding to the Jaccard ( d J ) and Cosine coefficient ( d C ) in (2) and

3) as follows: 

 J ( X, h ) = 1 −
∑ m 

i =1 n ( y i ) × δ1 ( y i ) ∑ m 

i =1 n ( y i ) + 

∑ l 
i =1 δ2 ( x i ) 

(5) 

 C ( X, h ) = 1 −
∑ m 

i =1 n ( y i ) × δ1 ( y i ) √ ∑ m 

i =1 ( n ( y i ) ) 
2 
√ 

l 
(6) 

here δ1 ( y i ) = 1 if the item y i in the cluster is in the set X , and

1 (y ) = 0 otherwise. If the item x i in the set X does not exist in the

luster representative, then δ2 ( x i ) = 1, and δ2 ( x i ) = 0 otherwise. The

istance measure (5) can be considered as weighted Jaccard. If a 

luster includes only one set, the distance between a set and the 

luster representative reduces to the distance between two sets. In 

pecific, (5) reduces to the standard Jaccard distance. Suppose that 

e have two clusters and their representatives as follows: 

X 1 = { A, E, B, C, F }; X 2 = { D, G, A, B }; X 3 = { A, H, C, B }; X 4 =
 I, A, C, J, B }; X = { B, D, C, A };
5 

3 
X 6 = { A, E, J, I, F }; X 7 = { F , G, H, I }; X 8 = { I , H, C, B }; X 9 =
 I, H, F , J, G }; X 10 = { J, D, I, H};

Histogram 1 

A B C D E F G H I J 

5 5 4 2 1 1 1 1 1 1 

Histogram 2 

A B C D E F G H I J K 

1 1 1 1 1 3 2 4 5 3 1 

Consider the object X 11 = { A, B, C, D, K, L, M } for which we 

eed to find its nearest cluster. If we just considered the num- 

er of shared items (4 and 5) as in the original weighted Jaccard 

istance, X 11 would belong to cluster 2. However, the first clus- 

er have higher frequencies for A, B, C and D, and its distance to 

 11 should be smaller. For this reason, our modified Jaccard has 

 ( y i ) × δ1 ( y i ) in the numerator in (5) instead of just δ1 ( y i ) . 

The following example demonstrates how the distance between 

 sample set ( X 1 or X 2 ) and the cluster representative in Fig. 1 is

alculated based on (5). 

 1 = { A, E, B, C, F } 

 2 = { A, E, B, K, L } 

 J ( X 1 , h ) = 1 − 5 + 1 + 5 + 4 + 1 

22 

= 0 . 27 

 J ( X 2 , h ) = 1 − 5 + 1 + 5 + 0 + 0 

22 + 2 

= 0 . 46 

Distance calculation in case of normalized histogram is per- 

ormed by applying a slight modification to (4): δ2 ( x i ) is normal- 

zed to the cluster size similar to normalizing histogram. Overall, it 

s like the numerator and denominator are divided by the cluster 

ize, and therefore, the result is the same regardless of whether we 

se the original or the normalized histogram. Distance calculation 

or X 2 in case of normalized histogram is shown below. For sim- 

licity, we use the original histogram without any normalization. 

 J ( X 2 , h ) 1 − 1 + 1 + 0 . 2 + 0 + 0 

4 . 4 + 2 / 5 

= 0 . 46 

Both the modified Jaccard and Cosine distance can be used 

ithin the following algorithms. In the experiments, we will com- 

are the performance of the two measures and will find out that 

here is only minor difference in their performance. 

.3. K- sets algorithm 

Similar to k -means, the k -sets algorithm includes two steps: as- 

ignment and update . The algorithm starts by randomly selecting k 

ata objects as the initial representatives. At this stage, the repre- 

entatives are simply the histogram of the selected data objects. In 

he assignment step, each data object is assigned to its nearest his- 

ogram according to (5). The sum of distances to histograms (SDH) 

s used as the objective function that we want to minimize: 

DH = 

k ∑ 

j=1 

N ∑ 

i =1 , x i ∈ h j 
d 
(
x i , h j 

)
(5) 

here h j is the histogram of cluster j, j = 1.. k , and distance d is cal-

ulated from (5). In the update step, the histogram of each cluster 

s calculated. The assignment and update steps are repeated until 

o further improvement in SDH is achieved, or until the change 

ecomes less than a predefined threshold. We use TH = 10 −8 in this 
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Fig. 2. Pseudo code of the k -sets algorithm 

Fig. 3. Illustration of the k -sets algorithm for a toy dataset 
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Fig. 4. Pseudo code of k-swap algorithm. 
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aper. The pseudo code of the algorithm is shown in Fig. 2 , and its

peration illustrated in Fig. 3 . 

The time complexities of the assignment and update steps are 

( kNL ) and O( NL ), respectively, where L is the average length of ob-

ects. The bottleneck is the calculation of the distance between the 

bjects and the histograms in the assignment step. The time com- 

lexity of the algorithm is therefore O( kNL ) in each iteration. This 

an be compared to K -medoids and agglomerative clustering algo- 

ithm which need all pairwise distance calculations, which makes 

heir time complexity O( N 

2 ), at minimum, and therefore, impracti- 

al for large data sets. 

.4. The k-swaps algorithm 

Similar to k -means and k -medoids, the proposed k -sets algo- 

ithm also converges to a local optimum, which can be signifi- 

antly worse than the global optimum. The result of the algorithm 

lso depends on the choice of the initial histograms, which leads 

o different local optima [42] . We therefore adopt the idea into a 

ore robust algorithm called random swap [42] , which has been 

hown to be superior to k -means with the basic clustering bench- 

ark with 11 numerical datasets [30] . 
4 
Random swap can be considered as an evolutionary algorithm, 

hich starts with a random solution and iteratively improves it for 

 fixed number of iterations. In each iteration, one centroid is ran- 

omly removed and replaced to a location given by a randomly 

hosen data point. Two iterations of k -means is applied to fine 

une the solution. The new solution is used in the next iteration 

f it achieved a better objective function (lower mean square error ). 

therwise, the previous solution is restored. 

We call the random swap modification as k-swaps algorithm. It 

orks as follows. Initial solution is obtained by applying the k -sets 

lgorithm. The swap is then performed by replacing the histogram 

f a randomly selected cluster by a random data object. K -sets al- 

orithm is applied again, and the objective function SDH is calcu- 

ated. If the new SDH is smaller than the previous one, the new so- 

ution is accepted and used in the next iteration. The process is re- 

eated for a fixed number of iterations, which is the only parame- 

er given by the user. It can be set as high as time can be allocated.

riginally, 50 0 0 iterations was recommended (to be safe) but we 

ave selected here Iter = 300 as it seemed to be enough with our 

ata. The pseudo code of this algorithm is shown in Fig. 4 and its

perationm demonstrated in Fig. 5 . 

. Generating artificial sets data 

We generated 15 synthetic datasets by varying the following 

arameters: number of clusters, resolution, cluster overlap, and 

elative cluster density. The program for generating the datasets 

ere implemented by Python. The sizes of all datasets are fixed 

o N = 1200, and the number of items in each set is varied between

 and 20. The range of each parameter is selected as follows: 

• Number of clusters: k = 4, 8, 16, 32 (default = 16) 
• Resolution: L = 100, 200, 400, 800 (default = 200) 
• Cluster overlap: o = 0%, 5%, 10%, 20%, 40% (default = 5%) 
• Imbalanced clusters: five types of cluster sizes: (default = Type 

1) 

In order to examine the effect of each factor, we change one 

arameter at a time while keeping the others fixed. The default 

etting of the parameters is: k = 16, L = 200, o = 5%, and type 1 of

mbalanced clusters which indicates equal size clusters. 

To generate a dataset with k clusters, we first created k rep- 

esentatives. A representative is formed by randomly selecting a 

ew items from all items (e.g. L = 200). Although the size of the sets

aries between 4 and 20, the size of the representative is restricted 

n the mid-range between 6 and 10. By knowing the representa- 

ive and the size of cluster, we then create data objects for each 

luster by randomly selecting items from the item set. The result- 

ng set is accepted if its distance to the representative is less than 
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Fig. 5. Illustration of k-swaps algorithm for the same toy dataset in Figure 3 . 

Table 1 

Five types of cluster sizes including equal size clusters and four types in which 

there are 4 big and 12 small clusters. 

Type 4 Big 12 Small Ratio

1 75 75 1 

2 120 60 2 

3 150 50 3 

4 187-188 37-38 5 

5 210 30 7 
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o

 threshold. This threshold controls the overlap between clusters, 

hich is calculate by counting the number of objects which are 

loser to the representative of another cluster than the representa- 

ive of their own cluster [30] . 

The first four datasets (k4, k8, k16, k32) include the number 

f clusters from 4 to 32 in order to examine the performance of 

lustering methods for low to high number of clusters. The other 

arameters have the default values. 

The next four datasets (L10 0, L20 0, L40 0, L80 0) have varying

esolution from 100 to 800. We define the resolution of a dataset 

s the total number of different elements that exist in the set ob- 

ects. For example, for L = 200, we create an object by selecting 4-20

tems from item set of size 200. Higher number of items results in 

igher sparsity among data objects. 

The third series of datasets (o0, o5, o10, o20, o40) is generated 

y varying the overlap threshold. We found the suitable thresh- 

lds for each dataset by trial and error manner. A small thresh- 

ld would guarantee that the overlap between clusters is zero. 

owever, datasets with compact clusters far away from each other 

ould be too easy for many clustering algorithms to solve. We 

herefore use the largest threshold that satisfies the overlap con- 

ition. Overall, five datasets are generated with overlap values of 

%, 5%, 10%, 20% to 40%. The corresponding thresholds are 0.600, 

.790, 0.805, 0.820, and 0.843. 

The fourth series of datasets are generated by considering five 

ypes of imbalance. As shown in Table 1 , Type 1 contains 16 clus-

ers with equal size. Type 2 to Type 5 include 4 big and 12 small

lusters where the ratio between the larger and smaller cluster 

izes is 2, 3, 5, and 7, respectively. The datasets are publicly avail- 

ble on the web 1 . 

. Experiments 

.1. Experimental setup 

We perform the following algorithms for all the 15 datasets: 
1 https://cs.uef.fi/sipu/datasets/ 

p

5 
- k-medoids [ 4 , 5 ] 

- Single-link agglomerative clustering [43] 

- Complete-link agglomerative clustering [43] 

- k-sets [proposed] 

- k-swaps [proposed] 

We use cosine distance as the default measure in k-sets and k- 

waps . The effect of this choice will be studied in Section 4.2.5 .

he k-medoids algorithm which is introduced in [5] is the most 

ell-known algorithm for k -medoids clustering and is also based 

n k -means principle. Medoids are first selected randomly from 

he data objects, and then the assignment and update steps are 

epeatedly performed until convergence. In the update step, the 

edoid of each cluster is found, but this is much more time con- 

uming than calculating the mean of cluster in k -means. Single- 

ink and complete-link are agglomerative clustering algorithms in 

hich each object is initially located in its own cluster. Two closest 

lusters are iteratively merged until the desired number of clusters 

s reached. The difference of the two algorithms is how to select 

he next two clusters to be merged. 

The algorithms listed above have different cost functions. For 

xample, k -sets and k -swaps minimize SDH, while k -medoids aims 

t minimizing sum of distances to medoids (SDM). For evaluating 

he performance of the clustering algorithms, we use sum of pair- 

ise distances (SPD) in each cluster as the common objective func- 

ion for all algorithms, and adjusted Rand index (ARI) [44] in re- 

pect to the ground truth partition. 

K -medoids and k -sets produce different results every time be- 

ause of the random initialization. To make the resulting qualities 

tatistically valid, we therefore repeat these algorithms 100 times, 

nd report the average values of SPD and ARI. We applied k -swaps 

lgorithm with 300 iterations. 

The programs for clustering algorithms and calculating cost 

unctions were implemented by Python, and the program for cal- 

ulating ARI was implemented by MATLAB. They are all publicly 

vailable on the web 2 . We performed all experiments on Windows 

0 with Intel(R) Core(TM) i5-6600, 3.30 GHz processor and 8 GB 

AM. 

.2. Results 

.2.1. Number of clusters 

Results in Table 2 show that k -swaps gives the best result re- 

ardless of the number of clusters. Based on the ARI values, single- 

ink (0.00) and complete-link (0.03) algorithms do not work at all 

s they basically produce random partitions. They end up creating 

ne big cluster and several tiny clusters. For example, single-link 

roduces one cluster of size 1197 and three clusters of size 1 with 
2 https://cs.uef.fi/ml/software/ 

http://cs.uef.fi/sipu/datasets/
https://cs.uef.fi/ml/software/
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Table 2 

Clustering quality with different number of clusters. Results with high accuracy (ARI ≥ 0.95) are emphasized. 

Algorithm k = 4 k = 8 k = 16 k = 32 Average ARI 

SPD ARI SPD ARI SPD ARI SPD ARI 

Single link 519.97 0.00 533.26 0.00 540.47 0.00 533.79 0.00 0.00 

Complete link 517.28 0.00 511.69 0.03 508.95 0.04 473.76 0.07 0.03 

K-medoids 402.35 1.00 401.71 0.81 396.78 0.91 389.26 0.90 0.90 

K-sets 402.35 1.00 394.30 1.00 396.42 0.92 390.79 0.88 0.95 

K-swaps 402.35 1.00 390.54 1.00 386.39 1.00 377.56 0.99 1.00 

Table 3 

Clustering quality with different resolutions. Results with high accuracy (ARI ≥ 0.95) are emphasized. 

Algorithm L = 100 L = 200 L = 400 L = 800 Average ARI 

SPD ARI SPD ARI SPD ARI SPD ARI 

Single link 517.91 0.00 540.47 0.00 555.62 0.00 567.00 0.00 0.00 

Complete link 443.69 0.11 508.95 0.04 550.40 0.00 564.73 0.00 0.04 

K-medoids 336.24 0.90 396.78 0.91 449.73 0.89 483.92 0.90 0.90 

K-sets 334.80 0.91 396.42 0.92 449.04 0.92 484.31 0.93 0.92 

K-swaps 323.17 0.99 386.39 1.00 441.21 0.99 477.69 0.99 0.99 

Table 4 

Clustering quality with different levels of overlap between clusters. Results with high accuracy (ARI ≥ 0.95) are emphasized. 

Algorithm o = 0% o = 5% o = 10% o = 20% o = 40% Average ARI 

SPD ARI SPD ARI SPD ARI SPD ARI SPD ARI 

Single link 273.57 0.93 540.47 0.00 537.59 0.00 535.62 0.00 529.30 0.00 0.19 

Complete link 333.83 0.59 508.95 0.04 517.65 0.02 524.82 0.00 520.07 0.00 0.13 

K-medoids 290.98 0.85 396.78 0.91 406.12 0.91 413.65 0.90 415.92 0.99 0.91 

K-sets 294.55 0.86 396.42 0.92 409.42 0.86 414.94 0.91 423.82 0.92 0.89 

K-swaps 260.54 1.00 386.39 1.00 397.47 0.99 405.86 0.99 415.85 0.99 0.99 
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 = 4. This is a known weakness of the algorithms in another con- 

ext [45] . 

The performance of k -medoids (0.90) is slightly better than k - 

ets (0.88) at k = 32. However, k -sets (0.95) and k -swaps (1.00) per-

orm better than k -medoids, on average. The number of clusters 

as similar effect as was observed with numerical data in [30] : 

he more clusters, the more difficult the data becomes for k -means 

and also k -medoids and k -sets here). We note that sometimes k - 

ets and k -swaps algorithms may over optimize SDH at the cost of 

ess accurate clustering. In Euclidean vector space, this corresponds 

o optimizing for sum-of-squared errors (SSE) which equals to the 

caled version of sum of pairwise distances (SPD). However, the 

ame relationship does not hold between SDH and SPD. For this 

eason, it may happen that optimizing for SDH may not provide 

he best clustering result. 

.2.2. Resolution 

K -sets and k -medoids have similar performance with different 

esolutions, see Table 3 , while k -swaps performs much better with 

RI = 0.99, on average. Single-link and complete-link again fail to 

rovide reasonable clustering result. Performance of the k -means 

ariants ( k- medoids, k -sets) is mostly invariant to the resolution. 

his corresponds to the results in [30] showing that the perfor- 

ance of k -means is not directly affected by the dimensionality. 

.2.3. Overlap 

The results in Table 4 show that single-link and complete-link 

rovide reasonably good results only when there is no overlap be- 

ween clusters ( o = 0%) but they start to fail even with slight clus-

ers overlap. The results for k -sets and k -medoids are almost simi- 

ar but k -swaps provides better results with ARI = 0.99, on average. 

he effect of the overlap on k -means variants is not clearly visible. 

ith numerical data it was observed that k -means requires certain 

mount of overlap (around 4%) to be able to move the centroids 
6 
etween clusters [30] . This phenomenon is also observed here as 

 -medoids and k -sets provide worse results when the clusters have 

o overlap. 

.2.4. Imbalanced clusters 

In this experiment, we examine the performance of clustering 

lgorithms when there are imbalance in the cluster sizes. The im- 

alance increases from type 1 to type 5. The SPD and ARI results in 

able 5 show that k -swaps provide the best results as always. The 

esults of k- medoids and k -sets degrade when imbalanced clusters 

xist, however, we see that k -swaps performs well in all condi- 

ions. K -medoids (ARI = 0.90), on average, performs better than k - 

ets (ARI = 0.86). Unlike k -medoids, k -sets does not need all pair- 

ise distances between data points. Calculating centroids in k -sets 

s therefore much faster that finding medoids in k -medoid algo- 

ithm. K -sets is therefore significantly faster than k -medoids. 

.2.5. Distance metrics 

We next compare the effect of the distance measure. We con- 

ider the proposed modified Jaccard in Eq. (5) , and Cosine distance 

n Eq. (6) within the best performing k-swaps algorithm. In addi- 

ion, we also consider vector-space representation (TF-IDF) using 

uclidean distance as this algorithm would be the closest to those 

sed for document clustering. The original random swap algorithm 

s used instead of k-swaps because the data is in numerical space. 

e set the number of iterations Iter = 10 0 0 for random swap , and

ter = 300 for k -swaps. 

The results for the selected (most challenging) datasets are 

ummarized in Table 6 . The results show that k-swaps both with 

osine and modified Jaccard distance leads to the highest accuracy. 

uclidean distance is worse than those two but still slightly better 

han k-medoids and k-sets . There are two contributors to the good 

ccuracy: the histogram-based approach tailored for sets data, and 

he swapping technique. Both are needed to reach the high accu- 

acy. 
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Table 5 

Clustering quality with different relative density of clusters. Results with high accuracy (ARI ≥ 0.95) are emphasized. 

Algorithm Type 1 Type 2 Type 3 Type 4 Type 5 Average ARI 

SPD ARI SPD ARI SPD ARI SPD ARI SPD ARI 

Single link 540.47 0.00 538.67 0.00 535.68 0.00 530.39 0.00 525.30 0.02 0.00 

Complete link 508.95 0.04 511.46 0.02 494.75 0.07 503.65 0.06 501.56 0.07 0.05 

K-medoids 396.78 0.91 393.62 0.92 393.23 0.95 396.20 0.82 403.61 0.88 0.90 

K-sets 396.42 0.92 398.04 0.86 396.38 0.80 393.61 0.85 397.66 0.85 0.86 

K-swaps 386.39 1.00 386.20 0.99 383.28 0.99 383.27 1.00 388.45 0.99 0.99 

Table 6 

Clustering quality (ARI) of k-swaps with different distance measures. Jaccard and Cosine are used for sets data and Euclidean for binary data. Results 

from k-medoids and k-sets have been added for reference. Results with high accuracy (ARI ≥ 0.95) are emphasized. 

Method L = 200 L = 800 O = 0% O = 40% Type 4 Type 5 K = 32 Average 

k-swaps / random swap ∗

Cosine 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 

Modified Jaccard 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.99 

Euclidean ∗ 1.00 0.86 1.00 0.91 0.98 0.87 0.90 0.93 

k-means variants 

K-medoids 0.91 0.90 0.85 0.99 0.82 0.88 0.90 0.89 

K-sets 0.92 0.93 0.86 0.92 0.85 0.85 0.88 0.89 

Table 7 

Clustering quality of the 38,451 Siun Sote patients ( k = 16). 

Algorithm SPD SDH Processing time 

K-medoids 16635 - 4237 s 

K-sets 16434 28195 49 s 

K-swaps 16500 26824 4918 s 
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Table 8 

Summary of the most dominant diagnoses in the selected clusters. 

Cluster 2 

J40: Chronic lower respiratory diseases 

J95: Other diseases of the respiratory system 

I10: Hypertensive diseases 

R00: Symptoms and signs involving the circulatory and respiratory systems 

Cluster 3 

I20: Ischaemic heart diseases 

I30: Other forms of heart disease 

Cluster 4 

O94: Other obstetric conditions, not elsewhere classified 

O30: Maternal care related to the fetus and amniotic cavity and possible 

delivery problems 

O20: Other maternal disorders predominantly related to pregnancy 

O00: Pregnancy with abortive outcome 

F60: Disorders of adult personality and behavior 

A50: Infections with a predominantly sexual mode of transmission 

B15: Viral hepatitis 

Cluster 10 

R10: Symptoms and signs involving the digestive system and abdomen 

I10: Hypertensive diseases 

N25: Other disorders of kidney and ureter 

O94: Other obstetric conditions, not elsewhere classified 

Cluster 11 

F10: Mental and behavioral disorders due to psychoactive substance use 

B15: Viral hepatitis 

T36: Poisoning by drugs, medicaments and biological substances 

F90: Behavioral and emotional disorders 

O00: Pregnancy with abortive outcome 

Cluster 12 

M20: Other joint disorders 

A30: Other bacterial diseases 

f

q

a

o

p

m

m

o

C

The problem of the Euclidean distance is that conversion to nu- 

erical space results in sparse high-dimensional data. The swap- 

ing technique compensates this, but the use of the data-specific 

epresentation is still important, regardless of the distance func- 

ion. 

.3. Application to health data 

In this experiment, we used Siun Sote patient records of 51,909 

atients collected from electronic health care records in North 

arelia region of Finland. It is a subset of a larger nationwide 

ataset consisting of 58 M patient visits between 2015 and 2018 

46] . Each patient record includes a set of diagnoses represented 

y ICD-10 codes along with other information. We used only ICD- 

0 codes for the clustering. There are very similar diseases such as 

00, K02 and K04 in the data. WHO provides a grouping of these 

iseases as one 3 . We used the grouped version of the codes be- 

ause, according to our experiments, clustering without grouping 

rovided less interesting (too obvious) clusters. 

After the grouping, we eliminated rare codes that appear less 

han 50 times in the data. We also removed patients with less 

han four diagnoses as they can be considered as outliers that 

ight mislead the clustering result and hide more important gen- 

ral trends. After the above preprocessing steps, the number of pa- 

ients is reduced to 38,451. The number of different items (diag- 

oses) in the processed data is 174. The quality of the clustering 

esults is reported in Table 7 . 

Qualitative analysis of the clusters generated by k -swaps algo- 

ithm is presented next to show that the method generates mean- 

ngful clusters for the application. Distribution of the diagnoses 

n selected clusters are summarized in Fig. 6 and summarized in 

able 8 . To extract the most dominant diagnoses, we calculated the 
3 https://icd.who.int/browse10/2019/en#/XVIII 

t

t

a

7 
requency of each diagnosis in the cluster relative to its total fre- 

uency in the dataset. Any number above 1 indicates that the di- 

gnosis is over-represented in the cluster compared to that of the 

verall population. It is therefore representative to characterize the 

atients in the cluster. 

From this simple analysis, we can observe that the clustering 

ethod has created meaningful clusters. While patients can have 

ultiple different diseases, clusters 2, 3, and 10 have collected lots 

f certain type of problems. Cluster 2 includes respiratory diseases. 

luster 3 is characterized by heart diseases (I20 and I30) and Clus- 

er 10 by digestive related diagnoses (R10, N25, O94). Cluster 4 is 

he largest cluster consisting of 9137 patients. Compare this to the 

verage size of all clusters of 2403 patients. The cluster is charac- 

https://icd.who.int/browse10/2019/en#/XVIII
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Fig. 6. Selected clusters generated by the k -swaps algorithm. Clusters are sorted from most compact (smallest SDH) to least compact. Each cluster is represented by a 

histogram of its ten most dominant diseases based on relative risk. The size and compactness (SDH) of the clusters are also shown. 
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erized by pregnancy related diagnoses (O00, O20, O30, O94), but 

lso codes related to mental (F60) and sexual transmitted diseases 

A50). 

Clusters 11 and 12 are somewhat more surprising as they com- 

ine different types of diseases. Cluster 11 combines various diag- 

oses such as mental disorders and substance abuse, but also abor- 

ion (O00). Cluster 12 is dominated by joint disorders (M20) and 

acterial diseases (A30). The significance of these findings would 

equire medical expertise and is out of scope of this work. Never- 

heless, the clustering seems to provide potential new and medi- 

ally relevant information. 

. Conclusions 

By introducing the k -sets algorithm, we have shown that stan- 

ard k -means can be applied to cluster data where the objects are 

ets from a fixed item set. Replacing the centroid by histogram of 

he items, we defined distance function between the objects (set) 

o the cluster (histogram). The significance of the proposed algo- 

ithm is that there is no need for very complex algorithms to clus- 

er such data. The algorithms are general as they can be applied 

o any applications where the objects are described as subsets of 

 common item set. For example, it can be used to cluster cus- 

omers using customer-product connections, and patients based on 
8 
atient-disease connections. The proposed algorithm can also be 

pplied to categorical data since categorical data can be converted 

o sets data. 

The k -set algorithm inherits the algorithmic weakness of k - 

eans but there are algorithmic modifications to overcome this 

eakness. We selected the random swap algorithm which is a 

rapper around the k -means and modified it to work with the sets 

ata. The proposed modification, called k -swaps, provides high- 

st clustering accuracy among all tested variants. This shows that 

here is no need for more complex algorithms to the problem as 

uch simple modifications can already provide high quality clus- 

ering results. 

We also introduced a benchmark for the set data by varying 

he number of clusters, resolution of the item set, overlap of the 

lusters, and cluster size imbalance. The results show that the k - 

ets algorithm is invariant to the resolution, but the performance 

ecreases when the number of clusters increases. 

While the time complexities of the proposed algorithms are 

ower than their alternatives, k-medoids and agglomerative cluster- 

ng, the processing time can still be a bottleneck especially for big 

ata. Existing parallel solutions for k-means [47] and random swap 

48] are expected to be applicable also for k-sets and k-swaps al- 

orithms with reasonable effort s. Some algorithmic speed-up tech- 

iques like Ball k-means [49] , however, rely on vector data in Eu- 
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lidean space and cannot apply to sets as such. Some ideas like 

he activity detection of cluster centroids [50] (also used in [49] ) 

re based on more general properties and should be applicable for 

he sets data as such. 

The proposed algorithms also leave the number of clusters to 

he user to decide, similarly as standard k-means. However, gen- 

ral frameworks such as [51] can be adopted to k-sets and k-swaps 

y integrating existing cluster validity like silhouette coefficient as 

 constraint in the clustering objective. Stability-based approach 

 52 , 53 ] would also be applicable for the sets data directly for this

urpose. 
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