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Abstract: Most outlier detection techniques become ineffective when the number of outliers 

is large. We propose a mean-shift outlier detection method, which also works in case of very 

noisy datasets. The method processes every point by calculating its k-nearest neighbors (k-

NN) and then replacing the point by the mean (or median) of its neighborhood. The process 

is repeated a few times. This mean-shift process can be applied in two ways: (1) calculating 

outlier score based on how much the point is moved to detect outliers, (2) pre-processing 

prior to data analysis such as clustering. We demonstrate that the method works both with 

numerical data using Euclidean distance and with text data using Edit distance. The method 

outperforms all comparative methods, and it does not need a priori knowledge of the noise 

level. 
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Abbreviations 

CI  Centroid index, a cluster-level measure of clustering quality 

k-NN  K-nearest neighbors 

LOF Local outlier factor, outlier detection algorithm 

ODIN Outlier detection with indegree, outlier detection algorithm 

MCD Minimum covariance determinant, outlier detection algorithm 

NC The reverse unreachability, outlier detection algorithm 

KNN Distance to kth nearest neighbors, outlier detection algorithm 

TONMF Text outliers using nonnegative matrix factorization, outlier detection 

algorithm 

MOD Mean-shift outlier detection, outlier detection algorithm 

DOD Medoid-shift outlier detection, outlier detection algorithm 

SSE Sum of squared errors 

NMI Normalized mutual information 

AUC Area under the curve  

ROC Receiver operating characteristic 

RS Random swap clustering, clustering methods 

K-means K-means clustering, clustering methods 

SD Standard deviation  

MAD Median absolute deviation 

IQR Interquartile range 

 

 

Notations 

𝑁 Number of objects in a data set 

𝑛# Number of objects in the partition 𝑝# 

d (x, y) Euclidean distance between object x and y 

𝐾  Number of clusters in a dataset  

𝐷 Number of attributes in a data set 

𝑋 Set of 𝑁 data objects 𝑥), 𝑥+, … , 𝑥-  

𝐶 Set of 𝐾 cluster centroids 𝑐), 𝑐+, … , 𝑐0  

𝑃 Set of 𝑁 cluster indices  
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1 Introduction 
Outliers are objects that deviate from the typical data. They can represent significant information, 

which is wanted to be detected such as fraud detection, public health, and network intrusion [1], but 

they can also affect statistical conclusions based on significance tests [2]. Outliers can also be noise 

objects which might harm the data analysis process. In any case, we want to detect the outliers. 

Outlier detection consists of two main steps: scoring and thresholding. The outlier score of a point is 

calculated based on a reference set. The outlier detection approaches fall roughly into global and local 

outlier models based on how the reference set is constructed [3]. The global methods use all other data 

object as reference set, and the local methods only a small subset of nearby points as reference set.  

The obtained scores are then sorted, and data points with the highest scores are labeled as outliers, 

and the rest are labeled as inliers. The decision of how many outliers are detected can be made in two 

ways. The top-N approach uses a priori knowledge of the noise level (%) of the data and marks exactly 

the given number of highest scoring points as outliers. Another approach is to derive a threshold value 

from the statistical distribution of the scores with technique like standard deviation (SD), median 

absolute deviation (MAD), interquartile range (IQR). In [4], it proposed a two-stage threshold 

technique, which is better than the SD, MAD, IQR. 

In clustering, detection of outliers can be considered as a pre-processing step. The idea is to clean the 

data from noisy points that might affect the quality of the clustering. Another approach is to perform 

the clustering first, and then label those points as outliers, who did not fit into any cluster, see Fig. 1. 

DBSCAN is an example of this kind of approach [5]. However, this is a chicken-or-egg problem: 

removing outliers can potentially improve the clustering, but on the other hand, performing clustering 

first would also make it easier to detect the outliers. 

 

 
Fig. 1. Example of the iterative process of the medoid-shift [4]. 
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The obtained scores are then sorted, and data points with the highest scores are labeled as outliers, 

and the rest are labeled as inliers. The decision of how many outliers are detected can be made in two 

ways. The top-N approach uses a priori knowledge of the noise level (%) of the data and marks exactly 

the given number of highest scoring points as outliers. Another approach is to derive a threshold value 

from the statistical distribution of the scores. However, this approach has been rarely used in clustering 

context. 

In [4], we have proposed a noise removal pre-processing method before clustering. The key idea is 

to apply mean-shift or medoid-shift for several iterations (not to converge) as pre-processing. First, we 

find k-nearest neighbors (k-NN) for every data point. We replace the original point by the mean value 

(or medoid) of its neighbors. The process is then iterated a few times (experiment results show optimal 

is 3 iterations, see Section 6.4). This iterative process is demonstrated in Fig. 2. The method was then 

applied for outlier detection in [6]. However, after the mean-shift process as in [4], we then calculate 

how much distance it was moved, i.e., the distance between the original location and its shifted location. 

This distance is the outlier score. Example of the outlier scores is shown in Fig. 3. 

 

 
Fig. 2. Random swap clustering results in each mean-shift iteration on 8% noisy A1 dataset. The red points are predicted clusters and blue 

point are ground truth clusters. 
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Fig. 3. Outlier scores (y-axis) for the A1 dataset with 16% noise level: normal data points (gray) and noise points (blue). The results are for 

the proposed MOD method (using mean).  

  

We show that the proposed outlier detection method can be applied both to numeric data using 

Euclidean distance and to text data using Edit distance. Text data is challenging because of the high 

dimensional nature (large size of the string) but also because of the sparseness of the distance measure. 

Furthermore, many words in a document may be topically irrelevant to the context of the document and 

add to the noise in the distance computations. 
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2 Outlier detection overview 
2.1 Problem definition 
Given only a data set, the outlier detection problem can be seen as a binary classification problem: 

inner or outlier. A toy example is shown in Fig. 4. 

 

 
Fig. 4.  An example of the outlier (red) and inner (gray)  

 

Normally definition of an outlier relies on applications and assumptions of used models. Some 

definitions are general enough to handle various data type and methods, for example, an observation 

deviates so much from others to arise suspicions of different mechanisms in [7], an observation deviates 

markedly from norm [8], and an observation is inconsistent with the rest in [9]. 

2.2 Distance measure 
Distance function gives the similarity between objects. For a numeric dataset, Euclidean distance is 

the most used. For a string dataset, the most used is Levenshtein distance, which belongs to the class of 

Edit distance. 

For D-dimensional points in a Euclidean space, an obvious choice for a distance function is the 

Euclidean distance between given two points 𝑥) and 𝑥+: 

d 𝑥), 𝑥+ = 𝑥)# − 𝑥+#
+

5

#6)

= 𝑥) − 𝑥+ 																											 1  

Euclidean distance is commonly used when the attributes of the data objects are coordinates, color 

components or other numeric types.  

Edit distance is the number of the edit operations needed to transform one string into the other. A 

single edit operation may be the insertion, deletion, or substitution of a character. The precise definition 
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of the edit distance varies. Typically, some operations are excluded, and the cost of the operations may 

vary. 

Levenshtein distance is the most used Edit distance. It allows insertions, deletions or substitutions, 

each having unit cost. For example, the Levenshtein distance between “come” and “coffee” is 3: 

1. come → coee (substitute ‘m’ by ‘e’) 

2. coee → cofee (insert ‘f’) 

3. cofee → coffee (insert ‘f’) 

Other popular distance includes the longest common subsequence distance (LCS), which only allows 

insertion and deletion operations, and Hamming distance where only substitutions are allowed. The 

LCS distance between "Beijing" and "Beef" is 7: substitutions are not allowed, so any characters not 

shared by the two strings must be deleted first. The Hamming distance for these strings is undefined 

since it requires the strings to have the same length. 

In this thesis, the Euclidean distance is used in numeric datasets, and Levenshtein distance is used in 

string dataset. 
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3 Existing algorithms and their limitations 
 

Outlier detection techniques fall into two categories according to the input type: numeric type or text 

string type. The most used technique is to calculate an outlier score for each object and then extract the 

top-N ranked as outliers, or threshold the scores to get outliers. 

For numeric datasets, there are many methods to detect outliers. The widely used methods are based 

on k-nearest neighbors (k-NN). For string dataset, there are few methods, and most of them have been 

generalized from neighbors based method. They are usually based on Euclidean distance after 

converting strings to numbers, and few works with Edit distance. 

 

3.1 Outlier detection algorithms for numeric datasets 
 

3.1.1 KNN 

KNN is a distance-based approach [10,11], based on the assumption that inner data objects have a 

dense neighborhood whereas outliers lie far apart from their neighbors. It calculates the k-nearest 

neighbors (k-NN) and uses the distance to the kth neighbor as an outlier score. Points with large distance 

are considered as outliers. However, distance-based outlier detection models have problems if the data 

has areas of varying densities. Fig. 5 shows the example, points in C1 have bigger k-NN distance than 

the point O2, but O2 is outlier.  In general, outlier score of KNN is given by equation (2). 

KNN outlier Score (xi) =d (xi, kth-nearest neighbor (xi))  (2)   

 

Fig. 5. Dataset varying in densities1. 

 

                                                
1 https://archive.siam.org/meetings/sdm10/tutorial3.pdf 
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3.1.2 LOF 

Local outlier factor (LOF) [12] is a density-based approach, which analyses the neighborhood of the 

points. It calculates the local density of the neighborhood. Points that have a lower density than their 

neighbors are more likely to be outliers. LOF is the best method among those compared in [13]. 

However, it will be problematic if clusters of different densities are not separated clearly, see Fig. 6. 

Point p will have a higher LOF than points q or r which is counter intuitive 

 

Fig. 6. Dataset varying in densities2. 

In practice, the local density is obtained from the k-nearest neighbors. The LOF score of observation 

is equal to the ratio of the average local density of his k-nearest neighbors, and its local density: a normal 

instance is expected to have a local density similar to that of its neighbors, while abnormal data are 

expected to have much smaller local density. This strategy is defined in equation (3) and illustrated in 

Fig. 7. 

 

LOF	outlier	score(𝑥𝑖) = 𝐿𝑂𝐹K（𝑥#） =
LM

NOPQ(RS)
NOPQ(RT)

RS∈	VQWPTXYZ[\](RT)

|-QWPTXYZ[\](RT)|
                (3) 

𝑙𝑟𝑑K = 1/(
cdefgLh#ijQ(kT,kS)RS\	VQWPTXYZ[\] RT

-QWPTXYZ[\] RT

)      (4) 

reach-distk (xi, xj) = max {k-distance(xj), d (xi, xj)}     (5) 

𝑁KLh#ijelfd kT 𝑥# = {𝑥n 	 ∈ 𝑋\{𝑥#}|	d(𝑥#, 𝑥n) 	≤ 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥#)	}    (6) 

where 𝑘 − distance(xz) is defined as the Euclidean distance d(xz, x{) between xz and an object x{ ∈Х 

such that:  

(i) For at least k objects x| ∈ Х \ { xz }, it holds that d(xz, x|))≤ d(xz, x{);  

(ii) For at most k-1 objects x|	∈ Х \ { xz}, it holds that d(xz, x|) < d(xz, x{). 

                                                
2 https://archive.siam.org/meetings/sdm10/tutorial3.pdf 
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Fig. 7. LOF toy example3. 

 

3.1.3 ODIN 

ODIN [11] is a graph-based approach [11, 14] analyzing the indegree of the nodes in k-NN graph. 

For a given point, it calculates the amount how many other points consider it as their k-nearest neighbor. 

The smaller the value, the more likely the point is an outlier. However, it has problems when the distance 

inside each cluster is varying. Also, since the outlier scores are integers, thresholding can be a problem 

if objects have same outlier scores. The outlier score is defined by equation (7) and illustrated in Fig. 

8. 

 

ODIN	Outlier	score	(𝑥𝑖) = indegree of vertex xz for a given KNN graph G (7)   

 

                                                
3 http://scikit-learn.org/stable/modules/outlier_detection.html 
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Fig. 8. ODIN toy example (k=2)4. 

 

 

3.1.4 MCD 

Minimum covariance determinant (MCD) [15, 16] is based on a statistical test with the assumption 

that the inner data objects follow a (known) distribution and occur in a high probability region of this 

model. Outliers are expected to deviate strongly from this distribution. However, this method has high 

computing time to obtain the distribution parameters. The results are also different even for the same 

dataset when re-run the second time as it can obtain different parameter values each time. 

For instance, assuming that the inlier data are Gaussian distributed, it estimates the inlier location and 

covariance robustly compared to Mahalanobis distances (i.e., without being influenced by outliers, see 

Fig. 9 (MLE dist)). The robust distances obtained from this estimate are used to derive a measure of 

outlyingness. This strategy is illustrated in Fig. 9 (robust dist). 

MCD	Outlier	score 𝑋 = 	RD X = 	(𝑋 − µ𝑀𝐶𝐷)
𝑡Σ𝑀𝐶𝐷
−1 − (X − µ𝑀𝐶𝐷)  (8)   

Where, µ��5is the MCD estimate of location, and 𝚺��5	the MCD covariance estimate.  

 

                                                
4 http://cs.uef.fi/pages/franti/cluster/Clustering-Part7-Outliers.pdf 
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Fig. 9. MCD toy example5. 

 

3.1.5 NC 

NC [17] is a math representation approach based on math optimization, in which points X are 

represented by a matrix W in equation (10), where  x{ belongs to k nearest neighborhood of xz. Fig. 10 

shows the relationship between matrix W and location of a sample point P and its k nearest 

neighborhood. For each point, the amount of negative values in column of matrix W is used as an outlier 

score. The bigger the value, the more likely to be an outlier. However, it will fail if the hull constructed 

by k nearest neighborhood is non-convex hull, and also since outlier scores are integers, thresholding is 

a big problem when objects have same outlier scores. This outlier score is given by equation (9), and 

an example is shown in Fig. 11. the  

 

NC	Outlier	score 𝑥# = 	The	amount	of	negative	values	in	 ith column of W in (10)  (9) 

𝑚𝑖𝑛 |𝑥# − 𝑊#�� 𝑥�|+l
#6) , 𝑠. 𝑡. , 𝑊#� = 1� 	       (10) 

                                                
5 http://scikit-learn.org/stable/modules/outlier_detection.html 
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Fig. 10. Given a point p and its 3 nearest neighbors, we can get matrix W via equation (10). Clearly, in (a) and (b), it has the following: 

1) p is within of the triangle if 0<	wz <1. 2) p lies on the boundary of the triangle if any wz = 0. 3) q lies outside the triangle if any wz <0 or 

wz >1. Similarly, the conclusion holds for point p and q in (c) and (d), represented by their k-NN. [17]. 

 

 

 
Fig. 11. NC toy example [17]: sample points (up) and representation matrix w. 1) Use equation (1) for points in Fig 11 (up) to get W shown 

in Fig 11 (down). 2) Outlier score for each point is the negative value amount of each column: outlier score for {x1, x2, x3, x4, x5, x6} is {3, 

2, 0, 2, 1, 0} respectively. 3) the bigger the outlier score, the more likely to be the outlier. Hence {x1, x2, x4} is more like to be the outlier. 
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3.2 Outlier detection algorithms for string datasets 
Methods like KNN and ODIN can also detect string outliers with Edit distance directly. It is a very 

challenging task to detect string outliers but it is an indeed high demand in bioinformatics sequence 

datasets.  
 

  



19 
 

4 Mean-shift outlier filtering and detection  
In clustering applications, outliers can significantly affect the results; hence it is better to remove the 

outliers before clustering. Traditional methods treat this task in two steps: detect and remove. However, 

what amount to remove is a common problem, as it is not possible to know the correct amount of outliers 

in advance. We propose mean-shift outlier filtering method, which can remove outliers without 

requiring knowing the amount of outliers at all. After using the mean-shift outlier filtering method, any 

clustering can be applied to do the clustering task. We call this method mean-shift outlier filtering 

algorithm, for improving clustering. 

Next, we also propose a technique to detect the outliers, which point is an outlier and which is an 

inner. We call this method mean-shift outlier detection (MOD) and its counter-part using medoid as 

medoid-shift outlier detection (DOD), for detecting outlier purpose. 

 

4.1 Mean-shift process 
The mean-shift process works locally by analyzing the neighborhoods of the points using k-nearest 

neighbors. The method replaces every point by the mean of its k neighbors, which forces points to move 

towards denser areas. The distance of the movement can be evidence of being an outlier; points with 

greater movement are more likely to be outliers. The mean-shift process is summarized in Algorithm 

1.  

The idea is closely related to mean-shift filtering used in mean-shift clustering algorithm [18], and 

image processing [19]. The first one takes pixel value and its coordinates as the feature and transforms 

each feature towards the mean of its neighbors. It has been used for detecting fingerprint and 

contamination defects in multicrystalline solar wafers [20]. The idea also resembles the low-pass and 

median filtering used for image denoising. 

 

Algorithm 1: Mean-shift process (MS (X, k, I)) 

Input:  Dataset X  Rd×n, k  R, I ∈ R 

Output:  X  Rd×n 

Repeat I times: 

    For every point xi∈X: 

         Find its k-nearest neighbors kNN(xi) 

         Calculate the mean Mi of the neighbors kNN(xi) 

         Replace xi by the mean Mi, xi = Mi 

 

4.2 Mean or median 
Both mean and median have been used in the mean-shift clustering concept [21, 22]. The benefit of 

using mean is that it is trivial to calculate for numeric data. Its main disadvantage is that it can cause a 

blurring effect where very noisy points bias the calculation of the mean of clean points as well. Median 

⊂ ⊂

⊂
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is less sensitive to this because the single noisy point in the neighborhood may not affect the calculation 

of the median at all. Therefore, it has less effect on the clean points. Another benefit of the median is 

that, when repeated until converging, it can reach root signal [22].  

However, with multivariate data, it is not obvious how the median is defined. We use the medoid, 

which is the point in the set that has the minimum total distance to all other points in the set. A 

disadvantage of medoid is that its calculation can be more time-consuming. A toy example of using 

mean and median is shown in Fig. 12. 

 

 
Fig. 12.      Effect of the mean (left) and median (right) of two sample points in a noisy neighborhood. [4]  

 

4.3 Mean-shift outlier filtering to improve clustering 
As outliers can affect the clustering results, we need to remove it before clustering, Fig. 13 shows the 

effect of outliers. When adding some outliers, it will bias the clustering result and centroids will be 

falsely distributed in the noise area. 

 

 
Fig. 13. Example of noisy data and how it affects clustering [4]. 

This iterative variant is similar to the ORC algorithm [23] where most remote points are iteratively 

removed in each cluster. The difference is that the outliers are chosen based on the distance to their 

cluster centroid in the intermediate clustering solution. It is therefore possible that points can be falsely 

removed if the cluster is not correctly determined. Fig. 14 demonstrates the process. We can see that 

there is still noise existing while only 3 clusters are left after 90 iterations, but originally it has 5 clusters 

because ORC falsely removes the inners when the noise cluster is very small, and the distance of noise 

to its centroid is smaller than the inner cluster with bigger radius, see Fig. 14 (up). 



21 
 

 

 

 
Fig. 14.      Example of the iterative process of the ORC [23] (up) and the proposed mean-shift (down) on the part of the A1 dataset with 

8% noise level. 

 
The mean-shift process was applied for noise filtering in [4]. The idea is to apply Algorithm 1 as such 

and modify the data so that the effect of the noisy points is minimized. It is implemented as a separate 

pre-processing step so that it is independent on the clustering method applied. The process can be 

iterated several times to have stronger noise filtering effect. The number of iterations is a parameter. 

Based on our experiments, three iterations are the best choice for typical clustering data. A visualization 

example of mean-shift noise filtering for clustering in each iteration is shown in Fig 14 (down). 

 

4.4  Clustering algorithms 
Two clustering algorithms: K-means [24] and Random swap (RS) [25] are tested in this thesis. Both 

minimize sum-of-squared errors. The first one is commonly used but does not always find the correct 

clustering solution even with clean data. The second does find the correct result with all of the tested 

datasets in this thesis. K-means tends to converge to a local optimum instead of the global one, but 

Random swap is much more likely to reach a global one or very close to it. 

 

4.4.1 k-means 

The k-means algorithm is an iterative, centroid-based clustering algorithm. It is very popular 

clustering algorithm because of its simplicity. 
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Given a data set 𝑋 = 𝑥), 𝑥+, … , 𝑥-  and the number of clusters 𝐾 as parameters, and it returns the 

centroid locations 𝐶 = 𝑐), 𝑐+, … , 𝑐0  and the partitioning 𝑃 = 𝑝), 𝑝+, … , 𝑝-  of the data points as the 

results (Algorithm 2). 

 
Algorithm 2: k-means clustering (K-means (X, P, C)) 

Input:  Dataset X  Rd×n, label P  R1×n , centroid C  Rd×n 

Output:  label P  R1×n , centroid C  Rd×n 

REPEAT 

    Cprev ß C 

    FOR i := 1 TO N DO 

         Pi ß FindNearestCentroid (Xi, C) 

    FOR j := 1 TO k DO 

         Ci ß CalculateCentroid (X, P, j) 

UNTIL  C = Cprev 

 

The algorithm starts with an initial solution, and iterates until it cannot find any more improvement. 

It consists of two main steps: 

1. Partitioning step 

2. Centroid step. 

There are several ways to initialize k-means, and the most common ways are to pick random data 

objects as the initial centroids. In the partitioning step, each data object will be labeled according to its 

nearest centroid. In the centroid step, new centroids will be calculated as the mean over same labeled 

data objects. 

The advantage of k-means is its simplicity with providing relatively good results with many data sets. 

The disadvantage of k-means is its high dependency on the initial partitioning, leading to converging to 

a local optimum instead of the global one, see Fig. 15. 

 

 

Fig. 15.     A single run of k-means and repeated k-means6. 

                                                
6 http://cs.uef.fi/sipu/pub/MSc_JarkkoPiiroinen.pdf 

⊂ ⊂ ⊂
⊂ ⊂

k-
means 

k-means repeated 100 
times 
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4.4.2 Random swap 

K-means often ends up with a local optimum solution, where two or more than one centroids are 

located inside the same cluster, or there is no centroid in a real cluster. To move the centroid from 

centroid-rich to a centroid-poor area, random swap is a method by randomly guessing the correct 

centroid solution and accept the improved solutions. 

Like k-means, random swap is an iterative, centroid-based clustering algorithm, which is also a 

simple but very powerful global optimization algorithm. 

Given a data set 𝑋 = 𝑥), 𝑥+, … , 𝑥-  and the number of clusters 𝐾  as parameters, it returns the 

centroid locations 𝐶 = 𝑐), 𝑐+, … , 𝑐0  and the partitioning 𝑃 = 𝑝), 𝑝+, … , 𝑝-  of the data points as the 

results (Algorithm 3). 

 
Algorithm 3: RandomSwap clustering (RS (X, P, C)) 

Input:  Dataset X  Rd×n, I ∈ R,  Label P  R1×n , Centroid C  Rd×n 

Output:  Label P  R1×n , Centroid C  Rd×n 

REPEAT I  TIMES 

    (Cnev, j) ß SwapCentroid (X, C) 

    Pnew ß LocalRepartition (X, Cnev , p, j) 

    (Cnev, Pnew)ß FindNearestCentroid (Xi,C) 

    IF f (Cnev, Pnew) > f (C, P ) THEN 

         (C, P) ß (Cnev, Pnew) 

RETURN (C, P) 

 

Like k-means, the algorithm starts with an initial solution (such as using random data points as the 

initial centroids) and iterates 𝑇 times. It consists of three main steps: 

1. Random swap 

2. Local repartition 

3. Iteration by k-means. 

In the random swap step, a current centroid is randomly selected and replaced by another randomly 

selected data object with the chance to move centroid from centroid-rich to a centroid-poor area. 

In the local repartition step, since centroid is changed after the random swap step, all data objects 

needed to re-label to their new nearest centroids. Note that in [25], it was noted that this step is optional 

if k-means is applied after the swap.  

Finally, iterations by k-means are performed. This will fine-tune the result by finding a new local 

optimum, giving the new configuration of centroids/partitioning. In [26], it was noted that only two 

iterations of k-means were enough to achieve high-quality clustering. 

At this point, the result after the swap has not always improved and it could be worse. Therefore, the 

objective function is employed to decide whether to accept the new candidate centroids/partitioning. 

⊂ ⊂ ⊂
⊂ ⊂
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For example, if sum square error (SSE) is used as the objective function, then the SSE of the new 

candidate result must be lower than the SSE before the trial swap. If it is not, the result will be discarded. 

The advantage of random swap is that implementing it is easy, and it is also efficient: it was shown 

that the algorithm gives results that are competitive with more complex techniques such as genetic 

algorithms and tabu search in [27]. Unlike k-means, the algorithm does not depend on the initialization 

method: centroid swapping enables the algorithm to fix situations where k-means would get stuck, such 

as the highlighted regions in Fig. 16 (current solution). As a result, random swap can detect the clusters 

when k-means struggled with, as seen in Fig. 17. 

 

 

Fig. 16.       Demonstration of centroid swapping [26]. 

 

One centroid, but 
two clusters. 

Two centroids, but 
    only one cluster. 

 Swap is made from 
centroid rich area to 
 centroid poor area. 

Current solution Centroid swapping 

Local repartition Fine-tuning by k-means 



25 
 

 
Fig. 17. Random swap can solve S3 dataset perfectly but K-mean can not. 

 
4.5 Outlier detection 
The idea is next applied to outlier detection. The mean-shift process is basically the same as in the 

noise filtering, but after the mean-shift process, we calculate the distance before and after shifting as 

outlier scores. 

 

4.5.1 Mean-shift outlier detection  

Mean-shift clustering [21] iterates the mean-shift process until convergence. We apply the same 

process, but since we are not clustering the data but aim at finding outliers, we use the processing result 

merely for analysis purpose. In specific, we compare the location of the points before and after the 

shifting. This difference is the outlier score. The pseudo code of the method is summarized in Algorithm 

4. A toy example of the outlier scores is given in Fig. 18. 

 
Algorithm 4: Mean-shift outlier detection (MOD (X, k)) 

Input:  Dataset X  Rd×n, k 

Output:  Outlier score D  R1×n 

Step 1:  Use Algorithm 1 to get Y = MS (X, k, 3) 

Step 2:  Calculate distance Di =|xi-yi|, xi∈X, yi∈Y, Di∈D and return D 

 

 

 

 

⊂
⊂
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Fig. 18. Example of mean-shift outlier scores based on Euclidean distance for sample points using k=4 (left). The red point is the mean of 

the neighbors of the blue point, and the number shown is the outlier score. All outlier scores are shown (right); the red points are detected 

outliers with top-10 ranking outlier scores. 

 

4.5.2 Edit distance 

Medoid-shift can also be directly applied to strings or single word list using Edit distance. Fig. 19 

shows the process and the results. For example, the word “albapax” is shifted to the word “lbanin” and 

the Edit distance between them is 4, hence outlier score of “albapax” is 4; similar to “lbanin”, it is 

shifted to “lbanin” itself, hence the Edit distance is 0, namely outlier score is 0. 

 

 

Fig. 19. Example of medoid-shift outlier scores based on edit distance for part of Country string data using k=4. The string before and after 

the arrow is string before and after medoid-shift. The left figure is the medoid-shifting process; the right figure is the outlier score of each 

string. Black strings are ground truth outliers, and blue strings are normal strings (inners). 
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5 Experiments 
5.1 Datasets 
In this thesis, datasets are carefully selected including numeric and string varying in the amount of 

outlier, attributes, and domains. We use the 15-benchmark datasets in Table I.  

 
 TABLE I 

 DATASETS USED IN THE EXPERIMENTS 

Dataset Ref Size Clusters Dim Type 

S1-S4 [27] 5000 15 2 Numeric 

A1-A3 [27] 3000, 5250, 7500 20, 35, 50 2 Numeric 

B1-B2 [27] 100,000 100 2 Numeric 

Unbalance [27] 6500 8 2 Numeric 

XOR [16] 2000 4 2 Numeric 

KDDCup99 [13] 48113 - 40 Numeric 

SpamBase [13] 4207 - 57 Numeric 

Parkinson [13] 195 - 22 Numeric 

Country7 - 2666, 3000, 3428, 4000 48 - String 

 

 

5.1.1 Two- dimensional dataset and noise model 

Eleven 2-d datasets are selected and visualized in Fig. 20. The S sets have varying level of cluster 

overlap, and A sets varying number of clusters, B sets varying shape, unbalance and XOR datasets 

having clusters with different densities 

 

 
Fig. 20.  Eleven 2-D datasets used in the experiments. 

 

Uniformly distributed random noise is added to the A, B, S, unbalance and XOR data sets. Random 

values are generated in each dimension between [xmean-2⋅range, xmean+2⋅range], where xmean is the mean 

of all data points, and range is the maximum distance of any point from the mean: range = max (|xmax- 

xmean|, |xmean- xmin|). Noisy datasets are shown in Fig. 21.  

                                                
7 http://cs.uef.fi/sipu/string/countries/ 
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Fig. 21.  The noisy S1 dataset with 8% noise. Gray points are normal data, and red points are noise. 

 
5.1.2 Multi-dimensional dataset 

KDD Cup99, Parkinson, and SpamBase are real-word semantically meaningful datasets. KDD Cup99 

classified network attack as an outlier (0.42% outliers), Parkinson classified the patient as the outlier 

(39.91% outliers), and SpamBase classified spam email as the outlier (75.38% outliers). 

As data pre-processing, duplicates in high dimensional datasets are removed, and each attribute is 

scaled to the range between 0 and 1 (subtracting mean and divided by standard deviation). Also, 

categorical attributes are removed from the KDDCup99 dataset. 

 

5.1.3 String dataset and distance methods 

Countries datasets contain modified copies of the names of the 48 European countries. The 

modifications are random insert and delete operations, and the amount of operation is 10%, 20%, 30%, 

40% so that the resulting strings can still be identified with some effort. Noise has also been added so 

that fake strings have been generated so that their length and character distribution resembles those of 

the country names, but their content is complete nonsense. The task is then to identify which strings are 

from the original dataset and which are the fake ones (noise). 

Edit distance between the strings will be used for Country dataset. This approach allows using 

existing methods that are based on distances such as ODIN and KNN.  

  

5.2 Baseline outlier detection algorithm 
Baseline algorithms are carefully selected from existing algorithms, according to categories, 

popularity, and performance. We will compare all the algorithms introduced in Section 2, and 

summarized in Table II. 
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TABLE II 

 COMPARED OUTLIER DETECTION ALGORITHMS 

Method Ref Type Data Publication and year 

KNN [10] Distance-based N/S ACM SIGMOD, 2000 

LOF [12] Density-based N ACM SIGMOD, 2000 

ODIN [11] Graph-based N/S ICPR, 2004 

MCD [15] Statistical testing N J. A. Stat. Assoc, 1984 

NC [16] Representation N IEEE-TNNLS, 2018 

DOD [4, 6] Shifting-based N/S - 

MOD  [4, 6] Shifting-based N/S - 

* N = numeric data, S= string data. 

 

5.3 Tested clustering algorithms 
We will test with k-means and random swap clustering algorithms, introduced in Section 4.4. Both 

minimize sum-of-squared errors. The first one is commonly used but does not always find the correct 

clustering solution even with the clean data. The second does find the correct result with all of these 

datasets; in this case, all errors are due to the noise. 

 

5.4 Experimental setup 
For the clustering task, all 2-d datasets are tested. Neighborhood size k is set to be 30 for all algorithms. 

Top-N is set to be half of the amount of outliers for all algorithms that need top-N setting. 

For outlier detection task, all datasets are tested. Neighborhood size k is set to be 30 for all algorithms 

for all 2-d datasets. For all multi-dimensional datasets, as they are real-world datasets, we vary k from 

2 to 100 to find the optimal value for it for each method. For Country datasets, we vary k from 2 to 50 

to find the optimal value for it.  

Clustering algorithms (k-means and random swap) are implemented in C, and all outlier detection 

algorithms are implemented in Python. All codes are run on MacOS High Sierra 10.13 with Intel Core 

i7 and 16-GB memory. 

 

5.5 Evaluating measurement 
To compare the clustering results from different algorithms, the centroid index (CI) [28] and 

normalized mutual information (NMI) [6] are employed in this thesis. CI is a cluster level measure, 

which counts how many cluster centroids are wrongly located. The value CI=0 indicates that, at the 

cluster level, the clustering is correct with respect to the ground truth. NMI is a point-level measure that 

calculates the amount of information the clustering shares with the ground truth. Value 1 indicates that 

the result is identical to the ground truth. 

To compare the outlier detection results of different algorithms, we use the area under the receiver 

operating characteristics curve (ROC AUC) [6] to evaluate the performance. It ranges between 0 and 

1, and value 0 indicates the worst matching to ground truth while value 1 indicates to a perfect matching.  
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5.5.1 Clustering: Centroid index (CI) 

Centroid index is a cluster-level similarity measure proposed in [28] that estimates the similarity of 

two clustering solutions based on their centroids. The centroid index for two solutions 𝐶 =

𝑐), 𝑐+, … , 𝑐0�  and 𝐶� = 𝑐)� , 𝑐+� , … , 𝑐0�
�  is calculated as follows. First, the nearest neighbor mappings 

𝐶 → 𝐶′ are constructed: 

𝑞# ← arg	min
)	�	�	�	0�

𝑐#, 𝑐��
+
				∀	𝑖 ∈ 1, 𝐾) 		 16  

A target centroid 𝑐�� is an orphan if there are no centroids 𝑐# that consider it the nearest: 

orphan 𝑐�� = 1, 𝑞# ≠ 𝑗	∀	𝑖
0, otherwise 									 17  

The dissimilarity between 𝐶 and 𝐶′ is then defined as the number of orphans in the target clustering 

solution: 

CI) 𝐶, 𝐶′ = orphan 𝑐��
0�

�6)

																		 18  

This mapping is not symmetric, meaning that in general CI) 𝐶, 𝐶′ ≠ CI) 𝐶�, 𝐶 . A symmetric 

variant is defined in [28] as follows: 

CI 𝐶, 𝐶′ = max	 CI) 𝐶, 𝐶� , CI) 𝐶�, 𝐶 19  

 

The value CI = 0 means that each centroid 𝑐# is mapped to exactly one 𝑐�� and vice versa. In other 

words, the two solutions have the same global structure. A value of CI > 0 gives the number of clusters 

that have been allocated differently between the solutions. 

Fig. 22 shows an illustration of how the centroid index is calculated. The ground truth centroids are 

shown in blue, and the clustering solution is shown in red. Each solution centroid is mapped to the 

nearest ground truth centroid. The numbers beside the ground truth centroids indicate the number of 

solution centroids that are mapped to each. 
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Fig. 22.     A clustering solution with CI equaling to 2. 

 

If a ground truth centroid has no solution centroids mapping to it, it is considered an orphan. The 

differences in the global clustering structure are highlighted with dotted lines. In the above case, there 

are two orphan clusters, resulting I CI equaling to 2. 

 

5.5.2 Clustering: Normalized Mutual Information (NMI) 

The aim of clustering is to measure if objects are correctly labeled. Given the knowledge of the 

ground truth class assignments true labels and our clustering algorithm assignments of the same samples 

predicted labels, the mutual information is a function that measures the agreement of the two 

assignments, ignoring permutations. Assume two label assignments (of the same N objects), U and V. 

Normalized mutual information (NMI) is defined as: 

NMI(U, V) =
𝑀𝐼(𝑈, 𝑉)

𝐻 𝑈 𝑉(𝑈)
																								 20  

The mutual information (MI) between U and V is calculated by: 

MI(U,V) = 𝑃(𝑖, 𝑗)log	(
𝑃(𝑖, 𝑗)

𝑃 𝑖 𝑃′(𝑗)
)

|­|

�6)

|®|

#6)

	 21  

where 𝑃 𝑖, 𝑗 = |𝑈# ∩ 𝑉�|/𝑁 is the probability that an object picked at random falls into both classes 

𝑈# and 𝑉�. 

H(U) = − 𝑃 𝑖 log 𝑃 𝑖
®

#6)

																					 22  
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where 𝑃 𝑖 = |𝑈#|/𝑁 is the probability that an object picked at random from  U falls into class 𝑈#. 

Likewise for V with 𝑃′ 𝑗 = |𝑉�|/𝑁 

H(V) = − 𝑃� 𝑗 log 𝑃� 𝑗
­

#6)

																	 23  

 

5.5.3 Outlier detection: ROC AUC 

 Outlier detection methods are measured by ROC curve drawn on the outlier score. The idea of the 

ROC curve is to plot true positive rate against false positive rate, over ranked outlier score at various 

threshold values. The area under the ROC curve provides accuracy evaluation, which ranges from 0 to 

1.  ROC value of a perfect outlier prediction equals to 1. 

  For a data set D, an outlier set G, and a predicted outlier set S(t) decided by a threshold t on the 

outlier scores. In this case, the true positive rate is graphed against the false positive rate. The true 

positive rate TPR(t) and the false positive rate FPR(t) is same in [29], and these definitions are as 

follows: 

 

TPR(t)=Recall(t) = 	
|𝑆(𝑡) ∩ 𝐺|

|𝐺|
																	 24  

FPR(t) =
𝑆 𝑡 − 𝐺
𝐷 − 𝐺

																																					 25  

 

For every threshold t, we can get a pair of TPR and FPR. ROC curve is drawn with TPR against FPR, 

see Fig. 23.  The ROC curve endpoints are always at (0,0) and (1,1). The area under the ROC curve is 

called ROC value, which ranges from 0 to 1 and perfect prediction will be 1. 

 
Fig. 23.      ROC AUC curve example8. 

                                                
8 http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html 
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6 Experiment results and discussion 
The experiment results are summarized from Table IV to Table XI. In Table III, Table IV, and Table 

V, it shows the clustering results. In Table VI, Table VII, and Table VIII, it shows the outlier detection 

results.  

The effect of k nearest neighbor size in mean-shift process are summarized in Table IX and Table X; 

relationship between noise level and shifting iterations are summarized in Table XI, Table XII, and Fig. 

26 and running time of algorithms are summarized in Table XIII. 

 

6.1 Clustering results 
The clustering results are summarized in Table III, Table IV, and Table V, both at the point level 

(NMI) and at the cluster level (CI). Neighborhood size k is fixed to 30 and top-N is half of the amount 

of noise. 

Several observations can be made from the results in Table III. First, all datasets can be perfectly 

clustered using random swap algorithm if there is no noise (CI=0 for 0% noise). The more noise there 

is in the data, the more the clustering result deteriorates. With 8% noise, there are already errors with 

10 clusters (CI=10.09), on average, and it doubles (CI=20.45) when the noise level reaches 128%. 

Second, both the proposed mean-shift filtering and all the outlier removal methods improve the 

clustering up to noise level 8%. The only exception is NC which perform slightly worse with 0.025% 

noise level. Among the methods, our mean-shift variant (MOD) clearly outperforms the others except 

KNN. However, with higher noise levels (16-128%) MCD performs better although the proposed 

method is still the third best and clearly outperforming the others. 

When changing the algorithm to standard k-means, we can also see the effect of the clustering 

algorithm. Even with clean data, there are already errors: CI=3.27, on average. Otherwise, the behavior 

is similar: adding more noise worsens the clustering. Except KNN, the proposed method also works 

best until 8% of noise level, after which MCD becomes more effective. 

The choice of the algorithm also has two side effects. First, the medoid shift (DOD) is sometimes 

better than the mean-shift (MOD) when using k-means. Second, the k-means can become slightly better 

when the noise increases beyond 8%. This is a side effect of the k-means algorithm. Adding noise 

generates fake low-density clusters, which a good algorithm can find more effectively. K-means, on the 

other hand, is known to have problems when the clusters have less overlap [29]. This makes it less 

optimized for the noisy data. 

We conclude that to have perfect clustering performance, and one needs to have a good algorithm 

and clean data. When the noise level becomes high, no outlier detection can fix all the problems. The 

choice of the clustering algorithm also becomes less significant.  

 

 



34 
 

 
TABLE III 

 SUMMARY OF AVERAGE CLUSTERING RESULTS (CI-VALUES) OF ALL 2-D DATASETS.  

RANDOM SWAP 

  Noise level 

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 0.00 1.36 2.55 3.82 5.18 7.64 10.09 12.45 14.27 17.73 20.45 9.55 

Noise 

filtering 

DOD 0.18 0.36 2.18 1.64 2.55 4.27 6.55 9.73 13.09 16.18 19.73 7.63 

MOD 0.18 0.18 1.00 1.64 2.45 4.00 6.00 9.82 12.91 16.36 19.64 7.40 

Noise 

removal 

LOF - 0.73 1.36 2.64 4.00 6.73 9.64 13.27 16.27 19.73 23.18 9.76 

ODIN - 1.18 2.36 3.27 5.09 7.45 9.55 12.55 15.82 18.27 20.73 9.63 

MCD - 0.91 1.55 2.27 3.64 4.91 6.82 8.64 10.55 13.64 16.18 6.91 

NC - 1.73 2.18 3.27 4.64 7.18 9.55 12.73 15.64 17.82 20.64 9.54 

KNN - 0.09 0.73 1.36 2.45 2.82 5.18 6.64 10.91 14.00 17.82 6.20 

K-MEANS 

  Noise level  

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 3.27 3.64 4.73 5.00 4.91 4.73 7.45 9.27 11.36 14.73 18.55 8.44 

Noise 

filtering 

DOD 5.55 4.27 3.73 3.18 4.64 5.00 5.91 7.27 8.91 13.09 15.73 7.18 

MOD 5.45 3.64 3.91 4.09 4.45 5.64 6.45 7.27 10.18 12.82 16.18 7.46 

Noise 

removal 

LOF - 3.73 3.36 3.73 4.91 5.36 9.36 9.36 12.73 17.45 20.55 9.06 

ODIN - 3.91 3.91 4.82 4.36 6.09 9.36 8.73 11.91 14.91 18.73 8.67 

MCD - 3.00 4.09 4.36 4.91 5.00 5.36 6.73 8.55 11.09 14.73 6.78 

NC - 3.36 4.09 4.45 4.55 6.27 9.36 9.00 12.27 15.09 19.91 8.84 

KNN - 0.18 0.64 1.27 2.45 2.82 5.18 7.55 11.55 14.64 17.36 6.36 

 

Table IV shows the number of datasets that were perfectly clustered. The results show the same trend 

as Table III; the more noise, the less successful the clustering. Random swap solves all 11 datasets if 

no noise. Even a small amount of noise causes errors in some datasets, and eventually, only one dataset 

is correctly clustered anymore after 16% noise level. The proposed mean-shift filtering is slightly better: 

with 2% noise, it still solves 5 datasets whereas the others only 2 or 3. 
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TABLE IV 

SUMMARY OF CLUSTERING RESULTS AS NUMBER OF DATA SETS FOR WHICH CI IS 0 IS REACHED. 

RANDOM SWAP 

  Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

 

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 11 7 4 3 2 1 1 1 1 1 1 2.20 

Noise 

filtering 

DOD 9 8 8 6 6 1 1 1 1 1 1 3.40 

MOD 10 10 9 9 5 3 2 1 1 1 1 4.20 

Noise 

removal 

LOF - 9 7 5 2 1 1 1 1 0 1 2.80 

ODIN - 7 5 4 3 1 1 1 1 1 1 2.50 

MCD - 8 7 5 3 1 1 1 0 0 1 2.70 

NC - 6 5 4 2 1 1 1 1 2 1 2.40 

KNN - 10 9 9 6 5 2 1 1 1 0 4.40 

K-MEANS 

  Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

Noise level 

 

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 2 4 2 2 1 1 1 0 1 1 1 1.40 

Noise 

filtering 

DOD 1 1 1 2 1 1 3 1 1 1 2 1.40 

MOD 2 3 1 1 2 1 2 0 1 1 1 1.30 

Noise 

removal 

LOF - 1 2 2 1 1 1 1 0 1 1 1.10 

ODIN - 2 1 1 1 1 1 1 1 1 1 1.10 

MCD - 2 2 2 1 1 1 1 1 2 2 1.50 

NC - 1 2 1 2 2 1 1 1 1 1 1.30 

KNN - 10 9 9 6 5 2 1 1 1 0 4.40 

 

Table V shows that in the point level results show that the mean-shift improves both k-means and 

random swap clustering results from about NMI = 0.85 to 0.88. The mean-shift is slightly better than 

the medoid-shift. It seems to indicate that the CI measure can reflect the clustering results better than 

NMI as the gaps of NMI are small but the difference from varying clustering results is significantly big. 
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TABLE V 

 SUMMARY OF CLUSTERING RESULTS (NMI) OF ALL 2-D DATASETS. 

RANDOM SWAP 

  Noise level  

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 0.93 0.92 0.92 0.91 0.90 0.86 0.84 0.82 0.80 0.74 0.72 0.84 

Noise 

filtering 

DOD 0.93 0.93 0.86 0.93 0.92 0.91 0.89 0.85 0.81 0.80 0.74 0.86 

MOD 0.93 0.93 0.93 0.93 0.92 0.91 0.89 0.85 0.82 0.80 0.77 0.87 

Noise 

removal 

LOF - 0.93 0.93 0.92 0.91 0.89 0.85 0.82 0.80 0.73 0.71 0.85 

ODIN - 0.93 0.92 0.92 0.90 0.88 0.84 0.82 0.80 0.77 0.72 0.85 

MCD - 0.93 0.93 0.92 0.91 0.90 0.87 0.85 0.81 0.79 0.80 0.87 

NC - 0.92 0.92 0.92 0.90 0.88 0.85 0.83 0.81 0.74 0.72 0.85 

KNN - 0.93 0.93 0.93 0.92 0.92 0.90 0.86 0.84 0.80 0.78 0.88 

K-MEANS 

  Noise level  

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 0.88 0.89 0.88 0.88 0.88 0.89 0.86 0.84 0.84 0.80 0.77 0.85 

Noise 

filtering 

DOD 0.87 0.88 0.88 0.89 0.88 0.88 0.89 0.87 0.85 0.81 0.75 0.86 

MOD 0.86 0.88 0.88 0.88 0.89 0.88 0.89 0.85 0.84 0.82 0.76 0.86 

Noise 

removal 

LOF - 0.88 0.89 0.88 0.88 0.89 0.85 0.85 0.80 0.77 0.71 0.84 

ODIN - 0.88 0.89 0.88 0.88 0.89 0.85 0.85 0.80 0.77 0.71 0.84 

MCD - 0.89 0.88 0.88 0.88 0.88 0.89 0.87 0.85 0.84 0.81 0.87 

NC - 0.89 0.88 0.88 0.88 0.88 0.85 0.87 0.85 0.84 0.81 0.87 

KNN - 0.89 0.88 0.88 0.88 0.88 0.90 0.87 0.83 0.78 0.75 0.85 

 

One good property of noise removal is that it should destroy clean data. In our case, slight errors were 

detected: CI=0 is increasing to CI=0.18, on average, if mean-shift is applied for clean data. However, 

most of this was caused by b1 and b2 dataset. 

The main problem of the traditional outlier removal methods is that they are based on thresholding, 

and require knowing the noise level (Top-N parameter). If the correct noise level is used (Top-N 

parameter), their performance is not far from our method. However, if we apply some default value 

like1% or 8%, then they start to fail much more severely. This shows the importance of noise filtering 

(our approach) comparing to the traditional noise (outlier) removal. The clustering results on A1 dataset 

are illustrated in Fig. 24 and 25, we can see that proposed methods outperforms than others with both 

k-means and Random swap. 
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Fig. 24.     Noise filtering + clustering results on 8% noisy A1. 
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Fig. 25.     Noise removal + clustering results on 8% noisy A1. 
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6.2 Outlier detection results 
The outlier detection results are summarized in Table VI (2- dimensional datasets), Table VII (high 

dimensional datasets), and Table VIII (string dataset). For 2-d datasets, Table VI, it shows that with the 

increase of the noise level, the performance of all methods tend to drop but my proposed methods and 

KNN are always far better than the others regardless the noise level. The exception is MCD, which is 

better than my proposed methods from 32% to 128%. My proposed methods are equally good with 

KNN with low noise level (0.025% to 16%), but KNN is better when the noise level is high. 

 
TABLE VI 

 AVERAGE OUTLIER DETECTION RESULTS FOR ALL  2-D DATASETS IN TABLE II  

WITH DIFFERENT NOISE LEVEL. K NEAREST NEIGHBOR IS SET TO 30. 

ROC AUC 

  Noise level  

 Method 0.025% 0.05 % 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

 DOD 1.00 1.00 0.99 0.99 0.99 0.97 0.95 0.92 0.88 0.82 0.95 

 MOD 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.90 0.83 0.96 

     LOF 0.99 0.97 0.95 0.91 0.86 0.68 0.53 0.42 0.36 0.32 0.70 

 ODIN 0.98 0.96 0.94 0.90 0.81 0.71 0.65 0.61 0.58 0.57 0.77 

 MCD 0.95 0.94 0.95 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.95 

 NC 0.96 0.92 0.88 0.83 0.72 0.62 0.54 0.48 0.45 0.44 0.68 

 KNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 
 

For real-word high dimensional datasets in Table VII, the best result per method is shown with k 

ranging from 2 to 100. We can see that the proposed methods outperform the others in KDDCup99, 

SpamBase, and Parkinson datasets. 

 
TABLE VII 

 OPTIMAL RESULTS FOR KDDCUP99, SPAMBASE AND PARKINSON DATASETS WITH k NEAREST NEIGHBORS RANGING 

FROM 2 TO 100. 

ROC AUC 

Method 

KDDCup99 

(outlier: 0.42%) 

SpamBase 

(outlier: 39.91%) 

Parkinson 

(outlier: 75.38%) 

ROC k ROC k ROC k 

DOD 0.94 87 0.60 2 0.71 3 

MOD 0.99 99 0.61 2 0.67 2 

LOF 0.85 100 0.50 2 0.61 8 

ODIN 0.81 100 0.52 41 0.53 2 

MCD 0.97 - 0.45 - 0.65 - 

NC 0.69 80 0.55 2 0.61 21 

KNN 0.99 85 0.56 93 0.64 5 

 

For String (Country) dataset, the results based on Edit distance are summarized in Table VII. We can 

see that the proposed DOD with ROC = 0.85 clearly outperforms KNN with ROC= 0.60 and ODIN 

with ROC = 0.50. 
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TABLE VIII 

 OPTIMAL RESULTS FOR COUNTRY DATASET WITH DIFFERENT NOISE LEVEL  

WITH k NEAREST NEIGHBORS RANGING FROM 2 TO 100  

BASED ON EDIT DISTANCE. 

ROC AUC 

 Noise level 

Method 
10% 20% 30% 40% 

ROC AUC k ROC AUC k ROC AUC k ROC AUC k 

DOD 0.86 2 0.84 4 0.84 5 0.83 5 

KNN 0.59 3 0.60 3 0.61 3 0.60 3 

ODIN 0.48 2 0.49 2 0.50 2 0.50 2 

 

To sum up, our proposed methods outperform others despite of the dataset type or dimensional. It 

performs very well in real-word datasets with high outlier level. 

 
6.3 Effect of k in mean-shift process 
We also tested the effect of the parameter k, namely k in k-nearest neighbor, during the mean-shift 

process. We decrease and increase the k value to see how it affects the results and found that it has no 

much effect on mean-shift but has slight effect on medoid-shift. This is because it produces plenty of 

duplicates in medoid-shift process. Further, we found that we can improve the DOD results by 

increasing k value during medoid-shift process, because it can bring new objects into the nearest 

neighborhood to help outliers to move bigger distance, especially when duplicates exist in k nearest 

neighborhood. The tested results are shown in Table IX and Table X.  

 
TABLE IX 

 OPTIMAL DOD RESULTS FOR COUNTRY DATASETS WITH DIFFERENT NOISE LEVEL 

BASED ON EDIT DISTANCE 

ROC AUC 

 Noise level 

k in medoid-shift (1st, 2nd, 3rd) iteration 
10% 

(k=2) 

20% 

(k=4) 

30% 

(k=5) 

40% 

(k=5) 

(k, 2k, 3k) 0.85 0.84 0.84 0.84 

(k, k, k) 0.86 0.84 0.84 0.83 

(k, k/2, k/3) 0.86 0.83 0.82 0.83 
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TABLE X 

 AVERAGE DOD RESULTS FOR ALL 11 2-D DATASETS WITH DIFFERENT NOISE LEVEL IN TABLE II. 

 BASED ON EUCLIDEAN DISTANCE (K = 30). 

ROC AUC 

 Noise level  

k in medoid-shift  

(1st, 2nd, 3rd) iteration 
0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

(k, 2k, 3k) 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.94 0.90 0.84 0.96 

(k, k , k) 1.00 1.00 0.99 0.99 0.99 0.97 0.95 0.92 0.88 0.82 0.95 

(k, k/2, k/3) 1.00 0.99 0.99 0.99 0.98 0.96 0.94 0.90 0.86 0.80 0.94 

 

6.4 Effect of mean-shift iterations 
We also study the relationship between noise level and shifting iterations. We repeat the experiment 

100 times on S1 dataset with random noise on each level. The average ROC AUC results are shown in 

Fig. 10 and Table XI. We can see that with the increase of the noise level, it needs more shifting 

iterations to reach the optimal measure, which are 3 iterations for MOD and 5 iterations for DOD.  

 

 
Fig. 26.     The effect of the noise level on the number of shifting iterations needed on S1 dataset.  

Results are shown for medoid-shift (above) and mean-shift (below). 

 

From Table XI, the average of optimal iteration is around 3. As there is no much gap between 3 and 

5 iterations for DOD and also for the purpose of saving computing time, we set it as 3 iterations as 

default.  

However, even it’s good enough to use 3 iterations for all tested cases. If the noise level is very low 

(below 4%), we can use 1 or 2 iterations to save computing. 
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TABLE XI 

 BEST NUMBER ITERATIONS FOR AVERAGE RESULTS OF S1 DATA SET WITH NOISE LEVELS (REPEATED 100 TIMES) 

(ITERATIONS) 

 Noise level  

Method 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

DOD 1 1 1 1 1 1 5 4 5 7 2.7 

MOD 1 1 1 1 1 2 3 4 4 4 2.2 

 

For string datasets, the iteration relationship is shown in Table XII. We can see the result of 3 

iterations is better than 1 iteration, except with low outlier level (10%). The gap between 1 iteration and 

2 iterations is big but small between 2 iterations and 3 iterations, hence it is reasonable to use 3 

iterations. 

 
TABLE XII 

 THE EFFECT OF MEDOID-SHIFT ITERATIONS ON DOD RESULTS  

FOR COUNTRY DATASETS WITH DIFFERENT NOISE LEVEL  

BASED ON EDIT DISTANCE 

ROC AUC 

 Noise level 

Iteration 10% 20% 30% 40% 

1 0.86 0.76 0.76 0.75 

2 0.86 0.84 0.84 0.83 

3 0.86 0.85 0.84 0.84 

 

6.5 Running time 
All methods based on k-NN require O(N2) calculations. To address this slowness of the brute-force 

approach, we use the KD-tree technique [30] with all algorithms. It works fast in low dimensional but 

can become inefficient with higher dimensions (D>20). In this case, faster approximate like NNDES 

[31] or the Random pair divisive (RP-div) [32] can become more efficient. Running times of the 9 

datasets are summarized in Table XIII. The proposed method is similar fast as KNN, LOF and MCD. 

However, DOD is slower than MOD. 

 
TABLE XIII 

RUNNING TIMES ON SPAMBASE DATASETS (K=100) 

Method DOD MOD LOF ODIN MCD NC KNN 

Time (s) 17 11 12 3 12 48 15 
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7 Conclusions 
Mean-shift and medoid-shift were proposed as a separate noise filtering process before clustering. 

The results show that mean-shift is more effective than medoid-shift and that they improve both k-

means and random swap clustering. The proposed approach outperforms four existing outlier filtering 

methods: KNN, LOF, MCD, NC, and ODIN. 

Mean-shift outlier detection (MOD) was proposed. The results show that mean-shift variant (MOD) 

is slightly more effective than the medoid-shift (DOD). For the studied noise patterns, the proposed 

approach clearly outperforms existing outlier detection methods: LOF, MCD, NC, ODIN and 

outperforms than KNN in real-word datasets and string datasets but in not goo d as KNN in some 2-d 

dataset cases. The most important property of the proposed method is that it can effectively detect string 

outliers based on Edit distance and suitable for the cases when the amount of outliers is big. 
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