

Mean-shift outlier detection

Jiawei Yang

Master’s Thesis

School of Computing

Computer Science

22.11. 2018

ii

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, Joensuu

School of Computing

Computer Science

Jiawei Yang: Mean-shift outlier detection

Master’s Thesis, 45 p., no appendices

Supervisor of the Master’s Thesis: Professor Pasi Fränti

22.11. 2018

Abstract: Most outlier detection techniques become ineffective when the number of outliers

is large. We propose a mean-shift outlier detection method, which also works in case of very

noisy datasets. The method processes every point by calculating its k-nearest neighbors (k-

NN) and then replacing the point by the mean (or median) of its neighborhood. The process

is repeated a few times. This mean-shift process can be applied in two ways: (1) calculating

outlier score based on how much the point is moved to detect outliers, (2) pre-processing

prior to data analysis such as clustering. We demonstrate that the method works both with

numerical data using Euclidean distance and with text data using Edit distance. The method

outperforms all comparative methods, and it does not need a priori knowledge of the noise

level.

Keywords: mean-shift, medoid-shift, noise removal, outlier detection, data pre-processing,

clustering.

CR Categories (ACM Computing Classification System, 2012 version):

• Computing methodologies~Cluster analysis

• Information systems~Clustering

iii

Acknowledgment

I'm first grateful to my thesis advisor Professor Pasi Fränti. He always fast replies my emails

whenever I ran into a trouble spot or had a question about my research or writing. He

consistently allowed this paper to be my work and steered me in the right direction whenever

he thought I needed it. He taught me how to write scientific papers patiently and how to do

research wisely. Without his guidance and patiently supervising, I could not have done this

thesis and completed the master studies. Big appreciation.

I would then like to thank Professor Susanto Rahardja, who provided chances to visit

Northwestern Polytechnical University, where I did most of my thesis work including a few

other papers. He activated my determinations to do research and extended my view to write

high-quality scientific papers. Without his kind support and guidance, I cannot reach this

achievement. Big thanks.

I would like to express my gratitude and great thank towards UEF teachers, who gave me

the knowledge and help me with problems. I would also like to acknowledge Sami Sieranoja,

who did big help in my thesis. I also want to show my gratefulness to Oili Kohonen, who has

been helping me deal with kinds of problems whenever and whatever I sought for help. It was

such a valuable and unforgettable experience for studying in UEF, Joensuu, meeting people

from over the world, watching the northern light … so nice it was. Big hug UEF.

Finally, I must express my very profound gratitude to my family and my girl friend Yang,

providing me with unfailing support and continuous encouragement throughout my years of

study and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them. Big kiss.

iv

Abbreviations

CI Centroid index, a cluster-level measure of clustering quality

k-NN K-nearest neighbors

LOF Local outlier factor, outlier detection algorithm

ODIN Outlier detection with indegree, outlier detection algorithm

MCD Minimum covariance determinant, outlier detection algorithm

NC The reverse unreachability, outlier detection algorithm

KNN Distance to kth nearest neighbors, outlier detection algorithm

TONMF Text outliers using nonnegative matrix factorization, outlier detection

algorithm

MOD Mean-shift outlier detection, outlier detection algorithm

DOD Medoid-shift outlier detection, outlier detection algorithm

SSE Sum of squared errors

NMI Normalized mutual information

AUC Area under the curve

ROC Receiver operating characteristic

RS Random swap clustering, clustering methods

K-means K-means clustering, clustering methods

SD Standard deviation

MAD Median absolute deviation

IQR Interquartile range

Notations

𝑁 Number of objects in a data set

𝑛# Number of objects in the partition 𝑝#

d (x, y) Euclidean distance between object x and y

𝐾 Number of clusters in a dataset

𝐷 Number of attributes in a data set

𝑋 Set of 𝑁 data objects 𝑥), 𝑥+, … , 𝑥-

𝐶 Set of 𝐾 cluster centroids 𝑐), 𝑐+, … , 𝑐0

𝑃 Set of 𝑁 cluster indices

v

Contents

1	 Introduction ... 7	

2	 Outlier detection overview ... 10	
2.1	 Problem definition .. 10	
2.2	 Distance measure .. 10	

3	 Existing algorithms and their limitations ... 12	

3.1	 Outlier detection algorithms for numeric datasets 12	
3.1.1	 KNN .. 12	
3.1.2	 LOF ... 13	
3.1.3	 ODIN ... 14	
3.1.4	 MCD .. 15	
3.1.5	 NC ... 16	

3.2	 Outlier detection algorithms for string datasets 18	
4	 Mean-shift outlier filtering and detection ... 19	

4.1	 Mean-shift process .. 19	
4.2	 Mean or median .. 19	
4.3	 Mean-shift outlier filtering to improve clustering 20	
4.4	 Clustering algorithms .. 21	

4.4.1	 k-means ... 21	
4.4.2	 Random swap .. 23	

4.5	 Outlier detection .. 25	
4.5.1	 Mean-shift outlier detection .. 25	
4.5.2	 Edit distance .. 26	

5	 Experiments ... 27	

5.1	 Datasets ... 27	
5.1.1	 Two- dimensional dataset and noise model 27	
5.1.2	 Multi-dimensional dataset .. 28	
5.1.3	 String dataset and distance methods 28	

5.2	 Baseline outlier detection algorithm ... 28	
5.3	 Tested clustering algorithms ... 29	
5.4	 Experimental setup .. 29	
5.5	 Evaluating measurement ... 29	

5.5.1	 Clustering: Centroid index (CI) .. 30	
5.5.2	 Clustering: Normalized Mutual Information (NMI) 31	
5.5.3	 Outlier detection: ROC AUC .. 32	

6	 Experiment results and discussion .. 33	

6.1	 Clustering results .. 33	
6.2	 Outlier detection results .. 39	
6.3	 Effect of k in mean-shift process .. 40	
6.4	 Effect of mean-shift iterations .. 41	
6.5	 Running time ... 42	

7	 Conclusions .. 43	

vi

References .. 44	

7

1 Introduction
Outliers are objects that deviate from the typical data. They can represent significant information,

which is wanted to be detected such as fraud detection, public health, and network intrusion [1], but

they can also affect statistical conclusions based on significance tests [2]. Outliers can also be noise

objects which might harm the data analysis process. In any case, we want to detect the outliers.

Outlier detection consists of two main steps: scoring and thresholding. The outlier score of a point is

calculated based on a reference set. The outlier detection approaches fall roughly into global and local

outlier models based on how the reference set is constructed [3]. The global methods use all other data

object as reference set, and the local methods only a small subset of nearby points as reference set.

The obtained scores are then sorted, and data points with the highest scores are labeled as outliers,

and the rest are labeled as inliers. The decision of how many outliers are detected can be made in two

ways. The top-N approach uses a priori knowledge of the noise level (%) of the data and marks exactly

the given number of highest scoring points as outliers. Another approach is to derive a threshold value

from the statistical distribution of the scores with technique like standard deviation (SD), median

absolute deviation (MAD), interquartile range (IQR). In [4], it proposed a two-stage threshold

technique, which is better than the SD, MAD, IQR.

In clustering, detection of outliers can be considered as a pre-processing step. The idea is to clean the

data from noisy points that might affect the quality of the clustering. Another approach is to perform

the clustering first, and then label those points as outliers, who did not fit into any cluster, see Fig. 1.

DBSCAN is an example of this kind of approach [5]. However, this is a chicken-or-egg problem:

removing outliers can potentially improve the clustering, but on the other hand, performing clustering

first would also make it easier to detect the outliers.

Fig. 1. Example of the iterative process of the medoid-shift [4].

Outlier
removal

Cluster

Approch 1:

Approch 2:

Approch 3:

Cluster

Cluster Outlier
removal

Mean
shift

Proposed approch:

Cluster

8

The obtained scores are then sorted, and data points with the highest scores are labeled as outliers,

and the rest are labeled as inliers. The decision of how many outliers are detected can be made in two

ways. The top-N approach uses a priori knowledge of the noise level (%) of the data and marks exactly

the given number of highest scoring points as outliers. Another approach is to derive a threshold value

from the statistical distribution of the scores. However, this approach has been rarely used in clustering

context.

In [4], we have proposed a noise removal pre-processing method before clustering. The key idea is

to apply mean-shift or medoid-shift for several iterations (not to converge) as pre-processing. First, we

find k-nearest neighbors (k-NN) for every data point. We replace the original point by the mean value

(or medoid) of its neighbors. The process is then iterated a few times (experiment results show optimal

is 3 iterations, see Section 6.4). This iterative process is demonstrated in Fig. 2. The method was then

applied for outlier detection in [6]. However, after the mean-shift process as in [4], we then calculate

how much distance it was moved, i.e., the distance between the original location and its shifted location.

This distance is the outlier score. Example of the outlier scores is shown in Fig. 3.

Fig. 2. Random swap clustering results in each mean-shift iteration on 8% noisy A1 dataset. The red points are predicted clusters and blue

point are ground truth clusters.

9

Fig. 3. Outlier scores (y-axis) for the A1 dataset with 16% noise level: normal data points (gray) and noise points (blue). The results are for

the proposed MOD method (using mean).

We show that the proposed outlier detection method can be applied both to numeric data using

Euclidean distance and to text data using Edit distance. Text data is challenging because of the high

dimensional nature (large size of the string) but also because of the sparseness of the distance measure.

Furthermore, many words in a document may be topically irrelevant to the context of the document and

add to the noise in the distance computations.

10

2 Outlier detection overview
2.1 Problem definition
Given only a data set, the outlier detection problem can be seen as a binary classification problem:

inner or outlier. A toy example is shown in Fig. 4.

Fig. 4. An example of the outlier (red) and inner (gray)

Normally definition of an outlier relies on applications and assumptions of used models. Some

definitions are general enough to handle various data type and methods, for example, an observation

deviates so much from others to arise suspicions of different mechanisms in [7], an observation deviates

markedly from norm [8], and an observation is inconsistent with the rest in [9].

2.2 Distance measure
Distance function gives the similarity between objects. For a numeric dataset, Euclidean distance is

the most used. For a string dataset, the most used is Levenshtein distance, which belongs to the class of

Edit distance.

For D-dimensional points in a Euclidean space, an obvious choice for a distance function is the

Euclidean distance between given two points 𝑥) and 𝑥+:

d 𝑥), 𝑥+ = 𝑥)# − 𝑥+#
+

5

#6)

= 𝑥) − 𝑥+ 																											 1

Euclidean distance is commonly used when the attributes of the data objects are coordinates, color

components or other numeric types.

Edit distance is the number of the edit operations needed to transform one string into the other. A

single edit operation may be the insertion, deletion, or substitution of a character. The precise definition

11

of the edit distance varies. Typically, some operations are excluded, and the cost of the operations may

vary.

Levenshtein distance is the most used Edit distance. It allows insertions, deletions or substitutions,

each having unit cost. For example, the Levenshtein distance between “come” and “coffee” is 3:

1. come → coee (substitute ‘m’ by ‘e’)

2. coee → cofee (insert ‘f’)

3. cofee → coffee (insert ‘f’)

Other popular distance includes the longest common subsequence distance (LCS), which only allows

insertion and deletion operations, and Hamming distance where only substitutions are allowed. The

LCS distance between "Beijing" and "Beef" is 7: substitutions are not allowed, so any characters not

shared by the two strings must be deleted first. The Hamming distance for these strings is undefined

since it requires the strings to have the same length.

In this thesis, the Euclidean distance is used in numeric datasets, and Levenshtein distance is used in

string dataset.

12

3 Existing algorithms and their limitations

Outlier detection techniques fall into two categories according to the input type: numeric type or text

string type. The most used technique is to calculate an outlier score for each object and then extract the

top-N ranked as outliers, or threshold the scores to get outliers.

For numeric datasets, there are many methods to detect outliers. The widely used methods are based

on k-nearest neighbors (k-NN). For string dataset, there are few methods, and most of them have been

generalized from neighbors based method. They are usually based on Euclidean distance after

converting strings to numbers, and few works with Edit distance.

3.1 Outlier detection algorithms for numeric datasets

3.1.1 KNN

KNN is a distance-based approach [10,11], based on the assumption that inner data objects have a

dense neighborhood whereas outliers lie far apart from their neighbors. It calculates the k-nearest

neighbors (k-NN) and uses the distance to the kth neighbor as an outlier score. Points with large distance

are considered as outliers. However, distance-based outlier detection models have problems if the data

has areas of varying densities. Fig. 5 shows the example, points in C1 have bigger k-NN distance than

the point O2, but O2 is outlier. In general, outlier score of KNN is given by equation (2).

KNN outlier Score (xi) =d (xi, kth-nearest neighbor (xi)) (2)

Fig. 5. Dataset varying in densities1.

1 https://archive.siam.org/meetings/sdm10/tutorial3.pdf

13

3.1.2 LOF

Local outlier factor (LOF) [12] is a density-based approach, which analyses the neighborhood of the

points. It calculates the local density of the neighborhood. Points that have a lower density than their

neighbors are more likely to be outliers. LOF is the best method among those compared in [13].

However, it will be problematic if clusters of different densities are not separated clearly, see Fig. 6.

Point p will have a higher LOF than points q or r which is counter intuitive

Fig. 6. Dataset varying in densities2.

In practice, the local density is obtained from the k-nearest neighbors. The LOF score of observation

is equal to the ratio of the average local density of his k-nearest neighbors, and its local density: a normal

instance is expected to have a local density similar to that of its neighbors, while abnormal data are

expected to have much smaller local density. This strategy is defined in equation (3) and illustrated in

Fig. 7.

LOF	outlier	score(𝑥𝑖) = 𝐿𝑂𝐹K（𝑥#） =
LM

NOPQ(RS)
NOPQ(RT)

RS∈	VQWPTXYZ[\](RT)

|-QWPTXYZ[\](RT)|
 (3)

𝑙𝑟𝑑K = 1/(
cdefgLh#ijQ(kT,kS)RS\	VQWPTXYZ[\] RT

-QWPTXYZ[\] RT

) (4)

reach-distk (xi, xj) = max {k-distance(xj), d (xi, xj)} (5)

𝑁KLh#ijelfd kT 𝑥# = {𝑥n 	 ∈ 𝑋\{𝑥#}|	d(𝑥#, 𝑥n) 	≤ 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥#)	} (6)

where 𝑘 − distance(xz) is defined as the Euclidean distance d(xz, x{) between xz and an object x{ ∈Х

such that:

(i) For at least k objects x| ∈ Х \ { xz }, it holds that d(xz, x|))≤ d(xz, x{);

(ii) For at most k-1 objects x|	∈ Х \ { xz}, it holds that d(xz, x|) < d(xz, x{).

2 https://archive.siam.org/meetings/sdm10/tutorial3.pdf

14

Fig. 7. LOF toy example3.

3.1.3 ODIN

ODIN [11] is a graph-based approach [11, 14] analyzing the indegree of the nodes in k-NN graph.

For a given point, it calculates the amount how many other points consider it as their k-nearest neighbor.

The smaller the value, the more likely the point is an outlier. However, it has problems when the distance

inside each cluster is varying. Also, since the outlier scores are integers, thresholding can be a problem

if objects have same outlier scores. The outlier score is defined by equation (7) and illustrated in Fig.

8.

ODIN	Outlier	score	(𝑥𝑖) = indegree of vertex xz for a given KNN graph G (7)

3 http://scikit-learn.org/stable/modules/outlier_detection.html

15

Fig. 8. ODIN toy example (k=2)4.

3.1.4 MCD

Minimum covariance determinant (MCD) [15, 16] is based on a statistical test with the assumption

that the inner data objects follow a (known) distribution and occur in a high probability region of this

model. Outliers are expected to deviate strongly from this distribution. However, this method has high

computing time to obtain the distribution parameters. The results are also different even for the same

dataset when re-run the second time as it can obtain different parameter values each time.

For instance, assuming that the inlier data are Gaussian distributed, it estimates the inlier location and

covariance robustly compared to Mahalanobis distances (i.e., without being influenced by outliers, see

Fig. 9 (MLE dist)). The robust distances obtained from this estimate are used to derive a measure of

outlyingness. This strategy is illustrated in Fig. 9 (robust dist).

MCD	Outlier	score 𝑋 = 	RD X = 	(𝑋 − µ𝑀𝐶𝐷)
𝑡Σ𝑀𝐶𝐷
−1 − (X − µ𝑀𝐶𝐷) (8)

Where, µ��5is the MCD estimate of location, and 𝚺��5	the MCD covariance estimate.

4 http://cs.uef.fi/pages/franti/cluster/Clustering-Part7-Outliers.pdf

16

Fig. 9. MCD toy example5.

3.1.5 NC

NC [17] is a math representation approach based on math optimization, in which points X are

represented by a matrix W in equation (10), where x{ belongs to k nearest neighborhood of xz. Fig. 10

shows the relationship between matrix W and location of a sample point P and its k nearest

neighborhood. For each point, the amount of negative values in column of matrix W is used as an outlier

score. The bigger the value, the more likely to be an outlier. However, it will fail if the hull constructed

by k nearest neighborhood is non-convex hull, and also since outlier scores are integers, thresholding is

a big problem when objects have same outlier scores. This outlier score is given by equation (9), and

an example is shown in Fig. 11. the

NC	Outlier	score 𝑥# = 	The	amount	of	negative	values	in	 ith column of W in (10) (9)

𝑚𝑖𝑛 |𝑥# − 𝑊#�� 𝑥�|+l
#6) , 𝑠. 𝑡. , 𝑊#� = 1� 	 (10)

5 http://scikit-learn.org/stable/modules/outlier_detection.html

17

Fig. 10. Given a point p and its 3 nearest neighbors, we can get matrix W via equation (10). Clearly, in (a) and (b), it has the following:

1) p is within of the triangle if 0<	wz <1. 2) p lies on the boundary of the triangle if any wz = 0. 3) q lies outside the triangle if any wz <0 or

wz >1. Similarly, the conclusion holds for point p and q in (c) and (d), represented by their k-NN. [17].

Fig. 11. NC toy example [17]: sample points (up) and representation matrix w. 1) Use equation (1) for points in Fig 11 (up) to get W shown

in Fig 11 (down). 2) Outlier score for each point is the negative value amount of each column: outlier score for {x1, x2, x3, x4, x5, x6} is {3,

2, 0, 2, 1, 0} respectively. 3) the bigger the outlier score, the more likely to be the outlier. Hence {x1, x2, x4} is more like to be the outlier.

18

3.2 Outlier detection algorithms for string datasets
Methods like KNN and ODIN can also detect string outliers with Edit distance directly. It is a very

challenging task to detect string outliers but it is an indeed high demand in bioinformatics sequence

datasets.

19

4 Mean-shift outlier filtering and detection
In clustering applications, outliers can significantly affect the results; hence it is better to remove the

outliers before clustering. Traditional methods treat this task in two steps: detect and remove. However,

what amount to remove is a common problem, as it is not possible to know the correct amount of outliers

in advance. We propose mean-shift outlier filtering method, which can remove outliers without

requiring knowing the amount of outliers at all. After using the mean-shift outlier filtering method, any

clustering can be applied to do the clustering task. We call this method mean-shift outlier filtering

algorithm, for improving clustering.

Next, we also propose a technique to detect the outliers, which point is an outlier and which is an

inner. We call this method mean-shift outlier detection (MOD) and its counter-part using medoid as

medoid-shift outlier detection (DOD), for detecting outlier purpose.

4.1 Mean-shift process
The mean-shift process works locally by analyzing the neighborhoods of the points using k-nearest

neighbors. The method replaces every point by the mean of its k neighbors, which forces points to move

towards denser areas. The distance of the movement can be evidence of being an outlier; points with

greater movement are more likely to be outliers. The mean-shift process is summarized in Algorithm

1.

The idea is closely related to mean-shift filtering used in mean-shift clustering algorithm [18], and

image processing [19]. The first one takes pixel value and its coordinates as the feature and transforms

each feature towards the mean of its neighbors. It has been used for detecting fingerprint and

contamination defects in multicrystalline solar wafers [20]. The idea also resembles the low-pass and

median filtering used for image denoising.

Algorithm 1: Mean-shift process (MS (X, k, I))

Input: Dataset X Rd×n, k R, I ∈ R

Output: X Rd×n

Repeat I times:

 For every point xi∈X:

 Find its k-nearest neighbors kNN(xi)

 Calculate the mean Mi of the neighbors kNN(xi)

 Replace xi by the mean Mi, xi = Mi

4.2 Mean or median
Both mean and median have been used in the mean-shift clustering concept [21, 22]. The benefit of

using mean is that it is trivial to calculate for numeric data. Its main disadvantage is that it can cause a

blurring effect where very noisy points bias the calculation of the mean of clean points as well. Median

⊂ ⊂

⊂

20

is less sensitive to this because the single noisy point in the neighborhood may not affect the calculation

of the median at all. Therefore, it has less effect on the clean points. Another benefit of the median is

that, when repeated until converging, it can reach root signal [22].

However, with multivariate data, it is not obvious how the median is defined. We use the medoid,

which is the point in the set that has the minimum total distance to all other points in the set. A

disadvantage of medoid is that its calculation can be more time-consuming. A toy example of using

mean and median is shown in Fig. 12.

Fig. 12. Effect of the mean (left) and median (right) of two sample points in a noisy neighborhood. [4]

4.3 Mean-shift outlier filtering to improve clustering
As outliers can affect the clustering results, we need to remove it before clustering, Fig. 13 shows the

effect of outliers. When adding some outliers, it will bias the clustering result and centroids will be

falsely distributed in the noise area.

Fig. 13. Example of noisy data and how it affects clustering [4].

This iterative variant is similar to the ORC algorithm [23] where most remote points are iteratively

removed in each cluster. The difference is that the outliers are chosen based on the distance to their

cluster centroid in the intermediate clustering solution. It is therefore possible that points can be falsely

removed if the cluster is not correctly determined. Fig. 14 demonstrates the process. We can see that

there is still noise existing while only 3 clusters are left after 90 iterations, but originally it has 5 clusters

because ORC falsely removes the inners when the noise cluster is very small, and the distance of noise

to its centroid is smaller than the inner cluster with bigger radius, see Fig. 14 (up).

21

Fig. 14. Example of the iterative process of the ORC [23] (up) and the proposed mean-shift (down) on the part of the A1 dataset with

8% noise level.

The mean-shift process was applied for noise filtering in [4]. The idea is to apply Algorithm 1 as such

and modify the data so that the effect of the noisy points is minimized. It is implemented as a separate

pre-processing step so that it is independent on the clustering method applied. The process can be

iterated several times to have stronger noise filtering effect. The number of iterations is a parameter.

Based on our experiments, three iterations are the best choice for typical clustering data. A visualization

example of mean-shift noise filtering for clustering in each iteration is shown in Fig 14 (down).

4.4 Clustering algorithms
Two clustering algorithms: K-means [24] and Random swap (RS) [25] are tested in this thesis. Both

minimize sum-of-squared errors. The first one is commonly used but does not always find the correct

clustering solution even with clean data. The second does find the correct result with all of the tested

datasets in this thesis. K-means tends to converge to a local optimum instead of the global one, but

Random swap is much more likely to reach a global one or very close to it.

4.4.1 k-means

The k-means algorithm is an iterative, centroid-based clustering algorithm. It is very popular

clustering algorithm because of its simplicity.

22

Given a data set 𝑋 = 𝑥), 𝑥+, … , 𝑥- and the number of clusters 𝐾 as parameters, and it returns the

centroid locations 𝐶 = 𝑐), 𝑐+, … , 𝑐0 and the partitioning 𝑃 = 𝑝), 𝑝+, … , 𝑝- of the data points as the

results (Algorithm 2).

Algorithm 2: k-means clustering (K-means (X, P, C))

Input: Dataset X Rd×n, label P R1×n , centroid C Rd×n

Output: label P R1×n , centroid C Rd×n

REPEAT

 Cprev ß C

 FOR i := 1 TO N DO

 Pi ß FindNearestCentroid (Xi, C)

 FOR j := 1 TO k DO

 Ci ß CalculateCentroid (X, P, j)

UNTIL C = Cprev

The algorithm starts with an initial solution, and iterates until it cannot find any more improvement.

It consists of two main steps:

1. Partitioning step

2. Centroid step.

There are several ways to initialize k-means, and the most common ways are to pick random data

objects as the initial centroids. In the partitioning step, each data object will be labeled according to its

nearest centroid. In the centroid step, new centroids will be calculated as the mean over same labeled

data objects.

The advantage of k-means is its simplicity with providing relatively good results with many data sets.

The disadvantage of k-means is its high dependency on the initial partitioning, leading to converging to

a local optimum instead of the global one, see Fig. 15.

Fig. 15. A single run of k-means and repeated k-means6.

6 http://cs.uef.fi/sipu/pub/MSc_JarkkoPiiroinen.pdf

⊂ ⊂ ⊂
⊂ ⊂

k-
means

k-means repeated 100
times

23

4.4.2 Random swap

K-means often ends up with a local optimum solution, where two or more than one centroids are

located inside the same cluster, or there is no centroid in a real cluster. To move the centroid from

centroid-rich to a centroid-poor area, random swap is a method by randomly guessing the correct

centroid solution and accept the improved solutions.

Like k-means, random swap is an iterative, centroid-based clustering algorithm, which is also a

simple but very powerful global optimization algorithm.

Given a data set 𝑋 = 𝑥), 𝑥+, … , 𝑥- and the number of clusters 𝐾 as parameters, it returns the

centroid locations 𝐶 = 𝑐), 𝑐+, … , 𝑐0 and the partitioning 𝑃 = 𝑝), 𝑝+, … , 𝑝- of the data points as the

results (Algorithm 3).

Algorithm 3: RandomSwap clustering (RS (X, P, C))

Input: Dataset X Rd×n, I ∈ R, Label P R1×n , Centroid C Rd×n

Output: Label P R1×n , Centroid C Rd×n

REPEAT I TIMES

 (Cnev, j) ß SwapCentroid (X, C)

 Pnew ß LocalRepartition (X, Cnev , p, j)

 (Cnev, Pnew)ß FindNearestCentroid (Xi,C)

 IF f (Cnev, Pnew) > f (C, P) THEN

 (C, P) ß (Cnev, Pnew)

RETURN (C, P)

Like k-means, the algorithm starts with an initial solution (such as using random data points as the

initial centroids) and iterates 𝑇 times. It consists of three main steps:

1. Random swap

2. Local repartition

3. Iteration by k-means.

In the random swap step, a current centroid is randomly selected and replaced by another randomly

selected data object with the chance to move centroid from centroid-rich to a centroid-poor area.

In the local repartition step, since centroid is changed after the random swap step, all data objects

needed to re-label to their new nearest centroids. Note that in [25], it was noted that this step is optional

if k-means is applied after the swap.

Finally, iterations by k-means are performed. This will fine-tune the result by finding a new local

optimum, giving the new configuration of centroids/partitioning. In [26], it was noted that only two

iterations of k-means were enough to achieve high-quality clustering.

At this point, the result after the swap has not always improved and it could be worse. Therefore, the

objective function is employed to decide whether to accept the new candidate centroids/partitioning.

⊂ ⊂ ⊂
⊂ ⊂

24

For example, if sum square error (SSE) is used as the objective function, then the SSE of the new

candidate result must be lower than the SSE before the trial swap. If it is not, the result will be discarded.

The advantage of random swap is that implementing it is easy, and it is also efficient: it was shown

that the algorithm gives results that are competitive with more complex techniques such as genetic

algorithms and tabu search in [27]. Unlike k-means, the algorithm does not depend on the initialization

method: centroid swapping enables the algorithm to fix situations where k-means would get stuck, such

as the highlighted regions in Fig. 16 (current solution). As a result, random swap can detect the clusters

when k-means struggled with, as seen in Fig. 17.

Fig. 16. Demonstration of centroid swapping [26].

One centroid, but
two clusters.

Two centroids, but
 only one cluster.

 Swap is made from
centroid rich area to
 centroid poor area.

Current solution Centroid swapping

Local repartition Fine-tuning by k-means

25

Fig. 17. Random swap can solve S3 dataset perfectly but K-mean can not.

4.5 Outlier detection
The idea is next applied to outlier detection. The mean-shift process is basically the same as in the

noise filtering, but after the mean-shift process, we calculate the distance before and after shifting as

outlier scores.

4.5.1 Mean-shift outlier detection

Mean-shift clustering [21] iterates the mean-shift process until convergence. We apply the same

process, but since we are not clustering the data but aim at finding outliers, we use the processing result

merely for analysis purpose. In specific, we compare the location of the points before and after the

shifting. This difference is the outlier score. The pseudo code of the method is summarized in Algorithm

4. A toy example of the outlier scores is given in Fig. 18.

Algorithm 4: Mean-shift outlier detection (MOD (X, k))

Input: Dataset X Rd×n, k

Output: Outlier score D R1×n

Step 1: Use Algorithm 1 to get Y = MS (X, k, 3)

Step 2: Calculate distance Di =|xi-yi|, xi∈X, yi∈Y, Di∈D and return D

⊂
⊂

26

Fig. 18. Example of mean-shift outlier scores based on Euclidean distance for sample points using k=4 (left). The red point is the mean of

the neighbors of the blue point, and the number shown is the outlier score. All outlier scores are shown (right); the red points are detected

outliers with top-10 ranking outlier scores.

4.5.2 Edit distance

Medoid-shift can also be directly applied to strings or single word list using Edit distance. Fig. 19

shows the process and the results. For example, the word “albapax” is shifted to the word “lbanin” and

the Edit distance between them is 4, hence outlier score of “albapax” is 4; similar to “lbanin”, it is

shifted to “lbanin” itself, hence the Edit distance is 0, namely outlier score is 0.

Fig. 19. Example of medoid-shift outlier scores based on edit distance for part of Country string data using k=4. The string before and after

the arrow is string before and after medoid-shift. The left figure is the medoid-shifting process; the right figure is the outlier score of each

string. Black strings are ground truth outliers, and blue strings are normal strings (inners).

27

5 Experiments
5.1 Datasets
In this thesis, datasets are carefully selected including numeric and string varying in the amount of

outlier, attributes, and domains. We use the 15-benchmark datasets in Table I.

 TABLE I

 DATASETS USED IN THE EXPERIMENTS

Dataset Ref Size Clusters Dim Type

S1-S4 [27] 5000 15 2 Numeric

A1-A3 [27] 3000, 5250, 7500 20, 35, 50 2 Numeric

B1-B2 [27] 100,000 100 2 Numeric

Unbalance [27] 6500 8 2 Numeric

XOR [16] 2000 4 2 Numeric

KDDCup99 [13] 48113 - 40 Numeric

SpamBase [13] 4207 - 57 Numeric

Parkinson [13] 195 - 22 Numeric

Country7 - 2666, 3000, 3428, 4000 48 - String

5.1.1 Two- dimensional dataset and noise model

Eleven 2-d datasets are selected and visualized in Fig. 20. The S sets have varying level of cluster

overlap, and A sets varying number of clusters, B sets varying shape, unbalance and XOR datasets

having clusters with different densities

Fig. 20. Eleven 2-D datasets used in the experiments.

Uniformly distributed random noise is added to the A, B, S, unbalance and XOR data sets. Random

values are generated in each dimension between [xmean-2⋅range, xmean+2⋅range], where xmean is the mean

of all data points, and range is the maximum distance of any point from the mean: range = max (|xmax-

xmean|, |xmean- xmin|). Noisy datasets are shown in Fig. 21.

7 http://cs.uef.fi/sipu/string/countries/

28

Fig. 21. The noisy S1 dataset with 8% noise. Gray points are normal data, and red points are noise.

5.1.2 Multi-dimensional dataset

KDD Cup99, Parkinson, and SpamBase are real-word semantically meaningful datasets. KDD Cup99

classified network attack as an outlier (0.42% outliers), Parkinson classified the patient as the outlier

(39.91% outliers), and SpamBase classified spam email as the outlier (75.38% outliers).

As data pre-processing, duplicates in high dimensional datasets are removed, and each attribute is

scaled to the range between 0 and 1 (subtracting mean and divided by standard deviation). Also,

categorical attributes are removed from the KDDCup99 dataset.

5.1.3 String dataset and distance methods

Countries datasets contain modified copies of the names of the 48 European countries. The

modifications are random insert and delete operations, and the amount of operation is 10%, 20%, 30%,

40% so that the resulting strings can still be identified with some effort. Noise has also been added so

that fake strings have been generated so that their length and character distribution resembles those of

the country names, but their content is complete nonsense. The task is then to identify which strings are

from the original dataset and which are the fake ones (noise).

Edit distance between the strings will be used for Country dataset. This approach allows using

existing methods that are based on distances such as ODIN and KNN.

5.2 Baseline outlier detection algorithm
Baseline algorithms are carefully selected from existing algorithms, according to categories,

popularity, and performance. We will compare all the algorithms introduced in Section 2, and

summarized in Table II.

29

TABLE II

 COMPARED OUTLIER DETECTION ALGORITHMS

Method Ref Type Data Publication and year

KNN [10] Distance-based N/S ACM SIGMOD, 2000

LOF [12] Density-based N ACM SIGMOD, 2000

ODIN [11] Graph-based N/S ICPR, 2004

MCD [15] Statistical testing N J. A. Stat. Assoc, 1984

NC [16] Representation N IEEE-TNNLS, 2018

DOD [4, 6] Shifting-based N/S -

MOD [4, 6] Shifting-based N/S -

* N = numeric data, S= string data.

5.3 Tested clustering algorithms
We will test with k-means and random swap clustering algorithms, introduced in Section 4.4. Both

minimize sum-of-squared errors. The first one is commonly used but does not always find the correct

clustering solution even with the clean data. The second does find the correct result with all of these

datasets; in this case, all errors are due to the noise.

5.4 Experimental setup
For the clustering task, all 2-d datasets are tested. Neighborhood size k is set to be 30 for all algorithms.

Top-N is set to be half of the amount of outliers for all algorithms that need top-N setting.

For outlier detection task, all datasets are tested. Neighborhood size k is set to be 30 for all algorithms

for all 2-d datasets. For all multi-dimensional datasets, as they are real-world datasets, we vary k from

2 to 100 to find the optimal value for it for each method. For Country datasets, we vary k from 2 to 50

to find the optimal value for it.

Clustering algorithms (k-means and random swap) are implemented in C, and all outlier detection

algorithms are implemented in Python. All codes are run on MacOS High Sierra 10.13 with Intel Core

i7 and 16-GB memory.

5.5 Evaluating measurement
To compare the clustering results from different algorithms, the centroid index (CI) [28] and

normalized mutual information (NMI) [6] are employed in this thesis. CI is a cluster level measure,

which counts how many cluster centroids are wrongly located. The value CI=0 indicates that, at the

cluster level, the clustering is correct with respect to the ground truth. NMI is a point-level measure that

calculates the amount of information the clustering shares with the ground truth. Value 1 indicates that

the result is identical to the ground truth.

To compare the outlier detection results of different algorithms, we use the area under the receiver

operating characteristics curve (ROC AUC) [6] to evaluate the performance. It ranges between 0 and

1, and value 0 indicates the worst matching to ground truth while value 1 indicates to a perfect matching.

30

5.5.1 Clustering: Centroid index (CI)

Centroid index is a cluster-level similarity measure proposed in [28] that estimates the similarity of

two clustering solutions based on their centroids. The centroid index for two solutions 𝐶 =

𝑐), 𝑐+, … , 𝑐0� and 𝐶� = 𝑐)� , 𝑐+� , … , 𝑐0�
� is calculated as follows. First, the nearest neighbor mappings

𝐶 → 𝐶′ are constructed:

𝑞# ← arg	min
)	�	�	�	0�

𝑐#, 𝑐��
+
				∀	𝑖 ∈ 1, 𝐾) 		 16

A target centroid 𝑐�� is an orphan if there are no centroids 𝑐# that consider it the nearest:

orphan 𝑐�� = 1, 𝑞# ≠ 𝑗	∀	𝑖
0, otherwise 									 17

The dissimilarity between 𝐶 and 𝐶′ is then defined as the number of orphans in the target clustering

solution:

CI) 𝐶, 𝐶′ = orphan 𝑐��
0�

�6)

																		 18

This mapping is not symmetric, meaning that in general CI) 𝐶, 𝐶′ ≠ CI) 𝐶�, 𝐶 . A symmetric

variant is defined in [28] as follows:

CI 𝐶, 𝐶′ = max	 CI) 𝐶, 𝐶� , CI) 𝐶�, 𝐶 19

The value CI = 0 means that each centroid 𝑐# is mapped to exactly one 𝑐�� and vice versa. In other

words, the two solutions have the same global structure. A value of CI > 0 gives the number of clusters

that have been allocated differently between the solutions.

Fig. 22 shows an illustration of how the centroid index is calculated. The ground truth centroids are

shown in blue, and the clustering solution is shown in red. Each solution centroid is mapped to the

nearest ground truth centroid. The numbers beside the ground truth centroids indicate the number of

solution centroids that are mapped to each.

31

Fig. 22. A clustering solution with CI equaling to 2.

If a ground truth centroid has no solution centroids mapping to it, it is considered an orphan. The

differences in the global clustering structure are highlighted with dotted lines. In the above case, there

are two orphan clusters, resulting I CI equaling to 2.

5.5.2 Clustering: Normalized Mutual Information (NMI)

The aim of clustering is to measure if objects are correctly labeled. Given the knowledge of the

ground truth class assignments true labels and our clustering algorithm assignments of the same samples

predicted labels, the mutual information is a function that measures the agreement of the two

assignments, ignoring permutations. Assume two label assignments (of the same N objects), U and V.

Normalized mutual information (NMI) is defined as:

NMI(U, V) =
𝑀𝐼(𝑈, 𝑉)

𝐻 𝑈 𝑉(𝑈)
																								 20

The mutual information (MI) between U and V is calculated by:

MI(U,V) = 𝑃(𝑖, 𝑗)log	(
𝑃(𝑖, 𝑗)

𝑃 𝑖 𝑃′(𝑗)
)

|­|

�6)

|®|

#6)

	 21

where 𝑃 𝑖, 𝑗 = |𝑈# ∩ 𝑉�|/𝑁 is the probability that an object picked at random falls into both classes

𝑈# and 𝑉�.

H(U) = − 𝑃 𝑖 log 𝑃 𝑖
®

#6)

																					 22

𝟏

𝟎

𝟎 𝟏

𝟐

𝟏

𝟏

𝟏

𝟏

𝟏
𝟏

𝟏 𝟏

𝟏

𝟐

Orphan
clusters

32

where 𝑃 𝑖 = |𝑈#|/𝑁 is the probability that an object picked at random from U falls into class 𝑈#.

Likewise for V with 𝑃′ 𝑗 = |𝑉�|/𝑁

H(V) = − 𝑃� 𝑗 log 𝑃� 𝑗
­

#6)

																	 23

5.5.3 Outlier detection: ROC AUC

 Outlier detection methods are measured by ROC curve drawn on the outlier score. The idea of the

ROC curve is to plot true positive rate against false positive rate, over ranked outlier score at various

threshold values. The area under the ROC curve provides accuracy evaluation, which ranges from 0 to

1. ROC value of a perfect outlier prediction equals to 1.

 For a data set D, an outlier set G, and a predicted outlier set S(t) decided by a threshold t on the

outlier scores. In this case, the true positive rate is graphed against the false positive rate. The true

positive rate TPR(t) and the false positive rate FPR(t) is same in [29], and these definitions are as

follows:

TPR(t)=Recall(t) = 	
|𝑆(𝑡) ∩ 𝐺|

|𝐺|
																	 24

FPR(t) =
𝑆 𝑡 − 𝐺
𝐷 − 𝐺

																																					 25

For every threshold t, we can get a pair of TPR and FPR. ROC curve is drawn with TPR against FPR,

see Fig. 23. The ROC curve endpoints are always at (0,0) and (1,1). The area under the ROC curve is

called ROC value, which ranges from 0 to 1 and perfect prediction will be 1.

Fig. 23. ROC AUC curve example8.

8 http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

33

6 Experiment results and discussion
The experiment results are summarized from Table IV to Table XI. In Table III, Table IV, and Table

V, it shows the clustering results. In Table VI, Table VII, and Table VIII, it shows the outlier detection

results.

The effect of k nearest neighbor size in mean-shift process are summarized in Table IX and Table X;

relationship between noise level and shifting iterations are summarized in Table XI, Table XII, and Fig.

26 and running time of algorithms are summarized in Table XIII.

6.1 Clustering results
The clustering results are summarized in Table III, Table IV, and Table V, both at the point level

(NMI) and at the cluster level (CI). Neighborhood size k is fixed to 30 and top-N is half of the amount

of noise.

Several observations can be made from the results in Table III. First, all datasets can be perfectly

clustered using random swap algorithm if there is no noise (CI=0 for 0% noise). The more noise there

is in the data, the more the clustering result deteriorates. With 8% noise, there are already errors with

10 clusters (CI=10.09), on average, and it doubles (CI=20.45) when the noise level reaches 128%.

Second, both the proposed mean-shift filtering and all the outlier removal methods improve the

clustering up to noise level 8%. The only exception is NC which perform slightly worse with 0.025%

noise level. Among the methods, our mean-shift variant (MOD) clearly outperforms the others except

KNN. However, with higher noise levels (16-128%) MCD performs better although the proposed

method is still the third best and clearly outperforming the others.

When changing the algorithm to standard k-means, we can also see the effect of the clustering

algorithm. Even with clean data, there are already errors: CI=3.27, on average. Otherwise, the behavior

is similar: adding more noise worsens the clustering. Except KNN, the proposed method also works

best until 8% of noise level, after which MCD becomes more effective.

The choice of the algorithm also has two side effects. First, the medoid shift (DOD) is sometimes

better than the mean-shift (MOD) when using k-means. Second, the k-means can become slightly better

when the noise increases beyond 8%. This is a side effect of the k-means algorithm. Adding noise

generates fake low-density clusters, which a good algorithm can find more effectively. K-means, on the

other hand, is known to have problems when the clusters have less overlap [29]. This makes it less

optimized for the noisy data.

We conclude that to have perfect clustering performance, and one needs to have a good algorithm

and clean data. When the noise level becomes high, no outlier detection can fix all the problems. The

choice of the clustering algorithm also becomes less significant.

34

TABLE III

 SUMMARY OF AVERAGE CLUSTERING RESULTS (CI-VALUES) OF ALL 2-D DATASETS.

RANDOM SWAP

 Noise level

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

None None 0.00 1.36 2.55 3.82 5.18 7.64 10.09 12.45 14.27 17.73 20.45 9.55

Noise

filtering

DOD 0.18 0.36 2.18 1.64 2.55 4.27 6.55 9.73 13.09 16.18 19.73 7.63

MOD 0.18 0.18 1.00 1.64 2.45 4.00 6.00 9.82 12.91 16.36 19.64 7.40

Noise

removal

LOF - 0.73 1.36 2.64 4.00 6.73 9.64 13.27 16.27 19.73 23.18 9.76

ODIN - 1.18 2.36 3.27 5.09 7.45 9.55 12.55 15.82 18.27 20.73 9.63

MCD - 0.91 1.55 2.27 3.64 4.91 6.82 8.64 10.55 13.64 16.18 6.91

NC - 1.73 2.18 3.27 4.64 7.18 9.55 12.73 15.64 17.82 20.64 9.54

KNN - 0.09 0.73 1.36 2.45 2.82 5.18 6.64 10.91 14.00 17.82 6.20

K-MEANS

 Noise level

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

None None 3.27 3.64 4.73 5.00 4.91 4.73 7.45 9.27 11.36 14.73 18.55 8.44

Noise

filtering

DOD 5.55 4.27 3.73 3.18 4.64 5.00 5.91 7.27 8.91 13.09 15.73 7.18

MOD 5.45 3.64 3.91 4.09 4.45 5.64 6.45 7.27 10.18 12.82 16.18 7.46

Noise

removal

LOF - 3.73 3.36 3.73 4.91 5.36 9.36 9.36 12.73 17.45 20.55 9.06

ODIN - 3.91 3.91 4.82 4.36 6.09 9.36 8.73 11.91 14.91 18.73 8.67

MCD - 3.00 4.09 4.36 4.91 5.00 5.36 6.73 8.55 11.09 14.73 6.78

NC - 3.36 4.09 4.45 4.55 6.27 9.36 9.00 12.27 15.09 19.91 8.84

KNN - 0.18 0.64 1.27 2.45 2.82 5.18 7.55 11.55 14.64 17.36 6.36

Table IV shows the number of datasets that were perfectly clustered. The results show the same trend

as Table III; the more noise, the less successful the clustering. Random swap solves all 11 datasets if

no noise. Even a small amount of noise causes errors in some datasets, and eventually, only one dataset

is correctly clustered anymore after 16% noise level. The proposed mean-shift filtering is slightly better:

with 2% noise, it still solves 5 datasets whereas the others only 2 or 3.

35

TABLE IV

SUMMARY OF CLUSTERING RESULTS AS NUMBER OF DATA SETS FOR WHICH CI IS 0 IS REACHED.

RANDOM SWAP

 Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

None None 11 7 4 3 2 1 1 1 1 1 1 2.20

Noise

filtering

DOD 9 8 8 6 6 1 1 1 1 1 1 3.40

MOD 10 10 9 9 5 3 2 1 1 1 1 4.20

Noise

removal

LOF - 9 7 5 2 1 1 1 1 0 1 2.80

ODIN - 7 5 4 3 1 1 1 1 1 1 2.50

MCD - 8 7 5 3 1 1 1 0 0 1 2.70

NC - 6 5 4 2 1 1 1 1 2 1 2.40

KNN - 10 9 9 6 5 2 1 1 1 0 4.40

K-MEANS

 Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

None None 2 4 2 2 1 1 1 0 1 1 1 1.40

Noise

filtering

DOD 1 1 1 2 1 1 3 1 1 1 2 1.40

MOD 2 3 1 1 2 1 2 0 1 1 1 1.30

Noise

removal

LOF - 1 2 2 1 1 1 1 0 1 1 1.10

ODIN - 2 1 1 1 1 1 1 1 1 1 1.10

MCD - 2 2 2 1 1 1 1 1 2 2 1.50

NC - 1 2 1 2 2 1 1 1 1 1 1.30

KNN - 10 9 9 6 5 2 1 1 1 0 4.40

Table V shows that in the point level results show that the mean-shift improves both k-means and

random swap clustering results from about NMI = 0.85 to 0.88. The mean-shift is slightly better than

the medoid-shift. It seems to indicate that the CI measure can reflect the clustering results better than

NMI as the gaps of NMI are small but the difference from varying clustering results is significantly big.

36

TABLE V

 SUMMARY OF CLUSTERING RESULTS (NMI) OF ALL 2-D DATASETS.

RANDOM SWAP

 Noise level

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

None None 0.93 0.92 0.92 0.91 0.90 0.86 0.84 0.82 0.80 0.74 0.72 0.84

Noise

filtering

DOD 0.93 0.93 0.86 0.93 0.92 0.91 0.89 0.85 0.81 0.80 0.74 0.86

MOD 0.93 0.93 0.93 0.93 0.92 0.91 0.89 0.85 0.82 0.80 0.77 0.87

Noise

removal

LOF - 0.93 0.93 0.92 0.91 0.89 0.85 0.82 0.80 0.73 0.71 0.85

ODIN - 0.93 0.92 0.92 0.90 0.88 0.84 0.82 0.80 0.77 0.72 0.85

MCD - 0.93 0.93 0.92 0.91 0.90 0.87 0.85 0.81 0.79 0.80 0.87

NC - 0.92 0.92 0.92 0.90 0.88 0.85 0.83 0.81 0.74 0.72 0.85

KNN - 0.93 0.93 0.93 0.92 0.92 0.90 0.86 0.84 0.80 0.78 0.88

K-MEANS

 Noise level

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

None None 0.88 0.89 0.88 0.88 0.88 0.89 0.86 0.84 0.84 0.80 0.77 0.85

Noise

filtering

DOD 0.87 0.88 0.88 0.89 0.88 0.88 0.89 0.87 0.85 0.81 0.75 0.86

MOD 0.86 0.88 0.88 0.88 0.89 0.88 0.89 0.85 0.84 0.82 0.76 0.86

Noise

removal

LOF - 0.88 0.89 0.88 0.88 0.89 0.85 0.85 0.80 0.77 0.71 0.84

ODIN - 0.88 0.89 0.88 0.88 0.89 0.85 0.85 0.80 0.77 0.71 0.84

MCD - 0.89 0.88 0.88 0.88 0.88 0.89 0.87 0.85 0.84 0.81 0.87

NC - 0.89 0.88 0.88 0.88 0.88 0.85 0.87 0.85 0.84 0.81 0.87

KNN - 0.89 0.88 0.88 0.88 0.88 0.90 0.87 0.83 0.78 0.75 0.85

One good property of noise removal is that it should destroy clean data. In our case, slight errors were

detected: CI=0 is increasing to CI=0.18, on average, if mean-shift is applied for clean data. However,

most of this was caused by b1 and b2 dataset.

The main problem of the traditional outlier removal methods is that they are based on thresholding,

and require knowing the noise level (Top-N parameter). If the correct noise level is used (Top-N

parameter), their performance is not far from our method. However, if we apply some default value

like1% or 8%, then they start to fail much more severely. This shows the importance of noise filtering

(our approach) comparing to the traditional noise (outlier) removal. The clustering results on A1 dataset

are illustrated in Fig. 24 and 25, we can see that proposed methods outperforms than others with both

k-means and Random swap.

37

Fig. 24. Noise filtering + clustering results on 8% noisy A1.

38

Fig. 25. Noise removal + clustering results on 8% noisy A1.

39

6.2 Outlier detection results
The outlier detection results are summarized in Table VI (2- dimensional datasets), Table VII (high

dimensional datasets), and Table VIII (string dataset). For 2-d datasets, Table VI, it shows that with the

increase of the noise level, the performance of all methods tend to drop but my proposed methods and

KNN are always far better than the others regardless the noise level. The exception is MCD, which is

better than my proposed methods from 32% to 128%. My proposed methods are equally good with

KNN with low noise level (0.025% to 16%), but KNN is better when the noise level is high.

TABLE VI

 AVERAGE OUTLIER DETECTION RESULTS FOR ALL 2-D DATASETS IN TABLE II

WITH DIFFERENT NOISE LEVEL. K NEAREST NEIGHBOR IS SET TO 30.

ROC AUC

 Noise level

 Method 0.025% 0.05 % 1% 2% 4% 8% 16% 32% 64% 128% Avg.

 DOD 1.00 1.00 0.99 0.99 0.99 0.97 0.95 0.92 0.88 0.82 0.95

 MOD 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.90 0.83 0.96

 LOF 0.99 0.97 0.95 0.91 0.86 0.68 0.53 0.42 0.36 0.32 0.70

 ODIN 0.98 0.96 0.94 0.90 0.81 0.71 0.65 0.61 0.58 0.57 0.77

 MCD 0.95 0.94 0.95 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.95

 NC 0.96 0.92 0.88 0.83 0.72 0.62 0.54 0.48 0.45 0.44 0.68

 KNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

For real-word high dimensional datasets in Table VII, the best result per method is shown with k

ranging from 2 to 100. We can see that the proposed methods outperform the others in KDDCup99,

SpamBase, and Parkinson datasets.

TABLE VII

 OPTIMAL RESULTS FOR KDDCUP99, SPAMBASE AND PARKINSON DATASETS WITH k NEAREST NEIGHBORS RANGING

FROM 2 TO 100.

ROC AUC

Method

KDDCup99

(outlier: 0.42%)

SpamBase

(outlier: 39.91%)

Parkinson

(outlier: 75.38%)

ROC k ROC k ROC k

DOD 0.94 87 0.60 2 0.71 3

MOD 0.99 99 0.61 2 0.67 2

LOF 0.85 100 0.50 2 0.61 8

ODIN 0.81 100 0.52 41 0.53 2

MCD 0.97 - 0.45 - 0.65 -

NC 0.69 80 0.55 2 0.61 21

KNN 0.99 85 0.56 93 0.64 5

For String (Country) dataset, the results based on Edit distance are summarized in Table VII. We can

see that the proposed DOD with ROC = 0.85 clearly outperforms KNN with ROC= 0.60 and ODIN

with ROC = 0.50.

40

TABLE VIII

 OPTIMAL RESULTS FOR COUNTRY DATASET WITH DIFFERENT NOISE LEVEL

WITH k NEAREST NEIGHBORS RANGING FROM 2 TO 100

BASED ON EDIT DISTANCE.

ROC AUC

 Noise level

Method
10% 20% 30% 40%

ROC AUC k ROC AUC k ROC AUC k ROC AUC k

DOD 0.86 2 0.84 4 0.84 5 0.83 5

KNN 0.59 3 0.60 3 0.61 3 0.60 3

ODIN 0.48 2 0.49 2 0.50 2 0.50 2

To sum up, our proposed methods outperform others despite of the dataset type or dimensional. It

performs very well in real-word datasets with high outlier level.

6.3 Effect of k in mean-shift process
We also tested the effect of the parameter k, namely k in k-nearest neighbor, during the mean-shift

process. We decrease and increase the k value to see how it affects the results and found that it has no

much effect on mean-shift but has slight effect on medoid-shift. This is because it produces plenty of

duplicates in medoid-shift process. Further, we found that we can improve the DOD results by

increasing k value during medoid-shift process, because it can bring new objects into the nearest

neighborhood to help outliers to move bigger distance, especially when duplicates exist in k nearest

neighborhood. The tested results are shown in Table IX and Table X.

TABLE IX

 OPTIMAL DOD RESULTS FOR COUNTRY DATASETS WITH DIFFERENT NOISE LEVEL

BASED ON EDIT DISTANCE

ROC AUC

 Noise level

k in medoid-shift (1st, 2nd, 3rd) iteration
10%

(k=2)

20%

(k=4)

30%

(k=5)

40%

(k=5)

(k, 2k, 3k) 0.85 0.84 0.84 0.84

(k, k, k) 0.86 0.84 0.84 0.83

(k, k/2, k/3) 0.86 0.83 0.82 0.83

41

TABLE X

 AVERAGE DOD RESULTS FOR ALL 11 2-D DATASETS WITH DIFFERENT NOISE LEVEL IN TABLE II.

 BASED ON EUCLIDEAN DISTANCE (K = 30).

ROC AUC

 Noise level

k in medoid-shift

(1st, 2nd, 3rd) iteration
0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

(k, 2k, 3k) 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.94 0.90 0.84 0.96

(k, k , k) 1.00 1.00 0.99 0.99 0.99 0.97 0.95 0.92 0.88 0.82 0.95

(k, k/2, k/3) 1.00 0.99 0.99 0.99 0.98 0.96 0.94 0.90 0.86 0.80 0.94

6.4 Effect of mean-shift iterations
We also study the relationship between noise level and shifting iterations. We repeat the experiment

100 times on S1 dataset with random noise on each level. The average ROC AUC results are shown in

Fig. 10 and Table XI. We can see that with the increase of the noise level, it needs more shifting

iterations to reach the optimal measure, which are 3 iterations for MOD and 5 iterations for DOD.

Fig. 26. The effect of the noise level on the number of shifting iterations needed on S1 dataset.

Results are shown for medoid-shift (above) and mean-shift (below).

From Table XI, the average of optimal iteration is around 3. As there is no much gap between 3 and

5 iterations for DOD and also for the purpose of saving computing time, we set it as 3 iterations as

default.

However, even it’s good enough to use 3 iterations for all tested cases. If the noise level is very low

(below 4%), we can use 1 or 2 iterations to save computing.

42

TABLE XI

 BEST NUMBER ITERATIONS FOR AVERAGE RESULTS OF S1 DATA SET WITH NOISE LEVELS (REPEATED 100 TIMES)

(ITERATIONS)

 Noise level

Method 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg.

DOD 1 1 1 1 1 1 5 4 5 7 2.7

MOD 1 1 1 1 1 2 3 4 4 4 2.2

For string datasets, the iteration relationship is shown in Table XII. We can see the result of 3

iterations is better than 1 iteration, except with low outlier level (10%). The gap between 1 iteration and

2 iterations is big but small between 2 iterations and 3 iterations, hence it is reasonable to use 3

iterations.

TABLE XII

 THE EFFECT OF MEDOID-SHIFT ITERATIONS ON DOD RESULTS

FOR COUNTRY DATASETS WITH DIFFERENT NOISE LEVEL

BASED ON EDIT DISTANCE

ROC AUC

 Noise level

Iteration 10% 20% 30% 40%

1 0.86 0.76 0.76 0.75

2 0.86 0.84 0.84 0.83

3 0.86 0.85 0.84 0.84

6.5 Running time
All methods based on k-NN require O(N2) calculations. To address this slowness of the brute-force

approach, we use the KD-tree technique [30] with all algorithms. It works fast in low dimensional but

can become inefficient with higher dimensions (D>20). In this case, faster approximate like NNDES

[31] or the Random pair divisive (RP-div) [32] can become more efficient. Running times of the 9

datasets are summarized in Table XIII. The proposed method is similar fast as KNN, LOF and MCD.

However, DOD is slower than MOD.

TABLE XIII

RUNNING TIMES ON SPAMBASE DATASETS (K=100)

Method DOD MOD LOF ODIN MCD NC KNN

Time (s) 17 11 12 3 12 48 15

43

7 Conclusions
Mean-shift and medoid-shift were proposed as a separate noise filtering process before clustering.

The results show that mean-shift is more effective than medoid-shift and that they improve both k-

means and random swap clustering. The proposed approach outperforms four existing outlier filtering

methods: KNN, LOF, MCD, NC, and ODIN.

Mean-shift outlier detection (MOD) was proposed. The results show that mean-shift variant (MOD)

is slightly more effective than the medoid-shift (DOD). For the studied noise patterns, the proposed

approach clearly outperforms existing outlier detection methods: LOF, MCD, NC, ODIN and

outperforms than KNN in real-word datasets and string datasets but in not goo d as KNN in some 2-d

dataset cases. The most important property of the proposed method is that it can effectively detect string

outliers based on Edit distance and suitable for the cases when the amount of outliers is big.

44

References

1. A.M. Ali, P. Angelov, "Anomalous behavior detection based on heterogeneous data and data fusion," Soft Computing, 2018, 3187–

3201.

2. T.V. Pollet, L. van der Meij, "To remove or not to remove: the impact of outlier handling on significance testing in testosterone data,"

Adaptive Human Behavior and Physiology, 3 (1), 43-60, Mars 2017.

3. H.-P. Kriegel, P. Kröger, and A. Zimek, “Outlier detection techniques,” 13th Pacific-Asia Conf. Knowledge Discovery Data Mining,

1–73, 2009.

4. J.W. Yang，S. Rahardja, and P. Fränti, "Outlier detection: How to Threshold Outlier Scores?", manuscript, submitted.

5. M. Ester, H.P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with

noise," Int. Conf. on Knowledge Discovery and Data Mining (KDD), 226-231, 1996.

6. J.W.Yang，S. Rahardja, and P. Fränti, "Mean-shift outlier detection," Int. Conf. Fuzzy Systems and Data Mining (FSDM), Nov, 2018.

7. V. Barnett, "The study of outliers: purpose and model," Applied Statistics, 27(3), 242–250, 1978.

8. T. Johnson, I. Kwok, and Ng. Raymond, “Fast computation of 2-dimensional depth contours”, In Proc. Int. Conf. on Knowledge

Discovery and Data Mining (KDD), New York, NY, 1998

9. P. Fränti, J. Kivijärvi, and O. Nevalainen: "Tabu search algorithm for codebook generation in VQ," Pattern Recognition, 31 (8), 1139-

1148, August 1998.

10. S. Ramaswamy, R. Rastogi, and K. Shim, "Efficient algorithms for mining outliers from large data sets," ACM SIGMOD Record, 29

(2), 427-438, June 2000.

11. V. Hautamäki, I. Kärkkäinen, and P. Fränti, "Outlier detection using k-nearest neighbor graph," Int. Conf. on Pattern Recognition

(ICPR), 430-433, August 2004.

12. M.M. Breunig, H. Kriegel, R.T. Ng and J. Sander, "LOF: Identifying density-based local outliers," ACM SIGMOD Int. Conf. on

Management of Data, 29 (2), 93-104, May 2000.

13. G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenkova, E. Schubert, I. Assent, and M. E. Houle, “On the evaluation

of unsupervised outlier detection: measures, datasets, and an empirical study”, Data Mining and Knowledge Discovery, 30 (4), 891–

927, 2016.

14. M.R. Brito, E.L. Chavez, A.J. Quiroz, J.E. Yukich, "Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier

detection," Statistics & Probability Letters, 35 (1), 33-42, 1997.

15. P. J. Rousseeuw, "Least median of squares regression," J. Am Stat Ass, 79:871, 1984

16. M. Hubert, and M. Debruyne, "Minimum covariance determinant," Wiley Interdisciplinary Reviews: Computational Statistics, 2(1),

36-43. doi:10.1002/wics.61, 2009.

17. X. Li, J. Lv, and Z. Yi, "An efficient representation-based method for boundary point and outlier detection," IEEE Trans. on Neural

Networks and Learning Systems, 29 (1), January 2018.

18. D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Analysis and

Machine Intelligence, 24 (5), 603–619, May 2002.

19. Y. Cheng, "Mean shift, mode seeking, and clustering," IEEE Trans. Pattern Analysis and Machine Intelligence, 17 (8), 790–799,

August 1995.

20. D.-M. Tsai and J.-Y. Luo, "Mean shift-based defect detection in multicrystalline solar wafer surfaces," IEEE Trans. on Industrial

Informatics, 7 (1), 125-135, February 2011.

21. Y.A. Sheikh, E.A. Khan, T. Kanade, "Mode-seeking by Medoidshifts," IEEE Int. Conf. on Computer Vision (ICCV), October 2007.

22. Y. Cheng, "Mean shift, mode seeking, and clustering," IEEE Trans. Pattern Analysis and Machine Intelligence, 17 (8), 790–799,

August 1995.

23. H.V. Nguyen, V. Gopalkrishnan, "Feature extraction for outlier detection in high-dimensional spaces," J Mach, Learn Res Proc Track

10:66–75, 2010

24. V. Hautamäki, S. Cherednichenko, I. Kärkkäinen, T. Kinnunen and P. Fränti, "Improving k-means by outlier filtering," Scand. Conf.

on Image Analysis (SCIA), Lecture Notes of Computer Science, LNCS vol. 3540, 978-987, June 2005.

25. E. Forgy, "Cluster analysis of multivariate data: efficiency vs. interpretability of classification," Biometrics, 21, 768-780, 1965.

26. P. Fränti, "Efficiency of random swap clustering," Journal of Big Data, 5:13, 1-29, 2018.

45

27. P. Fränti, J. Kivijärvi, and O. Nevalainen: "Tabu search algorithm for codebook generation in VQ," Pattern Recognition, 31 (8), 1139-

1148, August 1998.

28. P. Fränti and S. Sieranoja, “K-means properties on six clustering benchmark datasets," Applied Intelligence, 2018.

29. P. Fränti, M. Rezaei and Q. Zhao, “Centroid index: Cluster level similarity measure”, Pattern Recognition, 47 (9), 3034-3045, 2014.

30. R. Kannan, H. Woo, C. C. Aggarwal and H. Park. "Outlier Detection for Text Data," International Conference on SIAM Data Mining,

2017.

31. J.L. Bentley, "Multidimensional binary search trees used for associative searching," Communications of the ACM, 1975

32. W. Dong, C. Moses, K. Li, "Efficient k-nearest neighbor graph construction for generic similarity measures," ACM Int. Conf. on

World Wide Web, 577–586, 2011.

33. S. Sieranoja and P. Fränti, "Fast random pair divisive construction of kNN graph using generic distance measures," Int. Conf. on Big

Data and Computing (ICBDC), April 20

