\/A

ITA-SUOMEN YLIOPISTO

University of Eastern Finland
School of Computing
Master Thesis
18.12.2020

Word Cloud on Mopsi

Yunlong Liu

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry,
Joensuu

School of Computing

Computer Science

Yunlong Liu: Word Cloud on Mopsi
Master’s Thesis
Supervisors of the Master’s Thesis: Pasi Franti and Mariescu-Istodor

December 2020
Abstract: This thesis focus on develop a tool to generate word cloud on Mopsi web

application with the data geotagged photograph contains. The collision detection, shaped
word cloud generation and introduction of the tool are introduced in this thesis.

Keywords: word cloud, collision detection, data visualization

Foreword

| want to give thanks to God, he prepared the study experience in University of Eastern
Finland and he protect me all the way. | also want to thank God give me wisdom and
guidance to help me to complete my Master’s degree.

| want to give thanks to my Professor Pasi Frénti, he helped me to make my research
objective clear, review my writing and give me useful suggestions. | want to thank my
supervisors Mariescu-Istodor, he provided me Mopsi data for testing my application and gave
me many useful suggestion on my thesis writing and presentation. | also want to give thanks
to Ph.D. student Abu Sayem, who has left us and rest in peace, maybe God accept his soul
and bless his family. He helped me to integrate my work on Mopsi application and he helped
me to improve my application.

| want to give thanks to my family and my fiancée Dan Gao, they give me strength to go
through the hard time when | was under high pressure. They encourage me when | was
struggling. 1 want to thanks my friend Kimmo Kuikanmaki, he helped me proofread my
writing and gave me many useful suggestions.

List of abbreviations

UEF
AABB
TF-IDF
HTML
URL
T-SNE
SEM
SEO
JS

API
GPS
OSM

University of Eastern Finland
Axis-Aligned Bounding Box

Term Frequency-Inverse Document Frequency
Hypertext Markup Language
Uniform Resource Locator
T-Stochastic Neighbor Embedding
Search Engine Marketing

Search Engine Optimization

Java Script

Application Programming Interface
Global Positioning System

Open Street Map

Contents

I 1011 T (1 Tox (o] USSP 1
I R |V [T L O TP PP PO TSR P PP PRPURPROON 2
0 V1Y o (o o] 0 13 T OSSOSO 2
1.3 TRESIS SITUCTUIE ©.veivieeieiecie ettt sttt bbb nneas 6

YL o] o ol (oW o o g I 1Y/ (o] o L] PSR 8
2.1 Preparation Of INPUL 0ALAcooiiiiiiiiiee s 9
2.2 Generation Of WOrd ClOUd.........cccooiiiiiiiiie e 11
2.3 Place word cloud on GOOGIE MaPScoveiiiieiieiee e e 14

K VLY o] 0 I8 0] 0 05S] SPS R SSSR 16

4 COllISION UELECTIONiviiiieieie ettt se b sbeeneas 22
A1 AABB ..ottt st reares 23
N O 1 - o | =TSRSS 26
4.3 AREBINALIVES ..ottt 32

4.3.1 LOOK UP SEFALEY ..ooveeiieiiie ettt s e e et e enna e 32

5 W00 MOVEMENT .. .oeiieiieiiieieeie ettt sttt e re e teete st e sneeseeneeareenneenneas 35
51 Word position iINtAliZation...........ccccoeiieieiiieiiece e 36
5.2 Archimedean SPIralccoiiiiiiii e 40

6 Shaped WOId ClOUMceiiiieiii e 46
TN A O Y] 1 - o - SRS 47
6.2 Shaped word cloud diSCUSSIONceciiieiiiiiieiie e 50

7 Word cloud iImpIemMENtatioNocveieiiiiiei e 58

RETEIENCES ...ttt bbb bbbttt bbb b s 60

Appendixes

Appendix 1: WordCloudOverlay calss

Appendix 2: Cities in Finland with their populations

Appendix 3: Joensuu city boundary in the geographic coordinate system.

Appendix 4: Number of words that cannot find a position to draw on heart-shaped word
cloud with linear font size function.

Appendix 5: Number of words that cannot find a position to draw on heart-shaped word
cloud with logarithmic font size function.

Appendix 6: Number of words that cannot find a position to draw on tree-shaped word cloud
with linear font size function.

Appendix 7: Number of words that cannot find a position to draw on tree-shaped word cloud
with logarithmic font size function.

Appendix 8: The function fromLatLngToPoint

Vi

1 Introduction

In the early days, people used the Internet mainly for searching for information. The internet
could store static resources on the servers for users to search and query for specific
information. As the internet developed, there’s nowadays an increasing number of
smartphone users with Global Positioning System (GPS) applications. It allow GPS service to
identify the location of the phone and where photographs have been taken. It also allows
users to take geotagged photographs regardless of time and location. Photos can be stored on

the phone or uploaded to the web. There is a large number of photos taken by users every day

A geotagged photograph is a digital photograph that contains information on geographical
location. Usually latitude and longitude are assigned to geotagged photographs by GPS
service to identify the geographical location. Optionally geotagged photographs may contain
other information such as keywords or labels, to identify the content of geotagged
photographs. For example, geotagged photographs with keywords ‘coffee’ or ‘hiking’ tells
the functions or services shown in the geotagged photograph. It may also contain the time
record showing when the photograph was taken and a more detailed description than the

keywords.

Geotagged photographs are widely used on smartphones and web pages. Nowadays Android
phones, iPhones, and Windows phones support the functions of taking geotagged
photographs. Millions of users apply and upload geotagged photographs through web service
platforms such as Flickr!, Instagram?, Facebook, Google Earth every day. That can explain
the phenomenon that taking geotagged photos becomes common when using these mobile
applications and social network websites. For example, an iPhone application allows users to
view photos on Apple Maps. Instagram and Google Earth can display photos on Google

Maps.

Thumbnails of geotagged photographs can be displayed nicely on a map. One can open
thumbnails in a region and view nice photographs, but it is difficult to know what
photographs are about if there are many photographs in a region. For example, if there are

100 geotagged photographs showing on Google Maps in the region of Joensuu, a city in

1 https://www.flickr.com/
2 https://www.instagram.com/

https://www.flickr.com/
https://www.instagram.com/

Finland, and | want to know what each photograph is about, | have to spend much time
clicking every photograph to check what the photograph is about and get a summary of
photographs in that region. If 1 want to know what is the keyword most photographs are
referring to, | have to check all photographs and get the result by a simple mathematics
operation. | have developed a tool to solve the following problems: (1) What geotagged
photographs, that are taken in a region, refer to. (2) Summary of keywords of geotagged

photographs that are taken in a region.

Word cloud is a wonderful method to visualize text strings and to give a summary of a
document. In my thesis, | will develop a tool to generate a word cloud with keywords
extracted from geotagged photographs in the selected regions and display them on Google
Maps. Instead of showing geotagged photographs in Google Maps, | show word clouds to
show the summary of geotagged photographs in a region. My major task in my thesis is: (1)
Generate word clouds with data from geotagged photographs. (2) Discuss the limitations of

displaying the word cloud in the shape of the selected region.

1.1 Mopsi

Mopsi® is a location-based social network application developed by the Machine Learning
Unit, School of Computing at the University of Eastern Finland [1]. Mopsi features include
photograph sharing, bus timetable, and service recommendation among other services.
Service recommendation is to show the variety, availability of service, and what is around.
Mopsi will get user’s current location as default and show available services around that
location. The available services will be displayed as a list, each service contains service
name, description, street address, keywords, and distance to user’s current location. The

available services also display a snapshot image of the service on Google Maps.

1.2 Word cloud

Word Cloud, also called Tag cloud, is a weighted words list to present visual summary of text

data sets. In web technology, the word cloud is typically used to depict keywords metadata on

3 http://cs.uef.fi/mopsi

http://cs.uef.fi/mopsi
http://cs.uef.fi/mopsi

websites or to visualize text data. Usually tags are single words and prioritized by font size in

two-dimensional word clouds where words are not allowed to overlap. [2].

In the early days, word clouds were used on geographic maps to show the magnitude of
different regions in font size, an early printed word cloud example is weighted English words
list Douglas Coupland's Microserfs [3]. Word cloud has become popular since the 2000s
because of its frequent usage on social media, especially on web pages [4]. With the
development of internet technology, millions of users signed up for web blogs and word
cloud became a tool of navigation to help users to reach the final web page quickly and to
summarize overviews of contents from web blogs [5]. Word cloud can be generated from any
document. During the process if a word appears in multiple documents the same words can
be placed in one location with the same color and orientation. With this idea, the comparisons
can be made easily for similar documents by utilizing similar word clouds [6]. A word cloud

can also be used for the assessment of comments and evaluate risks for public safety [7].

In a word cloud a group of words combines into one and the importance of a word is
demonstrated by font size with Hypertext Markup Language (HTML) elements applied. In
Mopsi | use HTML Canvas elements to present word clouds. Word font size in word cloud
indicates different meanings. Based on the definition of importance of words, the word
clouds can be classified into three types.

e Frequency-based word cloud

e Significance word cloud

e Categorization word cloud

In a common frequency-based word cloud the font size of a word represents the frequency of
occurrence of the words in a document. Frequency-based word clouds appear prevailing on
Social media. For example, we often see word clouds summarizing news and word font size
shows how frequently the words are used. Figure 1 (a) shows a frequency-based word cloud
of a public letter released on the White House official website. The data i used is the text of
the letter from the president to the speaker of the house of representatives and the president
pro tempore of the senate. The letter title is “Letter from the President -- Report with Respect
to Guantanamo”, released by the White House on January 19, 2017. In the word cloud the
word “Guantanamo” has the largest font size, which means the word “Guantanamo” was

mentioned the most often in this news. The word “States” has a smaller font size than the

word “Guantanamo”, which means the word “States” was mentioned less often than the word

“Guantanamo”.

In significance word cloud, word font size represents the importance of words in all
documents. Term frequency-inverse document frequency (TF-IDF) is a technology to reflect
how important a word is to a document or corpus [8]. Scoring each word by TF-IDF and
showing word score distribution is one kind of significance word cloud. In [9], it shows
another kind of significance word cloud. The paper scores co-occurrences of words with
CoreNLP [10] and then draws words in two-dimensional space with t-distributed stochastic
neighbor embedding (T-SNE) [11]. CoreNLP is a Natural Language Processing (NLP)
toolkit which is developed by Stanford University. T-SNE is a technology to visualize high-
dimensional data in low-dimensional space [12]. Figure 1 (b) shows a word cloud ”Machine
Learning” article from Wikipedia. The word “unsupervised” is the most important word for

this article.

A categorization word cloud is another kind of word cloud in which words represent the
category and word font size shows the number of items in that category. Usually it is used in
search engine marketing (SEM) and search engine optimization (SEO). In SEM, words can
present a website category and the font size of the word shows how many websites that
category contains. In SEO, a website can be classified into different categories and each
category contains web pages. If we consider a website to be a document and categories are
words, then the number of the webpages where the word appears is the font size of the word.
Categorization word clouds can help users to navigate the content in the information system.
The website DigitalMeetsCulture uses the categorization word cloud. Figure 1 (c) shows the
categorization word cloud in DigitalMeetsCulture website. The word “digital preservation”
has larger font size than ”3D”, which means there are more articles on “digital preservation”

than articles on “3D”.

https://en.wikipedia.org/wiki/Text_corpus

fomber G, Nk i
§ ‘ "/‘ et polynomial
2B decision problem
AanC‘ learn time

ml]lmry@"o,’\\dctcmlonn — Se represemtation—SPPTSe
: “‘h:'i:::'?q?“\ Ythreatt:. weiie TUlE-based
years g nlte =l ({) ; — method machine dictionary ”"P"'” science
,—Guantanamq = unsupervised ...
. bipartisan a“lcslrnh - S 1 : |)lu|l(ll()ll |t AT nm;,, supery e
. Sssﬁﬁ}r"lfr;lrl)(:?lt()aéteessedround A : enetic algor llllm \-|“"'\"~H computational theory
1d en Pmcd : dory b v
ff,?\'.l.,,,ffCongress closing o, = '.':‘n:l.'f..'; classifier
LCOnte POLItCS cople - neural
o u‘m\pn.hg;‘l\tn‘ res }’"” ible = - network
: bayesian
(a) Letter from the President (b) "Machine Learning” article from Wikipedia

mation Antonella Fresa archaeology art Athens audiovisual augmented reality Bet

onference conferences and events conformance check Coventry Universit

culture Digital Heritage digital humanities digital libraries dxgltal preservation daitisation digitization
LE education EGI EUDAT Ei Europeana Europeanaphotography Europeana Space European

jigital art Digital Cultural Heritage digital

AGE e-Infrastructures e-leaming E-Space E

ition Etvos Lordnd Ur n interactive installation IPR KU Leuven

o formats Fred Truyen Girona GIS
London MediaConch metada
photography Pisa PREFORMA preservation Promoter REACH project research RICHES Sarah Whatley standards technology UNESCO user engagement VeraPDF video Vienna

(c) Navigation service in website DigitalMeetsCulture

museums Neil Forbes open hes PCP PDF/A pert rts Photoconss

Figure 1: Three different types of the word cloud. (a) Frequency-based word cloud which is
generated from the data from the news. (b) Significance word cloud of an article. (c)
Categorization word cloud of content category in website DigitalMeetsCulture.

According to the different appearance of the word cloud there are two types of word clouds:

e Non-shaped word cloud

e Shaped word cloud
Non-shaped word clouds have shape, but I call it ‘Non-shaped word cloud’ because the shape
of this kind of word cloud is changing by different text data input. This is a kind of typical
word cloud, words usually will be packed into a square region. This kind of word cloud does
not have a fixed shape. For example, the web applications WordCloud* and TagCrowd? allow
one to generate a word cloud without shape online while WordClouds® allows one to generate
shaped word clouds. In Figure 2, it shows three word clouds generated by these three web
applications with the same text data input. Figure 2 (a) and Figure 2 (b) are the non-shaped
word clouds, these two word clouds do not have fixed shapes. Figure 2 (c) is a heart-shaped
word cloud, the main idea of the heart-shaped word cloud is to pack all words into a two-
dimensional heart-shaped space. After all words are placed, the shape of all words is heart. In

the shaped word cloud the shape is usually a two-dimensional geometric space. In Section 6 |

4 https://www.jasondavies.com/wordcloud
5 https://tagcrowd.com
6 https://www.wordclouds.com

https://tagcrowd.com/
https://www.wordclouds.com/

will illustrate the basic algorithm to generate a shaped word cloud with a given weighted

words list.

affinity approach based clouds

: < cooccur corpus document
‘Q / j ¢ generate keywords large
kewgfds . i et placement semantic
significance

\\/ ~ words

(a)Non-shaped word cloud by WordCloud. (b) Non-shaped word cloud by TagCrowd’

(c) Heart-shaped word cloud by WordClouds

Figure 2: Using the same text data input to generate word clouds by three different
word cloud generator web application tools. (a) and (b) are non-shaped word clouds
while (c) is a heart-shaped word cloud.

1.3 Thesis structure

My thesis consists of seven sections. Section 1 introduces what are Mopsi and word clouds.
Section 2 explains how basic word clouds are generated. Sections 3, 4, and 5 introduce how
word clouds are generated by steps. Section 3 shows linear font size function and logarithmic
font size function and also explains how these two font size functions can affect word clouds.
Section 4 shows primitive collision detection and its limitations. Because the function of
primitive collision detection is slow, | will introduce AABB and quadtree with faster
performance in collision detection. Also, | show how to find a new position when a word

collides with another one. In this section, | will introduce Archimedean Spiral that can solve

7 https://tagcrowd.com

such problems. Section 6 illustrates how to create city shapes and word clouds in shapes. |
show how to generate word clouds in heart shape and tree shape while using various word
quantities, font size functions, and different word weight distributions to explore how these
elements affect word clouds and their visually recognizable shapes. In Section 7 | will
introduce how to apply word clouds on Mopsi. At the end there is the list of all references

that are cited in my thesis and the appendixes.

2 Word cloud on Mopsi

In this section, | introduce the whole picture of the word cloud on Mopsi. The main idea of
word clouds on Mopsi is to generate word clouds in an image format with given input data
and draw it on Google Maps. To implement it, the word cloud on Mopsi contains three main
steps: (1) Preparation of input data, (2) Generation of a word cloud as an image within given
input data, (3) Drawing word cloud image on Google Maps. Mopsi will prepare data for input
for my tool. Section 2.1 will describe where data comes from and what input data looks like.
My main work in this thesis is to generate a word cloud and place word cloud on Google
Maps. I will introduce the main algorithm to generate a word cloud and place word cloud on

Google Maps in Section 2.2 and Section 2.3.

Figure 3 shows how the word cloud tool works in Mopsi. Figure 3 (a) lists many geotagged
photographs on the left side and it also shows same geotagged photographs on Google Maps.
One cannot see clearly what those photographs refer to. So, | will generate word clouds to
represent the photographs. After clicking the word cloud icon which is located at the top right
corner, a word cloud will be generated from geotagged photographs that are listed on the left
side and the word cloud will be placed on Google Maps. Figure 3 (b) shows how it looks.
The word cloud gives us a better summary of those photographs. In Figure 3 (b), we can see

that many of the photographs refer to “lounas” and “kahvila”.

8 = = Il Rctantans 40510 dss o Seelte. O KR wWhoe

;"*‘:‘,f S = o [o -

S o
9 B :
? :-si‘:‘i—" ' ~<second -hand nrepéir

- g

P 7, g S, /

Telirae, onodoksng E— 2upyora

g_‘f:__ - &y.oraluke O O wl If 1(!

— hotel

= - gggnggcgth|la
@ MRS e ? 28_3' el 2k Ij ng:.z Izzakampaamo
@ SEmms 8 C wm‘:’ .B’p

g pa -3 gg (a?gtses:la X
6Tt | vy g %;E_S g-m %.2 hieronta
e & 5 2 k -

§ == - 5 5 8 orjaamow s

= iV -
\ ik 3 3
r===" 10
el

pn o
9 S - +
L :E".'. m SOCOR woo - -——— — :.,

¥ login OMopsl Top Tools

(b) After click word cloud icon, the word cloud is shown on Google Maps instead

Figure 3: How to generate a word cloud with the tool in Mopsi

2.1 Preparation of input data

In my thesis, input data is extracted from Mopsi. Mopsi will provide each photograph’s

information and process it for my use. In this section, | am going to introduce what the source

data is and what the prepared data is.

Geotagged photographs and trajectories are two types of Mopsi data. There were more than

35,000 geotagged photographs generated by 2,400 registered users in 2017, according to [13].

In Mopsi each geotagged photograph contains keyword property, latitude property, and

longitude property. Keyword property of geotagged photograph is a text describing the

geotagged photograph. Latitude property and longitude property form the location in the

geographic coordinate system, to show where the geotagged photograph was taken. Mopsi

will extract keywords, latitude, and longitude from geotagged photographs. Table 1 shows

the data structure of keyword property, latitude property, and longitude property.

Table 1. Source data properties

Column Type Description Example
Keyword | String Text string of geotagged photograph kahvila, ravintola
Longitude | Number | Longitude value of geotagged photograph
23.184691 (23°
11'4.8876")
Latitude Number | Latitude value of geotagged photograph 62.926880 (62°
55'36.7674")
Table 2. Properties of input data that Mopsi prepared
Column Type Description Example
Word String Unique text string kahvila
Frequency | Number | How many times the keyword appears in the 5
source date
Longitude | Number | Longitude value of geotagged photograph
23.184691 (23°
11'4.8876")
Latitude Number | Latitude value of geotagged photograph 62.926880 (62°
55'36.7674")

10

The input data that Mopsi provides is an object array. Each object contains word property,
frequency property, latitude property, and longitude property. The keywords of source data
are a series of text strings. The regular expressions, sequences of characters that define a
pattern and describe a certain amount of text, will create a list of unique keywords and

present their frequency in the source date®.

Table 2 shows the input data structure that Mopsi prepared. Word property is the content of
what the word cloud will draw. Frequency property will determine word font size in the word
cloud. I will use latitude and longitude properties to calculate where the word cloud is placed

on Google Maps.

2.2 Generation of word cloud

In this section, | will introduce how to generate the word cloud as an image with given input
data. The main idea is to draw all words into a two-dimensional space and save it as an

image. In this thesis, | will draw all words on an HTML canvas and save it in image format.

In the thesis, | will use frequency-based word clouds [14]. It means if a word has a higher
frequency value than other words, the word has largest font size in the word cloud. Section 3

will introduce how to calculate font size for each word with a given word’s frequency.

The amount of geotagged photographs can be different in different regions and the keywords
of each photograph can be modified. So, the number of words might be different in different
regions. To show all words in the word cloud, | will set a big two-dimensional space and
draw all words near the center of the two-dimensional space. After all words are drawn, the
program will crop the part with words and save it as an image. In this thesis, two-dimensional
space is a square where height and width are the product of the highest length of word among

the words multiplied by twice the number of words.

There are two main steps in generating word clouds with given data. (1) Calculate each word
weight and font size. (2) Find an optimized position where each word can be drawn in the
two-dimensional space. Generate Word cloud shows the algorithm to generate a word

cloud. Step 1 in Generate Word cloud is to calculate font size for each word, it shows how

8 http://www.regular-expressions.info/print.ntml

11

http://www.regular-expressions.info/print.html

big each word will be drawn. Section 3 will introduce how to convert word frequency to the

word font
and w are

in Section

Generate

size. Steps 2 to 22 illustrate how to find positions for drawing words. In step 7, v
the parameters of Archimedean Spiral which | am going to introduce in more detail
5.

Word cloud: generate word cloud

Input: - w = [w;...w;]: the ordered words object array
Output: word cloud image
Algorithm:

1:

Calculate weight and font size for each word w

2: Calculate highest length of word among w and assign to lengthy,

©O© 00N O Ol bW

10
11

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22
23

: Calculate number of w; and assign to number,,

: Assign a square that side length is length, * number,, * 2 to P

- Initialize a square where length of each side equals length,, and mark as square
. Initialize a random position in square for each word w

: Set v, w with fixed value

: Draw first word at central position in P, add to W,;4ceq

: Remove first word form W

- Assign position of w to [WpositionX’WpositionY]
: For each w in W:
Assign 1 to step

If Word Overlap Placed Words (W, W p4cear [Wpositionx Wpositiony]) 1S true
Add w 10 Wy, 14ceq
Draw w at wygjtion in P

Else
Increase step by 1
Assign v = step * cos(w * step) 10 Wysitionx
Assign v = step * sin(w * step) 10 Wyositiony
go back to step 13

End If

: End For

: Return P as image

12

Word Overlap Placed Words: check whether current word overlaps with any placed words
when rotating current word 0 degree and 90 degree
Input: - w: the current word

- Wiacea: the placed word object array

- [WpositionxWpositiony |- the position of the current word in P
Output: true or false
Algorithm:

1: Assign true to notOverlapped
2: For each word wygceq in Wacea:

3: If woverlap wy4ceq

4: Assign false to notOverlapped
5: Break

6: Else

7 Assign true to notOverlapped
8: End If

9: End For

10: If notOverlapped is true

11: Return true

12: Else

13: Rotate w 90 degree

14: For each word wygceq IN Wigceq:

15: If woverlap wygceq

16: Assign false to notOverlapped
17: Break

18: Else

19: Assign true to notOverlapped
20: End If

21: End For

22: If notOverlapped is true

23: Mark as rotate 90 degree

24 Return true

25: Else

26: Return false

27: EndIf

28: End If

13

2.3 Place word cloud on Google Maps

In this section, | will introduce how to place the word cloud image on Google Maps. Google
Maps will provide an Application Programming Interface (API) to place images on Google
Maps as an overlay. | will show an algorithm to calculate the coordinate point at the

geographic coordinate system on Google Maps to place the word cloud image.

Google Maps is a web mapping service that was developed by Google [15]. Google Maps
offers real-time traffic conditions service, route planning service, satellite imagery service,
and so on. Google Maps also provides API for the maps for developers to customize maps
with their own content. API is a computing interface that defines how software interacts.
According to Google Maps documentation, there are at least Maps JavaScript API, Maps
Static API and Maps Embed API for developers to use. In this thesis, | am going to use Maps
JavaScript API that Google Maps provides to show word cloud images on Google Maps.
Maps JavaScript API has four basic map types:

e Roadmap: this is default map type to display default road map.

e Satellite map: this map will display Google Earth satellite images.

e Hybrid map: normal road map and satellite views are displayed on map.

e Terrain map: displays a physical map based on terrain information.

JavaScript API has three custom map types:
e Standard tile sets map: Standard tile sets consist of all tiles which constitute full
cartographic maps.
e Image tile overlay map: this type map usually displays images on the top of the
existing map.
e Non-image map: this map type allows developers to manipulate the display of map

information at the most fundamental level.

Google Maps overlays® are the objects on the Google Maps that are tied to longitude and
latitude coordinates, it allows you to draw lines, areas, points, etc. There are many kinds of
overlays, such as markers, info windows, shapes, images, and so on. TNTgis is advanced
software for geospatial analysis. According to the release of TNTgis!® in 2012, Google Maps

consists of many pieces of tiles, which is called tileset structure. Google Maps overlay will be

° https://developers.google.com/maps/documentation/javascript/customoverlays
10 https://www.microimages.com/documentation/TechGuides/78googleMapsStruc.pdf

14

set on top of existing map as a piece of tile. In this thesis, | will use image tile overlay map
type. | will display an image on existing map at a specific location. In this thesis, each word
contains geographic coordinate points value. | use functions (1) and (2) to calculate where
the word cloud image will be placed on the map. In function (1), latitude; is latitude value
of it" word while in function (2), longitude; is longitude value of i*® word. In both
function (1) and function (2) nis the number of words. Average latitude value and
longitude value are latitude yerqge aNd longitudegyerqge - The word cloud image will be
placed at latitudegyerqge and longitudeyerqge. ON Google Maps.

, _ Y, latitude;
latitudegperqge = ==—

(1)
(2)

n

. _ Y, longitude;
longitudegyerage = D —

In this thesis, | use Maps JavaScript API to place a word cloud image on Google Maps. Maps
JavaScript API provides an OverlayOverview class for creating my own custom overlays (see
Appendix 1). The algorithm Display Word Cloud gives a procedure on how to place the
word cloud image on Google Maps. LatLng is an array containing a geographic coordinate
point where each geographic coordinate point contains latitude value and longitude value.
The word cloud image is image, which is generated with given input data, which I
introduced in Section 2.2. The Google Maps object in the web application is map. The
Google Maps object is initialized by importing Maps JavaScript APl and gets a map
document object model (DOM) element.

Display Word Cloud: display word cloud on Google Maps

Input: -LatLng = [lating;... latlng;]: The geographic coordinate points array
-image: word cloud image
- map: Google Maps object

Output: map with image as overlay

Algorithm:

- Assign all latitudes in LatLng to latitudes

: Assign all longitudes in LatLng to longitudes

: Calculate summation of latitudes and assign to sum,,sirudes

: Calculate summation of latitudes and assign to sumyongirudes

: Calculate length of LatLng and assign to lengthlatlng

: Divide sumygituges DY length g and assign to average,,titudes

latin

: Divide sumyongityges DY length and assign to average ongitudes

lating
- Initialize map
: Place image at point [averagetitudes AVETage ongitudes] ON map as overlay

© 00 N OO O A WDN B

15

3 Word font size

In this section, | will discuss how to calculate word weight and font size for each word. In
Section 2.2, | introduced two main steps to generate word clouds with given data. (1)
Calculate word weight and word font size for each word, (2) Find the best position where
each word can be drawn in a two-dimensional space. In this section, two functions are

discussed to calculate font size for given input words.

In this thesis, | choose the frequency-based word cloud method to generate my word cloud. In
the frequency-based word cloud, word weight equals the value of the word’s frequency. The
basic idea of the frequency-based word cloud is that font size will represent how many times
the word appears in the source data. In this thesis, | use the Canvas API to draw words in
two-dimensional space through an HTML Canvas element. | use pixels as the unit of font size
in the HTML Canvas. There is a problem when | show the frequency-based word cloud on
the web. When word frequency is very low, the word font size on HTML Canvas will be too
small, and the word cannot be recognized by human eye. When word frequency is very high,
then the web page might not show all the words properly as some words will be outside the
physical device screen (such as mobile phone, laptop, and so on). I want my word cloud: (1)
Show all words on the web page. (2) Have all words easily recognizable by human eye. (3)

Increase word font size with word frequency.

Based on my considerations, | have two candidate monotonic functions. The first function is
a monotonic increasing linear function, which I mark with lif (Wyeigse). The Second
function is a monotonic increasing logarithm function, which I mark with lof (Wyye;igne). The
parameter wy,e;gpe N DOth Lif (Wyyeigne) and lof (Wyyeigne) is the weight of the word. | want
word font size change in a range, so | predefined the maximum font size of the word, MAXF,
and the minimum word font size, MINF. If all the words have the same weight, | will assign
MINF to each word as font size. In my word clouds, all the words have the same font size
when all the word weights are the same because the relative font size of the word represents
different word weight. How large word font size will be assigned when all the word weights
are the same depends highly on how one designs his word cloud application. Based on my, |
will check if all word weights are the same or not by comparing Maxwy.;g, and
Minwye;gne. The parameter Maxwy,e;qye is the maximum word weight in a weighted word

list while Minw,,,¢; g is the minimum word weight in the same weighted word list.

16

Figure 4 shows an example of how the word font size is changing with different words
weight. In this example, | use cities in Finland and their populations as input data. The city
name is the word while the population is the word weight. Appendix 2 shows the input data |
used in this example. In the word cloud in Mopsi, | want all words to be seen clearly on the
web page and all words to be visible on the screen. So, | predefined MAXF and MINF. The
value of MAXF and MINF is determined by application itself. It depends on how one wants
the application to perform, if my application prioritizes just a few of the top biggest words,
then MINF can be zero in the case of Maxw,,e;g;e and Minw,,,e;q;. are not equal. In this
thesis, | set MAXF is 55 and MINF is 15 because:

(1) 1 want all words in the word cloud in Mopsi show on the screen.

(2) I want all words to be visible and to be seen clearly by human eye.

(3) Personal experience.

Maxwyejgye is 648,650 in this example. It is not predefined but is determined by my input

data.

In Figure 4, when using lof (Wyeigne) Word font size increases dramatically with increasing
word weight at the beginning. After word weight is 100,000, word font size increases slowly.
In my example, word font size does not change much after word weight reaches 400,000. In
this example, the minimum word weight is 20,410 and corresponding font size is 45 after
rounding. The maximum word weight is 648,650 and corresponding font size is 55. In Figure
4, when using Lif (Wyeigse) Word font size increases at a constant rate with increasing word
weight. In this example, the minimum word weight is 20,410 and corresponding font size is

16 after rounding. The maximum word weight is 648,650 and corresponding font size is 55.

17

P
_L091Wweight o (MAXE — MINF) + MINF,

logioMaxwyeight

lof (Wweight) =

_ MINF,

Wi et —MINE o v
weight M AXWypeight

lif (Wweight) = </

MINF,

Wweight = 1

Maxwyeighe # MinWy,eighe

(1)
Wyeight = 1

Maxwyeight = MinWyeignt

Wyweight 21

. 2
Maxwyeight # MinWyeigne 2)

Wyeight = 1

M AxXWyeight = M iNWyeight

18

.———. mamweight = 648650
lEOf(?.-U?.uc.igh;) ﬂffAXF _ 55

>0
MINF =15

h‘f (wwcight)

(648650, 55)

(648650, 0)

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000

Figure 4: Graph of function lif (Wyeigre) @nd function lof (wiyeign:) When MAXF is 55,
MINF is 15 and Maxw,.;q, equals 648,650. The red line represents function
lof (Wyeigne) While the purple line represents Lif (Wyeigne)-

19

~ Hameenlinna
Nokia Rauma

< Hlizefﬂl":qla\lwaakyld MikkE”\"aaﬁg}ﬁﬂklea
'5?; faasd]; e
ul_rl?”l . F’Drldlciler}suukappeenranta
0w =& elsinki xIMHelsinki
Pefigi ZFO5E Vaniaa WVasyd
= E E:.:_J!i"i-'nwc«: § 5- E'E 8 |_Tampere
4 =3 O 2 Rovaniemi
’ : = Lohja
o $PPorvoo
® <
5 S
E- 5-
A 3
-
(@) lif (Wweigne) is applied. (b) lof (Wyeign) is applied.

Figure 5: Word clouds of cities in Finland with their populations. The two word clouds are
generated with the same input text data and the same word cloud generating algorithm,

except the font size function. See input text data in Appendix 2.

Figure 5 shows two word clouds that are generated with the same algorithm and the same
input text data, except the font size function. The left word cloud in Figure 5 use
lif (Wyeigne) to calculate word font size with given word weight while lof(Wweight) is
applied to the right word cloud in Figure 5. My input data is the cities of Finland with their
populations. The red words in the word cloud are some city names in Finland and the font
size represents the cities’ population. In the left word cloud in Figure 5, we can easily see
that Helsinki has the highest population. Espoo, Vantaa, and Tampere have the second
highest and roughly similar populations. From the data table that is shown in Appendix 2, it
can be seen that the population of Helsinki is 648,650 and it is the highest population among
the cities in that list. The populations of Espoo, Vantaa, and Tampere are 281,886; 226,160,
and 234,441 respectively. The population of these three cities are not the same, but quite
similar. This matches my requirements in my thesis. One cannot recognize quickly which city
has the highest population from the right word cloud in Figure 5. The red line in Figure 4

20

shows that the word font size does not increase very much when word weight is over 20,000.
The city that has the smallest population is Hamina, which has population of 20,410
according to Appendix 2. From the right word cloud in Figure 5, if we check carefully, we
can see that the font size of the word Helsinki is a little bit larger than the font size of the
word Hamina. But it is not easy for human eye to recognized which one is bigger: the word
Helsinki or the word Hamina. Based on my consideration, | will use monotonic increasing

linear function lif (Wy,eigne) In this thesis, and I will predefine MAXF as 55 and MINF as 15.

21

4 Collision detection

In Section 2.2 | introduced the algorithm Generate word cloud which is to generate word
clouds. After that | presented the algorithm to calculate the font size for each word within
given wordlist. I will then place all the words in a two-dimensional space to find the best
position for each word. This step | call word placement, | will introduce it more thoroughly in
Section 5. The best position for a word in this thesis means:
(1) The word has a location in a two-dimensional space. | will draw words in HTML
Canvas and the location will be represented by a coordinate point. For example, (10,
10). The position of the word has to be inside the HTML Canvas, otherwise | am not
able to draw words on the HTML Canvas.
(2) The words do not collide with each other. If the word is placed with its font size at a
position in the HTML Canvas, the word cannot collide with any other words which

have already found a position in the HTML Canvas.

When two or more objects intersect with each other in a two-dimensional space or three-
dimensional space it is called collision. In digital imaging, pixels are the smallest controllable
elements of an image presented on screen. All objects on screen are made of group of pixels.
In this thesis, if a word shares one or more pixels with another word, then | determine the
word collides with another word. In Figure 6 square represents pixel. Letters H, D, H and |
are formed by groups of pixels. Letters H and D share one pixel, so | determine that letter H
collides with letter D. Another letter H does not collide with letter I, because they do not

share pixels.

Collision detection is a fundamental problem of detecting intersections of two or more
objects in the fields of computer graphics, surgical simulations and robotics. Normally
collision detection algorithms focus on two-dimensional collision detection and three-
dimensional collision detection. The collision detection is divided into broad-phase collision
detection and narrow-phase collision detection by Hubbard [16]. The broad-phase collision
detection will list all pairs of objects which have possibly collided while the narrow-phase
collision detection will determine if objects actually have collided or not and report only
those which have actually collided. There are many algorithms to detect whether two or more

objects collide. These algorithms are classified as [17]:

22

e Feature-based algorithm: The featured based algorithm works on geometric primitives
of the objects directly. For example, V-Clip [18] and SWIFT [19].

e Simplex-based algorithm: The simplex-based algorithm works on convex hulls. It
calculates the Euclidean distance of two convex hull sets to determine if two objects
collide. The Gilbert-Johnson—Keerthi distance algorithm [20] is an example of this.

e Image-space based algorithm: The image space-based algorithm is to convert a three-
dimensional geometry into two-dimensional image and manipulate image pixels. The
Cider [21] is one of well-known examples.

e Volume-based algorithm: The Volume-based algorithm is the same idea as the Image-
space based algorithm, but it uses different methods to compute images. The Volume-
based algorithm will construct a geometry mesh by its vertices to represent object
image. Then compare images’ geometry to determine whether objects collide or not.
The Gundelman [22] introduced an example of the volume-based algorithm.

e Bounding Volume Hierarchies: The Bounding VVolume Hierarchies is the data spatial
structure to recursively divide space or object itself. All objects are wrapped in
bounding volume as a leaf node in a tree data structure.

In this section, | will discuss how one checks collision detection in word clouds on Mopsi. In
Section 4.1 | will introduce my naive collision detection method, Axis-Aligned Bounding
Box(AABB). AABB is a fast way to check if a word collides with another word or not, but it
has low accuracy. In order to improve accuracy, in Section 4.2 | will introduce quadtree, a

hierarchical spatial tree data structure.

I1H

(@) (b)
Figure 6: (a) Letter “H” and letter “D” collide. (b) Letter “H” and letter ““I”” do not collide.

4.1 AABB

In this section I will introduce my naive collision detection method: Axis-Aligned Bounding
Box (AABB), one kind of bounding box, and how to do collision tests by comparing two

bounding boxes of the two words.

23

A Bounding Volume (BV) is a common method to simplify object representation by using the
composition of geometrical shapes that enclose the object [23]. There are four common BV’s
according to previous research [24,25] which are shown in Figure 7: Spheres [26,27], Axis-
Aligned Bounding Box (AABB) [28,29,30], k-direction Discrete oriented polytopes (k-Dops)
[16], Oriented Bounding Box (OBB) [31,32].

o5 @

Figure 7: Four common BV’s according to previous research [24,25].

AABB is an enclosed axis aligned rectangle that wraps a polyhedron. AABB is a common
and efficient method to detect if two or more objects overlap or not. The reasons why |
choose AABB to do collision detection tests in this thesis are: (1) AABB is easy to construct.
(2) It is straightforward to do collision tests with AABB. When | need to check if one word
collides another word or not, | just need to do a collision test between two AABB’s of
candidate words. Figure 8 shows three common AABB representations. They are: (a) min-
max, (b) min-width-height and (c) center-halfwidths. In this thesis, | will use (a) min-max to
present AABB. Figure 9 shows the AABB of the word JOENSUU in the HTML Canvas
coordinate system. In Figure 9 (a) the red rectangle is the AABB of word JOENSUU. The
values (0, 0) and (494, 96) are the representation of AABB of the word JOENSUU in the
coordinate system. Figure 9 (b) illustrates the coordinate system in HTML Canvas. If the
value is negative, the content will not be shown on HTML Canvas. So, | use only positive

values to construct AABB in my thesis.

24

(Xmins Ymin) (%mins Ymin)

[o 5
halfwidth,

height
weight halfwidth,
‘4 »

(xcenteri ycenter)

(xmax' YMG.X)

®
(a) min-max (b) min-width-height (c) center-halfwidths

Figure 8: The three common ways to represent AABB: (a) Using minimum and maximum
coordinate values along each axis to represent AABB. (b) The AABB is represented by the
minimum coordinate value, height and width of the object. (c) Using central coordinate value
and halfwidths to present AABB.

(0,0)
0,0 "
(494, 96) ‘
'
(a) AABB of word JOENSUU (b) Coordinate system in HTML canvas

Figure 9: The AABB of word JOENSUU and the coordinate system in HTML Canvas: (a)
Drawing word JOENSUU at the origin of HTML Canvas coordinate and constructing the
AABB for the word JOENSUU. (b) The coordinate system in HTML Canvas. The origin is at
the top left; from top to down and left to right are positive directions.

25

C C A
D D B N
B D B
C
C A A c
L.D B N N
B D B D
D B
c A
c A A .
s C
C
—0
D D
D |
B
B B B D
A C
C
C C q
A
A A
B
B B
_. D
D D D B

Figure 10: All the situations when two AABB collide. The red rectangle and blue rectangle
are AABBs. The point A, B, C and D are the coordinate points.

Figure 10 shows all the situations when two AABB’s collide. Based on all these situations, |
have the conditions for collision of two AABB’s:

o A, <D,

e B, =>C,

e A,<D,

e B, =2C(,
If two AABB’s match all the condition above, then the two AABB’s collide.

4.2 Quadtree

The AABB is easy to construct and to do collision detection, but why do 1| still need
quardtree? Because when words’ AABB’s collide, the words themselves might not collide. |

cannot list all such cases. Figure 11 shows three cases where the words themselves do not

26

collide but words’ AABB’s collide. In Figure 11, the AABB,,,,4 represents the AABB of the
word. The AABB of the word has the same color with the word. In Figure 11 (a), the word
JOENSUU collides the word APPLE if compared AABB)ogysyy and AABB,pp, g, but the red
word APPLE does not overlap the black word JOENSUU. The same situation happens in
Figure 11 (b) and Figure 11 (c). So, | will use quadtrees to do further collision tests in my
thesis. According to my consideration, my method to do collision detection between two
words is to compare AABB’s of the two words. If the two AABB’s do not collide then the
two words do not collide. If the two AABB’s collide, | will compare quadtrees of the two
words to determine whether the two words collide or not. The flowchart of collision detection

in my thesis is showing in Figure 12.

JOENSUU APPLE

(@) AABBjopnsyy collides with AABBpp g (b) AABBogance Collides AABB,pp;

Check

(c) AABBpeck collides AABB;,

%

Figure 11: The three examples to show AABB’s of words collide but the words themselves
do not collide. (a) AABB of the word JOENSUU collide AABB of the word APPLE;
AABB;ognsyy 1 the black rectangle while AABBpp,f is the red rectangle. (b) AABBorance
is the purple rectangle and AABB,pp, g IS the blue rectangle. (¢) AABB pqc 1S the blue
rectangle and AABBp;, is the green rectangle.

27

START

Yes

Does AABB, collide
with AABBg ?

No

No

Does Quadtree, collide Yes

with Quadtreeg ?

A does not
collide with B

 J

A collides with B

END N

Figure 12: The flowchart of collision detection of two words in my thesis.

Quadtree is a hierarchical spatial tree data structure in which each internal node has four
children. The name quadtree was given by Raphael and J.L. Bentley in 1974, in their paper
titled “Quad tree: A Data Structure for Retrieval on Composite Keys”. There are many types
of quadtrees and it can be generalized to any dimensional space. But the idea of quadtree is
always to decompose space recursively [33]. In quadtree, each node represents a unit of
important spatial information. In my thesis, quadtree stores information in two-dimensional
space. | will divide AABB of the word recursively into four regions. In my thesis, the
important spatial information means pixels of the word. Quadtree has already been proven to
be a simple and quick data structure for image manipulation [34] [35]. In my thesis, the
quadtree | will use is called Region Quadtree. The Region Quadtree represents a partition of
a two-dimensional space by decomposing the two-dimensional space into four equal regions.
Each node in standard Region Quadtree has exactly four children or no children. In the thesis,
I will use modified Region Quadtree to represent an image or AABB of the word that
consists of many pixels, where each pixel value is either 0 or 1. Figure 13 illustrates how to
divide a two-dimensional space during building a quadtree and Figure 14 shows
corresponding quadtree. All leaf nodes of quadtree in this thesis are AABB’s. If the AABB
does not contain any part of the word, | will mark it as 0, otherwise | mark it as 1, because |

am only interested about the AABB’s that contains parts of the word. Since decomposition

28

strategy of quadtree is highly dependent on the application, and based on my consideration
above, | have some conditions on building a quadtree:
e |[f all the pixel values in a region are 0, the algorithm does not continue to divide the
region and does not add the region to the node as a child.
e |[f all the pixel values in a region are 1, the algorithm does not continue to divide the
region, but adds the region to the node as a child.
e |f the size of the region is smaller than minimumBoxsize, the algorithm does not
continue to divide the region, but adds the region to the node as a child.
minimumBoxsize is the predefined threshold in my thesis.

Based on the above conditions to build a quadtree, we can see that it is easy to construct a

quadtree. The BU ild Quadtree illustrates how to construct a quadtree for the AABB of

the word.
(a) AABB of word Joensuu (b) Divide the AABB into four regions equally

joensud

(c) Divide sub-region into four regions equally

Figure 13: Illustration of dividing two-dimensional space to build a quadtree.

Figure 14: The quadtree of the AABB of the word Joensuu in a two-dimensional space.

29

Build Quadtree: constructing the Quadtree for the AABB
Input:
-AABB: the AABB of the word
- minimumBoxsize: a constant integer
Output: Quadtree
Algorithm:
1: Divide current box equally into four sub-boxes
For each sub-box:
3 If size of the sub-box is bigger than minimumBoxsize
4 If every pixel’s value in the sub-box is 0
5: Do not store the sub-box and do not continue dividing
6: Else If every pixel’s value in the sub-box is 1
7-
8
9

Store the sub-box to the current box as a child
Do not continue dividing

: Else
10: Store the sub-box to the current box as a child
11: Build Quadtree (sub-box, minimumBoxsize)
12: End If
13: Else
14: If every pixel’s value in the sub-box is O
15: Do not store the sub-box and do not continue dividing
16: Else
17: Store the sub-box to the current box as a child
18: Do not continue dividing
19: End If
20: End If
21: End For

In a two-dimensional space, | will try to place the word at a position in this space. If the word
does not collide with any other words already placed there, I will place the word at that
position. If the word collides with one or more words already placed there, | will find a new
position for it and do the collision test again. Figure 15 shows different collision situations of
the quadtree of the word Helsinki and the word Joensuu. In Figure 15 (a), when the word
Helsinki is located at Position A and the word Joensuu is located at Position B, the quadtree
of the word Helsinki does not collide with the quadtree of the word Joensuu. In Figure 15
(b), ‘i’, the last alphabet of the word Helsinki overlaps the AABB of the word Joensuu at

Position C, but the two words do not collide. In Figure 15 (c), when placing the word

Joensuu at Position D, the two quadtrees collide. It means the word Helsinki which is located

30

at Position A collides with the word Joensuu which is located at Position D. The algorithm

Quadtrees Collide shows how to test whether two quadtrees collide or not

Position A

Position B

(@) The word Helsinki which is located at Position A does not collide with the word
Joensuu which is located at Position B

Position A Position C

(b) The word Helsinki which is located at Position A does not collide with the word
Joensuu which is located at Position C

Position A

Position D

(c) The word Helsinki which is located at Position A does collide with the word Joensuu
which is located at Position D

Figure 15: Different quadtree collision situations of the word Helsinki and the word Joensuu
at a two-dimensional space. The green color means quadtrees do not collide while the pink
color means the quadtrees collide. The Position A, Position B, Position C and Position D
mean a position in the current two-dimensional space. (a) The quadtree of the word Helsinki
does not collide with the quadtree of the word Joensuu. (b) The quadtree of the word Helsinki
does not collide with the quadtree of the word Joensuu. (c) The quadtree of the word Helsinki
does collide with the quadtree of the word Joensuu.

31

Quadtrees Collide: testing whether one quadtree collides with another quadtree
Input:

-Quadtree . Quadtree of the word A

-Quadtreeg: Quadtree of the word B
Output: true or false

Algorithm:

1. If Quadtree,’s root AABB overlaps Quadtreeg’s root AABB
2 If Quadtree, does not have children

3 If Quadtreeg does not have children

4. return true

5. Else for every child in Quadtreeg

6 Quadtrees Collide (Quadtree,, Quadtreeg’s child)

7 End If

8 Else for every child in Quadtree,

9 If Quadtreeg does not have children

10. Quadtrees Collide (Quadtree,’s child, Quadtreep)

11. Else for every child in Quadtreeg

12. Quadtrees Collide (Quadtree,’s child, Quadtreeg’s child)
13. End If

14. End If

15. Else

16. Return false

18. End If

4.3 Alternatives

Quadtree can be used to check if a word collides with another word or not. But that is not the
only way to do collision detection in my case. My case is special, since | set a fixed size
HTML Canvas and work on pixels directly, so the look up strategy becomes possible to do
collision detection. In this section, I am going to introduce one alternative solution for my

case.

4.3.1 Look up strategy

The main idea of the look up strategy is to assign a unique color to the object, then look for
the object through its color. For example, | draw words Joensuu, Kuopio and Helsinki on a
fixed size HTML Canvas, as shown in Figure 16. Each word is drawn in a unique color,

represented as RGB (Red, Green, Blue) code. The words Joensuu, Kuopio and Helsinki have

32

RGB colors (0, 0, 255), (255, 0, 0) and (0, 128, 0) respectively. When I click any location on
the canvas, | will read the color at that location. | can determine which word I clicked by

referring to the color code.

Joensuu

Kuopio
Helsinki

Figure 16: Words with different colors on HTML Canvas

How do I do collision detection by using look up strategy? First, | create a fixed size HTML
canvas with transparent background in RGBA (Red, Green, Blue, Alpha), background color
is represented as RGBA, (0, 0, 0, 0). The word color on canvas is black, represented as
RGBA, (0, 0, 0, 1). Then I need to get the bounding box and location of each pixel of the
word. When | want to know if a word collides with already placed words or not, | just need to
check candidate word pixel location on canvas: Is it transparent or not? If the corresponding
location on canvas is transparent, then the candidate word does not collide with any placed

words, otherwise, it collides with one or more placed words.

33

Joensuu

Kuopio

Helsinki

Figure 17: A look up strategy to check whether the word Helsinki collides with the words

Kuopio and Joensuu or not.

For example, the words Kuopio and Joensuu are drawn on transparent HTML Canvas, as

shown in Figure 17. The red rectangular surrounding word Helsinki is a bounding box. The

dotted line rectangle is the corresponding location of the word Helsinki bounding box in

HTML Canvas. When | check whether the word Helsinki collides with placed words or not, |

get the pixel location of word Helsinki bounding box and pixel color of corresponding

location in dotted line rectangle. If all pixels of corresponding location in dotted line

rectangular are transparent, then word Helsinki does not collide with placed words,

otherwise, it collides.

34

5 Word movement

In the word cloud on Mopsi, there are words with different weights to be placed in two-
dimensional space. Which word should be placed first and which word should be second? In
my thesis, my solution is simple. | arrange the sequence by word weight, the word with the
highest weight will always be placed first. To start with the first word placement, where
should I find the place for the first word? After the first word is allocated, where should |
place the second word? For example, | have the word Helsinki and the word Joensuu to
generate a word cloud. The word Helsinki is already placed, | need to place the word Joensuu
at the next step, but which position in this two-dimensional space should be the first position
for the word Joensuu to be tried? In this section, I will discuss how to initialize a word's

position and how to find a new position for a word that collides with placed words.

In Figure 18, the word Helsinki is already placed at position,, when trying to place the
word Joensuu at poaition,, the word Joensuu collides with the word Helsinki. How can |
find a new position for the word Joensuu to try again? Should I try to place the word Joensuu
to a little bit the left, or would the right side has more chance to find a position that does not
collide with the word Helsinki. If the word Joensuu collides with the word Helsinki at the
new position, how can | find the next position for the word Joensuu? In my thesis, this

problem is called word movement.

In Section 5.1, | will introduce how I initialize the position for each word and explain the
reason why | chose this way to initialize the position. In Section 5.2, | will introduce the
Archimedean Spiral which is a method to solve the word movement problem in my thesis.
Also, | explain why | use the Archimedean Spiral to find new possible positions for words

instead of just simply moving the word to the left or to the right.

35

Helsinki

(a) The word Helsinki is placed at position,

position, positiony,

(b) The word Joensuu collides with the word Helsinki when the word
Joensuu is at position,,

Figure 18: Drawing words Helsinki and Joensuu in two-dimensional space. (a) Draw the
word Helsinki at position,, (b) Draw the word Joensuu at position, after the word
Helsinki has been placed at position,.

5.1 Word position initialization

The frequency-based word cloud has been introduced previously in Section 1.2 and it is
applied to a word cloud on Mopsi. The font size of the word represents the appearing
frequency of the word. In my thesis, the word which has the highest appearing frequency is
most important in the application. So, the word with the largest font size is the most
important word for word cloud on Mopsi. Based on this principle, | make all the words

revolve around the word with the largest font size, so the word cloud is tight and easy to

36

understand. When initializing the words, | always draw the largest font size word first and

then place other words around it one by one.

Before | initialize the position of each word in two-dimensional space, | need to initialize a
two-dimensional space where all words can be placed in. My two-dimensional space is a
square, where height and width are the product of the highest length of word among the
words multiplied by twice the number of words, marked as P. Then I initialize a square,
where height and width are the highest length of word among the words, marked as p. | place
p at center of P. Finally, I initialize a position for each word inside p randomly. After word
position is initialized, words may collide with each other and words may be out of p, that is
acceptable. Because the main idea of initializing word position in p is keeping all words
packed tightly and next section | will introduce a method which can find an ideal position for
each word in P. In Figure 19, my input words are Helsinki, Espoo, Joensuu, and Kuopio.
Corresponding font sizes are 50 pixels, 30 pixels, 14 pixels, and 14 pixels. The highest length
of words is 175 pixels and | have four words, so | initialize words positions inside a 175

pixels wide and 175 pixels high square. The red dots are the initial position of the words in p.

175 pixels

Helsinki

175 pixels Joensuu
®

Kuopio

Espoo

Figure 19: All the words’ initial positions will be within this square. The width is the product
of the highest length of word among the words. The red dots are the initial position of the
word in the square.

37

The reason for giving each word a random initial position is that it can reduce collision times
of words except for when the worst case occurs. | use Archimedean Spiral (I am going to
introduce Archimedean Spiral in Section 5.2) to be my word movement solution and constant
parameters are assigned to it. It means if the words have the same initial position, then the
words will have the same movement locus in the same starting location. For example, Figure
20 (a) shows the procedure for the word Joensuu when the word Joensuu and the word
Helsinki have the same initial position. The black dot is the initial position of the word
Helsinki and the word Joensuu. When placing the word Joensuu at the black dot, it collides
with the word Helsinki, then | place the word Joensuu at the yellow dot and it still collides
with the word Helsinki. However, moving Joensuu to the red dot there is no collision that
occurred. Eventually, the word Joensuu does three times collision tests with the word
Helsinki. Figure 20 (b) shows the word Joensuu looking for a position to be placed when the
word Helsinki is already placed, these two words have different initial positions. The black
dot is the initial position of the word Helsinki while the red dot is the initial position for
Joensuu. The word Joensuu needs to do collision test just once with the word Helsinki. So, a

random initial position can reduce collision times in a good case.

38

. 1. . L - .
.Helsinki ?hhaln‘mjd Heﬁﬂghkuu He.s.lnk|
Joensuu

(@) The word Helsinki and the word Joensuu share same initial position

L]
Helsinki

[]
Joensuu

(b) The word Helsinki and the word Joensuu have different initial positions

Figure 20: Finding a position for the word Joensuu while the word Helsinki has already been
placed. (a) Helsinki and Joensuu share the same initial position; Joensuu needs to do three
times collision tests with Helsinki. (b) Helsinki and Joensuu have different initial positions;
these two words need only one collision test.

Another reason why assign each word a random initial position within a square is that 1 want
the word cloud to organize tight. The shape does not matter, | can randomly generate initial
positions within a rectangular, circle, or other shapes. Choosing the proper square size is also
important. Otherwise, the word cloud does not look tight. In Figure 21, on the left side is a
word cloud where all the words are black. This word cloud looks tight because the initial
position of each word is within a good size square. The word cloud where every word is red
in Figure 21 looks not so tight because the initial position of each word is within a too large

space.
Helsinki Helsinki Espoo
=Joensuu

o
B.Espoo
o

Joensuu

oidon)

Figure 21: On the left side is a word cloud where each word has a random initial position
within a relatively small fixed size square. On the right side is a word cloud where every
word has a random initial position within too large space.

39

5.2 Archimedean spiral

During collision detection, if a word collides with any of the words which have already been
placed, then | need to find a new position for that word, Archimedean Spiral can determine
where the word will move to in my thesis. A point moves away from the fixed point with
constant horizontal speed and rotates with constant angular velocity at the same time, the
locus of this point is called an Archimedean Spiral. It is widely used in processing digital
light [36], bacterial determination in food microbiology [37], and processing medical images

[38]. In the polar coordinate system, it is described as equation [38]:

r(0) = a+ bo ®)

Where:
r. radial distance from origin.
a: distance between starting point and central point of solar coordinate system.

b: constant value, controls distance between successive spiral lines.

6: polar angle, such as g % 7 and 2m.

Figure 22 shows one example of an Archimedean Spiral in polar coordinate system. In the
example, a = 0; b = 2and 0 < 6 < 4w are given. The coordinate point is represented as
(r,8). The point (0,0) means the distance between original point and the moving point is 0
when moving point moves 0 radians. The point (4, 2r) means the distance between original
point and the moving point is 4 when the moving point moves 2x radians around original
point. If 6 is 2w then ris 4m. The parameter a determines where the starting point is. The
parameter b determines the distance between successive spiral lines. 8 represents how many

radians the point moves around the starting point or the original point.

40

r(@) =20

50

40

30

20

30

40

Figure 22: Archimedean Spiral geometry in polar coordinate system when a =0; b =
2and 0 < 6 < 4m.

41

I rsin(0)

rcos(H)

Figure 23: Archimedean Spiral can be described in both polar coordinate system and
Cartesian coordinate system

Considering that I will work on the Cartesian coordinate system in the thesis, | need to
convert the Archimedean Spiral equation from polar coordinate system to the Cartesian
coordinate system. Figure 23 shows how to express each equation in parametric form in the
Cartesian coordinate system. The x-coordinate and y-coordinate can be expressed as below.

X =1 *cos(wt)

y =71 * sin(wt)

Combined with equation 5, we will have equation 6 and 7:

x = (a + bwt) * cos(wt) (6)

y = (a + bwt) * sin(wt) @)

x: X-axis value in Cartesian coordinate system
y: Y-axis value in Cartesian coordinate system
t: time

®: constant angular velocity

42

1 a=11 a=21
1.7 b=1.7 b=1.7
0

a=1 a=1 a=1 Z
w Bw=03w=03

b=1 b=3 b=5
w=01w=01w=0.1

(@) (b)

a=1 a=1 a=1
b=1 b=1 b=1
w=01w=03w=0.7

©

(c)
Figure 24. How parameters a, b and o affect Archimedean Spiral when t = 400

Figure 24 shows how the parameters a, b, and o affect the shape of Archimedean Spiral.
Figure 24 (a) shows how the parameter b affects Archimedean Spiral when the parameter a

is 1 and the parameter o is 0.1. From Figure 24 (a) one can see that if the value of parameter

43

b is increased, the radial distance between moving point to the starting point will be
increased. Figure 24 (b) shows how the parameter a affects Archimedean Spiral when the
parameter b is 1,7 and the o is 0.3. From Figure 24 (b) one can see that the starting point will
move to the right if the value of parameter a is increased. Figure 24 (c) shows how the
parameter o affects Archimedean Spiral. In Figure 24 (c), the parameters a and b are 1, so
the starting point and distance between successive spiral lines are the same. When | increase
the value of the parameter w, the moving point rotates faster around starting point and it

makes more revolutions in the same number of steps.

Words: Fontsize:
Helsinki 50px
Espoo 15px
Vantaa 30px
Joensuu 15px

Vantaa

==He]lsinki

Joensuu

(a) Three words are already placed. (b) Looking for a position for the word Joensuu
Figure 25: How to move in steps when the word Joensuu collides with other words.

Figure 25 shows an example on how to use Archimedean Spiral with word clouds. The
example shows how the word Joensuu moves when the word Joensuu cannot be drawn at the
current position. In this example, my input data are the words Helsinki, Espoo, Vantaa and
Joensuu, their corresponding font sizes are 50px, 15px, 30px and 15px. The parameters of the
Archimedean Spiral | used in Figure 25 are a = 12; b = 5 and w = (.7. The equations in
cartesian coordinate system are represented as:

x=(124+35*t)*cos(0.7*t)

y={U2+35*t)*sin(0.7+*t)

Parameters x and y describe the location of the word Joensuu in a two-dimensional space.
The parameter t means moving steps of the word Joensuu. If Joensuu hasn't yet moved, the
value of t is 0. In this example, the words Helsinki, Vantaa, and Espoo have been placed, as

shown in Figure 25 (a). Red dots in Figure 25 (b) indicate the positions tried for Joensuu.

44

The initial position of the word Joensuu is at position 1. When Joensuu is placed in position
1, it collides with other words, so | move Joensuu to position 2. It still collides with other
words, therefore I move Joensuu to position 3 and see the effect. After 11 times of trial, it is
found that the word Joensuu does not collide with any words which have already been placed.
So, how many times it has been tried become the value for the parameter t. In the beginning,
Joensuu has not moved, so t is 0. When Joensuu collides with other words at position 1 which
is the first time Joensuu needs to move, then t is 1 and Joensuu has a new position which is a
red dot with the number 2. This is how | use the Archimedean Spiral in my thesis. The main
function of the Archimedean Spiral is to help the word to find the next possible position near

starting point.

45

6 Shaped word cloud

With the popularity of word clouds on social media, there are some tools that can create
shaped word clouds, for example, Tagxedo!' and WordArt*?. Shaped word clouds are also
used in learning web apps, such as ABCya'? In this section, | will explain how to generate
shaped word clouds and discuss their limitations. Shaped word cloud is a type of word cloud
that has certain shape boundary for fitting words into it [39]. In Section 2.2, | have previously
introduced how to fit word clouds into proper two-dimensional space, which is to place the
largest font size word as the first step, then put the rest of words around the largest font size
word. The algorithm Generate Word cloud which is introduced in Section 2.2 is the main
algorithm to generate word clouds. In the algorithm Generate Word cloud, it’s not
necessary to check whether words exceed two-dimensional space or not, as the size of two-
dimensional space is large enough. The algorithm to generate shaped words cloud is almost
the same as the algorithm Generate Word cloud, however, there is an extra step which is to

check if the word exceeds the two-dimensional space.

Preparing shaped two-dimensional space and fitting words are two main steps to generate
shaped word clouds. I have introduced how to generate rectangular word clouds earlier. Since
generating shaped word clouds will adopt similar method I will pass the introduction for the
algorithm. Here | will focus on how to prepare a shaped two-dimensional space. In Section

6.1 I will present how to get a two-dimensional city shape.

Section 6.2 mainly discusses the limitations of shaped word clouds by a given example. In
the example, | classify five groups of words, each group has 5, 10, 20, 40, 80, and 100 words
and these words will be assigned with equal weight distributions, linear increasing weight
distributions, and exponential increasing weight distributions. The font size functions will be
monotonic increasing linear function, which | mark as lif(Wweight) and monotonic
increasing logarithm function, which | mark as lof(wyeigse). The two-dimensional spaces
will be presented in heart shape and tree shape. | will demonstrate how the heart-shaped word
cloud and tree-shaped word cloud affect visually recognition of the shape by applying

different word quantities, weight distributions, and font size functions.

11 hitp://www.tagxedo.com/
12 WordArt.com. WordArt website. http://www.wordart.com/ last visited 11/2019.
13 ABCya.com.ABCya website. https://www.abcya.com/games/word_clouds last visited 11/2019.

46

http://www.wordart.com/
https://www.abcya.com/games/word_clouds

6.1 City shape

In order to generate a shaped word cloud, I need to place words into a two-dimensional space
of a certain shape. The shape is determined by a boundary. If I want to obtain city shape, all |
should do is to get the city boundary. Figure 26 shows the city shape of Joensuu on Google
Maps. The orange line is the city boundary line. Figure 27 shows the two-dimensional space

that has the city shape of Joensuu. In this section, I will explain how to obtain the two-

dimensional space with city shape step by step.

!%)‘ S

ve' e

| Figure 26: The Joensuu city boundary on Google Mapé.

< > - PN]
- - ’. I '1\;.;. S

a7

Figure 27: The two-dimensional space that has the shape of Joensuu city.

Nominatim API%* is a tool for searching OpenStreetMap (OSM) data by name and address,
and to generate synthetic addresses of OSM points. | will use Nominatim API to get the city
boundaries by providing city name. The output is a group of dots in the geographic
coordinate system. If | want to get the city boundary of the Joensuu city, the API® is to
retrieve the Joensuu city boundary. The result is a group of geographic coordinate values
which represent latitude and longitude. Appendix 3 is the Joensuu city boundary in the

geographic coordinate system.

After receiving the city boundary in the geographic coordinate system, | need to draw all the
dots on the HTML Canvas and line them up to get the city shape. The latitude and longitude
| got here are in Spherical Coordinate System, so | have to translate latitude and longitude
from sphere to the points on plane, otherwise city shape will be twisted. The function

fromLatLngToPoint (see Appendix 8) that is provided by Google Maps API is used to get

14 https://nominatim.openstreetmap.org/search?g=CITYNAME&polygon_geojson=1&format=json
15 https://nominatim.openstreetmap.org/search?g=joensuu&polygon_geojson=1&format=json

48

https://nominatim.openstreetmap.org/search?q=joensuu&polygon_geojson=1&format=json
https://nominatim.openstreetmap.org/search?q=joensuu&polygon_geojson=1&format=json

projected points. | marked projected latitude as latitudeProjected while longitudeProjected

represents projected longitude.

The unit of HTML Canvas is one pixel. So, the location on HTML Canvas can be
represented as (integer,integer). The difference in latitudeProjected and
longitudeProjected are quite small, so, if | draw latitudeProjected and longitudeProjected
on HTML Canvas directly, the city shape will be small. So | have to zoom in the geographic
coordinate values. My idea is to zoom in the difference between the lowest latitudeProjected
value and the highest latitudeProjected value and the difference between the lowest
longitudeProjected and the highest longitudeProjected value. For example, | want either
the city shape width is between 600 pixels and 700 pixels or the city shape height is between
600 pixels and 700 pixels. If both cannot be satisfied at the same time, then the higher value
of the height and width will be between 600 pixels and 700 pixels and the other value would
be lower. When the projected coordinate point is
(latitudeProjected, longitudeProjected), | will have the boundary condition (8) and
boundary condition (9). The difference between the lowest latitudeProjected and the highest
latitudeProjected is dif feriatitudeprojectea While dif feriongitudeprojectea 1S the difference
between the lowest longitudeProjected and the highest longitudeProjected. The number |
am looking for is multiply,que - When multiply,, .., Matches the boundary condition (8)
or the boundary condition (9), I will choose the lowest multiply, .- After 1 have found
multiply, e | let all the latitudes and longitudes be multiplied by multiply,qye- FOr
example, differiongituderrojectea @A dif feTiatituaeprojectea are 1.478642 and 0.7966174
respectively. There are many ways to get multiply,q..e In boundary condition (8) and
boundary condition (9). The algorithm in my thesis gives multiply,qme 437.5. | will get the
result shown in Figure 28 after | draw all the zoomed values on the HTML Canvas.

600 < differlatitudeProjected kW multiplyvalue <700 (8)

600 < differlongitudeProjected = multiplyvalue < 700 (9)

49

Height:616px

Width:526px

Figure 28: Zoomed in Joensuu city shape on HTML canvas.

6.2 Shaped word cloud discussion

In this section, I will generate heart-shaped word clouds and tree-shaped word clouds with
different word quantities, weight distributions and font size functions. | will also examine
how the word quantities, weight distributions and font size functions affect the shaped word
cloud. To analyze how word quantities affect the shaped word cloud, | use the same font size
function to generate shaped word clouds and I will keep the word weight distribution the
same. Next | generate some shaped word clouds with the same word quantity and same word
weight distribution, but different font size functions to analyze how font size functions affect
the shaped word cloud. When | want to know how word weight distribution affects
generating shaped word clouds, | will generate shaped word clouds by using the same words

and same font size function. In Figures 31, 32, 33 and 34, wN means the quantity of input

50

words (it is possible that all of them don’t fit into the word cloud), wS is the word font size

function and wD is word weight distribution. wN=5 means there are 5 input words. fS = lof

means the font size function is monotonic increasing logarithmic function while fS = Iif

means the font size function is monotonic increasing linear function. wD = equal means all

word weights are equal. wD = linear means word weight is increased linearly while wD = exp

means word weight is increased exponentially.

A

c
- O
'C_J] Vantaa

Joengspoo

wN=5, fS=lof, wD=equal wN=5, fS=lof, wD=linear

wN=10, fS=lof, wD=equal wN=10, fS=lof, wD=linear

=
s=10o UK
sweden Espox a-c‘ a . hl
Kuopio ccT Q:;(,,ucmk mx Q)c_ |Ce
norw yh l((’ 2 mCD Co: ' '
oo and, aren < mgo Helisnki
Vantaa Joensuu m s
>cg in
c0
<

wN=20, fS=lof, wD=equal wN=20, fS=lof, wD=linear

Espoo

5 alfalfa

china
Helisnki

ushi Joensuu
Kuop»o'“‘ and korea
coffee Vantaa a Turkey i
shl kilegumes
i nothifg %, Restaurtant
| %P, it clh
"55’ 9‘ alfalfaicechina
ki qu '1

e[ey 10}
S

smm&\s
ewelesf o

INNZE
5Wo

wN=40, fS=lof, wD=equal wN=40, fS=lof, wD=linear

s Kuopio
=1 F
o)) g
m =
Espoo
Joensuu

wN=5, fS=lof, wD=exp

Joensuu
. sushi
Kuopio Eeplantaa
bredgin
coffee

wN=10, fS=lof, wD=exp

w bread

S s coffee

® ;e Turkey
£ @ Belored e
.3
22 UKice

Vantaa Ch'na

norway

sush

wWN=20, fS=lof, wD=exp

finland korea
iceland kal Kuopio

m Sh o Vamaao
£ -O‘” gat P iceg

in Joensuu ==

33 3 fo alfalfa®

Yo 3 azuki
mm -
2 swedenat

love
china

wN=40, fS=lof, wD=exp

n

51

chickpeas
finland Sﬁffr‘m
korea sprouts jegumes
norway
Joensuu artichoke broccoli e
Kuopio lcelandhybrid gndive azyki
incabbage brussels
sweden borlotti 8
pddeL LY orlott Red snap peas
nothr’\ B ainyTuna_ choy gf:'.\]g:s beans
i
@ Poinjed _lrisee Savoy kohlrabi
Turkey ~Sweelheart fiddleneads sushi
¥ ‘Flelisnki celery Sprouts
coffee some kidney Helisnki Espoo
brea S%whﬂowm chard ESP
Restaurtanl 59 (gpne| pegy lima
broad Ninavy ice tori "split
UKeal “mangetout "\ =
water broccoflower ©¥®
shop,, garbanzos

place pinto
eggplant lentils
china sprouts
alfalfa

wN=80, fS=lof, wD=equal

Kuopio china boans gy
artichoke

sweden ° Pojptedlima broccoflower
logumes coflee satama

3 0 ddieheads
2 asparagus pat navyfiddiehea
g0ty ooy Savoy 7 broceol
s greens g
a Sweetheart isee kohlrabito ’é"-'ié‘golom
Qﬂ'bﬂnmspl“‘?:c'lmvaa oot "ot
nothi azukicollard dil| spl
" altaralennelchamomie SPiCes
g kala lavender choy'jif"®"
2 chickpeas kale marjoram
& Restaurtant Grass spinach®adg;
o oregano
sprouts, § Of"rosemary
bread § _ broad 4 " basillemon
% snap oy herbs _ parsiey
anise

cabbage
fri

iubclh’l:dh

oriander
ce

as gy
ve o

sprouts

sprouts Cauliflower runner

mustard jgntils
kidne: loye
brussels’ chard

USA Some
mung

wN=100, fS=lof, wD=equal

to g
=Zsome Red=
@ POk beet

Helisnki
inchoy eat
hichard
ice®?

o
<

wN=80, fS=lof, wD=linear

hio .

< Ice

.2 bok
dillZ-
lemon

O Helisnki
i sage
m —
(@]
<

~|iseq
A9|s.ied

Q0

wN=100, fS=lof, wD=linear

china
Kuopio

SOy split
inland~ 4 wat wn -
beetsReds g

i >
“¥"navyz chards
gpintgyg Some tori
c no ?ychoy Helisnki

friseebok””
at runner

o4ljala

in

wN=80, fS=lof, wD=exp

Turk
8 Ceat® shobigle 5
o= OB, =aNISe3

N on L .
2o g5 5 dill
=, m:-m =X 33 Helisnki S
;0Q gm'"torijnsee 8
o= m 3| kore UK

Q53 emon

3.sage
ic

wN=100, fS=lof, wD=exp

Figure 29: Generation of heart-shaped word clouds. The monotonic increasing logarithmic
font size function is applied to all the word clouds above. The number of input words is 5, 10,
20, 40, 80 or 100. The word weight distribution is equal, linear, or exponential distribution.

Joensuu
Kuopio
Helisnki

st

wN=5, fS=lif, wD=equal

Espoo

Helisnki

nnsuaop

Kuopio
Vantaa

wN=5, fS=Iif, wD=linear

sushi

Joensuu
Helisnki_in Espoo bread
Espoo Joensuu
Kuoplova"'%onee Kuoplo COﬁee y
sushi pread 2 -Hehsnkl
IN hi

wN=10, fS=Iif, wD=equal

Vantaa

wN=10, fS=lif, wD=linear

Espoo
Helisnki

Joensuu
Vantaa

Kuopio

wN=5, fS=lif, wD=exp

Espoo

sushi

Kuopio COffee

VamaaHehsnkl

hl bre_ad
|

Joensuu

wN=10, fS=Ilif, wD=exp

52

Vantaa . sweden

in
Kuopioyglea ice
sushi UK
USA iceland
norway Turkey
finland hHeI:snku
na
Coflee
bread
Espoo

wN=20, fS=Iif, wD=equal

Espoo
china Prgad, vantaa
N plag Restaurtant
! aita torl coffee
USA = eat ove korea

nothing UKtsusm;atama

Kuopio
water eggp‘ﬂﬂ”“["ﬁy some
artichoke 'E'
spn uu:s i azuki
sweden asp‘eggg’*ﬁegnland
shopkala jioncuu

norway

wN=40, fS=Iif, wD=equal

Espoo
g2 Restaurtant
Joensuu Kuopio 2 it tori
coffee waters legumes !
asparagus cabbage s';’ﬁ":;s

Vantaa ka\ﬂ fiddleheads
shop UK ner mangatout
iceland hybrid Hed fennel |ove Salama
nothing BY"9 Helisnki ice
finland gat F‘ulnlﬁdsnap beet ¢
boriotl Sweathbart, . 3t brudsels

ushi
Turkey, ,_ artichokedagliioweroread Savoy
broccoflo ,3 ree!

ki hard nnd:vc\unllls
orea eqgplant yotirabitiseeslfalia

lace kidne
? broad frgrabf ey

routs
azuki chickpeas
garbanzos
some
sweden
china

wN=80, fS=Iif, wD=equal

nothing 'egumes sushi S”“}ﬁ'norway
hybrid
place aier vorid Fikower
intand chickpeas bmccoﬂu;m:lr peas
o swede sprouts
2 garbanzos Qfalfa muslal‘d, mﬂgﬂﬁ?“.:g
B o beans egne\ .
3 2 mung sprouts
? g mﬂmln er!:rye :urlandnrazuk‘ ryx-,yrus;!;els
i
coffee 5 rise tojpbasil marmram split

Joensuu§ T‘ljdd\eheadska‘ﬂwmgano spices

avender lentils
wlara proad anisg, hi Gms;
: Sweethea chamomile © finner

Hol\snkl cho
5 amcnokepor'\gi.veyd\e mon parsley g
bok splnach dill

bread kohlrabl herbs beet
Savoy ., chin:

lowé
E muts awa)
Ip UK ruccok ’
ima orea
g Snap
@ kidney
25
-1
ES
3
a

wN=100, fS=lif, wD=equal

Kuopio

Joensuu fi nland
W

'korea
iceland

Z
1l
N

0, fS=lif, wD=linear

at

sushi

ds

Vanta; - g
ice 35 g place
:0% < Plala
o_gc g_OHhsnkl
$555" Stori €at
=25 stori B
cgesazuki
@ 3
34,.shop
LIIESA
spoo

wN=40, fS=lif, wD=linear

tob . b eaEt
sushi rea Espo ee
gg d ZZbrussels
©

chard:

5C ™ =2
%@8 ggt Hehsnknlcetorl =
“E3D C,hoy uk =

£ mp— I|m in hi

bo

kala
USA

EEN i
(@]

wN=80, fS=lif, wD=linear

tori Llimag
anise spicess
Savoy basilriace
OGrassgs Hape
@

N Aewou

g Helrsnii ﬁgla

®
H :;at (‘D hi
Split32! mﬂ:glll

N=100, fS=lif, wD=linear

norway

Vant korea
llrﬁanada =china
eI CE
Esaoo Turkey
uopio coffee in UK, .
iceland Volisnki
JoensSuu . sushi
sweden

wN=20, fS=Ilif, wD=exp

UK Kuopio
bread place chin 2 coffee
e asparagus korea

TurEey toriHelisnki
Iegumes at glfalfa

salama
pr iceland
kala Flaslaurlanl L

vt AZU

0,ater aqlchoke eal e
sweden SOMme i ﬁggplant
I
UsA
n m_wgmland

sushi
Joensuu

Espoo

wN=40, fS=Ilif, wD=exp

sweden
artichoke china g
. garbanzosTurkey 5
asparagus 3 sataﬂ'l\a mangetout
iceland g SPOUS giaifa yonirabi nmhmg

azuki anled kidney

chickpeas
Joensuu proccofiower broccoli Ch mgeKaopm
-] SA sprouts y
§ o lentls sayiflower {gnnel Halisni
= finland my I Fod o
= borioti o
i mﬂslﬂ gpiltluaa snamgﬂ gﬂbvok\oe
sushi water hybrid
in beans
place " frisce hagt kala

endive
s ko 'I‘\audleheads
jove Pinto eat%westhean
norway SavoyUl nner
some at (A

brussel

eggplant legumes
sprouts
shop

wN=80, fS=Ilif, wD=exp

some

E-)
2 mangetout

1d66e
a
g
5
s

8 finland oh
pinto cabbag

shop f tichoke lfalfa

broccoflower endive cauliflower hybridg

rlotti beans ©
Pumlad chard Cho"sweden 2

kohirabi Savé‘lSA tori e
2 broccoli peafd®at
umneetheart ") lemon basil ~snap
b 9 : oregano arise
ssels
Turkey ﬂ[\Injjslan:IQ BUsturglms lelisnki
azuki harbs =
Peas ‘spices (1) at enne lima
chickpeas navy marjoram frisee
kidney 'urﬁ"%'suv chamoml\a ice

H
collard _caraway Grass
lentils SProuts d

fiddleheads kale Cgnander

sprouts |avender
mung o
[

peaiq
Buiyiou

Esnzueqms
9 Feweles jue

wN=100, fS=lif, wD=exp

Figure 30: Generation of heart-shaped word clouds. The monotonic increasing linear font
size function is applied to all the word clouds above. The number of input words is 5, 10, 20,
40, 80, or 100. The word weight distribution is equal, linear, or exponential distribution.

53

Helisnki
Kuopio
Spoo
Vantaa
Joensuu

wN=5, fS=lof, wD=equal

Vantaa

bread

coffee
Espoo Kuopio

sushi

i
Helisnki Joensuu

wN=10, fS=lof, wD=equal

korea
Vantaa
hi bread
coffee Turkey
sushi in jce
Espoo norway
weden UK
opio :
ehsnlv china
inla
iceland
Joensuu

wN=20, fS=lof, wD=equal

Espoo

Helisnki
Vantaa .
Kuopio
Joensuu

wN=5, fS=lof, wD=linear

Espoo
Vantaa =
SUShl Helisnki

bread Nin
coffee

wN=10, fS=lof, wD=linear

USA hi
U K H?Iisnki

in
sweder 13

norway

oods

wN=20, fS=lof, wD=linear

Helisnki

Vantaa
Kuopio
Joensuu

wN=5, fS=lof, wD=exp

Vantaa
Joensuu

Kuopio

oA .
h | Espoo
coffee

wN=10, fS=lof, wD=exp

sushi
Vantaa

.
<]
2 2:3UK

snorwayns
s USAicez
swedenkispo

Espoo

3Ny

i.
QO

Bolq
o

korea
wN=20, fS=lof, wD=exp

to UK
s ores love
s S, g alfalfa shopkala,
coﬂuesr;‘iélgingp ace a china to h sushi
Vantaa m‘ceazukl at kala ellsnkl m alfalfam
Tuny 2595 4GUs Q C
eggplantalfalfa msatam a |C@ Helisnk
N ; k o5y ONaZuki
SSQ’s”v:fe'g;j-:bma tO rl aZUKI 3 3 .Ja%]gjs korea t Kuopio
uopioRestaurtant
Kuop chinafinland (‘Dhi Spro uts CDm S bread (E)jﬁeesgsgno
in £ S
5 X

wN=40, fS=lof, wD=equal wN=40, fS=lof, wD=linear wN=40, fS=lof, wD=exp

finland
some
Joensuu SPfoYts
Jegumes kldneybb
nothing borlotti €300age
co ge'ﬁhanzospi”m broceoli
iceland _.split caulifiower
Vantad gffalfa Sweetheart
Kuoplo jonyys Savoy . bf’gea'
sweden . - SOY infrisé€ beet
Espoo kalafiddleheads to Qfﬂﬂaﬂﬁ
artichoke hyh,id‘:hard”" A
USA shoplima ﬁhfyc‘f“ewbrusse\s
norway tori navy o SN fennelice
Restaurtant broad Pointed gliran;
asparagus funnersprouts Peas
waterchickpeasy mun: azuki
sushisatama beansbroccoflower

eggplant mangetout pjace
love sprouts eat Turkey
china

korea

wN=80, fS=lof, wD=equal

Turkey
finland ice
peas
. lentils
chindnavy azuki
nothing brussels |o)
placeSW”"ﬂ': kuhfra&:w
waetheart gninach
korea B3O fldishengls, gregano
legumes snap bﬂe‘l parsley
eggplant Painted*'® lemon

SOMe, collard aniseHelisnki
norway sPlit'Soy' | carawaylo

b
satama _
iu‘}(waierbfcfdtﬂeddiu G’”ﬁ%fg?aym in
g nangelouty; corianderghamomile
ST ybrd tor DK, &l basisage
Restaurtant €M'cPeascelery™| jSapinto
S artichoke Kidn€Yendive ferinel "l‘;‘zlfrd
S asparagus l’t]m‘:':oﬂ‘é:l';-‘l{r‘gaeue'greenshma
sushi garbanzos sprouts Savoy
kala mung shop cabbage sprouts
alfalfa

beans

sweden

mVantaa
bread

nnsi

oods

wN=100, fS=lof, wD=equal

ice,
tori
Redin

Soybolﬁi

kal abceheot

frisee
tochard

UK
wN=80, fS=lof, wD=linear

Helisnk

wN=100, fS=lof, wD=linear

So
=2 SOV~
v 30 o 3YYch
200 naweald
o 2 VantaaKUopio
UKZ
shop

wN=80, fS=lof, wD=exp

—
o
8 _Seatiee,

D _ 5SSO0V tori
 38330a di
LozRampsage
=220, navy uk

30
Rt
e

wN=100, fS=lof, wD=exp

Figure 31: Generation of tree-shaped word clouds. The monotonic increasing logarithmic
font size function is applied to all the word clouds above. The number of input words is 5, 10,
20, 40, 80, or 100. The word weight distribution is equal, linear, or exponential distribution.

Kuopio
Vantaa

HeJnsnkx
Espoo Joensuu

wN=5, fS=lif, wD=equal

Vantaa
Joensuu

in Espop
P‘?(uopmsushl
Helisnki
coffee
hi
bread

wN=10, fS=Ilif, wD=equal

Vantaa
Helisnki
Espoo |
Kuopio
Joensuu

wN=5, fS=lif, wD=linear

Joensuu

BreRd

Espoo, Helisn

h II n&lantaa

offee
uopio

wN=10, fS=lif, wD=linear

Espoo Helisnki
Vantaa
Joenstu,

Kuopio

wN=5, fS=lif, wD=exp

Joensuu
Espoo bread

Helwsnﬁunpiu
sushi'cm‘.ree

MO hi

wN=10, fS=Ilif, wD=exp

55

Vantaa
USA JAiDEE
Helisnki
ice Espoo
br hnlafl"\d
sushi Turkey®2 ¢

hi Mnorwaychi nﬁcem nd
Kuopiosweden

wN=20, fS=Iif, wD=equal

Ch'”asusﬁl Espoo

uri
swsdan EQGNGN Ilal(a
nolmng pl A% tam:
Helist hnland

Vantaa shup
agumés.
oreat '°" palaguswae

ala 5 me azukilceland
pready estauriant
.Joensqulees harway

wN=40, fS=Iif, wD=equal

|ce|and
nothing Ieguh%s.k u:::,’,—‘,-l‘a
eggplantat chickpgas
getout
sweden spiit b?%gcoflower water
placnca%?'a g e mmssels
lentils char ehsnk\ n’“""“’
shop navy fisee tDp\ntoII\dd\eheads
artichoke Pﬂmlﬁdl ve:ndlvegp?w[s
rilima pee
hybrid snap 4,
chiff ytim Shirabi chney “"bamm
UsAl S epar h-amn"sﬁ?@t'eua\ﬁ finland
breadgarbanzos . i9ney korea
coffée icea\!a\fakpa\a Kuapio
Turkey NOMW. Joensuu
Vantaa Espoo

wN=80, fS=Ilif, wD=equal

Vantaa
Turkey

J legumes
oens
chlcﬁ%agnk%\tater
alfalfapg; ‘edenlwls
fid Iehs
cabbage lenneﬁu kuhlrahl
choy
beans spwna':.gn isebeet
boriotti 5plc35 rqsfgn%araysln%‘fpe
mangetout mustard ny erEnkSavoy
USArunper. lemon hier snmgano
sprouts SNE 1o & derchRibmile

Kiima, conandeuﬁrass vy
coffee Sweetheartyale e marjora]?n eal

nalhmg "Vbr"’charudﬁ'" ; tOcaylumer .
sushi
Resmunﬂm’gﬁrguls celery), ruysse sa

chinaeggplant broccof outs
Kuopio iceland kala ukusovgﬁf‘gg(rllzus Dg{ﬂy
finland asparagus DStama

ice
sweden
orea
bread

wN=100, fS=lif, wD=equal

wN=20, fS=lif, wD=linear

coffee
china

alfalfa ..

sushi 8'3 eat
wsprout K,

hi Helisnki |Ce

:3 tori azuki
:®,;Satamatorea

5 bread

.—a-

@

-

wN=40, fS=lif, wD=linear

SO
plac
—koreashop

3 frisee
i eetion
sght ChOVeat

_geelyc 5rd
gszfe'hne

|°veJaensuu I Some
mm sushi
Gec
=

wN=80, fS=lif, wD=linear

alfalfa

Ane
=
Q
wna
172
F
Q=
S

rosemary e
wmfliSeE S Red &
o3
uk® 9
““fove

wN=100, fS=lif, wD=linear

Espor
susr?i ?(uopic
Kol

n coffee
Joenst'urkBYnnlana

braac' e china

KHehsn‘L;‘\’ n
Vantaré'us,\ iceland

wN=20, fS=Ilif, wD=exp

Vantaa
finlas ?e Espoo
USA e water

chmazznlas paragus
sises Sprouts
‘a”‘alfalfa

cmfaa shop
Jnensuul amchok Helisnkilove

UMEeS satama
hors AZ (K

numay astaurtal

rtan
UKK ""Q iceland

wN=40, fS=lif, wD=exp

bread
Joensuu

clhofennrwa
eggplan
asparagus
legumes . y,ir,
satamah'ggrbanzaﬁ Spro| ﬁuthung
mungbms Is man, glout place
o PiNlokohirabilimabroad
cabbage Sweetheart
kﬂlaPomtadln i dreens 9

'“""E’Savoy be e ed fennel
frisee ddieh, dsg|
'°‘3J‘3"d v caull swa:ri'm

Hahsng&

cnl‘laa Enlnls at
i chard

Balhny?ulh sprouts
Vamaharocmflowslhmg"%‘bm uf: Icchﬁw?s
sushiRestaurtant ¢ oqan

finland

Kuopio

wN=80, fS=Ilif, wD=exp

USA
12 aﬂichake
Pl spmuls
kala
salamamangetout
garhanznsbrocuoh
water bms.sfrg\:;?’_”I r -at
shop celery kal
mustard cha om éce Pointed

beans plit
tontisl O a y
cullard smnacq Helisnkidill lov
UK ok EP'E v é
e

SN, (o]
susdengap érsﬁey S
Mraccafiowe "ﬁ‘,"ﬁ""cﬁnanoram s

carawal ra:
figdel aa%éﬁscpamy rlandel a broad

asparaoﬁgc e choy i k pinto
urr'asng‘?agndwe rnsaagwpuavcy kidney

Turkey |89 kotea chickpeasSweetheart Sprouts s’
sushi finlai mungal gome 8
a

norway

nothing

coffee
eggplant

wN=100, fS=lif, wD=exp

56

Figure 32: Generation of tree-shaped word clouds. The monotonic increasing linear font size
function is applied to all the word clouds above. The number of input words is 5, 10, 20, 40,
80, or 100. The word weight distribution is equal, linear, or exponential distribution.

From Figures 29, 30, 31 and 32, we can see that word quantity is the most important factor to
affect generating shaped word clouds. If there are not enough words, it is not easy to
recognize the shape of the word cloud. In Figure 29 and Figure 30, when the word quantity
is greater than 40, one can recognize heart shape from heart-shaped word cloud, regardless of
what the font size function and the word weight distribution is. One can see the same happen
to tree-shaped word clouds. Figure 31 and Figure 32 show that when the word quantity is
greater than 80, one can easily recognize tree shape from a tree-shaped word cloud. So the
word quantity is the main factor to determine whether word cloud shape can be recognized or

not.

Appendixes 4 and 5 show when using linear font size function and logarithmic font size
function, there are numbers of words that cannot find a position to draw on heart-shaped
word clouds. In Appendixes 6 and 7 there are the tables of how many words cannot be
drawn on tree-shaped word clouds. | made 20 tests for each shaped word cloud and collected
the number of words that cannot be drawn. From Appendixes 4, 5, 6 and 7, one can conclude
that when word weight is exponentially distributed, one can display more words on the word
cloud than linear word weight distribution word cloud. Almost all the words can be shown in

the word cloud if the word weight is the same.

From Figures 29, 30, 31 and 32, one can see that the linear font size function performs better
than logarithmic one in forming shaped word clouds. Linear font size function requires fewer
words than logarithmic one to generate shaped word clouds where the shape can be
recognized. From Appendixes 4, 5, 6 and 7, one can see that the linear font size function is

always able to shows more words on the word cloud than the logarithmic font size function.

57

7 Word cloud implementation

| have already introduced how to generate basic word clouds and shaped word clouds in the
previous chapters. In this section, | will introduce how to use word cloud applications.
Currently, there are two word cloud applications on Mopsi. The first one is a diagnosis code

word cloud and the second one is a recommendation word cloud.

Figure 33 shows two word clouds of diagnosis code. Red marker ‘H’ indicates the location
of a health center where there are patients with certain disease (diagnosis) codes. Assume the
diagnosis code 18N means chronic kidney disease, 111 means hypertensive heart disease. |
apply diagnosis codes to generate word clouds for the purpose of analyzing geographical
distribution of the disease codes for patients. The font size represents the number of patients
who got the disease. In Figure 33 (a), the biggest font size diagnosis code is 169, which
means patients who suffer sequelae of the cerebrovascular disease are most common. The
smallest font size diagnosis code 195 means that the patients who have hypotension are least
common among all the patients. Figure 33 (b) shows the diagnosis code word cloud in

another health center, where a higher number of patients got E11 than any other disease.

3 125169
gN18 195 ¥KO2

(a) (b)

Figure 33: The diagnosis code word cloud

58

a Huopalahti %

r -
L J

: Fastholma
o pasita Sofianlehto

Laajalapy, ~ Word

[E75)

<
&
=X
=
2
=
©
(2
«oc 170
2
L=
ILAHTI Q‘;
S

urheilukentta Snggﬁragakl @
ferry = Bfgégghgs ﬁm{wumenttl

parhamenta g’ g‘ @VEI mt@ I a

[170] Kulosaari : ’
Vartiosaari

= Temppep@wkon rkko
1 e qunas
2E %2 8
0 a0 C a -
8582 oM, @ = kahvila: o
REaM _ £ % b (D kartano
=5 c S.CU ghureir!
g5 _som=p QD () x amysgment
3 BlaBtaSadp T o i@faar 5
=2 e25qy (D E
3 g _'C § 2 Santahamina
E‘J Suomenlinna @
0?0- Vallisaari

Figure 34: Recommendation word cloud of the city Helsinki on Mopsi

The recommendation word cloud aims to show the services in a region. Figure 34 is a word
cloud generated in the Helsinki region on Mopsi for recommendation services, the word
cloud shows what is recommended around Helsinki city center. Red words in Figure 34 are
the keywords to represent the services. For example, the Finnish word ravintola means
restaurant and buffet is one kind of meal that a restaurant can offer. From this word cloud, we
can easily tell that there are many ravintola and kahvila (Finnish word for coffee shop) in
Helsinki city center. There are also ferries and parks but the numbers are small compared

with coffee shops and restaurants.

59

References

[1] R. Mariescu-Istodor and P. Frinti, “Detecting user actions in location-based systems”,
Int. Conf. on Location Based Services (LBS), Adjunct proceedings, Zirich, Switzerland, 1-6,
January 2018.

[2] M. Halvey and Mark T. Keane, “An Assessment of Tag Presentation Techniques ”, 2017-
05-14 at the Wayback Machine, poster presentation at WWW 2007, 2007.

[3] D. Coupland, “Microserfs”, Harper Collins,1995.

[4] J. Stefan and S.Gerik. “TagSpheres: Visualizing Hierarchical Relations in Tag Clouds”,
International Conference on Information Visualization Theory and Applications, 15-26, 2016.
[5] M. Gupta, R. Li, Z. Yin, J. Han, “An overview of social tagging and applications”, Social
Network Data Analytics, pp. 447-97, 2011.

[6] Q. Castella, C. Sutton, “Word Storms: Multiples of Word Clouds for Visual Comparison
of Documents”, Proceedings of the 23rd international conference on World wide web, 2014.
[7] K. Dressel and Steffen A. Schiile. “Using Word Clouds for Risk Perception in the Field
of Public Health — the Case of Vector-Borne Discases”, European Commission, 7th
Framework Programme, 2014.

[8] A. Rajaraman, J. Leskovec, Jeffrey D. Ullman, “Mining of Massive Datasets”, Cambridge
University Press, 2011.

[9] E. Schubert, A. Spitz, M. Weiler, J. Geil}, and M. Gertz, “Semantic Word Clouds with
Background Corpus Normalization and t-distributed Stochastic Neighbor Embedding”,
CoRR, 2017.

[10] Christopher D. Manning, M. Surdeanu, J. Bauer, J. Rose, J. Finkel, Steven J. Bethard,
and D. McClosky, “The Stanford CoreNLP Natural Language Processing Toolkit”,
Conference: Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2014.

[11] G. Hinton and S. Roweis, “Stochastic Neighbor Embedding”, Advances in Neural
Information Processing Systems 15, 2003.

[12] Laurens van D. Maaten and G. Hinton, “Visualizing Data using t-SNE” Machine
Learning Research 9, 2579-2605, 2008.

[13] R. Mariescu-Istodor. “Efficient management and search of GPS routes”, University of
Eastern Finland, 2017.

[14] Y. Jin, “Development of Word Cloud Generator Software Based on Python”, Procedia
Engineering, 174: 788-792, 2017.

[15] P. Verma, and J.S. Bhatia, “Design and development of GPS-GSM based tracking
system with Google map-based monitoring”, International Journal of Computer Science,
Engineering and Applications, 2013.

[16] P. M. Hubbard, “Interactive Collision Detection”, In Proceedings of the IEEE
Symposium on Research Frontiers in Virtual Reality, pp.24-32, 1993.

[17] S. Kockara, T. Halic, K. Igbal, C. Bayrak and R. Rowe, “Collision detection: A survey”,
IEEE International Conference on Systems, Man and Cybernetics, 2007

60

https://www.researchgate.net/project/Biology-and-control-of-vector-borne-infections-in-Europe-and-elsewhere-EDENext-European-Commission-7th-Framework-Programme
https://www.researchgate.net/project/Biology-and-control-of-vector-borne-infections-in-Europe-and-elsewhere-EDENext-European-Commission-7th-Framework-Programme

[18] B. Mirtich, “V-Clip: Fast and Robust Polyhedral Collision Detection”, ACM Transactions on
Graphics, pp. 177-208, 1998.

[19] S. A. Ehmann, and M. Lin, “Accelerated Proximity Queries between Convex Polyhedra
by Multi-level Voronoi Marching”, IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2101-2106, 2000.

[20] E. Gilbert, D. Johnson, and S. Keerthi, “A Fast Procedure for Computing the Distance
Between Complex Objects in Three-dimensional Space”, IEEE Journal of Robotics and
Automation, pp. 193-203, 1988.

[21] D. Knott and D. Pai, “Cinder: Collision and Interference Detection in Real-time Using
Graphics Hardware”, In Proc. of Graphics Interface *03, 2003.

[22] E. Gundelman, R. Bridson, and R. Fedkiw, “Nonconvex Rigid Bodies With Stacking”,
ACM Transaction on Graphics, 2003.

[23] S. Dinas, Jos¢ M. Banon, “A literature review of bounding volumes hierarchy focused
on collision detection”, Ingenieria y Competitividad, p. 49-62, 2015.

[24] A. Bade, Norhaida M. Suaib, Abdullah M. Zin, “Oriented convex polyhedra for collision
detection in 3D computer animation”, Proceedings of the 4th international conference on
Computer graphics and interactive techniques, 2006.

[25] Norhaida M. Sualb, A. Bade and D. Mohamad, “Collision Detection Using Bounding-
Volume for avatars in Virtual Environment applications”, The 4th International Conference
on Information & Communication Technology and Systems, 2008.

[26] R. Weller and G. Zachmann, “Inner Sphere Trees”, Clausthal University of Technology,
2009.

[27] F. A. Madera, A. M. Day and S. D. Laycock, “A Hybrid Bounding Volume Algorithm to
Detect Collisions between Deformable Objects”, Second International Conferences on
Advances in Computer-Human Interactions, 2009.

[28] C. Tu and L. Yu, “Research on Collision Detection Algorithm Based on AABB-OBB
Bounding Volume”, IEEE: First International Workshop on Education Technology and
Computer Science, 2009.

[29] X. Zhang and Young J. Kim, “Interactive Collision Detection for Deformable Models
Using Streaming AABBs”, IEEE Transactions on Visualization and Computer Graphics,
2007.

[30] R. Weller, J.Klein and G. Zachmann, “A Model for the Expected Running Time of
Collision Detection using AABB Trees”, Conference: Proceedings of the 12th Eurographics
Symposium on Virtual Environments, 2006.

[31] J.-W. Chang, W. Wang, and M.-S. Kim, “Efficient collision detection using a dual OBB-
sphere bounding volume hierarchy”, Computer-Aided Design, 20009.

[32] S. Gottschalk, M.c. Lin and D. Manocha, “OBBTree: a hierarchical structure for rapid
interference detection”, Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, 1997.

[33] D. Angelo, “A Brief Introduction to Quadtrees and Their Applications”, CCCG, 2016.
[34] G. M. Hunter, “Efficient Computation and Data Structures for Graphics”, Princeton
University, 1978.

[35] G. M. Hunter and K. Steiglitz, "Operations on images using quad trees". IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1979.

61

https://www.researchgate.net/journal/0123-3033_Ingenieria_y_Competitividad
https://www.researchgate.net/profile/Norhaida_Suaib
https://www.researchgate.net/profile/Abdullah_Zin

[36] Glen M. Ballou,, “Handbook for Sound Engineers”, Focal Press, 2008.

[37] J. E. Gilchrist, J. E. Campbell, C. B. Donnelly, J. T. Peeler and J. M. Delaney, “Spiral
plate method for bacterial determination”, Appl Microbiol, 1973.

[38] L. Nanni, A.Lumini, and S. Brahnam, “Local binary patterns variants as texture
descriptors for medical image analysis”, Artificial intelligence in medicine, 2010.

[39] Y. Wang, X. Chu, K. Zhang, C. Bao, X. Li and J. Zhang, "ShapeWordle: Tailoring
Wordles using Shape-aware Archimedean Spirals”, IEEE Transactions on Visualization and
Computer Graphics, pp. 991-1000, 2020.

62

Appendix 1: WordCloudOverlay class

class WordCloudOverlay extends google.maps.OverlayView {
constructor(bounds, image, map) {
super(bounds, image, map);
this.bounds = bounds;
this.image = image;
this.map = map;
this.div = null;
this.setMap(map);
}
onAdd() {
const div = document.createElement("'div");
div.style.border = "none";
div.style.borderWidth = "Opx";
div.style.position = "absolute";
const img = document.createElement(*'img");
img.src = this.image;
img.style.width = "100%";
img.style.height = "100%";
div.appendChild(img);
this.div = div;
const panes = this.getPanes();
panes.overlaylmage.appendChild(this.div);
}
draw() {
const overlayProjection = this.getProjection();
const sw = overlayProjection.fromLatLngToDivPixel(
this.bounds.getSouthWest()
);
const ne = overlayProjection.fromLatLngToDivPixel(this.bounds.getNorthEast());
this.div.style.left = “${sw.x}px’;
this.div.style.top = "${ne.y}px’;
this.div.style.width = "${ne.x - sw.x}px’;
this.div.style.height = “${sw.y - ne.y}px’;
}
onRemove() {
this.div.parentNode.removeChild(this.div);
}
hide() { if (this.div) {this.div.style.visibility = "hidden"; }}
show() {if (this.div) {this.div.style.visibility = "visible"; }
}

Appendix 2: Cities in Finland with their populations

Region name in Finnish Population
Helsinki 648,650
Espoo 281,866
Vantaa 226,160
Kuopio 118,434
Joensuu 76,228
Tampere 234,441
Turku 190,935
Oulu 202,753
Lahti 119,999
Pori 84,566
Vaasa 67,465
Kokkola 47,723
Rovaniemi 62,667
Hamina 20,410
Rauma 39,410
Lappeenranta 72,801
Lohja 46,490
Hyvinkaa 46,622
Hameenlinna 67,713
Jyviskyla 140,812
Mikkeli 53,983
Nokia 33,403
Porvoo 50,224
Savonlinna 33,866
Seindjoki 63,072

Appendix 3: Joensuu city boundary in the geographic coordinate
system.

[29.6132972,62.650188],[29.6135623,62.6495318],[29.6245285,62.6467503],[29.6262394,6
2.6469752],[29.6282242,62.6465749],[29.6294816,62.6468596],[29.6306851,62.6465955] [
29.6317808,62.6453699],[29.6329853,62.6442937],[29.6332535,62.6441699],[29.6345144,6
2.643861],[29.6353778,62.6438494],[29.636201,62.6437859], [29.6367737,62.6434358],[29.
6370784,62.6428747],[29.63828,62.6421506],[29.6384997,62.6416316],[29.6382534,62.640
8827],[29.6378852,62.6402832],[29.6379313,62.6397925],[29.6374139,62.6395139],[29.63
75719,62.6392546],[29.6376475,62.6382931],[29.6380118,62.6377942],[29.63828,62.63661
06],[29.6377143,62.6354993],[29.6378616,62.6350947],[29.6375378,62.6345946],[29.6361
771,62.6344954],[29.6362147,62.6336008],[29.6356514,62.6325538],[29.6357963,62.63228
37],[29.635174,62.6316203],[29.635469,62.6312878],[29.6353135,62.6309103], [29.638344
4,62.6111662],[29.7179918,62.5507293],[29.7510543,62.5215082],[29.7611283,62.4669893
1,[29.7629083,62.4589701],[29.7632206,62.4074414],[29.8306858,62.4042442],[29.835735
7,62.3995097],[29.8448499,62.3965351],[29.8455962,62.3929524],[29.8460686,62.3918436
1,[29.851718,62.3875229],[29.8565091,62.3830477],[29.8827616,62.3758707],[29.8830849,
62.3745457],[29.945134,62.3676496],[29.9496635,62.3702152],[29.9525145,62.3720043], [
29.9696054,62.3751455],[29.9742258,62.3803936], [30.0384838,62.3881646],[30.0711485,6
2.3998894],[30.0875673,62.3934349],[30.1060947,62.3908399],[30.1309821,62.3895424] [
30.1453961,62.3914166],[30.1614347,62.3961418],[30.1781991,62.4015388],[30.192302,62
:3018651],[30.2104837,62.4116576],[30.2127305,62.412474],[30.2410745,62.4162675],[30.
2443928,62.4151471],[30.2519282,62.4021793],[30.2533454,62.397375],[30.2772304,62.35
10059],[30.2797537,62.3501237],[30.3167047,62.3579987],[30.3377553,62.3622161],[30.3
768839,62.3561705],[30.4071982,62.3373845],[30.4759378,62.3489387],[30.4931636,62.35
00916],[30.5133155,62.3541336],[30.5557279,62.3569082], [30.5699938,62.3725592],[30.6
123123,62.3591854],[30.6134184,62.356363],[30.6140751,62.3539733],[30.6147664,62.353
043],[30.6204698,62.3488243],[30.6660968,62.354695],[30.686387,62.327963],[30.688702
9,62.3241743],[30.7229577,62.3294719],[30.7617752,62.2835122],[30.7619135,62.2813418
1,[30.7656811,62.2784638],[30.7778483,62.2646325],[30.7827913,62.2586477],[30.786011
8,62.2550086],[30.7895411,62.2510199], [30.8086553,62.2610043],[30.809476,62.2696122],
[30.8109585,62.2706919],[30.8344904,62.2753378],[30.8404391,62.2786442],[30.8472038,
62.282009],[30.8602311,62.2885747],[30.8865689,62.3016362],[30.9043505,62.310261],[3
0.9207199,62.3088002],[30.9307385,62.3067193],[30.9432722,62.3059688],[30.9551691,62
:3122652],[30.96225,62.32725],[30.9619598,62.3275432],[30.9619993,62.3277475],[30.961
2132,62.3281863],[30.9599971,62.3282108],[30.9584637,62.3283581],[30.9576177,62.3287
265],[30.9568774,62.3290211],[30.9556613,62.3290211],[30.9555027,62.3295368],[30.955
0268,62.3297578],[30.9539164,62.3299542],[30.953652,62.3303471],[30.9529647,62.33064
17],[30.9514842,62.3307645],[30.9506382,62.33101],[30.9511044,62.3313354],[30.950955
4,62.3315993],[30.9499372,62.3317538],[30.9498078,62.3320459], [30.948746,62.332244],[
30.9479609,62.3322566],[30.9473409,62.3325663],[30.9471002,62.3324601],[30.9471484.6
2.3321885],[30.9465139,62.332164],[30.9457208,62.332164],[30.9452449,62.332558],[30.9
449429,62.3325187],[30.944683,62.3322991],[30.9440288,62.332385],[30.9436058,62.3326

65

059],[30.9424425,62.3329988],[31.0714363,62.4051672],[31.0773055,62.4073714],[31.091
9394,62.4198906],[31.0870055,62.4187439],[30.9543576,62.3886611],[30.9353118,62.4166
036],[30.9369018,62.4489968],[30.9427434,62.4498921],[30.9550835,62.452594],[30.9996

389,62.457725],[30.999708,62.4631429],[30.9364524,62.4918461],[30.9197226,62.4824411
1,[30.8395297,62.5583464],[30.8090771,62.5509541],[30.7501768,62.5698771],[30.692624

6,62.6019453],[30.7129567,62.6215327],[30.6683939,62.6434632],[30.6346576,62.6519599
1,[30.5914848,62.6676128],[30.5922107,62.6698347],[30.5806311,62.6906327],[30.551008

1,62.690252],[30.5168224,62.6951996],[30.5141263,62.7007805],[30.5120869,62.7070577],
[30.5098401,62.7113685],[30.5402927,62.7331668],[30.5529092,62.7494573],[30.5477589,
62.7658971],[30.5580596,62.7738685],[30.5565179,62.7767299],[30.5453393,62.7974693],
[30.5219382,62.814972],[30.5271576,62.8285974],[30.5232744,62.8267685],[30.5051641,6
2.8316286],[30.50113,62.8321773],[30.488234,62.8454401],[30.4847739,62.8449725],[30.4
84448,62.8450398],[30.4843139,62.8452406],[30.4838848,62.8454928],[30.4836139,62.845
8233],[30.4822728,62.8457939],[30.4816183,62.8458723],[30.4813179,62.8461758],[30.47

88288,62.8457547],[30.4775722,62.8461905],[30.4762351,62.8462419],[30.4763692,62.846
3974],[30.4763397,62.8464892],[30.4759562,62.84669],[30.4756517,62.8467328],[30.4746

459,62.8506527],[30.4734475,62.8554259],[30.4630598,62.8974439],[30.4650017,62.90010
82],[30.4542622,62.9003662], [30.4552492,62.901905],[30.4489299,62.9033494],[30.43616

26,62.9175614],[30.4349717,62.9181425], [30.4361841,62.9184609],[30.4363343,62.918872
4],[30.4333302,62.9453162],[30.4288456,62.9483208],[30.4179343,62.9523329],[30.41342

82,62.9550648],[30.4115078,62.9581175],[30.4104134,62.9583395],[30.3878185,62.970604
4],[30.3766283,62.9778198],[30.3772114,62.9785687],[30.3721651,62.9811978],[30.35888

28,62.9977608],[30.3613719,62.9984119], [30.351834,63.0034462],[30.3266094,63.016 7505
1,[30.3041218,63.0216546],[30.2859208,63.0257208], [30.2660467,63.0393436], [30.243327

9,63.041109],[30.2410705,63.0410973],[30.2394403,63.0424329],[30.2040909,63.0433801],
[30.186589,63.0439839],[30.1849335,63.0444112],[30.1826145,63.0443849],[30.1823607,6
3.044097],[30.1402667,63.0323534],[30.1191971,63.0369348],[30.0421843,63.0474023],[3

0.0338539,63.0476373],[30.027079,63.04676],[30.0256618,63.040508], [30.0204424,63.034

8973],[30.0032977,63.0354459],[29.9833186,63.0457416],[29.9578754,63.0347865],[29.95

814,63.0329212],[29.9585536,63.0300061],[29.959986,63.0195471],[29.9601822,63.018522
9],[29.9684929,62.9598347],[29.9527309,62.8810479],[30.0042686,62.836076],[30.005582

1,62.8308837],[30.0232107,62.8149697],[30.0252156,62.8115268],[30.0385234,62.7798748
1,[30.0900958,62.7495974],[30.1970427,62.7213801],[30.2010177,62.7159933],[30.204992

8,62.7096863],[30.2106616,62.6997794],[30.2846672,62.6591818],[30.2805884,62.6293367
1,[30.2547677,62.6389495],[30.2330603,62.6250138],[30.2108344,62.6213421],[30.203299

1,62.6174633],[30.1990129,62.6130752],[30.2105925,62.6068894],[30.2004992,62.5935751
1,[30.1872605,62.5946729],[30.1394213,62.6052513],[30.1120105,62.6083047],[29.956083

8,62.5701613],[29.9437783,62.5668969],[29.9411513,62.5767846],[29.9109407,62.5730592
1,[29.9039238,62.5826743],[29.9256842,62.592931],[29.9222054,62.6005318],[29.9277354,
62.6011546],[29.9254068,62.6046012],[29.9137577,62.6159665],[29.9085398,62.6182077],
[29.9101485,62.6191482],[29.9005427,62.628217],[29.7461305,62.63234],[29.7421771,62.6
327508],[29.6945928,62.6376944],[29.6650735,62.6417294],[29.6496916,62.6474474],[29.

6432278,62.6556254],[29.6373692,62.6546904],[29.6132972,62.650188]

66

Number of words that cannot find a position to draw

Appendix 4

on heart-shaped word cloud with linear font size function.

Linear Font 5ize Function

N=80

Exp Egqual Linear

N=5

Exp Equal

Exp Equal Linear

Exp Equal Linear

Exp Egual Linear

Exp Egual Linear

Linear

66

45
48
46
48
438
45
48
45
47
45
46
46
43

10
11

63

14

[=13]

63

14

58

63

65

10

63

14

63

14

62

10
11
12
13

10
10

B4

14

63

63

11
10

45 63
46
45

45
43

14

14

64

14

15
16
17
13
15
20

B4

64

10

63

63

45

44

14

62

Number of words that cannot find a position to draw

Appendix 5

on heart-shaped word cloud with logarithmic font size function.

Logarithm Font Size Function

N

Equal Linear Exp

N=100

Equal Linear Exp

N=80

Equal Linear Exp

40

N=

Equal Linear Exp

=20

N=10

Equal Linear Exp

N=5

Linear Exp

Equal

3

65

49

66

12
14
13
13
10

29
27
27
27
28

10
10
10
10
10

49

63

47

64
65

47

63

47

65

< < T NN

65
66
66
65
66
65

10
13
15
14
13
14

28
27
27
26
27
26

(= e =T I I =]
— - - -~
ocoocoocooo

64
62
64
61

86

45

65

14
12

28
27
27
27
27
27
29
29
26

12
13
14

83

45

65

10
10
10
10
10
11
11
10

85

46

65

17
14
15
13
14
15

85

48

65

15
16
17
18
19
20

65
65
67
63
62

85

48

64
64
64
64
65

87

46

86
85

46

42

50

13

67

Appendix 6: Number of words that cannot find a position to draw
on tree-shaped word cloud with linear font size function.

I AN

R R A S
DWW s WM D

N=5
Linear

000 0000000000000 0000

N=20

Exp Equal Linear Exp Egual Linear

1]

000 0000000000000 0oo0

N=10
1] 1]
o o
[i] [u]
1] 1]
1] 1]
o o
[i] [u]
1] 1]
1] 1]
o o
[i] [u]
1] 1]
1] 1]
o o
[i] [u]
1] 1]
1] 1]
o o
[i] [u]
1] 1]

0

(= = = = = = R = = = = = = = R = = = = = |

00O o0 0000 0000000000000

B Pl R Pl Pl W Pl Pl B Pl Pl Pl B Pl Pl Pl Pl Pl Pl P

Linear Font Size Function

Exp Equal Linear

1]

000 0000000000000 0oo0

1]

00 0000000000000 0000

N=40

13
14
13
14
14
12
13
14
12
13
13
12
14
15
14
14
12
12
15
12

Exp

(=R =R = = R = R = = = = = = = = R = R = = = = =]

N=80 N=100
Equal Linear Exp Equal Linear
a 44 a a 65
a 44 a a 65
a 47 0 a &7
a 46 0O a 64
a 47 0 a 64
a 47 0 a 64
a 46 0O a 64
a 44 a a [1:3
a 46 0O a 64
a 43 0 a 64
a 43 0 a 64
a 46 0O a 64
a 45 0 a 63
a 47 0 a 64
a 43 a a 64
a 45 0 a 113
a 45 0 a 65
a 47 0 a 64
a 46 0O a 63
a 44 a a 64

Exp Equal

4

Pod B P P G e B0 L0 e P B W B B

0000000 sED000 0000000

Appendix 7: Number of words that cannot find a position to draw

on tree-shaped word cloud with logarithmic font size function.

(= - R - T B R FE R U

Pl | b | | e b | b e b b e
(=T === I I = I T =]

N=5
Linear

(SR = T = R = I I S = T SR S = I I = I i ey Sy

1]

Logarithm Font Size Function

N=10 N=20 N=40 N=80
Exp Equal Linear Exp Equal Linear Exp Equal Linear Exp Equal Linear
1] 2 0 1] 10 1 1] 27 15 1] [
0 2 0 0 11 z 1] 26 12 1] (1
1] 3 0 1] 11 1] 1] 27 14 1] &7
a i 0 a 11 z a 25 10 L] 65
1] 2 0 1] 11 1 1] 28 13 1] 65
0 i a0 0 11 z 1] 26 12 1] 65
1] 3 0 1] 10 1 1] 27 12 1] [
a i 0 a 10 1 a 28 13 L] 65
1] i 0 1] 10 z 1] 27 11 1] 65
0 i a0 0 10 1 1] 26 13 1] 65
1] 3 0 1] 11 1 1] 26 12 1] 65
a 2 0 a 10 1 a 26 13 L] 65
1] 1 0 1] 11 z 1] 28 12 1] 63
0 2 0 0 11 1 1] 26 12 1] [
1] 2 0 1] 11 1 1] 28 11 1] (1]
a 2 0 a 10 z a 27 11 L] 65
1] 2 0 1] 11 1 1] 29 13 1] 65
0 1 0 0 12 1] 1] 7 13 1] 65
1] 2 0 1] 9 1 1] 28 13 1] 65
a 2 0 a 11 a a 28 13 L] 63

000 0000000000000 o0

N=100

Exp Equal Linear

45
a4
a5
a4
43
a4
a6
46
45
a6
a4
46
45
43
a4
a7
43
a5
a7
a5

1]

0O D0 0000000000000 0000

86
85
86
86
84
B4
86
84
85
BB
86
86
84
85
85
86
87
87
85
85

Exp Equal

62
62
64
66
63
62
a0
63
64
63
66
66
66
62
64
66
62
64
65
66

0O 0000000000000 00, 00

68

Appendix 8: The function fromLatLngToPoint

fromLatLngToPoint: function (latLng) {

const latRadians = (latLng.lat() * Math.PI) / 180;

return new google.maps.Point(
GALL_PETERS_RANGE_X * (0.5 + latLng.Ing() / 360),
GALL_PETERS_RANGE_Y * (0.5 - 0.5 * Math.sin(latRadians))
);
}

69

	1 Introduction
	1.1 Mopsi
	1.2 Word cloud
	1.3 Thesis structure

	2 Word cloud on Mopsi
	2.1 Preparation of input data
	2.2 Generation of word cloud
	2.3 Place word cloud on Google Maps

	3 Word font size
	4 Collision detection
	4.1 AABB
	4.2 Quadtree
	4.3 Alternatives
	4.3.1 Look up strategy

	5 Word movement
	5.1 Word position initialization
	5.2 Archimedean spiral

	6 Shaped word cloud
	6.1 City shape
	6.2 Shaped word cloud discussion

	7 Word cloud implementation
	References

