

Trajectories medoid and clustering

Mingyue Xie

Master's thesis

School of Computing

 Computer Science

17.06.2019

ii

The UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry,

Joensuu

School of Computing

Computer Science

Mingyue Xie: Trajectories medoid and clustering

Master’s Thesis

Supervisors of the master’s Thesis: Pasi Fränti and Radu Mariescu-Istodor

February 2019

Abstract: This thesis is focusing on the developing of web page tool to calculate the

representative among a set of trajectories by medoid method. It includes the tool

introduction, trajectory distance calculation algorithm, medoid trajectory calculation,

and similarity clustering. The work is based on Mopsi website.

Keywords: trajectory, medoid, similarity, clustering, representative

iii

Foreword

I want to thank God who has protected me from different kinds of dangers and all

difficult situations, who have given me the heart and wise to face those challenges.

I want to thank my thesis advisor Professor Pasi Fränti for reviewing my thesis draft

and giving me a detailed suggestion to optimize my thesis. I am very grateful to Dr.

Mariescu-Istodor for giving me many suggestions about programming and research. I

want to thank the University of Eastern Finland and the IMPIT program for providing

the chance to complete my master study.

I am also grateful to Dr. Oili Kohonen and my friend Nancy, who has helped me.

Finally, I would like to thank my family for giving me mental and financial support

during my study life.

iv

List of abbreviations

Ajax Asynchronous JavaScript and XML

C-SIM Cell-based similarity

DTW Dynamic Time Warping

EDR Edit Distance on Real Sequence

GPS Global Positioning System

IRD Interpolated route distance

JSON JavaScript Object Notation

LCSS Longest Common Subsequence

PAM Partition Around Medoid algorithm

PNG Portable Network Graphics

UTM Universal Transverse Mercator

WGS World Geodetic System

XML Extensible Markup Language

v

Contents

1 Introduction ... 6

1.1 Mopsi .. 7
1.2 Data Collection ... 8
1.3 Main work ... 8
1.4 Structure .. 9

2 Trajectory .. 10

2.1 Trajectory .. 10
2.2 Route ... 11

2.3 Polygonal approximation .. 12

3 Trajectory similarity ... 13

3.1 Cell Similarity ... 13
3.2 Longest Common Subsequence .. 14

3.3 Edit Distance on Real Sequence ... 16
3.4 Interpolated Route Distance .. 17

3.5 Fréchet Distance ... 20
3.6 Hausdorff Distance ... 21
3.7 Euclidean Distance ... 23

3.8 Dynamic Time Warping Distance .. 24

4 Clustering .. 26

4.1 K-medoids algorithm .. 26
4.2 Trajectory clustering ... 27

4.3 Representative-Medoid ... 28

5 Implementation ... 30

5.1 Choosing trajectory cluster ... 30
5.2 Trajectory distance methods ... 33

5.3 Trajectory simplification ... 35
5.4 The workflow of medoid page .. 36
5.5 Technology ... 37

5.5.1 Parallel computing .. 37
5.5.2 Ajax ... 39

5.5.3 Google Map .. 40

6 Experiments .. 41

6.1 Parallel computing experiment ... 41
6.2 Efficiency experiment ... 43
6.3 Accuracy with short segments .. 44
6.4 Accuracy with complete trajectories ... 49

7 Conclusions ... 51

8 References ... 52

9 Appendix (Code for parallel computing) .. 56

6

1 Introduction

The Global positioning system (GPS) is a satellite-based navigation system made up of

at least 24 satellites that transmits signal and orbital parameters, GPS receivers use this

information to compute the precise location of the user’s location and even the speed

of movement [27]. With the development of satellite positioning technology, people

can easily obtain a huge amount of trajectory data from moving objects. For example,

in [28], the author mentioned that in Beijing, there are about 1.44 million personal trips

generated by GPS-equipped taxis composed of GPS points.

When we have obtained many trajectories, we can analyze the data. An effective

method is to find similar trajectories and group them into clusters, which helps to reduce

the data by eliminating redundant information. In this thesis, we will study methods to

find the representative trajectory in a given set. Visualizing the data is a method to find

out hidden information from the data. In this thesis, we introduce a tool to visualize the

trajectories and a user-friendly interface that provides many useful options in trajectory

analysis, such as trajectory distance calculation and trajectory simplification.

A large amount of GPS data will bring problems such as displaying delays. For example,

excessive storage size causes that the process of downloading data is not smooth and

the waiting time is too long. When response time is important such as website

interaction between the user and GPS data, it is necessary to simplify the data. A

polygonal approximation method in [1] is used in our project. It reduces the trajectory

points so that GPS trajectory’s visualization quality is not compromised but the time

cost on operating the trajectory is greatly reduced [1].

There are many definitions of clustering. In this thesis, clustering is defined as

partitioning a set of trajectories into subsets, so that trajectories in the same group are

more like each other than to those trajectories in the other groups.

We can apply various methods for trajectory clustering. In [2], the author introduced a

partition-and-group framework for trajectory clustering. In [3], people apply mixtures

of regression models on clustering. The result is a set of clusters which are composed

of trajectories. Our research problem is to find a representative trajectory for each

7

cluster. Since compared with presenting many trajectories, a representative can help to

achieve a good visualization and less downloading time on GPS data. In this thesis, our

focus is on how to find out the representative for each trajectory cluster and visualize

the result on the web page.

The user can directly see the trajectory cluster and its representative, so a map on the

webpage is needed, such as Figure 1; also, interactive designs including user-click event

and hovering event which target at operating data to get more detailed information are

also important.

Based on those considerations, we have developed a tool in Mopsi platform which can:

(1) Present a list of trajectories and plot them on a map. (2) Calculate the representative

from trajectory set and highlight it on the map. (3) Provide means to select the

trajectories to be processed. (4) Provide different options for processing the data and

related representative calculation methods, so that user can compare how the

calculation affects by applying various inputs. The tool helps the user to do further

academic-related research. (5) Meanwhile, since trajectories have many points, but the

algorithms for computing similarities are slow, we provide two ways to speed up the

process: parallel computing in Section 5.5.1, and polygonal approximation in Section

2.4.

1.1 Mopsi

Mopsi 1 is a website that helps users to find where their friends are and what is around

them [4]. There are trajectories recorded by users. Those trajectories are displayed on

the map with detailed information, such as speed, traveled distance and user’s

transportation mode (walking, running, cycling, skiing) which is automatically inferred

by the method in [41]. Mopsi allows the user to search trajectories in different ways. It

also provides recommendations and tools for managing data collection.

1 http://cs.uef.fi/mopsi

http://cs.uef.fi/mopsi

8

1.2 Data Collection

Mopsi data has two types: geo-tagged photos and trajectories. Geo-tagged photos

contain information about their location and recorded time. The trajectory is a set of

GPS point stored at a fixed interval. In this thesis, we use those trajectories as the data

source. According to [12], there were more than 10000 trajectories recorded by more

than 2400 users in 2017, and the number of users and trajectories have been increasing

since then. Most of the trajectories are in Joensuu, Finland. The data structure is in

Table 1.

Table 1. Data properties.

Column Type Description Example

Latitude Double Latitude value of point 62.926880 (62°

55' 36.7674")

Longitude Double Longitude value of point 23.184691 (23°

11' 4.8876")

Timestamp String The timestamp for the point 1559983789

seconds

Altitude Double Altitude of point -1.0 meter

1.3 Main work

The contribution of this thesis is the following. We have developed a web tool called

Medoid page, which can calculate the representative trajectory for a set. The tool

provides eight alternative measures on how to compute the distance between two

trajectories, and an option for applying trajectory simplification. The tool also includes

trajectory visualization and user interaction. In the Mopsi page, the user can also

customize the trajectories set to calculate the representative. By applying this tool, one

9

can study the difference among those trajectory distance methods; find out the speed

and quality effect of using trajectory simplification. The details are in Section 5.

Figure 1 shows four sample trajectories from the user Pasi; when applying the IRD

distance (left) and Fréchet distance (right), distance here means the distance among

trajectories. The brown curve is the medoid trajectory. So, when we use different

distance methods, the distance between trajectories can be different so that the medoid

result can be different. For example, the IRD method minimizes the sum of distances

while Fréchet minimizes the maximum distance. In this way, just like Figure 1, the

medoid trajectory may vary.

Figure 1. The same trajectory set has different medoid depending on whether we use IRD distance

(left) or Fréchet distance (right).

1.4 Structure

There are eight Sections in the thesis. Section 1 contains the illustration of research

background, Mopsi introduction, and an overview of our developed Medoid tool page.

Section 2 contains the definitions of GPS point, trajectory, and trajectory simplification.

Section 3 is about the trajectory distance. Section 4 is about trajectory clustering.

Section 5 is about the implementation and technology used in the Medoid page. Section

6 are experiments; including efficiency comparison and accuracy comparison. Section

7 are conclusions.

10

2 Trajectory

In this Section, we will introduce GPS point, trajectory, route, and trajectory

simplification. Next, we will explain those terms in a more detailed way. GPS point is

a precise geographical location on the earth; it usually contains latitude and longitude

and timestamp. By using GPS devices or positioning software, we can collect those

GPS points. In our case, GPS points form the trajectory that we analyze in World

Geodetic System [31].

2.1 Trajectory

A trajectory is a path that describes the movement of a user; it is composed of GPS

points ordered by time. An example from Mopsi is in Figure 2. The timestamp is the

number of seconds passed since midnight on 01/01/1970. It is useful because it can

represent all time zones at once [29]. Timestamp 1552489200 represents Wednesday,

March 13, 2019, 11:00:00 (am) in New York, and Wednesday, March 13, 2019,

17:00:00 (pm) in Helsinki.

Figure 2. A trajectory on the map from The University of Eastern Finland to the Joensuu Areena with

sector movement

11

2.2 Route

In this thesis, there is a difference between trajectory and route. A route is a selected

course of the travel path. It refers to a representative of many trajectories, which can

indicate the common movement among those trajectories.

Figure 3 shows an example of a Joensuu-Kuurna-Kulho route (right) and a set of similar

trajectories (left) plotted on the same map. Although most parts in those trajectories are

overlapping, we can find that there are many variations among those similar trajectories

in Figure 3 (left). However, we can still identify the route which is in Figure 3 (right)

by removing the variations.

Figure 3. A set of similar trajectories (left) representing different cycling attempts on the Joensuu –

Kuurna – Kulho trajectory (right)

We can easily find the representative route from Figure 3 (left) since there are few

trajectories looks similar on the map. By treating them as a set, then select one of them

to become the representative one; but when there are many trajectories such as Figure

4, how do we find out the similar trajectory set and extract the corresponding

representative route from the set? It can be quite difficult to spot the similar ones. We,

therefore, consider using clustering to find out similar trajectories.

12

Figure 4. Many trajectories on the map generated by Mopsi’s user Pasi

2.3 Polygonal approximation

There are many methods in data simplification. Polygonal approximation [1] is one of

the methods to help simplify GPS trajectory, and Mopsi has been using this method for

trajectory simplification.

According to [12, 42], we know that polygonal approximation is very effective at

reducing the number of GPS points while preserving the approximate shapes on the

map. Meanwhile, the Mopsi system can display trajectories consisting of over 3.5

million points in less than 2 seconds. In this way, the performance of processing and

visualization will improve greatly. In the Medoid page, the ‘reduced trajectory’ means

those trajectories with applying polygonal approximation. Detailed implementation is

in Section 5.3.

13

3 Trajectory similarity

When we consider finding the similarity between the two trajectories, we need to

compute the distance. There are many methods proposed, of which I have chosen eight

to implement on our Medoid page. In this section, all the figures that illustrate trajectory

distance are from this Mopsi page2.

3.1 Cell Similarity

Cell Similarity utilizes a grid to compute the similarity between two trajectories. We

can see an example in Figure 5. According to [5], it first retrieves the cell representation

and then calculates the similarity measure using the cells. It calculates how many cells

are in common relative to the total number of cells. The disadvantage is point’s order

is not used. According to [5], this method is the least affected by increasing or

decreasing the sampling rate and performs well under noise and point shifting.

Figure 5. C-SIM distance with cell length: 30m

2 http://cs.uef.fi/mopsi/routes/contextSimilarity/

http://cs.uef.fi/mopsi/routes/contextSimilarity/

14

According to [5], we use the Jaccard index to calculate trajectory distance. It measures

the overlap degree of two trajectories by the following formula, where 𝐶A and 𝐶B

represent the sets of cells approximate trajectory A and B. 𝐶𝐴
𝑑 and 𝐶𝐵

𝑑 represent the extra

cells added from dilation.

𝑆(𝐶A, 𝐶B) =
|𝐶A ∩ 𝐶B| + |𝐶A ∩ 𝐶𝐵

𝑑| + |𝐶B ∩ 𝐶𝐴
𝑑|

|𝐶A| + |𝐶B| + |𝐶A| + |𝐶A ∩ 𝐶B|
 (1)

3.2 Longest Common Subsequence

Longest Common Subsequence (LCSS) originates from string processing where it has

been used for string similarity [13]. For example, the longest common subsequence for

strings ‘ABABC’, ‘ BABCA’ and ‘ABCBA’ is ’ABC’. When we calculate trajectories’

distance, it allows some GPS points unmatched to match some sequences in trajectories

[17]. The basic idea is ignoring the GPS points which are far away. The function below

[14] describes the principle.

𝐿𝐶𝑆𝑆(𝐴, 𝐵) = {

0, 𝑖𝑓 𝑛 = 0 𝑜𝑟 𝑚 = 0

1 + 𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝐴), 𝑅𝑒𝑠𝑡(𝐵)), 𝑖𝑓 𝑑(𝐻𝑒𝑎𝑑(𝐴),𝐻𝑒𝑎𝑑(𝐵)) ≤ 𝜀

𝑚𝑎𝑥 (𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝐴), 𝐵), 𝐿𝐶𝑆𝑆(𝐴, 𝑅𝑒𝑠𝑡(𝐵))) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2

In Figure 6, m and n are the lengths of two trajectories A and B; ε is a threshold to

determine whether to take this point into account. If A is composed of a list of GPS

points such as (a1, …, an), then Head(A) is the first point a1 in A. Rest(A) means the rest

of points, which is (a2, …, an), d measures the distance between two points.

For some trajectories, there exist noise. When a distance method requires pair-matching

for every GPS point inside the trajectory, the noise will affect the distance result. The

advantage of LCSS is: By ignoring ‘far-away’ points, it can measure the distance

between those trajectories that may have lower quality or noises. So, it has better

robustness against noise.

15

In Figure 6, we use LCSS to measure the similarity between two trajectories A and B.

Here ε is 45 m, and the distance is 15. We can find out that a few points are ignored

since they are far away.

Figure 6. Use LCSS to measure two trajectories’ similarity

The disadvantage is that it may lead to some inaccuracy. According to [17], for two

trajectories A and B, A has a list of points {a1, a2, …, an}, B is composed of {b1, b2, …,

bn}, when we increase the sample rate of A and B, the A’s transformed trajectory Ai will

be {a1, a1.5, a2…, an} and Bi transformed trajectory B’ will be {b1, b1.5, b2…, bn}; when

we decrease the sample rate of A and B, the transformed trajectories will be Ad {a1, a3,

a5,…, an}, and Bd{b1, b3, b5,… bn}. Ai and Bi have more points than Ad and Bd. Thus, Ai

and Bi’s common subsequence detected by LCSS will be larger than Ad and Bd ‘s

common subsequence. So, the LCSS values will be different when the sample rates are

different. In Mopsi, when we apply polygonal approximation on the trajectories for

simplification, the LCSS value will be reduced compared with the original trajectories.

16

3.3 Edit Distance on Real Sequence

This method is Edit distance on real sequence [15]. It originates from the edit distance

[16], which describes the number of times for inserting, deleting, and replacing to

convert string A into string B. There are many definitions for the edit distance, for

example, the Levenshtein distance contains removing, inserting and replacing a

character in the string. When we try to convert “bitten” to “sitting”. First we need to

replace “b” to “s”, so the string now is “sitten”; next we replace “e” with “i”, the result

will be “sittin”; finally, we need to insert a “g” at the end of the string, so the string now

is “sitting”. There are three operations in total, so the Levenshtein distance is 3.

EDR’s definition is in [14] and equation 3. If we have trajectories A and B with the

lengths n and m, EDR distance between A and B is the minimum number of inserting,

deleting, and replacing operations to convert A to B. Two points are considered as

different if distance between them is bigger than ε. Same as LCSS, Rest(R) means the

rest of the points except the first one in trajectory R. Figure 7 displays the trajectories’

distance calculated by EDR. Nine operations are required to convert A to B in this case,

so the EDR distance is 9. We can see the definition below [14].

𝐸𝐷𝑅(𝐴, 𝐵) =

{

 𝑛, 𝑖𝑓(𝑚 = 0)

𝑚, 𝑖𝑓(𝑛 = 0)

 min {𝐸𝐷𝑅(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆) + 𝑠𝑢𝑏𝑐𝑜𝑠𝑡,

𝐸𝐷𝑅(𝑅𝑒𝑠𝑡(𝑅), 𝑆) + 1,

𝐸𝐷𝑅(𝑅, 𝑅𝐸𝑆𝑇(𝑆)) + 1}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

Where

𝑠𝑢𝑏𝑐𝑜𝑠𝑡 = {
0, 𝑖𝑓(𝑑𝑖𝑠𝑡(𝐻𝑒𝑎𝑑(𝐴), 𝐻𝑒𝑎𝑑(𝐵)) ≤ 𝜀
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

17

Figure 7. The EDR distance between trajectory A and B is 9(left). Decreasing sample rate will affect

more on the similarity compared with increasing sample rate [5] (right)

There are many advantages of EDR mentioned in [15]. One of them is: it describes the

distance between two points using 0 and 1, so compared with Euclidean distance, it

reduces the influence of noise in the trajectory; but as is mentioned in [5], LCSS and

EDR are very sensitive when we decrease the sample rate of trajectories compare with

increasing the sample rate.

3.4 Interpolated Route Distance

It is a newly proposed measure called Interpolated Route Distance (IRD) [18]. The

basic idea is to find the interpolated point from a trajectory to another one, and make

those two points as a pair. If we can’t find the interpolated from trajectory A to B, then

vice versa, until the last point of the shorter trajectory has been visited, the average of

summation of the distances between those paired points is the IRD distance.

Latitude and longitude are on the earth’s ellipsoidal surface. However, when we

calculate the IRD distance, it requires us to find the interpolated point from a GPS point

towards a specific trajectory. So it’s a good way to transform the GPS points with

latitude and longitude into locations on a plane [32].

According to [18], if we have a point a in trajectory A, the interpolated point for a in

trajectory B is bp, the distance between a and bp should be the shortest among all pairs

between point a and other points in B. So, we use projection to calculate this point. The

18

problem is to find out the orthogonal projection onto a line. In linear algebra, the

orthogonal projection of 𝑣⃗ onto a line spanned by nonzero 𝑠 is below.

𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) =
𝑣⃗ ∙ 𝑠

𝑠 ∙ 𝑠
𝑠 (5)

In this case, 𝑣⃗ is generated by the point a (ax, ay) and the previous point a0 (a0x, a0y) on

trajectory A, so 𝑣⃗ is (ax - a0x, ay - a0y), 𝑠 is generated by point b and the previous point

b0 on trajectory B, so 𝑠 is (bx - b0x, by - b0y), the target is generating the projected point

bp on the segment composed of b0 and b. We assume bp is (bpx, bpy) then 𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) is

generated by (bpx - b0x, bpy - b0y), so with the formula 5 and known point b0, we can

calculate bp easily. Meanwhile, when 𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) > 0 and length of the projected vector

𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) is greater than 𝑠, or 𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) < 0, this projected point bp is not on the

segment formed by b0 and b. So, we choose the point that has a shorter distance with

point a from b0 and b.

Figure 9. Calculate interpolated point bp by orthogonal projection (Three possible cases); in the first

case, bp is in the segment between b0 and b; the second one and third one bp is outside of the segment

between b0 and b.

As is mentioned in [18], it fixes the problem that different sample sizes cause different

similarity. So it is better than LCSS and EDR, since these two methods will be affected

by the decreasing of sample size greatly. Meanwhile LCSS and EDR’s time complexity

are both O(N2), but IRD’s time complexity is O(l1+l2) where l1, l2 are number of points

in A and B. For each point, it needs to find out the closest point by comparing the one

with others for many times, which leads to inefficiency. The IRD distance is below.

When we sum up distances generated by those paired points, then divide it by the times,

we can get the IRD distance.

19

Figure 10. IRD distance

20

3.5 Fréchet Distance

When a person is walking a dog, we consider this person is on one curve, and the dog

is on another curve, there is a leash between them. When backtracking is not allowed,

what is the minimum length that is enough for traveling both curves? Calculating that

length is the intuitive definition of Fréchet distance.

In [20], it introduces a distance method called Fréchet distance that can solve this

problem. The idea is firstly computing proper polygonal approximations to the curves,

then compute their coupling distance. This measure takes both the location and order

of the points into consideration. The definition is in formula 6. In this case, A and B are

the trajectories, if S is a metric space, d is the distance function of S, 𝛼 and 𝛽 are the

arbitrary and continuous, nondecreasing functions from [0,1] onto [a, b]. Then the

distance between A and B is the infimum over all reparameterizations 𝛼 and 𝛽 of the

maximum over all t 𝜖[0,1] of the distances in S between 𝐴(𝛼(𝑡)) and 𝐵(𝛽(𝑡)). We can

assume t is the time point, when we reach time t, the chosen point on trajectory A is

𝐴(𝛼(𝑡)), and the chosen point on trajectory B is 𝐵(𝛽(𝑡)). We iterate the interval [0,1]

to find out two points every time, if we use Euclidean distance, then it is easy to define

𝑑(𝐴(𝛼(𝑡), 𝐵(𝛽(𝑡))), the Fréchet distance would be the value that makes the maximum

distance reaches the greatest lower bound with this sampling method. It is sensitive to

the change of sample rate and noise [5].

𝐹(𝐴, 𝐵) = 𝑖𝑛𝑓𝛼,𝛽𝑚𝑎𝑥𝑡𝜖[0,1]{𝑑(𝐴(𝛼(𝑡), 𝐵(𝛽(𝑡)))} (6)

We can see in Figure 11 (left); there are two trajectories, and the location where the

shortest ‘leash’ reaches its maximum required length. The distance is plotted red on the

left. The right part illustrates the definition, for each pair of the point, we can always

find out the biggest distance during the walking process, by changing the point we can

make the ‘leash’ get shortest.

21

Figure 11. Fréchet distance for two trajectories on the left, the right one illustrates the definition of this

method. The person is moving on the red line; the dog is moving on the blue curve, the sample point is

taken within time range [0,1]

3.6 Hausdorff Distance

Hausdorff distance measures how far two subsets of a metric space are from each other.

It is the maximum of all the distances from a point in one set to the closest point in

another set. In [21], we know that the Hausdorff distance’s definition is as follow:

𝐷(𝐴, 𝐵) = max{ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)} (7)

The definition of the distance between trajectory A and trajectory B is:

ℎ(𝐴, 𝐵) = 𝑚𝑎𝑥𝑎∈𝐴 𝑚𝑖𝑛𝑏∈𝐵 ‖𝑎 − 𝑏‖ (8)

h(A, B) is directed Hausdorff distance from A to B. In h (A, B), for every point in

trajectory A, it finds out the point a in A that has max distance to any point in B, then

measures the distance from a to its nearest neighbor in B, which is h (A, B). Vice versa

to calculate h (B, A). By comparing h (A, B) and h (B, A), the bigger one is the Hausdorff

distance.

Same as Fréchet distance, it works in the field needs shape comparison, but as said in

[34], both of them fail to compare the trajectory as a whole because of the method

definition. Meanwhile, the Hausdorff distance requires more computation than the

Fréchet distance. We can see that in Figure 12, trajectories’ Hausdorff distance is in red.

22

The results are the same for Hausdorff distance and Frechet distance, but according to

[34], compared with Hausdorff distance, the discrete Frechet distance is not a metric.

Meanwhile, the Frechet distance needs less computation. In Figure 13 from [34], we

will find out that the distance variation between these two methods. The time

complexity is O(N2).

Figure 12. Hausdorff distance (left) and Fréchet distance (right), this case they have the same results.

In Figure 13, we can find out the drawback for Hausdorff and Fréchet distance, as is

discussed in [34], these two methods can’t take the trajectory as a complete part to do

distance calculation. Although we can observe that T1 and T2 are the most similar pair

among the three trajectories, but in Fréchet, they are the farthest because the maximum

distance is six at the end of the trajectory. Meanwhile, Hausdorff distances for those

three trajectories are almost the same, which also means low accuracy. These two

methods are good at fields related to shape comparisons such as image comparison [35].

23

Figure 13. Three trajectories distances calculated by Hausdorff and Fréchet distance [34], T1 and T2

are more similar, but there is no clear difference in Hausdorff distance; Fréchet distance even indicates

they are the least similar.

3.7 Euclidean Distance

Euclidean distance is the distance between two points in Euclidean space. In geometry,

the Euclidean space has a two-dimensional plane. According to the Pythagorean

formula [36], point p (p1, p2... pn) and point q (q1, q2... qn) are two points in the Euclidean

n-dimensional space, the distance from p to q is as the formula below.

𝑑(𝑝, 𝑞) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 +⋯+ (𝑞𝑛 − 𝑝𝑛)2 (9)

For trajectories, as we have discussed in the IRD distance, we should transform latitude

and longitude into Cartesian coordinates, then we can apply the distance function above.

Since the time complexity is O(N), N is the number of points for the shorter trajectory.

When we have many points in trajectories, it would be much quicker to apply the

Euclidean distance compared with others that have higher time complexity. However,

according to [5], we know that Euclidean distance is sensitive to the local alignment.

When the sampling rate of the trajectory is increasing or decreasing, or noise occurs, or

there are some shifted points inside, it will lead to a large impact on the Euclidean

distance, because misalignment will happen.

24

In Figure 14 (left), each GPS point is paired and connected with a GPS point in another

trajectory. It is evident that for the longer trajectory, some GPS points are left with no

point to get paired with. Which also might lead to lower accuracy. The difference

between Euclidean distance and IRD distance is the type of aligned points. In the

Euclidean distance, we use the original point in the trajectories to form a pair; in the

IRD distance, we use the original point and its interpolated point to form a pair. S(A, B)

is the reciprocal of distance. It measures the similarity between two trajectories. In

Figure 14, S(A, B) denotes the trajectory similarity, Euclidean distance has less

similarity since it ignored some points for the longer trajectories in the calculation.

Figure 14. Euclidean distance (left) and IRD distance (right)

3.8 Dynamic Time Warping Distance

DTW [14] is a distance method that measures the similarity between two sequences;

the basic idea is to calculate the optimal match between two given sequences. The

optimal match means the match satisfies all the restrictions and the rules. It also has

minimal cost. The definition [14] is below:

25

DTW(A, B) =

{

0, 𝑖𝑓 𝑛 = 𝑚 = 0
∞, 𝑖𝑓 𝑛 = 0 𝑜𝑟 𝑚 = 0

𝑑𝑖𝑠𝑡(𝐻𝑒𝑎𝑑(𝐴),𝐻𝑒𝑎𝑑(𝐵)) + 𝑚𝑖𝑛 {

𝐷𝑇𝑊(𝐴, 𝑅𝑒𝑠𝑡(𝐵))

𝐷𝑇𝑊(𝑅𝑒𝑠𝑡(𝐴), 𝐵)

𝐷𝑇𝑊(𝑅𝑒𝑠𝑡(𝐴), 𝑅𝑒𝑠𝑡(𝐵))

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
10

As is introduced in [14], the basic idea is to allow using the same point many times to

get the best alignment, which is different from the Euclidean distance. If trajectory A is

composed of GPS points {𝑎1, … , 𝑎𝑛} , Head(A) means 𝑎1 and Rest(A) means

{𝑎2, … , 𝑎𝑛}. In Figure 15, two trajectories’ DTW distance are in red (left), we will find

that for DTW method, some points are aligned with more than one point, which is also

shown in the circle. It is widely used in speech pattern recognition of time series [37,

38]. However, as is mentioned in [5], DTW distance is sensitive to the increasing and

decreasing of sample rate, which is the disadvantage.

Figure 15. DTW method

26

4 Clustering

Clustering is the task to partition the objects that are more similar to the same group.

Such kind of group is called cluster. There are many clustering algorithms nowadays,

such as K-means [37], which iterates between optimal partitioning and centroid

reloading [6]. Hierarchical clustering is a method that recursively merges objects in

bottom-up order (agglomerative hierarchical clustering) or partitions objects in a top-

down order (divisive hierarchical clustering) [7]. One of our goals is to find out the

representative from the trajectories’ cluster, so it is a prerequisite to get the trajectory

cluster first.

4.1 K-medoids algorithm

K-medoids algorithm groups the data based on their distance to each other [37]. If we

partition n objects into k clusters, each cluster has a medoid as the representative. Every

object will be assigned to the cluster that has the minimum distance between this object

and the medoid.

Medoid is the representative of a cluster that has the maximum sum of similarity to

others in the cluster [9]. It should be one of the objects in the set, which is different

from Median [43]. Median is the value separates the higher half from the lower half in

the set, it could be the average of two middle numbers if set size is even number,

otherwise it is the only middle one. As is introduced in [37], K-medoids is more robust

compared with the K-means algorithm because it reduces the influence from outlier and

noise; but the time complexity is O(k(n-k) 2), k is the number of clusters, n is the number

of objects, so it is high complexity. In [39], the author gives us a method to speed up

the K-medoids algorithm, so that the time complexity could be reduced to O(n2).

There are many versions about K-medoids clustering, such as the algorithm uses

Voronoi iteration [38], but the most common one is the Partition Around Medoid

algorithm (PAM), the basic idea of PAM clustering is below:

27

Partition Around Medoid: Get clusters by K-medoids clustering

Input: K: the number of clusters; D: the dataset of n objects

Output: K clusters

Algorithm:

1. Randomly select K medoids to initialize K clusters

2. Assign each object to the cluster that has the minimum distance between the

object and medoid

3. While the cost of the configuration decreases:

(1) For each medoid m and each non-medoid object o:

(2) Swap m and o, map each object to the closest medoid, recompute the cost

(Sum of the distance of objects to their medoid)

(3) If the total cost of the configuration increased in the previous step, then

undo the swap.

4.2 Trajectory clustering

When we do trajectory clustering, the similarity among trajectories is the key to make

the partition. As is introduced in Section 3, many methods can calculate the trajectories’

similarity.

We have selected ten trajectories from Mopsi, after applying K-medoids, we got three

clusters in Figure 16, the similarity measure is Fréchet distance, and we can find that

those similar trajectories have been partitioned into the same clusters. Different distance

methods can lead to different clustering result. The detailed comparison is in Section

6.5.

28

Figure 16. Clustering trajectories into clusters by K-medoid clustering

4.3 Representative-Medoid

For many clustering measures, it’s common to get the representative for each cluster by

computing the arithmetic mean value such as K-means. We can see this method in

Formula 10.

𝑥̅ =
(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)

𝑛
(10)

From [2] we know that trajectory representative can illustrate the overall movement of

the set. So, finding out the representatives of trajectories help us obtain the practical

potential from a trajectory set.

In this case, 𝑥𝑖 represents trajectory in the cluster, it is composed of a set of GPS points

ordered by time. According to Formula 10, if we calculate the arithmetic mean value

for trajectory cluster, trajectories’ lengths should be the same. However different

trajectory usually consists of a different number of points. So, it’s hard to compute the

average trajectory. According to [10], for the clusters that are hard to compute the

average or unnecessary to calculate the average centroid, such as gene regression, it is

common to choose medoid as the representative. So, we apply K-medoid in trajectory

29

clustering. In the K-medoids algorithm, the output is k clusters with k medoids as the

representatives. The related experiment is in Section 6.

30

5 Implementation

In this Section, we will introduce the functions of the Medoid page. Section 5.1

illustrates how to choose trajectory cluster from Mopsi and my related work. Section

5.2 is about using reduced trajectory to calculate the medoid trajectory. Section 5.3 is

about choosing a different method to calculate medoid; Section 5.4 is about

technologies that we have used.

5.1 Choosing trajectory cluster

In this thesis, there are two methods to get the trajectory cluster. First, in Mopsi, each

trajectory has its similarity list. When a user clicks the button, which is in Figure 17, a

list of similar trajectories will be shown such as in Figure 18.

Figure 17. Click this button to find similar trajectory list for the trajectory on the right.

In Figure 18, those trajectories are in decreasing order of similarity. The information

contains the user name, recorded time, transportation modes such as running and

cycling. The percentage such as 99% shows the similarity between the corresponding

trajectory and the original trajectory.

31

Figure 18. A list of similar trajectories plotted on the map with black.

So, these trajectories can work as a cluster to help to find out the representative.

However, sometimes there can be more than 2000 similar trajectories, which means

that if we want to analyze or visualize them, it will take a long time to process. For this

reason, in [40], the author uses clustering to limit to the most similar trajectories from

this list.

The basic idea is to use Random Swap clustering [8] on those similarities; after

clustering, each cluster consists of trajectories with similarities, then we calculate the

average similarity for each cluster, and choose the cluster with the highest average

similarity. In Figure 18, this “Most similar” cluster is in a red font; the first 22

trajectories are the most similar ones. It was plotted with black on the map, compared

with the original trajectory which is green in Figure 18, they look similar.

Based on this method, the user can change the lower boundary of this “Most similar”

cluster, when the mouse is hovering on a trajectory in the similarity list, an arrow button

appears, then we click it, this trajectory will work as the lower boundary of the “Most

similar” cluster. We can see this process in Figure 19.

32

Figure 19. The user can change the boundary of the most similar trajectory set

 Figure 20. Original trajectory plotted with green color and “Most similar” trajectories

plotted with black color.

After we have decided the “Most similar” cluster, it plotted the correlated trajectories

on the map in Figure 20. We can see that the original trajectory almost covers those

trajectories in the cluster; which indicates that those trajectories are similar to each other.

The second method of choosing trajectory cluster is using recorded time, as is shown

in Figure 21, “Most recent”, “Week”, “Year”, “All”, “Select dates”, those buttons

provides the trajectories according to the recorded time; after we choose the time, we

can see there is a list of trajectories on the page, they are ordered by the time correlation,

33

from the newest to the oldest. We can also find the information on those trajectories,

the date, time cost, sports mode, and length of the trajectory.

Figure 21. Choosing trajectory cluster by setting time

In Figure 21, we set the time zone to be eight days before or after 25.03.2019. Then the

detailed information will be shown and plotted on the map. Above all, we can obtain

the trajectories’ cluster. Then we can click the button pointed by the red arrow in Figure

21 or the “Calculate Medoid” button on the developed Medoid page.

5.2 Trajectory distance methods

As we have introduced in Section 3, there are eight methods in my work to calculate

the trajectory distance. Usually, we can use the Medoid page to compare the time

efficiency and similarity on those methods. In Figure 22, it shows we can select the

method by the drop-down menu.

34

Figure 22. Choosing the trajectory distance method from Medoid page, there are eight options

A different method may lead to different similarity results and efficiencies. In Figure

23, those similarities are in a table of the Medoid page. Each similarity corresponding

to the sum of similarities from a trajectory to others in the cluster.

Figure 23. Similarity table for every trajectory in the cluster. Similarity column means the sum of

similarity to all others, medoid has has the max value, for some distance methods, we use distance

column to represent the sum of distance to all others, then medoid has the min value

35

5.3 Trajectory simplification

In Mopsi, we can reduce the number of points in trajectory by using the polygonal

approximation. In Figure 24, there is a menu for the user who is going to calculate the

Medoid trajectory among a set of trajectories. If user hopes to reduce the number of

points in trajectories, they can choose “Reduction” menu and different level from 1 to

5. Level 5 is the highest degree of polygonal approximation that leads to the smallest

number of points. The reduced data points are already calculated and stored in the

Mopsi server.

Figure 24. Polygonal approximation option with five levels, level ‘5’ means the simplest trajectory

When we select the “Measure” option on the medoid page, there will appear eight

distance methods. We can directly input the required parameter and do the medoid

calculation. Most trajectories contain multiple GPS points; maybe thousands of points

or even more. However, many of them are not necessary. Meanwhile, it costs a long

time in data processing if we have too many points, which will be an obvious drawback

for an application such as a webpage. In our Medoid page, it also has the slow-

processing problem if we apply those trajectories directly, the user does not hope to

wait for a long time until the result shows up. Considering this problem, we adopt the

polygonal approximation to reduce the number of GPS points in a trajectory.

36

In Figure 25, the trajectory has different reduction levels, which leads to slightly

different appearances and different numbers of points. Those reduced trajectories take

less time to calculate distance compared with the original trajectory, which has 1773

points.

Figure 25. Polygonal approximation at three different levels. Original trajectory has 1773 points. From

left to right, the reduced trajectory is at a different level, and the numbers of points are different.

When we apply the polygonal approximation on the distance calculation, there is a

significant decrease of time cost. Meanwhile, we use parallel computing to calculate

the distances. In Section 6, we will show that in parallel computing, those trajectories

applied with polygonal approximation have much less processing time than the original

ones. So, the “Reduction” menu can be a good option if the user wants to reduce the

time cost. If accuracy is necessary, users can ignore this option and calculate medoid

trajectory after choosing the method. Detailed efficiency comparison is given in Section

6.

5.4 The workflow of medoid page

As has been introduced in the previous Section, after we have chosen the trajectories’

cluster and simplification level, we can calculate the medoid trajectory. Figure 26

illustrates the basic process of calculating the medoid trajectory in the Medoid page.

37

Figure 26. The process of calculating the medoid trajectory on the web page.

5.5 Technology

We have applied several technologies in this Medoid page. For the front-end, it

contains JavaScript, Ajax, Google Map API; for the back-end, Java, PHP, and parallel

computing. We will introduce parallel computing in detail.

5.5.1 Parallel computing

Parallel computing is the simultaneous use of multiple computer resources to solve a

computational problem [22]. The basic idea is to partition the whole task into several

tasks. Then each task will be separated as a series of instructions; different processors

will process those instructions at the same time. So, the time cost will reduce, which is

helpful in the processing and displaying of GPS data. The process is in Figure 27.

38

Figure 27. Parallel Computing in trajectory distance.

We use parallel programming in calculating trajectory distances. Assume there are N

trajectories; if we hope to find each trajectory’s sum of distances with other trajectories,

the total times of calculating distances between two trajectories should be the combined

value in mathematics, which means take two trajectories from N trajectories without

repetition. It should be (𝑁(𝑁 − 1)/2) times of distance calculation in order to get all

similarities for N trajectories. In this thesis, parallel computing has been applied in the

Medoid page’s server side to reduce calculating time, the related experiment is in

Section 6.

In the operating system, a thread is the smallest part of processing. For parallel

computing, we need to choose the optimal number of threads to utilize computer

resource mostly. From [23] we know that for the compute-intensive task such as

calculation, the optimal number of threads is 𝑁 + 1, N means the number of CPUs.

After choosing the number of threads, we can apply parallel computing in trajectory

distances.

39

5.5.2 Ajax

Ajax is “Asynchronous JavaScript and XML” [24]. It is used for creating a fast and

dynamic web page by data exchange with the server at the back-end. It can do an

asynchronous update, which means it can update part of the web page without loading

the whole page, for the traditional web page, only the whole page is reloading, the

update can complete. We chose Ajax because it is efficient and more concise operation.

The process is: when browser has generated an event, the client will generate an XML

HTTP Request object, and send it to the server, when the server receives this, it will

process the data and send the response back to the client, the browser process the

response data by JavaScript, then update the page content.

The response data is wrapped into JSON (JavaScript Object Notation), “JavaScript

Object Notation (JSON) is a lightweight, text-based, language-independent data

interchange format” [25]. It has a concise and clear structure, which is not only easy for

reading and writing but convenient for analyzing and generating by machine. It is

efficient in network transmission. One example of JSON is: var JSON = {"route_id":

1552544427340,"user_id": 260}. The process is in Figure 28.

Figure 28. The workflow of the Medoid page

40

5.5.3 Google Map

Google Maps is a web mapping service developed by Google [11]. There are many

APIs provided by Google Maps, the services we used in this thesis is plotting trajectory,

customizing marker, line, color and so on. Google Map is helpful in the representation

of our research work.

41

6 Experiments

There are several experiments performed: 1) Parallel computing experiment, 2)

Methods’ efficiency experiment, 3) Accuracy on cluster representative, 4) K-medoids

experiment. All the experiments are performed in MACHENIKE laptop; the software

is Windows 10, WinSCP, Spyder, and Chrome. The data are trajectories in Mopsi; each

trajectory has a different number of GPS points. We calculate the distances among those

chosen trajectories and make further analysis. The data format is the same as Table 1,

latitude and longitude are used in the calculation.

6.1 Parallel computing experiment

In this experiment, we try to evaluate the benefit of using parallel computing in the

distance calculation. Figure 30 shows the time cost with different number of trajectories

when we use parallel computing or not. Since the polygonal approximation method can

reduce the number of points in trajectory while keeping their shape, it helps to increase

the efficiency in trajectory processing. And it has been already applied in the trajectory

visualization and calculation in Mopsi, so we use those reduced trajectories in this

experiment to compare the effect of parallel computing and serial computing.

We are going to analyze the processing time for those trajectories in Figure 29. The

trajectory with green color and its eleven similar trajectories. Then we find the

medoid by using LCSS distance; we have chosen a different number of them to see

the time cost on parallel and serial computing.

42

Figure 29. Calculating trajectories’ distances by parallel and serial way. There are 12 trajectories

(Including the green one on 09/04/2019 recorded by Mopsi user Radu)

In Figure 30, we can find that parallel computing can improve the efficiency of

calculations greatly. It is significant and helpful to adopt parallel computing in the

trajectory distance calculation.

In my experiment, we have chosen LCSS distance in calculating the medoid among

trajectories with different number of trajectories. In Figure 30, it is obvious that by

applying parallel computing, which is multi-threading technology in this case, it helps

to improve the time efficiency greatly, for example when there are 70 trajectories,

parallel computing has decreased by around 58% time cost compared to serial

computing. With the increasing of the number of trajectories, the advantage of parallel

computing becomes clearer.

43

Figure 30. Serial and parallel time cost with a different number of trajectories (milliseconds)

We adopted java language in this part. It uses executor to calculate the distance between

two trajectories. Sum class implements the Callable interface, which executes the

parallel work inside the call() method. We initialize N(N-1)/2. Sum classes are

processed by m threads. The pseudocode is in the Appendix.

6.2 Efficiency experiment

As has been analyzed previously, parallel computing has a significant improvement in

the distance calculation. So, in this experiment, we will user parallel computing to

compare the differences among those distance methods. Please check Figure 31 below.

Since the simplification of the reduced trajectory varies from level 1 to 5 in increasing

order, we choose level 3 in this experiment as the representation of the reducing level.

Then we calculate the time cost when calculating the medoid trajectory with different

methods on five trajectories. We get those trajectories from the Mopsi user Pasi, they

are five similar trajectories which are also in Figure 33. The detailed data description is

in Table 2. We plot the experiment result as a bar chart in Figure 31.

Table 2. Data description.

Trajectory’s

index

Starting

timestamp

Number of GPS points

A 1495599253572 3199

B 1508387097655 2709

C 1509513965456 2917

D 1510807697590 2709

E 1514438747265 3429

44

Figure 31. Time cost (millisecond) of the medoid calculation with the different methods for five

trajectories. Parameter L = 45 m and ε = 90 m

Euclidean distance is fastest to compute, followed closely by C-SIM and IRD. Then, at

a different order of magnitude: LCSS, EDR, DTW, Hausdorff and Frechet.

6.3 Accuracy with short segments

In this Section, we will analyze the accuracy of using different methods to calculate the

representative for trajectories cluster. The University of Eastern Finland held the

Average GSS segments contest 3. We have 100 sets that contain a different number of

trajectories, and each set has the ground truth of the representative. The accuracy of

similarity to ground truth is using a parameter independent varient of C-SIM, which is

entitled Hierarchical Cell Similarity (HC-SIM) 4. It will be documented in a paper: P

Fränti and R. Mariescu-Istodor, Averaging GPS segments: challenge Manuscript 2019.

(submitted)

We next consider the following methods for calculating the representative:

3 http://cs.uef.fi/sipu/segments
4 http://cs.uef.fi/sipu/segments/results.html

http://cs.uef.fi/sipu/segments/training.html
http://cs.uef.fi/sipu/segments/results.html

45

• Simple averaging heuristic

• Shortest trajectory [26]

• Medoid with any of the distance measures from [5]

• Jiawei’s method

• Combining Jiawei’s idea with medoid

The simple averaging heuristic works as follows. It first makes every trajectory in the

set to have the same length by adding points to the trajectories. For trajectories A and

B, A is composed of (a1, a2 … an), B is composed of (b1, b2 ... bm). If A has more points

than B, we add those extra points in A to the end of B. So, we get n pairs from A and B,

such as (ai, bi). Since these points are geographical coordinates, we convert them to

UTM coordinates. We then compute the average of each pair, so that we have n

averages as the result. Finally, we convert them back to longitude and latitude. In Figure

32, we can see the description of this method. The result is composed of (avg1, avg2 …

avgn). Comparing to the ground truth, the method has an accuracy of 53.74%.

Figure 32. Trajectory A is on the left has 5 points; trajectory B on the right has 3 points. We add point

a4, and a5 from A to the end of trajectory B. The average points make up the averaging trajectory which

is in the middle.

The second method (shortest trajectory) is given by Fathi and Krumm from [26]. They

take the shortest trajectory from a set as the representative. This is the simplest method

available. When applying this method, we get the accuracy of 54.16%. It is slightly

better than the averaging heuristic.

46

The third method is Medoid using any of the distance methods introduced in Section 2.

This results in seven different variants in total. The best result is obtained using IRD

distance measure, which achieves accuracy of 60.82%.

The fourth method (Jiawei’s method) is an invention within the Machine learning

group, recently proposed by Jiawei Yang. Since it is not published as a paper, I describe

it only briefly without all the details. The method partitions the points into three sets:

source, median and destination points, denoted as S, M, and D respectively. The

grouping is done by clustering the points. The representative of the set is then

constructed using three sampling points: the arithmetic averages of the three sets. These

three points also form a triangle in the space. If the cosine value formed by 𝑆𝑀⃗⃗⃗⃗⃗⃗⃗ and 𝑆𝐷⃗⃗⃗⃗⃗⃗

is bigger than 0.994, return trajectory formed by S, M, D. Otherwise, the median

trajectory is used instead. The way we calculate median trajectory: firstly, we remove

the trajectory with maximum number of points, then if the number of trajectories is

smaller than five, the median is the shortest trajectory in the set, otherwise it is the

trajectory with least points. This method reaches accuracy of 67.2%.

The fifth method is a hybrid of Jiawei’s method and Medoid (Method 5). Different from

the fourth method, if the cosine value is bigger than 0.994, we use the medoid as the

representative instead of the median. We can apply any distance method in the

calculation of medoid. The detailed results are in Table 3.

Table 3. Using different methods to get representative from trajectory set, compare the result with

ground truth, L= Ɛ=10%

 C-SIM LCSS EDR IRD Fréchet Hausdorff Euclidean DTW

Medoid 57.6% 58.9% 58.1

%

60.8

2%

59.17% 60.36% 57.58% 56.64

%

Method 5 67.2% 67.1% 67.4

%

67.0

%

68.1% 67.9% 67.7% 67.0%

Jiawei’s

method

67.2%

47

simple

averagin

g

heuristic

53.74%

Shortest

trajectory

54.16%

In Table 3, we see that the simple averaging heuristic has the lowest accuracy. Then the

shortest trajectory has the second lowest accuracy. Among different Medoid variants

with different distance methods, IRD has the highest accuracy compared with the other

distance methods: 60.82%. DTW has the lowest accuracy: 56.64%. Medoid has better

accuracy compared with the simple averaging heuristic and the shortest trajectory

method.

Jiawei’s method, on average, behaves better than the first three methods. Its accuracy

is 67.2 %, which is much higher than that of Medoid, but in Method 5, we will notice

that EDR, Fréchet, Hausdorff and Euclidean have higher accuracy than Jiawei’s method.

With Fréchet, it leads to the highest accuracy of 68.1%, which is slightly better than

Jiawei’s method. Above all, Method 5 has the highest accuracy when we apply Fréchet,

and this method has the highest accuracy on average.

When each trajectory has a small number of points, such as Set 1 and Set 89 in Figure

35 (first line and second line), Jiawei’s method (78% and 86%) behaves more accurate

than Medoid (35% and 56%). Method 5 provides the same result as Jiawei’s method.

Since we need to compute the medoid in Method 5 instead of the median in Jiawei’s

method, it takes more time to calculate medoid (O(n2)) than median O(n), where n is

the number of trajectories in the set. So Method 5 is slower than Jiawei’s method.

48

Figure 33. Example result of Jiawei’s method on Set 42. The blue line is the representative; gray ones

are the elements in the set; the black one is the ground truth.

Figure 34. Set 1 and Set 89 have only few points in each trajectory. Jiawei’s method and Method 5 have

higher accuracy (78% and 86%) than Medoid in both sets. Method 5 and Medoid applies Euclidean

distance

When we have multiple points in each trajectory (Set 16), Medoid (73%) and Method

5 (73%) gives a better result than Jiawei’s method (37%). An example is given in Figure

35. So, in this case, Method 5 combines the advantages of Jiawei’s method and Medoid;

49

it behaves better than Medoid when there are only few trajectory points. Meanwhile, it

behaves better than Jiawei’s method when we have many points in a trajectory.

Figure 35. Set 16 has around 25 points per trajectory. In this case, Medoid or Method 5 is better.

6.4 Accuracy with complete trajectories

Now let’s see the accuracy with complete trajectories. Since we do not have ground

truth for these data, we just calculate the average of the sum of distances to all others

in the cluster to evaluate the goodness of the representative; the smaller, the better. We

denote this as average distance. When we apply medoid on Mopsi trajectories, for

example, we find the representative from five trajectories of user Radu. The result is

shown in Figure 36. The brown curve indicates the representative.

50

Figure 36. Apply Medoid, Jiawei’s method and Method 5 to Mopsi trajectories set, average distances

among the representative and others are 7 m, 158 m, 7 m respectively

Figure 37. Angle α is formed by 𝑆𝑀⃗⃗⃗⃗⃗⃗⃗ and 𝑆𝐷⃗⃗⃗⃗⃗⃗ , cos α is 0.990 , so the median trajectory is chosen

Figure 37 illustrates the principle of calculating the representative by Jiawei’s method,

where the median trajectory is the trajectory with the middle number of points among

all trajectories in the set. In reality, the angle α is more likely to be bigger than 5°, which

means cos α is more likely to be smaller than 0.994. So in Jiawei’s method, the median

is more likely to be chosen as the average, but as seen in experiments in Section 6.3 and

Figure 36, we know that Medoid has better accuracy and performance in the

representative calculation. So method 5 is a good replacement for Jiawei’s method in

calculating representative. Meanwhile, since it uses [S, M, D] as the representative

when the cos α is bigger than 0.994, it will save time compared with Medoid, which

needs to do similarity calculation for each trajectory (O (1) vs. O (N). N is number of

trajectories)

In Jiawei’s method, the average distance is around 158 m, which is much more than

that of Medoid and Method 5 (7 m). Meanwhile, let’s assume when α is very small so

that Jiawei’s method decides to use [S, M, D] as the representative, but if those points

which are not S, M or D, they can form very complicated shape (such as circle shape

exist between S and M or M and D), they will be ignored. So, Jiawei’s method and

Method 5 are not suitable for representative in complicated shaped trajectories.

Above all, for those set that trajectories do not have big changes in directions (such as

Figure 34 and Figure 35), Method 5 is a good option. When the trajectories have a

complex shape, or big change in direction, Medoid is a better option.

51

7 Conclusions

According to the experiments, compared with other methods, IRD can produce the

highest accuracy (60.82%) in the calculation of medoid compared with LCSS, EDR,

Fréchet, Hausdorff, Euclidean, and DTW. Meanwhile, it is faster than methods such as

C-SIM, and LCSS. Although the Euclidean method is faster than IRD, it has lower

accuracy. So, in trajectory distance measure and medoid calculation, IRD distance is a

good option.

When we apply parallel computing in the trajectory distance calculation, the time

efficiency is greatly improved. For example, when we calculate the distances among 70

trajectories, the time cost has reduced from 170 milliseconds to 26 milliseconds, which

is 5.5 times faster. So, in practice, parallel computing (multi-threading in this case) is

suggested in those trajectory calculation work.

We have also used Jiawei’s method, Medoid, and Method 5 (Proposed by Pasi Fränti)

to calculate the representative of a trajectory set. By comparing the accuracy and effect

among those methods, we find that different methods have different behavior

depending on the trajectory. Medoid behaves better in case of Mopsi trajectories; it is

suitable for complicated shaped trajectories set. Jiawei’s method is good for trajectories

with only few points. Method 5 combines the advantages of Medoid and Jiawei’s

method, so it has better average behavior with different kinds of trajectories whose

direction does not change greatly. Otherwise, Medoid is better.

In this thesis, we have introduced a Mopsi page to calculate the representative trajectory.

The user can change the method and input data. This tool is very useful when the user

wants to analyze the effect of distance methods. The similarities and trajectories will

be visualized on the page, which helps the user to understand data and make

comparisons.

52

8 References

[1] Chen, M., Xu, M., & Fränti, P. (2012). A fast O(n) multiresolution polygonal

approximation algorithm for GPS trajectory simplification. IEEE Transactions on

Image Processing, 21(5), 2770-2785.

[2] Lee, J. G., Han, J., & Whang, K. Y. (2007, June). Trajectory clustering: a

partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data (pp. 593-604).

[3] Gaffney, S., & Smyth, P. (1999, August). Trajectory clustering with mixtures of

regression models. In Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 63-72).

[4] Mariescu-Istodor, R. & Fränti, P. (2018). Detecting user actions in location-based

systems. Int. Conf. on Location Based Services (LBS), Adjunt proceedings, Zürich,

Switzerland, 1-6, January 2018.

[5] Mariescu-Istodor, R., & Fränti, P. (2017). Grid-based method for GPS route

analysis for retrieval. ACM Transactions on Spatial Algorithms and Systems

(TSAS), 3(3), 8.

[6] Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Zhou, Z.

H. (2008). Top 10 algorithms in data mining. Knowledge and information

systems, 14(1), 1-37.

[7] Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and

knowledge discovery handbook (pp. 321-352). Springer, Boston, MA.

[8] Fränti, P. (2018). Efficiency of random swap clustering. Journal of Big

Data, 5(13), 1-29.

[9] Struyf, A., Hubert, M., & Rousseeuw, P. (1997). Clustering in an object-oriented

environment. Journal of Statistical Software, 1(4), 1-30.

[10] Laan, M., Pollard, K., & Bryan, J. (2003). A new partitioning around medoids

algorithms. Journal of Statistical Computation and Simulation, 73(8), 575-584.

53

[11] Verma, P., & Bhatia, J. S. (2013). Design and development of GPS-GSM based

tracking system with Google map-based monitoring. International Journal of

Computer Science, Engineering and Applications, 3(3), 33.

[12] Mariescu-Istodor, R. (2017) Efficient management and search of GPS routes.

Ph.D. thesis, University of Eastern Finland.

[13] Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: a covariance

analysis of atomic fluctuations in molecular dynamics and normal mode simulations.

Proteins: Structure, Function, and Bioinformatics, 11(3), 205-217.

[14] Zheng, Y., & Zhou, X. (Eds.). (2011). Computing with spatial trajectories.

Springer Science & Business Media.

[15] Chen, L., Özsu, M. T., & Oria, V. (2005, June). Robust and fast similarity search

for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data (pp. 491-502).

[16]. Sutinen, E., & Tarhio, J. (1996, June). Filtration with q-samples in approximate

string matching. In Annual Symposium on Combinatorial Pattern Matching (pp. 50-

63). Springer, Berlin, Heidelberg.

[17] Wang, H., Su, H., Zheng, K., Sadiq, S., & Zhou, X. (2013, January). An

effectiveness study on trajectory similarity measures. In Proceedings of the Twenty-

Fourth Australasian Database Conference-Volume 137 (pp. 13-22). Australian

Computer Society, Inc.

[18] Trasarti, R., Guidotti, R., Monreale, A., & Giannotti, F. (2017). Myway:

Location prediction via mobility profiling. Information Systems, 64, 350-367.

[19] El-Rabbany, A. (2002). Introduction to GPS: the global positioning system.

Artech House.

[20]. Eiter, T., & Mannila, H. (1994). Computing discrete Fréchet distance. Tech.

Report CD-TR 94/64, Information Systems Department, Technical University of

Vienna.

54

[21] Huttenlocher, D. P., Rucklidge, W. J., & Klanderman, G. A. (1992, June).

Comparing images using the Hausdorff distance under translation. In Proceedings

1992 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (pp. 654-656).

[22] Barney, B. (2010). Introduction to parallel computing. Lawrence Livermore

National Laboratory, 6(13), 10.

[23] Goetz, B., Peierls, T., Lea, D., Bloch, J., Bowbeer, J., & Holmes, D. (2006). Java

concurrency in practice. Pearson Education.

[24] Klein, J., & Spector, L. (2007, July). Unwitting distributed genetic programming

via asynchronous JavaScript and XML. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation (pp. 1628-1635). ACM.

[25] Crockford, D. (2006). The application/JSON media type for javascript object

notation (JSON) (No. RFC 4627).

[26]. Fathi, A., & Krumm, J. (2010, September). Detecting road intersections from

GPS traces. In International conference on geographic information science (pp. 56-

69). Springer, Berlin, Heidelberg.

[27] Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2012). Global

positioning system: theory and practice. Springer Science & Business Media.

[28] Zheng, Y., Liu, Y., Yuan, J., & Xie, X. (2011, September). Urban computing

with taxicabs. In Proceedings of the 13th international conference on Ubiquitous

computing (pp. 89-98). ACM.

[29] Matthew, N., & Stones, R. (2008). Beginning Linux programming. John Wiley &

Sons.

[30] Robinson, M. T. (1990). The temporal development of collision cascades in the

binary-collision approximation. Nuclear Instruments and Methods in Physics

Research Section B: Beam Interactions with Materials and Atoms, 48(1-4), 408-413.

[31] "NGA Geomatics - WGS 84". earth-info.nga.mil. Retrieved 2019-03-19.

[32] Snyder, J. P., & Voxland, P. M. (1989). An album of map projections (No. 1453).

US Government Printing Office.

55

[33] Blu, T., Thévenaz, P., & Unser, M. (2004). Linear interpolation revitalized. IEEE

Transactions on Image Processing, 13(5), 710-719.

[34] Besse, P. C., Guillouet, B., Loubes, J. M., & Royer, F. (2016). Review and

perspective for distance-based clustering of vehicle trajectories. IEEE Transactions on

Intelligent Transportation Systems, 17(11), 3306-3317.

[35] Huttenlocher, D. P., & Rucklidge, W. J. (1992). A multi-resolution technique for

comparing images using the Hausdorff distance. Cornell University.

[36] Orwant, J., Hietaniemi, J., & Macdonald, J. (1999). Mastering Algorithms with

Perl. O'Reilly Media, Inc.

[37]. Arora, P., & Varshney, S. (2016). Analysis of k-means and k-medoids algorithm

for big data. Procedia Computer Science, 78, 507-512.

[38] Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for K-medoids

clustering. Expert Systems with Applications, 36(2), 3336-3341.

[39] Schubert, E., & Rousseeuw, P. J. (2018). Faster k-Medoids Clustering:

Improving the PAM, CLARA, and CLARANS Algorithms. arXiv preprint

arXiv:1810.05691.

[40] Mariescu-Istodor, R., & Fränti, P. (2016, November). Gesture Input for GPS

Route Search. In Joint IAPR International Workshops on Statistical Techniques in

Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition

(SSPR) (pp. 439-449). LNCS 10029, 439-449, Springer, Cham.

[41]. Waga, K., Tabarcea, A., Chen, M., & Fränti, P. (2012, October). Detecting

movement type by route segmentation and classification. In 8th International

Conference on Collaborative computing: networking, applications and worksharing

(CollaborateCom) (pp. 508-513). IEEE.

[42]. Waga, K., Tabarcea, A., Mariescu-Istodor, R., & Fränti, P. (2013, May). Real

Time Access to Multiple GPS Tracks. Int. Conf. on Web Information Systems &

Technologies (WEBIST'13), Aachen, Germany, 293-299

[43] Ho, A. D., & Yu, C. C. (2015). Descriptive statistics for modern test score

distributions: Skewness, kurtosis, discreteness, and ceiling effects. Educational and

Psychological Measurement, 75(3), 365-388.

56

9 Appendix (Code for parallel computing)

import java.util.*;

import java.util.concurrent.*;

import static java.util.Arrays.asList;

public class Sums {

 static class Sum implements Callable<Long> {

 private final long from;

 private final long to;

 Sum(long from, long to) {

 this.from = from;

 this.to = to;

 }

 @Override

 public Long call() {

 long acc = 0;

 for (long i = from; i <= to; i++) {

 acc = acc + i;

 }

 return acc;

 }

 }

 public static void main(String[] args) throws

Exception {

 ExecutorService executor =

Executors.newFixedThreadPool(2);

 List <Future<Long>> results =

executor.invokeAll(asList(

 new Sum(0, 10), new Sum(100, 1_000), new

Sum(10_000, 1_000_000)

));

 executor.shutdown();

 for (Future<Long> result : results) {

 System.out.println(result.get());

 }

 }

}

