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1 Introduction   

The Global positioning system (GPS) is a satellite-based navigation system made up of 

at least 24 satellites that transmits signal and orbital parameters, GPS receivers use this 

information to compute the precise location of the user’s location and even the speed 

of movement [27]. With the development of satellite positioning technology, people 

can easily obtain a huge amount of trajectory data from moving objects. For example, 

in [28], the author mentioned that in Beijing, there are about 1.44 million personal trips 

generated by GPS-equipped taxis composed of GPS points. 

When we have obtained many trajectories, we can analyze the data. An effective 

method is to find similar trajectories and group them into clusters, which helps to reduce 

the data by eliminating redundant information. In this thesis, we will study methods to 

find the representative trajectory in a given set. Visualizing the data is a method to find 

out hidden information from the data. In this thesis, we introduce a tool to visualize the 

trajectories and a user-friendly interface that provides many useful options in trajectory 

analysis, such as trajectory distance calculation and trajectory simplification. 

A large amount of GPS data will bring problems such as displaying delays. For example, 

excessive storage size causes that the process of downloading data is not smooth and 

the waiting time is too long. When response time is important such as website 

interaction between the user and GPS data, it is necessary to simplify the data. A 

polygonal approximation method in [1] is used in our project. It reduces the trajectory 

points so that GPS trajectory’s visualization quality is not compromised but the time 

cost on operating the trajectory is greatly reduced [1]. 

There are many definitions of clustering. In this thesis, clustering is defined as 

partitioning a set of trajectories into subsets, so that trajectories in the same group are 

more like each other than to those trajectories in the other groups. 

We can apply various methods for trajectory clustering. In [2], the author introduced a 

partition-and-group framework for trajectory clustering. In [3], people apply mixtures 

of regression models on clustering. The result is a set of clusters which are composed 

of trajectories. Our research problem is to find a representative trajectory for each 
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cluster. Since compared with presenting many trajectories, a representative can help to 

achieve a good visualization and less downloading time on GPS data. In this thesis, our 

focus is on how to find out the representative for each trajectory cluster and visualize 

the result on the web page. 

The user can directly see the trajectory cluster and its representative, so a map on the 

webpage is needed, such as Figure 1; also, interactive designs including user-click event 

and hovering event which target at operating data to get more detailed information are 

also important. 

Based on those considerations, we have developed a tool in Mopsi platform which can: 

(1) Present a list of trajectories and plot them on a map. (2) Calculate the representative 

from trajectory set and highlight it on the map. (3) Provide means to select the 

trajectories to be processed. (4) Provide different options for processing the data and 

related representative calculation methods, so that user can compare how the 

calculation affects by applying various inputs. The tool helps the user to do further 

academic-related research. (5) Meanwhile, since trajectories have many points, but the 

algorithms for computing similarities are slow, we provide two ways to speed up the 

process: parallel computing in Section 5.5.1, and polygonal approximation in Section 

2.4. 

1.1 Mopsi 

Mopsi 1 is a website that helps users to find where their friends are and what is around 

them [4]. There are trajectories recorded by users. Those trajectories are displayed on 

the map with detailed information, such as speed, traveled distance and user’s 

transportation mode (walking, running, cycling, skiing) which is automatically inferred 

by the method in [41]. Mopsi allows the user to search trajectories in different ways. It 

also provides recommendations and tools for managing data collection. 

 

                                                 
1 http://cs.uef.fi/mopsi 

http://cs.uef.fi/mopsi
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1.2 Data Collection 

Mopsi data has two types: geo-tagged photos and trajectories. Geo-tagged photos 

contain information about their location and recorded time. The trajectory is a set of 

GPS point stored at a fixed interval. In this thesis, we use those trajectories as the data 

source. According to [12], there were more than 10000 trajectories recorded by more 

than 2400 users in 2017, and the number of users and trajectories have been increasing 

since then. Most of the trajectories are in Joensuu, Finland. The data structure is in 

Table 1. 

 

Table 1.  Data properties. 

Column Type Description Example 

Latitude Double Latitude value of point 62.926880 (62° 

55' 36.7674") 

Longitude Double Longitude value of point 23.184691 (23° 

11' 4.8876") 

Timestamp String The timestamp for the point 1559983789 

seconds 

Altitude Double Altitude of point -1.0 meter 

 

1.3 Main work 

The contribution of this thesis is the following. We have developed a web tool called 

Medoid page, which can calculate the representative trajectory for a set. The tool 

provides eight alternative measures on how to compute the distance between two 

trajectories, and an option for applying trajectory simplification. The tool also includes 

trajectory visualization and user interaction. In the Mopsi page, the user can also 

customize the trajectories set to calculate the representative. By applying this tool, one 
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can study the difference among those trajectory distance methods; find out the speed 

and quality effect of using trajectory simplification. The details are in Section 5.  

Figure 1 shows four sample trajectories from the user Pasi; when applying the IRD 

distance (left) and Fréchet distance (right), distance here means the distance among 

trajectories. The brown curve is the medoid trajectory. So, when we use different 

distance methods, the distance between trajectories can be different so that the medoid 

result can be different. For example, the IRD method minimizes the sum of distances 

while Fréchet minimizes the maximum distance. In this way, just like Figure 1, the 

medoid trajectory may vary.  

 

Figure 1. The same trajectory set has different medoid depending on whether we use IRD distance 

(left) or Fréchet distance (right). 

1.4 Structure 

There are eight Sections in the thesis. Section 1 contains the illustration of research 

background, Mopsi introduction, and an overview of our developed Medoid tool page. 

Section 2 contains the definitions of GPS point, trajectory, and trajectory simplification. 

Section 3 is about the trajectory distance. Section 4 is about trajectory clustering. 

Section 5 is about the implementation and technology used in the Medoid page. Section 

6 are experiments; including efficiency comparison and accuracy comparison. Section 

7 are conclusions.   



10 

 

2 Trajectory  

In this Section, we will introduce GPS point, trajectory, route, and trajectory 

simplification. Next, we will explain those terms in a more detailed way. GPS point is 

a precise geographical location on the earth; it usually contains latitude and longitude 

and timestamp. By using GPS devices or positioning software, we can collect those 

GPS points. In our case, GPS points form the trajectory that we analyze in World 

Geodetic System [31].  

2.1 Trajectory 

A trajectory is a path that describes the movement of a user; it is composed of GPS 

points ordered by time.  An example from Mopsi is in Figure 2. The timestamp is the 

number of seconds passed since midnight on 01/01/1970. It is useful because it can 

represent all time zones at once [29]. Timestamp 1552489200 represents Wednesday, 

March 13, 2019, 11:00:00 (am) in New York, and Wednesday, March 13, 2019, 

17:00:00 (pm) in Helsinki. 

 

Figure 2. A trajectory on the map from The University of Eastern Finland to the Joensuu Areena with 

sector movement 
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2.2 Route 

In this thesis, there is a difference between trajectory and route. A route is a selected 

course of the travel path. It refers to a representative of many trajectories, which can 

indicate the common movement among those trajectories. 

Figure 3 shows an example of a Joensuu-Kuurna-Kulho route (right) and a set of similar 

trajectories (left) plotted on the same map. Although most parts in those trajectories are 

overlapping, we can find that there are many variations among those similar trajectories 

in Figure 3 (left). However, we can still identify the route which is in Figure 3 (right) 

by removing the variations. 

 

Figure 3. A set of similar trajectories (left) representing different cycling attempts on the Joensuu – 

Kuurna – Kulho trajectory (right) 

 

We can easily find the representative route from Figure 3 (left) since there are few 

trajectories looks similar on the map. By treating them as a set, then select one of them 

to become the representative one; but when there are many trajectories such as Figure 

4, how do we find out the similar trajectory set and extract the corresponding 

representative route from the set? It can be quite difficult to spot the similar ones. We, 

therefore, consider using clustering to find out similar trajectories.   
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Figure 4. Many trajectories on the map generated by Mopsi’s user Pasi 

 

2.3 Polygonal approximation 

There are many methods in data simplification. Polygonal approximation [1] is one of 

the methods to help simplify GPS trajectory, and Mopsi has been using this method for 

trajectory simplification.  

According to [12, 42], we know that polygonal approximation is very effective at 

reducing the number of GPS points while preserving the approximate shapes on the 

map. Meanwhile, the Mopsi system can display trajectories consisting of over 3.5 

million points in less than 2 seconds. In this way, the performance of processing and 

visualization will improve greatly. In the Medoid page, the ‘reduced trajectory’ means 

those trajectories with applying polygonal approximation. Detailed implementation is 

in Section 5.3. 
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3 Trajectory similarity 

When we consider finding the similarity between the two trajectories, we need to 

compute the distance. There are many methods proposed, of which I have chosen eight 

to implement on our Medoid page. In this section, all the figures that illustrate trajectory 

distance are from this Mopsi page2. 

 

3.1 Cell Similarity 

Cell Similarity utilizes a grid to compute the similarity between two trajectories. We 

can see an example in Figure 5. According to [5], it first retrieves the cell representation 

and then calculates the similarity measure using the cells. It calculates how many cells 

are in common relative to the total number of cells. The disadvantage is point’s order 

is not used. According to [5], this method is the least affected by increasing or 

decreasing the sampling rate and performs well under noise and point shifting. 

 

  

Figure 5. C-SIM distance with cell length: 30m  

                                                 
2 http://cs.uef.fi/mopsi/routes/contextSimilarity/ 

http://cs.uef.fi/mopsi/routes/contextSimilarity/
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According to [5], we use the Jaccard index to calculate trajectory distance. It measures 

the overlap degree of two trajectories by the following formula, where 𝐶A  and 𝐶B 

represent the sets of cells approximate trajectory A and B. 𝐶𝐴
𝑑 and 𝐶𝐵

𝑑 represent the extra 

cells added from dilation. 

𝑆(𝐶A, 𝐶B) =  
|𝐶A ∩ 𝐶B| + |𝐶A ∩ 𝐶𝐵

𝑑| + |𝐶B ∩ 𝐶𝐴
𝑑|

|𝐶A| + |𝐶B| + |𝐶A| + |𝐶A ∩ 𝐶B|
 (1) 

 

3.2 Longest Common Subsequence 

Longest Common Subsequence (LCSS) originates from string processing where it has 

been used for string similarity [13]. For example, the longest common subsequence for 

strings ‘ABABC’,  ‘ BABCA’ and ‘ABCBA’ is ’ABC’. When we calculate trajectories’ 

distance, it allows some GPS points unmatched to match some sequences in trajectories 

[17].  The basic idea is ignoring the GPS points which are far away. The function below 

[14] describes the principle.    

𝐿𝐶𝑆𝑆(𝐴, 𝐵) = {

0, 𝑖𝑓 𝑛 = 0 𝑜𝑟 𝑚 = 0

1 + 𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝐴), 𝑅𝑒𝑠𝑡(𝐵)), 𝑖𝑓 𝑑(𝐻𝑒𝑎𝑑(𝐴),𝐻𝑒𝑎𝑑(𝐵)) ≤ 𝜀

𝑚𝑎𝑥 (𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝐴), 𝐵), 𝐿𝐶𝑆𝑆(𝐴, 𝑅𝑒𝑠𝑡(𝐵))) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2 

In Figure 6, m and n are the lengths of two trajectories A and B; ε is a threshold to 

determine whether to take this point into account. If A is composed of a list of GPS 

points such as (a1, …, an), then Head(A) is the first point a1 in A. Rest(A) means the rest 

of points, which is (a2, …, an), d measures the distance between two points. 

For some trajectories, there exist noise. When a distance method requires pair-matching 

for every GPS point inside the trajectory, the noise will affect the distance result. The 

advantage of LCSS is: By ignoring ‘far-away’ points, it can measure the distance 

between those trajectories that may have lower quality or noises. So, it has better 

robustness against noise. 
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In Figure 6, we use LCSS to measure the similarity between two trajectories A and B. 

Here ε is 45 m, and the distance is 15. We can find out that a few points are ignored 

since they are far away.  

 

Figure 6. Use LCSS to measure two trajectories’ similarity 

 

The disadvantage is that it may lead to some inaccuracy. According to [17], for two 

trajectories A and B, A has a list of points {a1, a2, …, an}, B is composed of {b1, b2, …, 

bn}, when we increase the sample rate of A and B, the A’s transformed trajectory Ai will 

be {a1, a1.5, a2…, an} and Bi transformed trajectory B’ will be {b1, b1.5, b2…, bn}; when 

we decrease the sample rate of A and B, the transformed trajectories will be Ad {a1, a3, 

a5,…, an}, and Bd{b1, b3, b5,… bn}. Ai and Bi have more points than Ad  and Bd. Thus, Ai 

and Bi’s common subsequence detected by LCSS will be larger than Ad and Bd ‘s 

common subsequence. So, the LCSS values will be different when the sample rates are 

different. In Mopsi, when we apply polygonal approximation on the trajectories for 

simplification, the LCSS value will be reduced compared with the original trajectories.   
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3.3 Edit Distance on Real Sequence 

This method is Edit distance on real sequence [15]. It originates from the edit distance 

[16], which describes the number of times for inserting, deleting, and replacing to 

convert string A into string B.  There are many definitions for the edit distance, for 

example, the Levenshtein distance contains removing, inserting and replacing a 

character in the string. When we try to convert “bitten” to “sitting”. First we need to 

replace “b” to “s”, so the string now is “sitten”; next we replace “e” with “i”, the result 

will be “sittin”; finally, we need to insert a “g” at the end of the string, so the string now 

is “sitting”. There are three operations in total, so the Levenshtein distance is 3. 

EDR’s definition is in [14] and equation 3. If we have trajectories A and B with the 

lengths n and m, EDR distance between A and B is the minimum number of inserting, 

deleting, and replacing operations to convert A to B. Two points are considered as 

different if distance between them is bigger than ε. Same as LCSS, Rest(R) means the 

rest of the points except the first one in trajectory R. Figure 7 displays the trajectories’ 

distance calculated by EDR. Nine operations are required to convert A to B in this case, 

so the EDR distance is 9. We can see the definition below [14]. 

𝐸𝐷𝑅(𝐴, 𝐵) =

{
 
 

 
 

 𝑛,                                            𝑖𝑓(𝑚 = 0)

𝑚,                                            𝑖𝑓(𝑛 = 0)

      min {𝐸𝐷𝑅(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆) + 𝑠𝑢𝑏𝑐𝑜𝑠𝑡,

𝐸𝐷𝑅(𝑅𝑒𝑠𝑡(𝑅), 𝑆) + 1,

𝐸𝐷𝑅(𝑅, 𝑅𝐸𝑆𝑇(𝑆)) + 1},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

Where                    

𝑠𝑢𝑏𝑐𝑜𝑠𝑡 =  {        
0,       𝑖𝑓(𝑑𝑖𝑠𝑡(𝐻𝑒𝑎𝑑(𝐴), 𝐻𝑒𝑎𝑑(𝐵)) ≤ 𝜀
1,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4) 
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Figure 7. The EDR distance between trajectory A and B is 9(left). Decreasing sample rate will affect 

more on the similarity compared with increasing sample rate [5] (right) 

There are many advantages of EDR mentioned in [15]. One of them is: it describes the 

distance between two points using 0 and 1, so compared with Euclidean distance, it 

reduces the influence of noise in the trajectory; but as is mentioned in [5], LCSS and 

EDR are very sensitive when we decrease the sample rate of trajectories compare with 

increasing the sample rate. 

3.4 Interpolated Route Distance 

It is a newly proposed measure called Interpolated Route Distance (IRD) [18]. The 

basic idea is to find the interpolated point from a trajectory to another one, and make 

those two points as a pair.  If we can’t find the interpolated from trajectory A to B, then 

vice versa, until the last point of the shorter trajectory has been visited, the average of 

summation of the distances between those paired points is the IRD distance.  

Latitude and longitude are on the earth’s ellipsoidal surface. However, when we 

calculate the IRD distance, it requires us to find the interpolated point from a GPS point 

towards a specific trajectory. So it’s a good way to transform the GPS points with 

latitude and longitude into locations on a plane [32].  

According to [18], if we have a point a in trajectory A, the interpolated point for a in 

trajectory B is bp, the distance between a and bp should be the shortest among all pairs 

between point a and other points in B. So, we use projection to calculate this point. The 
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problem is to find out the orthogonal projection onto a line. In linear algebra, the 

orthogonal projection of 𝑣⃗ onto a line spanned by nonzero 𝑠 is below. 

𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) =  
𝑣⃗ ∙ 𝑠

𝑠 ∙ 𝑠
𝑠 (5) 

In this case, 𝑣⃗ is generated by the point a (ax, ay) and the previous point a0 (a0x, a0y) on 

trajectory A, so 𝑣⃗ is (ax - a0x, ay - a0y), 𝑠 is generated by point b and the previous point 

b0 on trajectory B, so 𝑠 is (bx - b0x, by - b0y), the target is generating the projected point 

bp on the segment composed of b0 and b. We assume bp is (bpx, bpy) then 𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) is 

generated by (bpx - b0x, bpy - b0y), so with the formula 5 and known point b0, we can 

calculate bp easily. Meanwhile, when 𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) > 0 and length of the projected vector 

𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) is greater than 𝑠, or 𝑝𝑟𝑜𝑗[𝑠](𝑣⃗) < 0, this projected point bp is not on the 

segment formed by b0 and b. So, we choose the point that has a shorter distance with 

point a from b0 and b.   

 

Figure 9. Calculate interpolated point bp by orthogonal projection (Three possible cases); in the first 

case, bp is in the segment between b0 and b; the second one and third one bp is outside of the segment 

between b0 and b. 

 

As is mentioned in [18], it fixes the problem that different sample sizes cause different 

similarity. So it is better than LCSS and EDR, since these two methods will be affected 

by the decreasing of sample size greatly. Meanwhile LCSS and EDR’s time complexity 

are both O(N2), but IRD’s time complexity is O( l1+l2) where l1, l2  are number of points 

in A and B. For each point, it needs to find out the closest point by comparing the one 

with others for many times, which leads to inefficiency. The IRD distance is below. 

When we sum up distances generated by those paired points, then divide it by the times, 

we can get the IRD distance.  
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Figure 10. IRD distance   
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3.5 Fréchet Distance 

When a person is walking a dog, we consider this person is on one curve, and the dog 

is on another curve, there is a leash between them. When backtracking is not allowed, 

what is the minimum length that is enough for traveling both curves? Calculating that 

length is the intuitive definition of Fréchet distance.  

In [20], it introduces a distance method called Fréchet distance that can solve this 

problem. The idea is firstly computing proper polygonal approximations to the curves, 

then compute their coupling distance. This measure takes both the location and order 

of the points into consideration. The definition is in formula 6. In this case, A and B are 

the trajectories, if S is a metric space, d is the distance function of S, 𝛼 and 𝛽 are the 

arbitrary and continuous, nondecreasing functions from [0,1] onto [a, b]. Then the 

distance between A and B is the infimum over all reparameterizations 𝛼 and 𝛽 of the 

maximum over all t 𝜖[0,1] of the distances in S between 𝐴(𝛼(𝑡)) and 𝐵(𝛽(𝑡)). We can 

assume t is the time point, when we reach time t, the chosen point on trajectory A is 

𝐴(𝛼(𝑡)), and the chosen point on trajectory B is 𝐵(𝛽(𝑡)). We iterate the interval [0,1] 

to find out two points every time, if we use Euclidean distance, then it is easy to define 

𝑑(𝐴(𝛼(𝑡), 𝐵(𝛽(𝑡))), the Fréchet distance would be the value that makes the maximum 

distance reaches the greatest lower bound with this sampling method. It is sensitive to 

the change of sample rate and noise [5]. 

 

𝐹(𝐴, 𝐵) = 𝑖𝑛𝑓𝛼,𝛽𝑚𝑎𝑥𝑡𝜖[0,1]{𝑑(𝐴(𝛼(𝑡), 𝐵(𝛽(𝑡)))} (6) 

We can see in Figure 11 (left); there are two trajectories, and the location where the 

shortest ‘leash’ reaches its maximum required length. The distance is plotted red on the 

left. The right part illustrates the definition, for each pair of the point, we can always 

find out the biggest distance during the walking process, by changing the point we can 

make the ‘leash’ get shortest. 
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Figure 11. Fréchet distance for two trajectories on the left, the right one illustrates the definition of this 

method. The person is moving on the red line; the dog is moving on the blue curve, the sample point is 

taken within time range [0,1] 

 

3.6 Hausdorff Distance 

Hausdorff distance measures how far two subsets of a metric space are from each other. 

It is the maximum of all the distances from a point in one set to the closest point in 

another set. In [21], we know that the Hausdorff distance’s definition is as follow: 

𝐷(𝐴, 𝐵) = max{ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)} (7) 

The definition of the distance between trajectory A and trajectory B is: 

ℎ(𝐴, 𝐵) =  𝑚𝑎𝑥𝑎∈𝐴 𝑚𝑖𝑛𝑏∈𝐵 ‖𝑎 − 𝑏‖ (8) 

h(A, B) is directed Hausdorff distance from A to B. In h (A, B), for every point in 

trajectory A, it finds out the point a in A that has max distance to any point in B, then 

measures the distance from a to its nearest neighbor in B, which is h (A, B). Vice versa 

to calculate h (B, A). By comparing h (A, B) and h (B, A), the bigger one is the Hausdorff 

distance. 

Same as Fréchet distance, it works in the field needs shape comparison, but as said in 

[34], both of them fail to compare the trajectory as a whole because of the method 

definition. Meanwhile, the Hausdorff distance requires more computation than the 

Fréchet distance. We can see that in Figure 12, trajectories’ Hausdorff distance is in red. 
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The results are the same for Hausdorff distance and Frechet distance, but according to 

[34], compared with Hausdorff distance, the discrete Frechet distance is not a metric. 

Meanwhile, the Frechet distance needs less computation. In Figure 13 from [34], we 

will find out that the distance variation between these two methods. The time 

complexity is O(N2). 

 

 

Figure 12. Hausdorff distance (left) and Fréchet distance (right), this case they have the same results. 

 

In Figure 13, we can find out the drawback for Hausdorff and Fréchet distance, as is 

discussed in [34], these two methods can’t take the trajectory as a complete part to do 

distance calculation. Although we can observe that T1 and T2 are the most similar pair 

among the three trajectories, but in Fréchet, they are the farthest because the maximum 

distance is six at the end of the trajectory. Meanwhile, Hausdorff distances for those 

three trajectories are almost the same, which also means low accuracy. These two 

methods are good at fields related to shape comparisons such as image comparison [35]. 
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Figure 13. Three trajectories distances calculated by Hausdorff and Fréchet distance [34], T1 and T2 

are more similar, but there is no clear difference in Hausdorff distance; Fréchet distance even indicates 

they are the least similar.   

 

3.7 Euclidean Distance 

Euclidean distance is the distance between two points in Euclidean space. In geometry, 

the Euclidean space has a two-dimensional plane. According to the Pythagorean 

formula [36], point p (p1, p2... pn) and point q (q1, q2... qn) are two points in the Euclidean 

n-dimensional space, the distance from p to q is as the formula below. 

𝑑(𝑝, 𝑞) =  √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 +⋯+ (𝑞𝑛 − 𝑝𝑛)2 (9) 

For trajectories, as we have discussed in the IRD distance, we should transform latitude 

and longitude into Cartesian coordinates, then we can apply the distance function above. 

Since the time complexity is O(N), N is the number of points for the shorter trajectory. 

When we have many points in trajectories, it would be much quicker to apply the 

Euclidean distance compared with others that have higher time complexity. However, 

according to [5], we know that Euclidean distance is sensitive to the local alignment. 

When the sampling rate of the trajectory is increasing or decreasing, or noise occurs, or 

there are some shifted points inside, it will lead to a large impact on the Euclidean 

distance, because misalignment will happen. 
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In Figure 14 (left), each GPS point is paired and connected with a GPS point in another 

trajectory. It is evident that for the longer trajectory, some GPS points are left with no 

point to get paired with. Which also might lead to lower accuracy. The difference 

between Euclidean distance and IRD distance is the type of aligned points. In the 

Euclidean distance, we use the original point in the trajectories to form a pair; in the 

IRD distance, we use the original point and its interpolated point to form a pair. S(A, B) 

is the reciprocal of distance. It measures the similarity between two trajectories. In 

Figure 14, S(A, B) denotes the trajectory similarity, Euclidean distance has less 

similarity since it ignored some points for the longer trajectories in the calculation. 

 

 

Figure 14. Euclidean distance (left) and IRD distance (right) 

 

3.8 Dynamic Time Warping Distance  

DTW [14] is a distance method that measures the similarity between two sequences; 

the basic idea is to calculate the optimal match between two given sequences. The 

optimal match means the match satisfies all the restrictions and the rules. It also has 

minimal cost. The definition [14] is below:  
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DTW(A, B) =

{
 
 

 
 

0, 𝑖𝑓 𝑛 = 𝑚 = 0
∞, 𝑖𝑓 𝑛 = 0 𝑜𝑟 𝑚 = 0

𝑑𝑖𝑠𝑡(𝐻𝑒𝑎𝑑(𝐴),𝐻𝑒𝑎𝑑(𝐵)) + 𝑚𝑖𝑛 {

𝐷𝑇𝑊(𝐴, 𝑅𝑒𝑠𝑡(𝐵))

𝐷𝑇𝑊(𝑅𝑒𝑠𝑡(𝐴), 𝐵)

𝐷𝑇𝑊(𝑅𝑒𝑠𝑡(𝐴), 𝑅𝑒𝑠𝑡(𝐵))

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
10 

As is introduced in [14], the basic idea is to allow using the same point many times to 

get the best alignment, which is different from the Euclidean distance. If trajectory A is 

composed of GPS points {𝑎1, … , 𝑎𝑛} , Head(A) means 𝑎1  and Rest(A) means 

{𝑎2, … , 𝑎𝑛}. In Figure 15, two trajectories’ DTW distance are in red (left), we will find 

that for DTW method, some points are aligned with more than one point, which is also 

shown in the circle. It is widely used in speech pattern recognition of time series [37, 

38]. However, as is mentioned in [5], DTW distance is sensitive to the increasing and 

decreasing of sample rate, which is the disadvantage. 

 

Figure 15. DTW method  
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4 Clustering  

Clustering is the task to partition the objects that are more similar to the same group.   

Such kind of group is called cluster. There are many clustering algorithms nowadays, 

such as K-means [37], which iterates between optimal partitioning and centroid 

reloading [6]. Hierarchical clustering is a method that recursively merges objects in 

bottom-up order (agglomerative hierarchical clustering) or partitions objects in a top-

down order (divisive hierarchical clustering) [7]. One of our goals is to find out the 

representative from the trajectories’ cluster, so it is a prerequisite to get the trajectory 

cluster first.   

4.1 K-medoids algorithm 

K-medoids algorithm groups the data based on their distance to each other [37]. If we 

partition n objects into k clusters, each cluster has a medoid as the representative. Every 

object will be assigned to the cluster that has the minimum distance between this object 

and the medoid.  

Medoid is the representative of a cluster that has the maximum sum of similarity to 

others in the cluster [9]. It should be one of the objects in the set, which is different 

from Median [43]. Median is the value separates the higher half from the lower half in 

the set, it could be the average of two middle numbers if set size is even number, 

otherwise it is the only middle one. As is introduced in [37], K-medoids is more robust 

compared with the K-means algorithm because it reduces the influence from outlier and 

noise; but the time complexity is O(k(n-k) 2), k is the number of clusters, n is the number 

of objects, so it is high complexity. In [39], the author gives us a method to speed up 

the K-medoids algorithm, so that the time complexity could be reduced to O(n2). 

There are many versions about K-medoids clustering, such as the algorithm uses 

Voronoi iteration [38], but the most common one is the Partition Around Medoid 

algorithm (PAM), the basic idea of PAM clustering is below: 
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Partition Around Medoid: Get clusters by K-medoids clustering 

Input: K: the number of clusters; D: the dataset of n objects 

Output: K clusters 

Algorithm:  

1. Randomly select K medoids to initialize K clusters 

2. Assign each object to the cluster that has the minimum distance between the 

object and medoid 

3. While the cost of the configuration decreases: 

(1) For each medoid m and each non-medoid object o: 

(2) Swap m and o, map each object to the closest medoid, recompute the cost 

(Sum of the distance of objects to their medoid) 

(3) If the total cost of the configuration increased in the previous step, then 

undo the swap. 

 

4.2 Trajectory clustering 

When we do trajectory clustering, the similarity among trajectories is the key to make 

the partition. As is introduced in Section 3, many methods can calculate the trajectories’ 

similarity.  

We have selected ten trajectories from Mopsi, after applying K-medoids, we got three 

clusters in Figure 16, the similarity measure is Fréchet distance, and we can find that 

those similar trajectories have been partitioned into the same clusters. Different distance 

methods can lead to different clustering result. The detailed comparison is in Section 

6.5. 
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Figure 16. Clustering trajectories into clusters by K-medoid clustering  

  

4.3 Representative-Medoid 

For many clustering measures, it’s common to get the representative for each cluster by 

computing the arithmetic mean value such as K-means. We can see this method in 

Formula 10. 

𝑥̅ =
(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)

𝑛
(10) 

From [2] we know that trajectory representative can illustrate the overall movement of 

the set. So, finding out the representatives of trajectories help us obtain the practical 

potential from a trajectory set. 

In this case, 𝑥𝑖 represents trajectory in the cluster, it is composed of a set of GPS points 

ordered by time. According to Formula 10, if we calculate the arithmetic mean value 

for trajectory cluster, trajectories’ lengths should be the same. However different 

trajectory usually consists of a different number of points. So, it’s hard to compute the 

average trajectory. According to [10], for the clusters that are hard to compute the 

average or unnecessary to calculate the average centroid, such as gene regression, it is 

common to choose medoid as the representative. So, we apply K-medoid in trajectory 
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clustering. In the K-medoids algorithm, the output is k clusters with k medoids as the 

representatives. The related experiment is in Section 6.   
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5 Implementation 

In this Section, we will introduce the functions of the Medoid page. Section 5.1 

illustrates how to choose trajectory cluster from Mopsi and my related work. Section 

5.2 is about using reduced trajectory to calculate the medoid trajectory. Section 5.3 is 

about choosing a different method to calculate medoid; Section 5.4 is about 

technologies that we have used. 

 

5.1 Choosing trajectory cluster 

In this thesis, there are two methods to get the trajectory cluster. First, in Mopsi, each 

trajectory has its similarity list. When a user clicks the button, which is in Figure 17, a 

list of similar trajectories will be shown such as in Figure 18.  

 

Figure 17. Click this button to find similar trajectory list for the trajectory on the right. 

In Figure 18, those trajectories are in decreasing order of similarity. The information 

contains the user name, recorded time, transportation modes such as running and 

cycling. The percentage such as 99% shows the similarity between the corresponding 

trajectory and the original trajectory.  
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Figure 18. A list of similar trajectories plotted on the map with black. 

So, these trajectories can work as a cluster to help to find out the representative.  

However, sometimes there can be more than 2000 similar trajectories, which means 

that if we want to analyze or visualize them, it will take a long time to process. For this 

reason, in [40], the author uses clustering to limit to the most similar trajectories from 

this list.  

The basic idea is to use Random Swap clustering [8] on those similarities; after 

clustering, each cluster consists of trajectories with similarities, then we calculate the 

average similarity for each cluster, and choose the cluster with the highest average 

similarity. In Figure 18, this “Most similar” cluster is in a red font; the first 22 

trajectories are the most similar ones. It was plotted with black on the map, compared 

with the original trajectory which is green in Figure 18, they look similar. 

Based on this method, the user can change the lower boundary of this “Most similar” 

cluster, when the mouse is hovering on a trajectory in the similarity list, an arrow button 

appears, then we click it, this trajectory will work as the lower boundary of the “Most 

similar” cluster. We can see this process in Figure 19. 
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Figure 19. The user can change the boundary of the most similar trajectory set 

 

 

 Figure 20. Original trajectory plotted with green color and “Most similar” trajectories 

plotted with black color.  

After we have decided the “Most similar” cluster, it plotted the correlated trajectories 

on the map in Figure 20. We can see that the original trajectory almost covers those 

trajectories in the cluster; which indicates that those trajectories are similar to each other. 

The second method of choosing trajectory cluster is using recorded time, as is shown 

in Figure 21, “Most recent”, “Week”, “Year”, “All”, “Select dates”, those buttons 

provides the trajectories according to the recorded time; after we choose the time, we 

can see there is a list of trajectories on the page, they are ordered by the time correlation, 
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from the newest to the oldest. We can also find the information on those trajectories, 

the date, time cost, sports mode, and length of the trajectory. 

 

Figure 21. Choosing trajectory cluster by setting time 

In Figure 21, we set the time zone to be eight days before or after 25.03.2019. Then the 

detailed information will be shown and plotted on the map. Above all, we can obtain 

the trajectories’ cluster. Then we can click the button pointed by the red arrow in Figure 

21 or the “Calculate Medoid” button on the developed Medoid page. 

5.2 Trajectory distance methods 

As we have introduced in Section 3, there are eight methods in my work to calculate 

the trajectory distance. Usually, we can use the Medoid page to compare the time 

efficiency and similarity on those methods. In Figure 22, it shows we can select the 

method by the drop-down menu. 
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Figure 22. Choosing the trajectory distance method from Medoid page, there are eight options 

 

A different method may lead to different similarity results and efficiencies. In Figure 

23, those similarities are in a table of the Medoid page. Each similarity corresponding 

to the sum of similarities from a trajectory to others in the cluster. 

 

Figure 23. Similarity table for every trajectory in the cluster. Similarity column means the sum of 

similarity to all others, medoid has has the max value, for some distance methods, we use distance 

column to represent the sum of distance to all others, then medoid has the min value 
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5.3 Trajectory simplification 

In Mopsi, we can reduce the number of points in trajectory by using the polygonal 

approximation. In Figure 24, there is a menu for the user who is going to calculate the 

Medoid trajectory among a set of trajectories. If user hopes to reduce the number of 

points in trajectories, they can choose “Reduction” menu and different level from 1 to 

5. Level 5 is the highest degree of polygonal approximation that leads to the smallest 

number of points. The reduced data points are already calculated and stored in the 

Mopsi server.   

 

Figure 24. Polygonal approximation option with five levels, level ‘5’ means the simplest trajectory 

 

When we select the “Measure” option on the medoid page, there will appear eight 

distance methods. We can directly input the required parameter and do the medoid 

calculation. Most trajectories contain multiple GPS points; maybe thousands of points 

or even more. However, many of them are not necessary. Meanwhile, it costs a long 

time in data processing if we have too many points, which will be an obvious drawback 

for an application such as a webpage. In our Medoid page, it also has the slow-

processing problem if we apply those trajectories directly, the user does not hope to 

wait for a long time until the result shows up. Considering this problem, we adopt the 

polygonal approximation to reduce the number of GPS points in a trajectory. 
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In Figure 25, the trajectory has different reduction levels, which leads to slightly 

different appearances and different numbers of points. Those reduced trajectories take 

less time to calculate distance compared with the original trajectory, which has 1773 

points. 

 

Figure 25. Polygonal approximation at three different levels. Original trajectory has 1773 points. From 

left to right, the reduced trajectory is at a different level, and the numbers of points are different. 

 

When we apply the polygonal approximation on the distance calculation, there is a 

significant decrease of time cost. Meanwhile, we use parallel computing to calculate 

the distances. In Section 6, we will show that in parallel computing, those trajectories 

applied with polygonal approximation have much less processing time than the original 

ones. So, the “Reduction” menu can be a good option if the user wants to reduce the 

time cost. If accuracy is necessary, users can ignore this option and calculate medoid 

trajectory after choosing the method. Detailed efficiency comparison is given in Section 

6. 

5.4 The workflow of medoid page 

As has been introduced in the previous Section, after we have chosen the trajectories’ 

cluster and simplification level, we can calculate the medoid trajectory. Figure 26 

illustrates the basic process of calculating the medoid trajectory in the Medoid page. 
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Figure 26. The process of calculating the medoid trajectory on the web page. 

5.5  Technology 

We have applied several technologies in this Medoid page. For the front-end, it 

contains JavaScript, Ajax, Google Map API; for the back-end, Java, PHP, and parallel 

computing. We will introduce parallel computing in detail.    

 

5.5.1 Parallel computing 

Parallel computing is the simultaneous use of multiple computer resources to solve a 

computational problem [22]. The basic idea is to partition the whole task into several 

tasks. Then each task will be separated as a series of instructions; different processors 

will process those instructions at the same time. So, the time cost will reduce, which is 

helpful in the processing and displaying of GPS data. The process is in Figure 27. 
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Figure 27. Parallel Computing in trajectory distance. 

 

We use parallel programming in calculating trajectory distances. Assume there are N 

trajectories; if we hope to find each trajectory’s sum of distances with other trajectories, 

the total times of calculating distances between two trajectories should be the combined 

value in mathematics, which means take two trajectories from N trajectories without 

repetition. It should be (𝑁(𝑁 − 1)/2) times of distance calculation in order to get all 

similarities for N trajectories. In this thesis, parallel computing has been applied in the 

Medoid page’s server side to reduce calculating time, the related experiment is in 

Section 6.   

In the operating system, a thread is the smallest part of processing. For parallel 

computing, we need to choose the optimal number of threads to utilize computer 

resource mostly. From [23] we know that for the compute-intensive task such as 

calculation, the optimal number of threads is 𝑁 + 1, N means the number of CPUs. 

After choosing the number of threads, we can apply parallel computing in trajectory 

distances.  
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5.5.2 Ajax 

Ajax is “Asynchronous JavaScript and XML” [24]. It is used for creating a fast and 

dynamic web page by data exchange with the server at the back-end. It can do an 

asynchronous update, which means it can update part of the web page without loading 

the whole page, for the traditional web page, only the whole page is reloading, the 

update can complete. We chose Ajax because it is efficient and more concise operation. 

The process is: when browser has generated an event,  the client will generate an XML 

HTTP Request object, and send it to the server, when the server receives this, it will 

process the data and send the response back to the client, the browser process the 

response data by JavaScript, then update the page content. 

The response data is wrapped into JSON (JavaScript Object Notation), “JavaScript 

Object Notation (JSON) is a lightweight, text-based, language-independent data 

interchange format” [25]. It has a concise and clear structure, which is not only easy for 

reading and writing but convenient for analyzing and generating by machine. It is 

efficient in network transmission. One example of JSON is: var JSON = {"route_id": 

1552544427340,"user_id": 260}. The process is in Figure 28. 

 

Figure 28. The workflow of the Medoid page 
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5.5.3 Google Map 

Google Maps is a web mapping service developed by Google [11]. There are many 

APIs provided by Google Maps, the services we used in this thesis is plotting trajectory, 

customizing marker, line, color and so on. Google Map is helpful in the representation 

of our research work. 
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6 Experiments 

There are several experiments performed: 1) Parallel computing experiment, 2) 

Methods’ efficiency experiment, 3) Accuracy on cluster representative, 4) K-medoids 

experiment. All the experiments are performed in MACHENIKE laptop; the software 

is Windows 10, WinSCP, Spyder, and Chrome. The data are trajectories in Mopsi; each 

trajectory has a different number of GPS points. We calculate the distances among those 

chosen trajectories and make further analysis. The data format is the same as Table 1, 

latitude and longitude are used in the calculation. 

 

6.1 Parallel computing experiment 

In this experiment, we try to evaluate the benefit of using parallel computing in the 

distance calculation. Figure 30 shows the time cost with different number of trajectories 

when we use parallel computing or not. Since the polygonal approximation method can 

reduce the number of points in trajectory while keeping their shape, it helps to increase 

the efficiency in trajectory processing. And it has been already applied in the trajectory 

visualization and calculation in Mopsi, so we use those reduced trajectories in this 

experiment to compare the effect of parallel computing and serial computing. 

We are going to analyze the processing time for those trajectories in Figure 29. The 

trajectory with green color and its eleven similar trajectories. Then we find the 

medoid by using LCSS distance; we have chosen a different number of them to see 

the time cost on parallel and serial computing. 
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Figure 29. Calculating trajectories’ distances by parallel and serial way. There are 12 trajectories 

(Including the green one on 09/04/2019 recorded by Mopsi user Radu) 

 

In Figure 30, we can find that parallel computing can improve the efficiency of 

calculations greatly. It is significant and helpful to adopt parallel computing in the 

trajectory distance calculation. 

In my experiment, we have chosen LCSS distance in calculating the medoid among 

trajectories with different number of trajectories. In Figure 30, it is obvious that by 

applying parallel computing, which is multi-threading technology in this case, it helps 

to improve the time efficiency greatly, for example when there are 70 trajectories, 

parallel computing has decreased by around 58% time cost compared to serial 

computing. With the increasing of the number of trajectories, the advantage of parallel 

computing becomes clearer. 
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Figure 30.  Serial and parallel time cost with a different number of trajectories (milliseconds) 

We adopted java language in this part. It uses executor to calculate the distance between 

two trajectories. Sum class implements the Callable interface, which executes the 

parallel work inside the call() method. We initialize N(N-1)/2. Sum classes are 

processed by m threads. The pseudocode is in the Appendix. 

 

6.2 Efficiency experiment 

As has been analyzed previously, parallel computing has a significant improvement in 

the distance calculation. So, in this experiment, we will user parallel computing to 

compare the differences among those distance methods. Please check Figure 31 below. 

Since the simplification of the reduced trajectory varies from level 1 to 5 in increasing 

order, we choose level 3 in this experiment as the representation of the reducing level. 

Then we calculate the time cost when calculating the medoid trajectory with different 

methods on five trajectories. We get those trajectories from the Mopsi user Pasi, they 

are five similar trajectories which are also in Figure 33. The detailed data description is 

in Table 2. We plot the experiment result as a bar chart in Figure 31. 

Table 2.  Data description. 

Trajectory’s 

index 

Starting 

timestamp 

Number of GPS points 

A 1495599253572 3199 

B 1508387097655  2709 

C 1509513965456  2917 

D 1510807697590 2709 

E 1514438747265 3429 
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Figure 31. Time cost (millisecond) of the medoid calculation with the different methods for five 

trajectories. Parameter L = 45 m and ε = 90 m 

 

Euclidean distance is fastest to compute, followed closely by C-SIM and IRD. Then, at 

a different order of magnitude: LCSS, EDR, DTW, Hausdorff and Frechet.  

6.3 Accuracy with short segments 

In this Section, we will analyze the accuracy of using different methods to calculate the 

representative for trajectories cluster. The University of Eastern Finland held the 

Average GSS segments contest 3. We have 100 sets that contain a different number of 

trajectories, and each set has the ground truth of the representative. The accuracy of 

similarity to ground truth is using a parameter independent varient of C-SIM, which is 

entitled Hierarchical Cell Similarity (HC-SIM) 4. It will be documented in a paper: P 

Fränti and R. Mariescu-Istodor, Averaging GPS segments: challenge Manuscript 2019. 

(submitted) 

We next consider the following methods for calculating the representative: 

                                                 
3 http://cs.uef.fi/sipu/segments 
4 http://cs.uef.fi/sipu/segments/results.html 

http://cs.uef.fi/sipu/segments/training.html
http://cs.uef.fi/sipu/segments/results.html
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• Simple averaging heuristic 

• Shortest trajectory [26] 

• Medoid with any of the distance measures from [5] 

• Jiawei’s method 

• Combining Jiawei’s idea with medoid 

The simple averaging heuristic works as follows. It first makes every trajectory in the 

set to have the same length by adding points to the trajectories. For trajectories A and 

B, A is composed of (a1, a2 … an), B is composed of (b1, b2 ... bm). If A has more points 

than B, we add those extra points in A to the end of B. So, we get n pairs from A and B, 

such as (ai, bi).  Since these points are geographical coordinates, we convert them to 

UTM coordinates. We then compute the average of each pair, so that we have n 

averages as the result. Finally, we convert them back to longitude and latitude. In Figure 

32, we can see the description of this method. The result is composed of (avg1, avg2 … 

avgn). Comparing to the ground truth, the method has an accuracy of 53.74%.  

 

Figure 32. Trajectory A is on the left has 5 points; trajectory B on the right has 3 points. We add point 

a4, and a5 from A to the end of trajectory B. The average points make up the averaging trajectory which 

is in the middle. 

 

The second method (shortest trajectory) is given by Fathi and Krumm from [26]. They 

take the shortest trajectory from a set as the representative. This is the simplest method 

available. When applying this method, we get the accuracy of 54.16%. It is slightly 

better than the averaging heuristic. 
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The third method is Medoid using any of the distance methods introduced in Section 2. 

This results in seven different variants in total. The best result is obtained using IRD 

distance measure, which achieves accuracy of 60.82%. 

The fourth method (Jiawei’s method) is an invention within the Machine learning 

group, recently proposed by Jiawei Yang. Since it is not published as a paper, I describe 

it only briefly without all the details. The method partitions the points into three sets: 

source, median and destination points, denoted as S, M, and D respectively. The 

grouping is done by clustering the points. The representative of the set is then 

constructed using three sampling points: the arithmetic averages of the three sets. These 

three points also form a triangle in the space. If the cosine value formed by 𝑆𝑀⃗⃗⃗⃗⃗⃗⃗ and 𝑆𝐷⃗⃗⃗⃗⃗⃗  

is bigger than 0.994, return trajectory formed by S, M, D. Otherwise, the median 

trajectory is used instead. The way we calculate median trajectory: firstly, we remove 

the trajectory with maximum number of points, then if the number of trajectories is 

smaller than five, the median is the shortest trajectory in the set, otherwise it is the 

trajectory with least points. This method reaches accuracy of 67.2%. 

The fifth method is a hybrid of Jiawei’s method and Medoid (Method 5). Different from 

the fourth method, if the cosine value is bigger than 0.994, we use the medoid as the 

representative instead of the median. We can apply any distance method in the 

calculation of medoid. The detailed results are in Table 3.  

  

Table 3.  Using different methods to get representative from trajectory set, compare the result with 

ground truth, L= Ɛ=10% 

 C-SIM LCSS EDR IRD Fréchet Hausdorff Euclidean DTW 

Medoid 57.6% 58.9% 58.1

% 

60.8

2% 

59.17% 60.36% 57.58% 56.64

% 

Method 5 67.2% 67.1% 67.4

% 

67.0

% 

68.1% 67.9% 67.7% 67.0% 

Jiawei’s 

method 

67.2% 
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simple 

averagin

g 

heuristic 

53.74% 

Shortest 

trajectory 

54.16% 

 

 

In Table 3, we see that the simple averaging heuristic has the lowest accuracy. Then the 

shortest trajectory has the second lowest accuracy. Among different Medoid variants 

with different distance methods, IRD has the highest accuracy compared with the other 

distance methods: 60.82%. DTW has the lowest accuracy: 56.64%. Medoid has better 

accuracy compared with the simple averaging heuristic and the shortest trajectory 

method.  

Jiawei’s method, on average, behaves better than the first three methods. Its accuracy 

is 67.2 %, which is much higher than that of Medoid, but in Method 5, we will notice 

that EDR, Fréchet, Hausdorff and Euclidean have higher accuracy than Jiawei’s method. 

With Fréchet, it leads to the highest accuracy of 68.1%, which is slightly better than 

Jiawei’s method. Above all, Method 5 has the highest accuracy when we apply Fréchet, 

and this method has the highest accuracy on average. 

When each trajectory has a small number of points, such as Set 1 and Set 89 in Figure 

35 (first line and second line), Jiawei’s method (78% and 86%) behaves more accurate 

than Medoid (35% and 56%). Method 5 provides the same result as Jiawei’s method. 

Since we need to compute the medoid in Method 5 instead of the median in Jiawei’s 

method, it takes more time to calculate medoid (O(n2)) than median O(n), where n is 

the number of trajectories in the set. So Method 5 is slower than Jiawei’s method. 
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Figure 33.   Example result of Jiawei’s method on Set 42. The blue line is the representative; gray ones 

are the elements in the set; the black one is the ground truth. 

 

 

Figure 34. Set 1 and Set 89 have only few points in each trajectory. Jiawei’s method and Method 5 have 

higher accuracy (78% and 86%) than Medoid in both sets. Method 5 and Medoid applies Euclidean 

distance  

 

When we have multiple points in each trajectory (Set 16), Medoid (73%) and Method 

5 (73%) gives a better result than Jiawei’s method (37%). An example is given in Figure 

35. So, in this case, Method 5 combines the advantages of Jiawei’s method and Medoid; 
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it behaves better than Medoid when there are only few trajectory points. Meanwhile, it 

behaves better than Jiawei’s method when we have many points in a trajectory.  

 

Figure 35. Set 16 has around 25 points per trajectory. In this case, Medoid or Method 5 is better. 

 

6.4 Accuracy with complete trajectories 

Now let’s see the accuracy with complete trajectories. Since we do not have ground 

truth for these data, we just calculate the average of the sum of distances to all others 

in the cluster to evaluate the goodness of the representative; the smaller, the better. We 

denote this as average distance. When we apply medoid on Mopsi trajectories, for 

example, we find the representative from five trajectories of user Radu. The result is 

shown in Figure 36. The brown curve indicates the representative. 
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Figure 36. Apply Medoid, Jiawei’s method and Method 5 to Mopsi trajectories set, average distances 

among the representative and others are 7 m, 158 m, 7 m respectively 

 

Figure 37. Angle α is formed by 𝑆𝑀⃗⃗⃗⃗⃗⃗⃗ and 𝑆𝐷⃗⃗⃗⃗⃗⃗ , cos α is 0.990 , so the median trajectory is chosen 

Figure 37 illustrates the principle of calculating the representative by Jiawei’s method, 

where the median trajectory is the trajectory with the middle number of points among 

all trajectories in the set. In reality, the angle α is more likely to be bigger than 5°, which 

means cos α is more likely to be smaller than 0.994. So in Jiawei’s method, the median 

is more likely to be chosen as the average, but as seen in experiments in Section 6.3 and 

Figure 36, we know that Medoid has better accuracy and performance in the 

representative calculation. So method 5 is a good replacement for Jiawei’s method in 

calculating representative. Meanwhile, since it uses [S, M, D] as the representative 

when the cos α is bigger than 0.994, it will save time compared with Medoid, which 

needs to do similarity calculation for each trajectory (O (1) vs. O (N).   N is number of 

trajectories) 

In Jiawei’s method, the average distance is around 158 m, which is much more than 

that of Medoid and Method 5 (7 m). Meanwhile, let’s assume when α is very small so 

that Jiawei’s method decides to use [S, M, D] as the representative, but if those points 

which are not S, M or D, they can form very complicated shape (such as circle shape 

exist between S and M or M and D), they will be ignored. So, Jiawei’s method and 

Method 5 are not suitable for representative in complicated shaped trajectories.    

Above all, for those set that trajectories do not  have big changes in directions (such as 

Figure 34 and Figure 35), Method 5 is a good option. When the trajectories have a 

complex shape, or big change in direction, Medoid is a better option. 
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7 Conclusions 

According to the experiments, compared with other methods, IRD can produce the 

highest accuracy (60.82%) in the calculation of medoid compared with LCSS, EDR, 

Fréchet, Hausdorff, Euclidean, and DTW. Meanwhile, it is faster than methods such as 

C-SIM, and LCSS. Although the Euclidean method is faster than IRD, it has lower 

accuracy. So, in trajectory distance measure and medoid calculation, IRD distance is a 

good option. 

When we apply parallel computing in the trajectory distance calculation, the time 

efficiency is greatly improved. For example, when we calculate the distances among 70 

trajectories, the time cost has reduced from 170 milliseconds to 26 milliseconds, which 

is 5.5 times faster. So, in practice, parallel computing (multi-threading in this case) is 

suggested in those trajectory calculation work. 

We have also used Jiawei’s method, Medoid, and Method 5 (Proposed by Pasi Fränti) 

to calculate the representative of a trajectory set. By comparing the accuracy and effect 

among those methods, we find that different methods have different behavior 

depending on the trajectory. Medoid behaves better in case of Mopsi trajectories; it is 

suitable for complicated shaped trajectories set. Jiawei’s method is good for trajectories 

with only few points. Method 5 combines the advantages of Medoid and Jiawei’s 

method, so it has better average behavior with different kinds of trajectories whose 

direction does not change greatly. Otherwise, Medoid is better. 

In this thesis, we have introduced a Mopsi page to calculate the representative trajectory. 

The user can change the method and input data. This tool is very useful when the user 

wants to analyze the effect of distance methods. The similarities and trajectories will 

be visualized on the page, which helps the user to understand data and make 

comparisons. 
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9 Appendix (Code for parallel computing) 

import java.util.*; 

import java.util.concurrent.*; 

import static java.util.Arrays.asList; 

 

public class Sums { 

     

    static class Sum implements Callable<Long> { 

        private final long from; 

        private final long to; 

            Sum(long from, long to) { 

            this.from = from; 

            this.to = to; 

        } 

         

        @Override 

        public Long call() { 

            long acc = 0; 

            for (long i = from; i <= to; i++) { 

                acc = acc + i; 

            } 

            return acc; 

        }                 

    } 

     

    public static void main(String[] args) throws 

Exception { 

         

        ExecutorService executor = 

Executors.newFixedThreadPool(2); 

        List <Future<Long>> results = 

executor.invokeAll(asList( 

            new Sum(0, 10), new Sum(100, 1_000), new 

Sum(10_000, 1_000_000) 

        )); 

        executor.shutdown(); 

         

        for (Future<Long> result : results) { 

            System.out.println(result.get()); 

        }                 

    }     

} 

 


