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a b s t r a c t 

Traditional outlier detection methods create a model for data and then label as outliers for objects that 

deviate significantly from this model. However, when dat has many outliers, outliers also pollute the 

model. The model then becomes unreliable, thus rendering most outlier detectors to become ineffective. 

To solve this problem, we propose a mean-shift outlier detector. This detector employs a mean-shift tech- 

nique to modify data and cancel the bias caused by the outliers. The mean-shift technique replaces every 

object by the mean of its k -nearest neighbors which essentially removes the effect of outliers before clus- 

tering without the need to know the outliers. In addition, it also detects outliers based on the distance 

shifted. Our experiments show that the proposed method works well regardless of the number of outliers 

in the data. This method outperforms all state-of-the-art methods tested, with both real-world numeric 

datasets as well as generated numeric and string datasets. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Outliers are objects that deviate from typical data [1] . Strong 

utliers [1] are considered anomalies , which are expected to be de- 

ected and analyzed further. They can represent significant infor- 

ation and need to be detected critically in many applications 

uch as earth science [1] , fraud detection [1–3] , intrusion detec- 

ion [ 1 , 2 ], medical diagnosis [ 1 , 2 ], data cleaning [ 1 , 2 ], biological

equences [ 4 , 5 ], abnormal events from images [6–8] and videos 

 9 , 10 ], and traffic movement patterns [ 1 , 11 ]. They can also affect

tatistical analyses that are based on significance tests [12] . Weak 

utliers [1] are considered noise , which may harm data analysis 

uch as clustering. In any case, regardless of strong or weak, out- 

iers need to be detected. 

In clustering, the detection and removal of outliers can be con- 

idered a preprocessing step. The idea is to clean the data from 

utliers that might affect the quality of cluster analysis. Another 

pproach is to perform the clustering first and then label those 

bjects as outliers that fail to fit into any cluster; see Fig. 1 . An

xample of this kind of approach is DBSCAN [13] . However, this is 

 chicken-and-egg problem . Removing outliers can potentially im- 
∗ Corresponding author. 

E-mail address: pasi.franti@uef.fi (P. Fränti). 

t

n

e

a

f

ttps://doi.org/10.1016/j.patcog.2021.107874 

031-3203/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article u
rove clustering; on the other hand, performing clustering first 

ould facilitate outlier detection. 

Outlier detection consists of two main steps: scoring and 

hresholding. Generally, outlier detection approaches can be cat- 

gorized into global and local outlier models based on how the 

eference set is constructed [14] . The reference set for an object 

s a set of the other objects used to model and calculate its out- 

ier score. Global methods use all data objects as the reference 

et, whereas local methods use only a small subset of objects. The 

cores obtained are then sorted, and data objects with the high- 

st scores are labelled outliers. The rest are labelled normalities . A 

ecision on how many outliers are detected can be made in two 

ays. The Top-N approach uses a priori knowledge of the num- 

er of outliers and marks exactly the given number of the high- 

st scoring objects as outliers. A more realistic approach is to de- 

ive a threshold from the statistical distribution of the scores, with 

echniques, such as standard deviation (SD) or two-stage threshold- 

ng (2T) [15] . 

Computing outlier scores relies on the choice of the reference 

bjects in the dataset. K-nearest-neighbors ( k –NN) based outlier de- 

ectors use neighbor objects as the reference and tune the size of 

he neighborhood by setting the value of k . However, when the 

umber of outliers is large, most traditional detectors become in- 

ffective. The reason is that many objects in the reference set are 

lso outliers. In this case, relying merely on the original data to 

orm the reference set is insufficient. 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Different approaches of dealing with outliers in clustering [16] : (1) ignore, 

(2) remove outliers in a preprocessing step, (3) detect outliers from the clustering 

result, (4) the mean-shift approach proposed. 

Fig. 2. Results for the random swap clustering algorithm after each mean-shift iter- 

ation on dataset A1 with 8% of outliers. Red points are the predicted cluster centers, 

and blue points are the ground truth cluster centers. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 3. Outlier scores (y axis) of the mean-shift (MOD) proposed for dataset A1 with 

16% of outliers: normal data points (gray) and outlier points (blue). (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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In this paper, we propose a novel outlier detection method. The 

ey idea is to apply mean shift (alternatively medoid-shift) as a 

reprocessing step. We find the k -NN for every object in the data 

nd then replace the original object by the mean value (or medoid) 

f its k -NN. This process can be iterated a few times. An example is

hown in Fig. 2 , where we can observe improved clustering results 

n data preprocessed by mean shift. 

We can utilize the result of mean shift in two ways. The first is 

o consider the shift merely as a preprocessing step that smooths 

he data based on neighborhood analysis. The second is to calcu- 

ate the distance of the movement, i.e. the distance between the 

riginal object and its shifted version. This distance is defined as 

he outlier score. The larger the movement is, the more the object 

eviates from its neighborhood. Preliminary results of these two 

pproaches have been presented in conferences: used as prepro- 

essing before clustering [16] , and as outlier detector [17] . For an 

xample of the outlier scores provided by this approach, see Fig. 3 . 

Two variants are considered. In the mean-shift outlier detector 

MOD) method, mean shift uses the mean value of the neighbor- 

ood. On the other hand, the medoid-shift outlier detector (DOD) 

ethod uses medoid , which is known to be more robust on noise 
2 
r outliers. In data with many outliers, the reference set may con- 

ain more outliers than normalities. We therefore consider the ex- 

ended neighborhood called the extended reference set , which in- 

ludes objects both from the original dataset and their shifted ver- 

ions. These revised variants are denoted as MOD + and DOD + . 

The contributions of this paper are as follows: 

• The introduction of two variants, MOD and DOD; preliminary 

versions of these appear in [17] 

• The idea of using an extended reference set leading to two im- 

proved variants, MOD + and DOD + 

• Extensive comparison with 11 baseline outlier detectors 

• A wider set of experiments with 18 datasets including multidi- 

mensional, string, and real-world datasets. 

The proposed outlier detection methods can be applied not only 

o numeric data with Euclidean distance but also to string data 

ith edit distance. String data is challenging for k -NN-based anal- 

sis because of its high dimensionality (length of the string) and 

he discreteness of the edit distance measure. This measure is lim- 

ted to integer values and takes only a few distinct values in a local 

eighborhood. 

The rest of the paper is organized as follows. Existing work is 

riefly reviewed in Section 2 . The proposed method is then intro- 

uced as a preprocessing step in Section 3 and applied for outlier 

etection in Section 4 . Experiments are given in Section 5 and their 

esults are shown in Section 6 . Conclusions constitute Section 7 . 

. Existing work 

Outlier detectors can be categorized based on how the refer- 

nce set is constructed [14] . A common approach is to calculate k - 

N as the reference set. Here, we will discuss eleven well-known 

tate-of-the-art outlier detectors, of which five are based on k -NN. 

Distance-based outlier detectors [18–20] assume that outliers 

re far away from their neighbors. The detector in [18] calculates as 

n outlier score the distance between an object and its k th neigh- 

or. This detector is called KNN. A variant in [19] calculates the 

verage distance to all its k -NNs. Instead of using k -NN, the de- 

ector in [20] defines a distance threshold and then counts objects 

ithin the given distance to the object. This count then serves as 

he outlier score. 

Outlier detection using indegree of nodes (ODIN) in [19] also uses 

he k -NN graph. Instead of the distances, it counts how many times 

he object is considered as a neighbor by other objects and then 

ses this count as outlier score. The relationship of neighborhood 

orresponds to the indegree of a vertex in the corresponding k -NN 

raph. 

As defined in [21] , Reverse unreachability (NC as defined in [21] ) 

s a representation-based detector. An object is represented by a 

inear combination of its k -NNs. This representation provides a 

eight matrix of how much each neighbor contributes. In the case 

f outliers, negative weights might be needed to represent the ob- 

ect. The number of negative weights is the outlier score. 

Density-based detectors assume that the density of outliers is 

onsiderably lower than that of their neighbors. Local outlier factor 

LOF) [22] calculates the relative density of an object to its k -NN 

nd uses this as an outlier score. According to [23] , LOF was the

est detector among 12 k -NN-based detectors. 

Some detectors are based on statistical analysis. They have the 

ollowing assumption: norm objects follow the same distribution, 

hereas outliers do not. Minimum covariance determinant (MCD) 

24] looks for 50% objects with the smallest scatter. The outlier 

core is the distance between an object and the center of these 

0% objects. 

While other detectors rely on distance or density, Isolation- 

ased anomaly detection (IFOREST as defined in [25] ) [25] con- 
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Algorithm 1 Mean-shift process (MS ( X, k, I )). 

Input : Dataset X , neighborhood size k, iterations I 

Output : Modified X ∗

REPEAT I TIMES: 

FOR X i ∈ X: 

k -NN( X i ) ← Find its k -nearest neighbors ∈ X ; 
M i ← Calculate the mean of the neighbors k -NN( X i ); 

X ∗ i ← M i (replace x i by the mean M i ), X ∗ i ∈ X ∗; 

Fig. 4. Effect of the mean (left) and medoid (right) with two sample points in a 

neighborhood with outliers [16] . 
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tructs a tree of the dataset. It randomly selects a value between 

he minimum and maximum of a randomly selected feature and 

sing this value, recursively splits the data. To reduce the effect 

f randomness, the process is repeated several times. The average 

ath length of an object defines its outlier score. 

Support vector machines (SVMs) can recognize patterns in data 

nd can be used in the classification task. One class support vector 

achine (OCSVM) [26] trains the support vector model by treating 

ll objects as one class. The outlier score is the distance between 

n object and the model. SVMs are also used to extract features to 

etect outliers in [27] . 

Principal component analysis (PCA) is an established technique 

n data mining. Using PCA, the variance and structure of the data 

an be extracted. It works by extracting the principal features of 

he dataset. PCA has been applied as preprocessing before clus- 

ering, for high-dimensional data [28] . It has also been used for 

utlier detection tasks. The principal component analysis-based out- 

ier detection (PCAD) method [29] computes the projection of an 

bject on the eigenvectors. It uses the normalized reconstruction 

rror between the projected object and its original as the outlier 

core. 

Angle-based outlier detection (ABOD) [30] analyzes the angles 

etween an object and the remaining objects. The outlier score is 

he variance of the angles. It can overcome the so-called “curse 

f dimensionality” in high-dimensional data which is better than 

istance-based measures [30] . 

Compared to PCAD, which merely considers the top eigen- 

alue/eigenvector, quantum entropy scoring (QES) [48] considers all 

he eigenvalues >> 1 in high-dimensional data. QES penalizes any 

bject that is causing a large eigenvalue in any direction; it thus 

ries to find a distribution containing information about as many 

utlier directions as possible. 

Multiple-objective generative adversarial active learning (MO- 

AAL) [49] is an unsupervised outlier detection method mainly for 

igh-dimensional data. It is based on a neural network, which is 

rained on a binary classification task to classify its generative data 

nd real data. Thereafter, this trained neural network will assign 

ossibilities to objects in real data as outlier scores and thus pre- 

ict the real data. 

These existing methods fall into two groups: local detectors ( k - 

N-based), and other detectors. The first group includes LOF, ODIN, 

C, KNN, and ABOD. The second group contains MCD, IFOREST, 

CSVM, PCAD, QES, and MO-GAAL. However, in all the said meth- 

ds, the outlier objects in the reference set bias the outlier scores, 

specially for datasets containing large numbers of outliers. 

. Outlier filtering 

In this work, we propose a simple but effective method for out- 

ier filtering based on mean shift. These methods are mean-shift 

utlier detector (MOD), and its counterpart is medoid-shift outlier 

etector (DOD). 

.1. Mean-shift process 

The mean-shift process works locally by analyzing the neigh- 

orhoods of objects, using k -NN. This method replaces every object 

y the mean of its k -NNs, forcing objects to move towards denser 

reas. The distance of the movement can serve as evidence of be- 

ng an outlier. An object with a bigger movement is more likely to 

e an outlier. The mean-shift process is shown in Algorithm 1 . 

This idea is closely related to mean-shift filtering used in image 

rocessing [31] and to the mean-shift clustering algorithm [32] . 

ean-shift filtering takes pixel value and its coordinates as the 

eature vector, and it transforms each feature vector towards the 

ean of its neighbors. The method has been proven to be useful in 
3 
etecting fingerprint and contamination defects in multicrystalline 

olar wafers [33] . This idea also resembles the low-pass and me- 

ian filtering used for image denoising. 

.2. Mean or median? 

Both mean and median have been used in the mean-shift clus- 

ering concept [ 32 , 34 ]. Mean can be used when dealing with nu-

eric data. However, its main disadvantage is that it can cause a 

lurring effect; outlier objects bias the calculation of the mean of 

lean objects. The median is less sensitive to this bias because a 

ingle outlier object in the neighborhood may not affect the calcu- 

ation of the median at all. Therefore, it has lesser effect on clean 

bjects. Another benefit of the median is that when repeated un- 

il converging, it can reach the root signal [35] . However, it is un- 

lear how the median can be computed in multidimensional data. 

o improve this point, we use the medoid , which is the object in 

 set that has the minimum total distance to all the other objects 

n the set. A disadvantage of the medoid is that its calculation can 

e time-consuming. An example of using the mean and medoid is 

hown in Fig. 4 . 

.3. Mean-shift outlier filtering 

The mean-shift process has been applied for outlier filtering in 

16] . The idea is to apply Algorithm 1 and modify the data so that

he effect of outliers is minimized. Being an implementation as 

 separate preprocessing step, it is therefore independent of the 

hoice of clustering method. This process can be iterated several 

imes for a stronger outlier removal effect. The number of itera- 

ions is the parameter. Based on our experiments in Section 6.3 , 

or typical clustering data, three-iterations is the best choice. 

This iterative variant is similar to the ORC algorithm [36] which 

teratively removes the most remote objects in each cluster. The 

ifference is that, in ORC, outliers are chosen based on the dis- 

ance to their cluster centroid in the intermediate clustering solu- 

ion. Therefore, if the cluster is not yet correctly determined, ob- 

ects can be falsely removed. 

In our method, instead of relying on the clustering process, we 

emove objects based on their local neighborhood. Fig. 5 demon- 

trates this process. A small number of outlier points can form 

 cluster ( Fig. 5 ), and the distances between the outlier points 

o the centroid can be very small. ORC will therefore falsely re- 

ove normality points that have bigger distances to their cen- 

roids. Fig. 5 shows an example in which despite 90 iterations, the 

utliers still remain. ORC on the other hand has by then removed 

 lot of normality points. 
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Fig. 5. Example of the iterative process of ORC (up) and the mean shift proposed 

(down) on a part of dataset A1 with 8% outliers. 

Algorithm 2 Mean-shift outlier detector (MOD ( X , k )). 

Input: Dataset X , neighborhood size k 

Output: Outlier score S 

Y ← MS( X, k , 3) ( Algorithm 1 ); 

FOR X i ∈ X : 
S i ← | X i – Y i |, Y j ∈ Y, S i ∈ S ; 
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Fig. 7. K- NN before and after the mean-shift process on a part of dataset A1 with 

8% of outliers. The black line shows the process of shifting of the red point. The 

dashed line shows the distance of the neighbors before and after shifting (blue 

crosses). The outlier score of the red point is the sum of the shifting distances of its 

neighbors: 10 + 11 + 9 + 8 + 7 = 45. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Outlier score of objects (top row). Detected outliers are marked by blue dia- 

monds (below row). MOD (left column) has local variations and fails to detect sev- 

eral outliers in the rectangle while MOD + (right column) can detect most outliers 

correctly. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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. Outlier detection 

The idea of using mean shift is next applied to outlier detec- 

ion. The mean-shift process here ( Algorithm 1 ) is the same as for

utlier filtering, but instead of only modifying objects, we calculate 

heir outlier scores. 

.1. Mean-shift outlier detection 

Mean-shift clustering [32] iterates the mean-shift process un- 

il convergence to clustering data. In [37] , mean-shift clustering is 

pplied first, and clusters having objects less than the threshold 

alue are treated as outlier clusters. We apply the same process, 

ut we do not cluster the data. Instead, because we aim at finding 

utliers, we use the processing result merely for analysis purposes. 

pecifically, we compare the location of the object before and after 

hifting. This difference is defined as the outlier score. 

The pseudo-code of the method is summarized in Algorithm 2 . 

e can see that the reference set contains both the original data 

n X and the modified data in Y . An example of the outlier scores

s given in Fig. 6 . Compared to [37] , the proposed method differs
ig. 6. Example of MOD with parameters k = 4 and iterations = 1. The outlier score 

s calculated as the distance of the original object (blue point) from its mean-shifted 

ersion (red point). The point below has a clearly bigger outlier score (203) than the 

oint above does (12). (For interpretation of the references to colour in this figure 

egend, the reader is referred to the web version of this article.) 
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n three ways. First, the motivation in [37] is merely clustering 

hile the techniques proposed here aim at detecting outliers in 

eneral. Second, the method in [37] applies the mean-shift process 

ntil convergence while the techniques proposed apply it only for 

 few iterations. Finally, instead of only modifying the data, the 

echniques proposed also provide outlier scores for objects. 

.2. The extended reference set 

When data abounds with outliers, using k -NN as the reference 

et can bias results. Having many outliers in the same neighbor- 

ood can cause outliers to form fake clusters. As a result, some 

utliers can have only a small movement when their neighbors are 

qually distributed everywhere around them. However, this is un- 

ikely to happen to all points. 

To overcome this problem, we extend the reference set by in- 

luding not only the nearest neighbors themselves but also their 

hifted versions, see Fig. 7 . If the neighbors are also outliers, many 

f them are likely to be shifted by a greater distance towards the 

ake cluster. This effect is enough to remove the potential bias in 

reas with many outliers. 

Fig. 8 and Fig. 9 demonstrate the effect of applying the ex- 

ended reference set. While MOD fails to detect the objects in the 

lack rectangle in these figures, the extended reference set suc- 

eeds in doing so. Another example is point a in Fig. 9 . It is shifted

nly by a short distance to point A because the nearest neighbors 

re evenly distributed around point a . 

To improve these situations, we extend the reference set by in- 

luding not only the original k -NN neighbors but also the modified 
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Fig. 9. Original points (red) and their shifted versions (blue) are connected by gray 

lines. Point a is shifted only a short distance to point A, resulting in a low outlier 

score. MOD + computes the outlier score as the sum of the movement of point a 

with that of its three nearest neighbors (point b, c , and d ). The outlier score, there- 

fore, becomes bigger. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Algorithm 3 Mean-shift outlier detector + (MOD + ( X , k )). 

Input: Dataset X , neighborhood size k 

Output: Outlier score S 

Y ← MS(X, k , 3) (Algorithm 1); 

FOR X i ∈ X : 
k -NN(X i ) ← Find k -nearest neighbors of X i ; 

S i ← | X i – Y i | + � j | X j – Y j |, X j ∈ k-NN(X i ), Y j ∈ Y, S i ∈ S; 
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Fig. 10. An example of medoid-shift outlier scores with k = 3 when using edit 

distance for strings from the Countries dataset. The arrows show the medoid-shift 

process. The outlier scores are calculated as the edit distance between the strings 

before and after three iterations of the medoid shift. Black strings are the original 

(normalities) and the red strings outliers. 
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Table 1 

BASELINE OUTLIER DETECTORS. 

Method Type basis Data Publication and year 

KNN [18] Distance N/S ACM SIGMOD, 2000 

LOF [22] Density N ACM SIGMOD, 2000 

ODIN [19] Graph N/S ICPR, 2004 

NC [21] Representation N IEEE-TNNLS, 2018 

MCD [24] Statistical N J. A. Stat. Assoc, 1984 

IFOREST [25] Tree N TKDD, 2012 

OCSVM [26] SVM N Neural computation, 2001 

PCAD [29] PCA N ACM, 2000 

ABOD [30] Angle N KDD, 2008 

QES [48] Entropy N NeurIPS, 2019 

MO-GAAL[49] Neural network N IEEE-TKDE, 2020 

DOD/MOD [ 16 , 17 ] Shifting N/S, N ICAISC, FSDM, 2018 

DOD + /MOD + Shifting N/S, N Proposed 

N = numeric data, S = string data. 
 -NN neighbors after the mean shift. The extended reference set, 

herefore, contains more information from the data. This feature 

akes it more robust in the case of data with many outliers. The 

ariants of MOD and DOD use the extended reference set (MOD + 

nd DOD + ); these variants are summarized in Algorithm 3 . 

The outlier score of an object is calculated here as the sum of 

he shifting distances of both the object and its k -NNs. MOD + as- 

umes that the possibility of an object being an outlier can be cor- 

ected or enhanced by considering its neighbors. An example of 

he difference between MOD and MOD + is shown in Fig. 9 . We

an see MOD fails to detect many outliers while MOD + succeeds. 

oint a in Fig. 9 shows how MOD + can increase the possibility of 

 point being an outlier by considering its neighbors’ movement. 

fter we sum up its movement with that of its neighbors, point a 

as a much bigger outlier score than the previous, thus reflecting 

ts possibility of being an outlier better. 

.3. String data 

K -NN-based methods rely on distance calculations; therefore, 

hey can straightforwardly be applied to string data as well. To 

alculate the distance between strings, we used the well-known 

dit distance . However, complications arise when we need to cal- 

ulate the mean , which is not obvious in non-numeric spaces. For 

his reason, we use the medoid within the proposed method. The 

edoid is the object with the minimum total distance to all other 

bjects in the k -nearest neighborhood. The following methods are 

pplicable for strings: KNN, ODIN, DOD, and DOD + . 

Fig. 10 shows an example of the process and the correspond- 

ng result. For example, the word ysys is shifted to the word finan .

heir edit distance is 5; hence, the outlier score of ysys is 5. Simi-

arly, denmark is shifted to the word denmark itself; hence, the edit 

istance is 0, and the corresponding outlier score is 0. 

.4. Discussion 

K -NN-based methods [ 19–22 , 30 ] differ in how they use k -NN

nformation. The KNN detector [18] can be considered as a spe- 

ial case of our method but with one iteration of mean shift. Our 
5 
ethod differs from it in three aspects. First, we iterate mean shift 

ultiple times; second, we also consider the medoid instead of 

ust the mean. Finally, our method can be applied also as a prepro- 

essing technique; in this way, it can avoid the need for threshold 

election [15] . From this perspective, the proposed method is more 

eneral than other methods based on k- NN. 

We also note that the concept of mean shift [50] has also been 

ntroduced in the classical least squares in regression when han- 

ling outliers [ 51–54 ]. However, this mean shift [50] is a concept 

otally different from the mean-shift process we have adopted from 

 31 , 32 , 34 ]. In [50] , mean shift is used as a name of a parameter

pecific to each observation in the regression function. If the value 

f the parameter is non-zero, the observation associated with the 

arameter is an outlier. The technique proposed in [50] is specific 

o regression tasks with sequential data and it directly outputs la- 

els other than outlier scores for outliers and normalities. It does 

ot generalize high-dimensional data and cannot be applied here. 

. Experimental set-up 

.1. Methods 

First, we tested the proposed mean-shift outlier filtering algo- 

ithm as a preprocessing method with two clustering algorithms: 

-means [38] and random swap [39] . Both algorithms minimize 

um-of-squared errors. The first one is commonly used but does 

ot always find the correct clustering, even with clean data. The 

econd one does find the correct results with all datasets tested 

ith clean data. In the case of data with outliers, all errors in 

he clustering are caused by outliers. We compared the proposed 

ethod to the outlier detectors from Section 2 , summarized in 

able 1 . ABOD, QUE, and MO-GAAL are compared with high- 

imensional data, for which they were mainly developed. 
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Table 2 

DATASETS GENERATED. 

Dataset name Data size Cluster Dim Type 

S1-S4 5000 15 2 Numeric 

A1-A3 3000–7500 20, 35, 50 2 Numeric 

B1-B2 100,000 100 2 Numeric 

Unbalance 6500 8 2 Numeric 

XOR 2000 4 2 Numeric 

Countries/N 2400 48 – String 

REAL-WORLD DATASETS FOR OUTLIER DETECTION 

Dataset name Data size Outliers Dim Outlier object 

KDD-Cup99 60,632 246 38 Network attack 

Stamps 340 31 9 Forged stamps 

PageBlocks 5473 560 10 Pictures or graphics 

Pima 768 268 8 Patients 

Arrhythmia 450 206 259 Affected patients 

Parkinson 195 147 22 Patients 

Fig. 11. Two-dimensional datasets used in the experiments. 
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Fig. 12. Part of dataset S1 with 8% (left) and 128% (right) of outliers. Gray points 

are normalities, and red points are outliers. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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.2. Datasets 

We used 11 clustering datasets, as shown in Table 2 . For a vi-

ualization of the 2-D datasets, see Fig. 11 . The S sets have vary-

ng levels of cluster overlap; the A sets have varying numbers of 

lusters. The B sets have varying shape; the unbalance and XOR 

atasets [40] have clusters with different densities. Most of these 

atasets can be found in the basic clustering benchmark in [41] ; 

he XOR dataset originates from [40] . All these datasets are avail- 

ble on the web. 1 

The Countries 2 dataset contains modified copies of the names 

f the 48 European countries. The modifications are random insert 

nd delete operations. The number of operations is 30%, so the 

esulting strings can still be identified with some effort. Outliers 
1 http://cs.uef.fi/sipu/datasets/ 
2 http://cs.uef.fi/sipu/string/countries/ 

p

d

s  

6 
re then added by generating fake strings so that their length and 

haracter distribution resembles those of the real country names, 

ut their content has no intelligible meaning. Experiments with 

0%, 20%, 30%, and 40% of outliers are then tested. 

In addition to these artificial datasets, we used six public real- 

orld semantically meaningful datasets from [23] , summarized in 

able 2 . We removed duplicates and scaled every attribute by sub- 

racting the mean and dividing by standard deviation. The dimen- 

ions vary from 8 to 259. 

.3. Measurement 

We evaluated the clustering results by using the centroid in- 

ex (CI) [42] . It is a cluster-level measurement, which counts the 

umber of wrongly located clusters. The value CI = 0 indicates that, 

t the cluster level, the clustering is correct with respect to the 

round truth. We evaluated outlier detection methods by using 

he receiver operating characteristic (ROC), a 2-dimensional plot of 

he true-positive rate against the false-positive rate, over varying 

hresholds. The curve can also be summarized by a single value 

nown as the area under the curve (AUC), which ranges between 

 and 1. A perfect ranking of database objects would result in an 

UC value of 1, and the worst possible ranking would produce a 

alue of 0. 

.4. Outlier model 

Our method does not rely on any assumption of the distribu- 

ion of outliers. For simplicity, we use uniformly distributed ran- 

om outliers added to the A, B, S, Unbalance, and XOR datasets. 

andom values are generated in each dimension between [ x mean - 

 �range, x mean + 2 �range ], where x mean is the mean of all data

oints, and range is the maximum distance of any point from the 

ean: range = max (| x max - x mean |, | x mean - x min |). An example of a

ataset with outliers is shown in Fig. 12 . 

. Results and discussion 

The experimental results are summarized in Tables 3–9 . Clus- 

ering results are also shown in Table 3 . Tables 4 , 5 , 6 , and 7 sum-

arize outlier detection results. The relationships between the per- 

entage of outliers and the number of shifting iterations are sum- 

arized in Table 7 and 8 and Fig. 13 . The running times of the

lgorithms are summarized in Table 11 . 

.1. Clustering results 

Clustering results are summarized in Table 3 . Neighborhood size 

s fixed at k = 30, and Top- N is fixed at half of the number of

utliers. For example, with 8% of outliers, we select the top 0.04 ∗N 

oints with the highest outlier score as outliers. 

For the results in Table 3 , we have several observations. First, all 

atasets can be perfectly clustered when using the better random 

wap algorithm if there is no outlier (CI = 0 for 0% of outlier). When

http://cs.uef.fi/sipu/datasets/
http://cs.uef.fi/sipu/string/countries/
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Table 3 

SUMMARY OF THE CLUSTERING RESULTS WITH DIFFERENT PERCENTAGE OF OUTLIERS. THE NUMBERS ARE AVERAGE CI VALUES FOR THE 2-D CLUSTERING 

DATASETS IN TABLE 2 . 

RANDOM SWAP 

The percentage of outliers 

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 0.00 1.36 2.55 3.82 5.18 7.64 10.09 12.45 14.27 17.73 20.45 9.55 

Outlier filtering 
DOD 0.18 0.36 2.18 1.64 2.55 4.27 6.55 9.73 13.09 16.18 19.73 7.63 

MOD 0.18 0.18 1.00 1.64 2.45 4.00 6.00 9.82 12.91 16.36 19.64 7.40 

Outlier removal 

LOF – 0.73 1.36 2.64 4.00 6.73 9.64 13.27 16.27 19.73 23.18 9.76 

ODIN – 1.18 2.36 3.27 5.09 7.45 9.55 12.55 15.82 18.27 20.73 9.63 

NC – 1.73 2.18 3.27 4.64 7.18 9.55 12.73 15.64 17.82 20.64 9.54 

KNN – 0.27 1.00 1.73 2.91 3.36 5.73 8.45 11.82 15.18 18.27 6.87 

MCD – 0.91 1.55 2.27 3.64 4.91 6.82 8.64 10.55 13.64 16.18 6.91 

IFOREST – 1.91 2.45 3.18 4.55 6.09 7.73 9.55 12.00 13.73 15.64 7.68 

OCSVM – 1.55 2.18 2.73 4.09 5.73 7.73 8.45 10.91 12.27 12.36 6.80 

PCAD – 1.73 2.55 3.45 4.73 6.64 7.27 9.09 11.18 12.91 14.64 7.42 

K-MEANS 

The percentage of outliers 

Type Method 0% 0.025% 0.5% 1% 2% 4% 8% 16% 32% 64% 128% Avg. 

None None 3.27 3.64 4.73 5.00 4.91 4.73 7.45 9.27 11.36 14.73 18.55 8.44 

Outlier filtering 
DOD 5.55 4.27 3.73 3.18 4.64 5.00 6.00 7.27 8.91 13.09 15.73 7.18 

MOD 5.45 3.64 3.91 4.09 4.45 5.64 6.45 7.27 10.18 12.82 16.18 7.46 

Outlier removal 

LOF – 3.73 3.36 3.73 4.91 5.36 9.36 9.36 12.73 17.45 20.55 9.06 

ODIN – 3.91 3.91 4.82 4.36 6.09 9.36 8.73 11.91 14.91 18.73 8.67 

NC – 3.36 4.09 4.45 4.55 6.27 9.36 9.00 12.27 15.09 19.91 8.84 

KNN – 3.45 4.00 4.18 4.55 5.45 6.55 7.45 9.00 11.73 16.09 7.25 

MCD – 3.00 4.09 4.36 4.91 5.00 5.36 6.73 8.55 11.09 14.73 6.78 

IFOREST – 2.00 2.45 3.09 4.45 6.27 7.36 9.45 11.36 13.36 15.45 7.53 

OCSVM – 1.55 2.18 2.91 4.45 5.82 7.64 8.82 10.55 11.91 12.36 6.82 

PCAD – 1.73 2.45 2.82 4.55 6.27 7.55 9.73 11.27 12.82 14.82 7.40 

Table 4 

BEST AUC FOR REAL-WORLD DATASETS WITH k RANGING FROM 2 TO 100. 

Dataset (outliers) KDD. (0.4%) Stamps (9.1%) Page. (10.2%) Pima (34.9%) Arrh. (45.8%) Parkinson (75.4%) AVG 

DOD + 0.98 0.94 0.91 0.78 0.73 0.71 0.84 

MOD + 0.99 0.94 0.91 0.76 0.74 0.68 0.84 

DOD 0.78 0.92 0.89 0.71 0.74 0.71 0.79 

MOD 0.99 0.90 0.91 0.68 0.74 0.67 0.82 

LOF 0.84 0.89 0.91 0.69 0.73 0.61 0.78 

ODIN 0.81 0.83 0.79 0.63 0.72 0.53 0.72 

NC 0.69 0.68 0.70 0.57 0.67 0.61 0.65 

KNN 0.99 0.91 0.92 0.73 0.74 0.64 0.82 

ABOD 0.78 0.73 0.75 0.68 0.71 0.61 0.71 

MCD 0.97 0.85 0.92 0.68 0.72 0.65 0.80 

IFORES. 0.99 0.86 0.90 0.67 0.76 0.49 0.78 

OCSVM 0.99 0.87 0.91 0.62 0.74 0.36 0.75 

PCAD 0.99 0.90 0.90 0.63 0.73 0.38 0.76 

QES 0.96 0.89 0.77 0.60 0.66 0.36 0.71 

MO-GAAL 0.85 0.38 0.25 0.69 0.47 0.75 0.57 

Table 5 

BEST AUC FOR THE COUNTRIES DATASET WHEN K RANGES FROM 2 TO 

100. 

The percentage of outliers 

Method 10% 20% 30% 40% 

AUC k AUC k AUC k AUC k 

DOD + 0.84 2 0.83 4 0.83 5 0.85 5 

DOD 0.86 2 0.84 4 0.84 5 0.83 5 

KNN 0.82 2 0.80 2 0.79 2 0.80 2 

ODIN 0.88 28 0.85 30 0.83 37 0.81 32 
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hanging the clustering algorithm to k -means, we can also see the 

ffect of the inferior clustering algorithm. Even with clean data, the 

 -means algorithm yields CI = 3.27 errors, on average. 
7 
However, with outliers present in the data, the performance dif- 

erence of the clustering algorithms disappears, and both random 

wap and k -means produce very similar results. The more outliers 

n the data, the more the clustering result deteriorates. With 8% of 

utliers, we already have errors with 10 clusters (CI = 10.09), on av- 

rage; when the percentage of outliers reaches 128%, errors double 

CI = 20.45). 

The exceptions are NC, ABOD, IFOREST, OCSVM, and PCAD, all 

f which perform slightly worse with 0.025% of outliers. Overall, 

he medoid-shift variant (DOD) proposed performs best with a low 

ercentage of outliers, up to 2%. KNN works best with an interme- 

iate percentage of outliers (4% −8%), and MCD and OCSVM work 

est with a higher percentage of outliers (16% −128%). 

Our second observation is that both the proposed mean-shift 

ltering and all the outlier removal methods improve the cluster- 

ng but only up to a point where the percentage of outliers is 8%. 
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Table 6 

OUTLIER SCORES FOR TOY EXAMPLE IN FIG. 10 

( k = 3). 

Strings DOD + DOD KNN ODIN 

denmrark 1 1 3 3 

denmark 1 0 2 4 

denmarkqll 2 3 4 1 

demarki 1 2 3 4 

finland 1 2 2 4 

finlad 1 2 2 3 

finan 1 0 2 5 

vipand 2 3 3 1 

ysys 5 5 5 3 

woai 3 4 4 3 

shishi 5 5 5 2 

SUCCESS YES YES NO NO 
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Table 8 

THE EFFECT OF ITERATIONS ON DIFFERENT PERCENTAGES OF OUT- 

LIERS IN THE COUNTRIES DATASETS ( AUC ). 

The percentage of outliers 

Iteration 10% 20% 30% 40% 

1 0.86 0.76 0.76 0.75 

2 0.86 0.84 0.84 0.83 

3 0.86 0.85 0.84 0.84 

Fig. 13. The effect of the percentage of outliers on the number of shifting iterations 

needed. Results are shown for medoid shift (above) and mean shift (below). 
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hereafter, most methods start to lose their effectiveness in im- 

roving clustering. 

The choice between the mean and medoid seems insignificant. 

irst, when using k -means, medoid shift (DOD) is sometimes better 

han mean shift (MOD). However, when using random swap, the 

ituation is the opposite. Second, k -means becomes slightly better 

han random swap, when the number of outliers increases beyond 

%. This aspect is a side effect of the k -means algorithm. Adding 

utliers generates fake low-density clusters, in which a good algo- 

ithm can identify more effectively. However, k -means has prob- 

ems when clusters have less overlap or varying density [41] . It is 

herefore less efficient in finding fake clusters, which appears as a 

ositive effect but this is merely a side effect of its inferior opti- 

ization capability. 

We conclude that to have perfect clustering performance, one 

ust have a good algorithm and clean data. When the percent- 

ge of outliers becomes high, no outlier detection can fix all the 

roblems. The choice of the clustering algorithm also becomes less 

ignificant. 

One requirement for a good outlier removal method is that it 

hould not destroy clean data. In our case, slight errors were de- 

ected in the case of 0% of outliers. CI = 0 increased to CI = 0.18,

n average, when mean shift was applied to clean data. However, 

ost of these errors are originated from datasets B1 and B2 . 

The main problem of traditional outlier removal methods is that 

hey are based on thresholding and require knowing the percent- 

ge of outliers to set up the Top- N parameter. If the correct num- 

er of outliers is used, their performance is close to that of our 

ethod. However, if some default value, such as 1% or 8% is ap- 

lied, they (start to) fail much more severely. This feature high- 

ights the importance of outlier filtering (our approach) compared 

o traditional outlier removal. 

.2. Results for outlier detection 

Outlier detection results are summarized in Table 4 for the 

igh-dimensional real-world datasets and in Table 5 for the Coun- 

ries string datasets. We tested all k -NN-based outlier detectors, 
Table 7 

OPTIMAL ITERATIONS FOR AVERAGE RESULTS OF 

LIERS (REPEATED 99 TIMES). ( ITERATIONS ). 

The percent

0.025% 0.5% 1% 2% 4% 8

DOD 1 1 1 1 1 1

MOD 1 1 1 1 1 2

8 
sing all values of k between 2 and 100. The value of k that pro-

ides the best result is chosen for each outlier detector. For the 

ther detectors, we use their default parameter settings found in 

he literature. 

For results of the high-dimensional real-world datasets in 

able 4 , the proposed methods are far better than the other meth- 

ds. For instance, both MOD and KNN reach an AUC value of 0.99 

ith the KDD-Cup99 data, which has only 0.4% outliers. However, 

or the Parkinson dataset (75.4% outliers), medoid-shift and MO- 

AAL perform better than others (AUC > 0.70). MOD + and DOD + 

re slightly better than MOD and DOD (0.84 vs. 0.82), on average. 

For the Countries dataset, the results when using edit distance 

re summarized in Table 5 . We can see that when the percentage 

f outliers is low (10% and 20%), ODIN outperforms KNN, DOD, and 

OD + . However, when the percentage of outliers is high (30% and 

0%), the proposed DOD and DOD + outperform KNN and ODIN. 

n example with 30% of outliers is provided in Table 6 . We can

bserve that both KNN and ODIN fail to detect outliers, but the 

roposed DOD and DOD + succeed. 

From Fig. 10 , we can note that after three iterations, many nor- 

ality objects such as Denmark, have already been shifted to their 

riginal variant. This produces a small outlier score. True outlier 

ords such as ysys , will keep on being shifted further away. This 

hift results in a bigger outlier score than that of normality ob- 

ects. The other methods have been defined only using Euclidean 

istance and not edit distance. Therefore, we have not compared 

he proposed method to these other methods on string data. 
DATA SET S1 WITH PERCENTAGE OF OUT- 

age of outliers 

% 16% 32% 64% 128% Avg. 

 5 4 5 7 2.7 

 3 4 4 4 2.2 
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Table 9 

AUC FOR THE REAL-WORLD DATASETS WHEN k = 6 ∗LOG( n ). 

Dataset (outliers) KDD. (0.4%) Stamps (9.1%) Page. (10.2%) Pima (34.9%) Arrh. (45.8%) Parkinson (75.4%) AVG 

DOD + 0.79 0.89 0.89 0.71 0.73 0.63 0.78 

MOD + 0.94 0.91 0.89 0.73 0.72 0.66 0.81 

DOD 0.69 0.81 0.80 0.68 0.73 0.68 0.73 

MOD 0.92 0.78 0.84 0.65 0.74 0.60 0.75 

LOF 0.60 0.53 0.73 0.60 0.73 0.56 0.62 

ODIN 0.61 0.58 0.62 0.56 0.70 0.45 0.59 

NC 0.58 0.50 0.52 0.52 0.60 0.46 0.53 

KNN 0.96 0.89 0.92 0.72 0.74 0.54 0.79 

ABOD 0.82 0.81 0.80 0.70 0.72 0.64 0.75 
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Fig. 14. AUC over k in the Pima dataset. 
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To sum up, the proposed methods (MOD and DOD) outperform 

thers in most cases, regardless of the type and dimensionality of 

he data. They perform well, especially for real-world datasets that 

ave large number of outliers. 

.3. Effect of shifting iterations 

We also study the relationship between the percentage of out- 

iers and the number of shifting iterations. We repeat the experi- 

ent 99 times with dataset S1, using random outliers on each per- 

entage. The average AUC results are shown in Fig. 13 and Table 7 .

e can see that, with the increasing of the percentage of outliers, 

ore shifting iterations are needed to reach optimal performance 

nd experiment shows that for MOD and DOD, the number of iter- 

tions is three iterations and five respectively. 

The smallest numbers of iterations required to reach the best 

erformance are summarized in Table 7 . To reach the percentage 

f outliers of 16% for MOD and 8% for DOD, three iterations are 

ufficient. With a low percentage of outliers, one iteration would 

uffice. Additional iterations would not yield any additional benefit 

ut they do no harm either except for a slightly longer processing 

ime. Based on these results, we fix the number of iterations at 

hree as a default value. 

For the Countries datasets, the effect of the number of itera- 

ions is shown in Table 8 . We can see that three iterations provide

he best results; due to the more discrete nature of the data, ad- 

itional iterations are less critical. The difference in performance 

hen using two and three iterations is only marginal. Neverthe- 

ess, one iteration is still too few, except with the lowest percent- 

ge of outliers (10%). 

.4. Neighborhood size k 

In all k -NN-based methods, selecting k is a challenge. We, 

herefore, study the sensitivity of these methods to the parame- 

er k . First, we plot AUC over k on the Pima dataset in Fig. 14 . We

an observe that a relatively large-value k performs best, but the 

ethods proposed are not very sensitive to the exact choice of k . 

ean shift (MOD/MOD + ) is somewhat less sensitive than medoid 

hift (DOD/DOD + ); their performance is almost equal. 
Table 10 

AUC FOR THE REAL-WORLD DATASETS WHEN k = 2 ∗[5 ∗LOG( n )/2) + 1. 

Dataset (outliers) KDD. (0.4%) Stamps (9.1%) Page. (10.2%) 

DOD + 0.71 0.88 0.89 

MOD + 0.93 0.90 0.88 

DOD 0.67 0.79 0.79 

MOD 0.90 0.78 0.84 

LOF 0.59 0.53 0.72 

ODIN 0.60 0.58 0.61 

NC 0.59 0.48 0.52 

KNN 0.95 0.88 0.91 

ABOD 0.82 0.80 0.80 

9 
One approach for choosing the value of k is to select a number 

hat is proportional to the data size n . We consider two heuris- 

ic rules discussed in [ 21,54,55 ] based on logarithmic relationship: 

 = 6 ∗log( n ) and k = 2 ∗[5 ∗log ( n )/2] + 1, where the brackets refer

o rounding operation. The results of applying these two heuristic 

ules are shown in Tables 9 and 10 . We can see that MOD + re-

ains the best method, with only slight degradation from the opti- 

um (0.84 to 0.81). The corresponding AUC results for the optimal 

hoices of k from Table 4 are: ODIN = 0.72, KNN = 0.82, MOD = 0.82,

OD = 0.79, MOD + /DOD += 0.84. 

.5. Computational complexity 

All these methods are based on k -NN, which requires O( N 

2 ) cal-

ulations. To address this slowness of the brute-force approach, for 

-dimensional datasets, we use the KD-tree technique [43] with 

ll algorithms; for multidimensional datasets, we use the Ball-tree 

44] technique with all algorithms. KD-tree works fast with low di- 

ensions but can become inefficient with high dimensions ( D > 20), 

nd Ball-tree works inefficiently with high dimensions. Alterna- 
Pima (34.9%) Arrh. (45.8%) Parkinson (75.4%) AVG 

0.72 0.73 0.64 0.76 

0.70 0.73 0.70 0.81 

0.65 0.74 0.70 0.72 

0.65 0.73 0.58 0.75 

0.60 0.73 0.58 0.63 

0.55 0.69 0.46 0.58 

0.46 0.60 0.43 0.51 

0.72 0.74 0.58 0.80 

0.69 0.72 0.64 0.74 
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Table 11 

RUNNING TIME ( S ) ( k = 30). 

Data size 100 10 0 0 10,0 0 0 10 0,0 0 0 

k -NN based 

DOD 0.10 0.27 0.99 5.41 

MOD 0.09 0.27 0.93 4.86 

LOF 0.03 0.01 0.11 1.52 

ODIN 0.03 0.01 0.10 1.62 

NC 0.13 1.07 9.19 82.59 

KNN 0.00 0.01 0.10 1.48 

ABOD 0.06 0.62 6.00 58.44 

Other 

MCD 0.28 0.92 5.82 61.63 

IFOREST 0.20 0.28 0.83 7.25 

OCSVM 0.04 0.03 4.12 493.88 

PCAD 0.14 0.26 0.90 4.94 

QUE 0.38 1.22 745.85 > 1000 

MO-GAAL 1.95 2.11 7.82 546.01 
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ively, faster approximates, such as NNDES [45] , Random pair divi- 

ive (RP-div) [46] , or Z-curve [47] can become more efficient. 

To evaluate algorithm complexity and execution speed, the 

bove-mentioned algorithms are implemented in Python 3.7, using 

 PC with an Intel Core i7 CPU, 16 GB RAM, and a clock frequency

f 2.3 GHz. 3 Table 11 shows the average AUC improvement and 

he average extra computing time evaluated on the 2-D datasets 

enerated. The proposed method is about 3.5 times slower than 

DIN, LOF and KNN, mainly because of the need to calculate k -NN 

 times, once per iteration. However, it is faster than other compet- 

ng detectors. DOD is also slower than MOD because of the need 

o search for the medoid. 

. Conclusions 

Mean shift and medoid shift are proposed for filtering the data 

efore analysis such as clustering and to detect outliers. For the 

lustering task, our results demonstrate that they improve both k - 

eans and random swap when used as preprocessing. The pro- 

osed approach outperforms five existing outlier removal methods 

n this task: LOF, ODIN, NC, IFOREST, and ABOD. The most impor- 

ant property of the proposed approach is that it does not require 

he number of outliers in advance. 

For the outlier detection task, the mean-shift outlier detector 

MOD) is slightly more effective than the medoid-shift outlier de- 

ector (DOD). Our experiments show the proposed approaches out- 

erform eleven state-of-the-art outlier detectors: LOF, NC, KNN, 

DIN, MCD, IFOREST, OCSVM, PCAD, and ABOD. The most impor- 

ant property of the proposed approach is that it is competitive es- 

ecially when the number of outliers is large. The method is also 

ot limited to numeric data and is can be applied to string data 

sing edit distance. 

We also demonstrate that when data contains large numbers of 

utliers, the model becomes polluted by outliers thus biasing out- 

ier detection. The cumulative effect of outliers can be potentially 

olved by the fundamentally new concept introduced, the extended 

eference set, which contains both objects from original data and 

ean-shift-modified objects. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 
3 Our algorithm can be found via http://cs.uef.fi/sipu/soft/MeanShift-OD.py . 

[

[

10 
eferences 

[1] C.C. Aggawal , Outlier Analysis Second Edition, Springer International Publish- 

ing, 2016 v . 

[2] R. Domingues , M. Filippone , P. Michiardi , J. Zouaoui , A comparative evaluation
of outlier detection algorithms: experiments and analyses, Pattern Recognit 74 

(406–421) (2018) . 
[3] D. Chakraborty , V. Narayanan , A. Ghosh , Integration of deep feature extraction 

and ensemble learning for outlier detection, Pattern Recognit 89 (161–171) 
(2019) . 

[4] D. Carrera , B. Rossi , P. Fragneto , G. Boracchi , Online anomaly detection

for long-term ecg monitoring using wearable devices, Pattern Recognit 88 
(4 82–4 92) (2019) . 

[5] M. Gupta , J. Gao , C.C. Aggawal , J. Han , Outlier Detection for Temporal Data,
Morgan & Claypool Publishers, 2014 . 

[6] G. Wang , yufei. Chen , X. Zheng , Gaussian field consensus: a robust nonpara-
metric matching method for outlier rejection, Pattern Recognit 74 (305–316) 

(2018) . 
[7] Y. Cong , J. Yuan , J. Liu , Abnormal event detection in crowded scenes using

sparse representation, Pattern Recognit 46 (7) (2013) 1851–1864 . 

[8] B. Tu , X. Yang , N. Li , C. Zhou , D. He , Hyperspectral anomaly detection via den-
sity peak clustering, Pattern Recognit. Lett. 129 (144–149) (2020) . 

[9] M. Ribeiro , A.E. Lazzaretti , H.S. Lopes , A study of deep convolutional auto-en-
coders for anomaly detection in videos, Pattern Recognit. Lett. 105 (13–22) 

(2018) . 
[10] S. Li , C. Liu , Y. Yang , Anomaly detection based on maximum a posteriori, Pat-

tern Recognit. Lett. 107 (91–97) (2018) . 

[11] J.W. Yang , R. Mariescu-Istodor , P. Fränti , Three Rapid Methods for Averaging 
GPS Segments, Applied Sciences 9 (22) (2019) 4899 . 

[12] T.V. Pollet , L. van der Meij , To remove or not to remove: the impact of out-
lier handling on significance testing in testosterone data, Adapt Human Behav 

Physiol 3 (1) (2017) 43–60 . 
[13] M. Ester , H.P. Kriegel , J. Sander , X. Xu , A density-based algorithm for discover-

ing clusters in large spatial databases with noise, Int. Conf. on Knowledge Dis- 

covery and Data Mining (KDD) (1996) 226–231 . 
[14] H.P. Kriegel , P. Kröger , A. Zimek , Outlier detection techniques, 13th Pacific-Asia 

Conf. Knowledge Discovery Data Mining (2009) 1–73 . 
[15] J.W. Yang , S. Rahardja , P. Fränti , Outlier detection: how to threshold outlier

scores, International Conference on Artificial Intelligence, Information Process- 
ing and Cloud Computing, 2019 AIIPCC2019accepted . 

[16] P. Fränti , J.W. Yang , Medoid-shift noise removal to improve clustering, Int. Conf. 

Art. Int. Soft Computing (2018) 604–614 . 
[17] J.W. Yang , S. Rahardja , P. Fränti , Mean-shift outlier detection, Int. Conf. Fuzzy

Systems and Data Mining (FSDM) (2018) 208–215 . 
[18] S. Ramaswamy , R. Rastogi , K. Shim , Efficient algorithms for mining outliers

from large data sets, ACM SIGMOD Record 29 (2) (20 0 0) 427–438 . 
[19] V. Hautamäki , I. Kärkkäinen , P. Fränti , Outlier detection using knearest neigh-

bor graph, Int. Conf. on Pattern Recognition (ICPR) (2004) 430–433 . 

20] E.M. Knorr , R.T. Ng , Algorithms for mining distance-based outliers in large 
datasets, in: Int. Conf. Very Large Data Bases, 1998, pp. 392–403 . 

[21] X. Li , J. Lv , Z. Yi , An efficient representation-based method for boundary point
and outlier detection, IEEE Trans. on Neural Networks and Learning Systems 

29 (1) (2018) 51–62 . 
22] M.M. Breunig , H. Kriegel , R.T. Ng , J. Sander , LOF: identifying density-based lo-

cal outliers, ACM SIGMOD Int. Conf. on Management of Data 29 (2) (20 0 0)

93–104 . 
23] G.O. Campos , A. Zimek , J. Sander , R.J.G.B. Campello , B. Micenkova , E. Schu-

bert , I. Assent , M.E. Houle , On the evaluation of unsupervised outlier detec-
tion: measures, datasets, and an empirical study, Data Min Knowl Discov 30 

(4) (2016) 891–927 . 
24] P.J. Rousseeuw , Least median of squares regression, J. Am Stat Ass (1984) 

79–871 . 
25] F. Liu , T. Ting , K. Ming , Z.H. Zhou , Isolation-based anomaly detection, ACM

Transactions on Knowledge Discovery from Data (TKDD) 6 (1) (2012) 3:1–3:39 . 

26] B. Schölkopf , J. Platt , J. Shawe-Taylor , A. Smola , R. Williamson , Estimating
the support of a high-dimensional distribution, Neural Comput 13 (7) (2001) 

1443–1471 . 
27] S.M. Erfani , S. Rajasegarar , S. Karunasekera , C. Leckie , High-dimensional and 

large-scale anomaly detection using a linear one-class SVM with deep learning, 
Pattern Recognit 58 (2016) 121–134 . 

28] C. Ding , X. He , K-means clustering via principal component analysis, In Pro- 

ceedings of the twenty-first international conference on Machine learning 
(2004) 29 ICML ’04). ACM- . 

29] M.-.L. Shyu , S.-.C Chen , K. Sarinnapakorn , L.W. Chang , A Novel Anomaly Detec-
tion Scheme Based on Principal Component Classifier, ICDM Foundation and 

New Direction of Data Mining workshop (2003) 172–179 . 
30] H. Kriegel , M. Schubert , A. Zimek , Angle-based Outlier Detection in High-di-

mensional Data, in: the 14th ACM SIGKDD International Conference on Knowl- 

edge Discovery and Data Mining, KDD, 2008, pp. 4 4 4–452 . 
[31] D. Comaniciu , P. Meer , Mean shift: a robust approach toward feature space 

analysis, IEEE Trans. Pattern Analysis and Machine Intelligence 24 (5) (2002) 
603–619 . 

32] Y. Cheng , Mean shift, mode seeking, and clustering, IEEE Trans. Pattern Analy- 
sis and Machine Intelligence 17 (8) (1995) 790–799 . 

33] D.-.M. Tsai , J.-.Y. Luo , Mean shift-based defect detection in multicrystalline so- 

lar wafer surfaces, IEEE Trans. on Industrial Informatics 7 (1) (2011) 125–135 . 

http://cs.uef.fi/sipu/soft/MeanShift-OD.py
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0033


J. Yang, S. Rahardja and P. Fränti Pattern Recognition 115 (2021) 107874 

[  

[

[  

[  

[

[

[  

[  

[

[

[

[

[  

[

[

 

[  

[

[

[

J

v  

v

S

g
N

c

d
a

a
w

t
t

W

a

P
T  

F  

p

n

i
d

34] Y.A . Sheikh , E.A . Khan , T. Kanade , Mode-seeking by Medoidshifts, IEEE Int.
Conf. on Computer Vision, ICCV, 2007 . 

35] H.V. Nguyen , V. Gopalkrishnan , Feature extraction for outlier detection in high- 
-dimensional spaces, J Mach Learn Res Proc Track 10 (2010) 66–75 . 

36] V. Hautamäki , S. Cherednichenko , I. Kärkkäinen , T. Kinnunen , P. Fränti , Improv-
ing k -means by outlier removal, in: Scand. Conf. on Image Analysis (SCIA), Lec- 

ture Notes of Computer Science, 2005, pp. 978–987 . 
37] M. Okade , P.K. Biswas , Mean shift clustering based outlier removal for global

motion estimation, 2013 Fourth National Conference on Computer Vision, Pat- 

tern Recognition, Image Processing and Graphics, NCVPRIPG, 2013 . 
38] E. Forgy , Cluster analysis of multivariate data: efficiency vs. interpretability of 

classification, Biometrics 21 (1965) 768–780 . 
39] P. Fränti , Efficiency of random swap clustering, J Big Data 5 (13) (2018) 1–29 . 

40] Y. Li , L.P. Maguire , Selecting critical patterns based on local geometrical and
statistical information, IEEE Trans. Pattern Analysis Machine Intelligence 33 (6) 

(2011) 1189–1201 . 

[41] P. Fränti , S. Sieranoja , K-means properties on six clustering benchmark 
datasets, Applied Intelligence 48 (12) (2018) 4743–4759 . 

42] P. Fränti , M. Rezaei , Q. Zhao , Centroid index: cluster level similarity measure,
Pattern Recognit 47 (9) (2014) 3034–3045 . 

43] J.L. Bentley , Multidimensional binary search trees used for associative search- 
ing, Commun ACM 18 (9) (1975) 509–517 . 

44] S.M. Omohundro , Five balltree construction algorithms, International Computer 

Science Institute Technical Report (1989) . 
45] W. Dong , C. Moses , K. Li , Efficient k-nearest neighbor graph construction 

for generic similarity measures, ACM Int. Conf. on World Wide Web (2011) 
577–586 . 

46] S. Sieranoja , P. Fränti , Fast random pair divisive construction of kNN graph 
using generic distance measures, in: Int. Conf. on Big Data and Computing, 

ICBDC, 2018, pp. 95–98 . 

[47] S. Sieranoja , P. Fränti , Constructing a high-dimensional kNN-graph using a 
Z-order curve, ACM Journal of Experimental Algorithmics 23 (1) (2018) 1–21 

1.9 . 
48] Y. Dong , S.B. Hopkins , J. Li , Quantum entropy scoring for fast robust mean esti-

mation and improved outlier detection, Conference version in NeurIPS (2019) . 
49] Y. Liu , et al. , Generative Adversarial Active Learning for Unsupervised Outlier 

Detection, IEEE Trans Knowl Data Eng 32 (8) (2020) 1517–1528 . 

50] Y. She , A.B. Owen , Outlier detection using nonconvex penalized regression, J 
Am Stat Assoc 106 (494) (2012) 626–639 . 
11 
[51] Y.Q. Ma , S.C. Liu , Q. Z. L. , An advanced multiple outlier detection algorithm for
3d similarity datum transformation, Measurement 163 (2020) 107945 2020 . 

52] B. Wang , J. Yu , C. Liu , M. Li , B. Zhu , Data snooping algorithm for universal 3D
similarity transformation based on generalized EIV model, Measurement 119 

(2018) 56–62 . 
53] P. Xu , Sign-constrained robust least squares, subjective breakdown point and 

the effect of weights of observations on robustness, J Geod 79 (1–3) (2005) 
146–159 . 

54] M.A. Fischler , R.C. Bolles , Random sample consensus: a paradigm for model fit- 

ting with applications to image analysis and automated cartography, Commun . 
ACM 24 (6) (1981) 381–395 . 

55] Y. Li , L.P. Maguire , Selecting critical patterns based on local geometrical and 
statistical information, IEEE Trans. Pattern Anal. Mach. Intell. 33 (6) (2011) 

1189–1201 . 

iawei Yang received the B.CN. degree in Electronic Engineering from Beihang Uni- 

ersity, China in 2013, the M. Sc . and Ph.D. degrees in Computer Science from Uni-
ersity of Eastern Finland, Finland, in 2019 and 2020, respectively. 

usanto Rahardja (F’11) received the B.Eng. degree from National University of Sin- 

apore in 1991, the M.Eng. and Ph.D. degrees all in Electronic Engineering from 

anyang Technological University, Singapore, in 1993 and 1997, respectively. He is 

urrently a Chair Professor at the Northwestern Polytechnical University (NPU) un- 

er the Thousand Talent Plan of People’s Republic of China. His-research interests 
re in multimedia, signal processing, wireless communications, discrete transforms 

nd signal processing algorithms, implementation and optimization. Dr. Rahardja 
as the recipients of numerous awards, including the IEE Hartree Premium Award, 

he Tan Kah Kee Young Inventors’ Open Category Gold award, the Singapore Na- 
ional Technology Award, A ∗STAR Most Inspiring Mentor Award, Finalist of the 2010 

orld Technology & Summit Award, the Nokia Foundation Visiting Professor Award 

nd the ACM Recognition of Service Award. 

asi Fränti received the MSc and PhD degrees in science from the University of 
urku, 1991 and 1994. He has worked as a professor in the University of Eastern

inland since 20 0 0. During the preparation of this manuscript, he was a visiting
rofessor in the Shenzhen technology university, China. He has published 94 jour- 

als and 173 peer review conference papers. His-research interests include cluster- 

ng algorithms, location based services, pattern recognition, machine learning and 
ata mining. 

http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00061-3/sbref0055

	Mean-shift outlier detection and filtering
	1 Introduction
	2 Existing work
	3 Outlier filtering
	3.1 Mean-shift process
	3.2 Mean or median?
	3.3 Mean-shift outlier filtering

	4 Outlier detection
	4.1 Mean-shift outlier detection
	4.2 The extended reference set
	4.3 String data
	4.4 Discussion

	5 Experimental set-up
	5.1 Methods
	5.2 Datasets
	5.3 Measurement
	5.4 Outlier model

	6 Results and discussion
	6.1 Clustering results
	6.2 Results for outlier detection
	6.3 Effect of shifting iterations
	6.4 Neighborhood size k
	6.5 Computational complexity

	7 Conclusions
	Declaration of Competing Interest
	References


