

ISPRS Int. J. Geo-Inf. 2022, 11, 133. https://doi.org/10.3390/ijgi11020133 www.mdpi.com/journal/ijgi

Article

Is Medoid Suitable for Averaging GPS Trajectories?
Biliaminu Jimoh, Radu Mariescu-Istodor and Pasi Fränti *

School of Computing, University of Eastern Finland, 80101 Joensuu, Finland; jimoh@cs.uef.fi (B.J.);
radum@cs.uef.fi (R.M.-I.)
* Correspondence: franti@cs.uef.fi

Abstract: Averaging GPS trajectories is needed in applications such as clustering and automatic
extraction of road segments. Calculating mean for trajectories and other time series data is non-
trivial and shown to be an NP-hard problem. medoid has therefore been widely used as a practical
alternative and because of its (assumed) better noise tolerance. In this paper, we study the useful-
ness of the medoid to solve the averaging problem with ten different trajectory-similarity/-distance
measures. Our results show that the accuracy of medoid depends mainly on the sample size. Com-
pared to other averaging methods, the performance deteriorates especially when there are only few
samples from which the medoid must be selected. Another weakness is that medoid inherits prop-
erties such as the sample frequency of the arbitrarily selected sample. The choice of the trajectory
distance function becomes less significant. For practical applications, other averaging methods than
medoid seem a better alternative for higher accuracy.

Keywords: medoid; GPS trajectories; segment averaging; sequence averaging; HC-SIM; outliers

1. Introduction
Averaging time series signals is an open problem for which solutions are needed in

many practical applications such as trajectory clustering [1,2] and extraction of road seg-
ments from Global Positioning System (GPS) recordings [3–5]; see Figures 1 and 2. Average
can be defined as the point in the data space that minimizes the squared distance from all
data points. However, to find the optimal average for sequences is time consuming be-
cause there is an exponential number of candidates for the average. It has been shown to
be a computationally difficult (NP-hard) problem in the case of DTW space [6], which
would require exponential time to solve optimally.

GPS sequences differ from time series in that the pointwise alignment is performed
in 2-d geographical space (latitude, longitude) instead of 1-d time space. Spatial locations
of the points form the data and their time stamps are here excluded. If included, the prob-
lem would become averaging of sequences in 3-d space. The GPS trajectories can also be
very noisy due to GPS errors [7]. Thus, the two main challenges of the averaging problem
are that (1) the individual points do not align, and (2) the number of points can vary sig-
nificantly between the different sequences. Even the simplified 1-d version with fixed-
length signal is a computationally difficult, NP-hard problem.

Medoid is a practical alternative for averaging. It has been widely used in many ap-
plications in spatial data mining, text categorization, vehicle routing, and clustering just
to name few [8–11]. It is defined as the object in the set for which the average distance to
all the objects of the cluster is minimal [12]. It is a similar concept to mean with the differ-
ence that mean can be any point in the data space while medoid is restricted to be one of
the objects in the set. Medoid is used when mean cannot be easily defined, or when simple
averaging can create artificial combinations that do not appear in real life. Medoid has
two main benefits compared to mean. First, there are only k candidates to choose from,

Citation: Jimoh, B.;

Mariescu-Istodor, R.; Fränti, P. Is

Medoid Suitable for Averaging GPS

Trajectories? ISPRS Int. J. Geo-Inf.

2022, 11, 133. https://doi.org/10.3390/

ijgi11020133

Academic Editor: Wolfgang Kainz

Received: 25 November 2021

Accepted: 23 January 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

mailto:jimoh@cs.uef.fi

ISPRS Int. J. Geo-Inf. 2022, 11, 133 2 of 20

which makes it computationally solvable. Second, it is expected to be less biased by outli-
ers in the data.

In clustering, medoid has been used to replace the well-known k-means algorithm
[13,14] by its more robust variant called k-medoids [15], motivated by the assumption that
it is more robust to noise. Similarly to k-means, it first selects clusters representatives at
random. Second, the nearest representatives are searched, and each point is partitioned to
the cluster with closest representative. A new set of representatives are then calculated as
the medoids for each cluster. The process is iterated similarly as in k-means.

K-means itself is only a local fine-tuner and it performs poorly if the number of clus-
ters is high. Using a cleverer initialization method or re-starting the algorithm multiple
times can improve the result, but only if the clusters are not completely separated [16].
This can be overcome by a simple wrapper around the k-means, called random swap [17],
which swaps the centroids in a trial-and-error manner but manages to find the correct
centroid location whenever the data have clusters [18]. A similar extension to k-medoid
has also been applied by a method called partitioning around the medoid (PAM) [15].

Figure 1. Extracting road network from GPS trajectories needs segment averaging to convert a set
of trajectories between two intersections to a road segment.

Figure 2. Averaging is needed to find representatives for trajectory clusters. This can be challenging
as the trajectories may have complex shapes.

Another interesting result was found in [19] when comparing performance of k-
means and random swap with noisy data. Random swap worked significantly better with
the clean data but when the amount of noise increases it removed the superiority of ran-
dom swap and both algorithms performed equally poorly. In fact, k-means benefitted
from the noise because it creates more overlap between the clusters, which helps k-means

ISPRS Int. J. Geo-Inf. 2022, 11, 133 3 of 20

to move the centroids between the clusters [20]. These findings indicate that noise robust-
ness of any method is all but self-evident and the effect can be something other than what
one might expect by common sense.

The difference between mean and medoid is illustrated in Figure 3 with a set of four
trajectories. Medoid is one of the input trajectories, which can restrict its usefulness in the
case of small sets. In this case, the optimal location of the mean is somewhere in between,
but there is no suitable candidate trajectory to choose from; medoid is just the best among
the available choices. Medoid is expected to work well if there are sufficient trajectories in
the set to choose from. Medoid also has other problems. Since it is one sample from the
input set, it will carry all the properties of the selected sample (both good and bad). It does
minimize the distance to the other trajectories, but it does not average the other properties
such as sample frequency, length, or shape of the trajectories. These might deteriorate its
performance in practice.

Figure 3. Examples of using mean (left) and medoid (right) for segment averaging.

Despite the potential benefits of medoid, practical results in [7] were quite discour-
aging. All studied averaging heuristics performed significantly better than medoid re-
gardless of the distance function. However, medoid was used merely as a reference
method and not really considered seriously, while all the heuristics were carefully tuned
submissions to the segment-averaging challenge. It is therefore an open question whether
medoid is really so poor or whether it could also be tuned for better performance by ap-
plying the same pre-processing and outlier-removal tricks that were used within the other
methods. To find answers to these questions, we conducted a systematic study of the use-
fulness of medoid for the averaging problem. Our goal was to answer the following ques-
tions:
1. What is the accuracy of the medoid?
2. When does it work and when not?
3. Does it work better than existing averaging techniques in the case of noisy data?
4. Which similarity function works best, and how much does the choice matter?

The rest of the paper is organized as follows. The problem is defined in Section 2,
describing several alternatives. Medoid is defined in Section 3 and a brief review is given
on existing works using medoid. Data sets and the tools used for the experiments are de-
scribed in Section 4. Main results are then reported in Section 5, followed by more detailed
analysis in Section 6. Conclusions drawn in Section 7.

2. Segment Averaging
The averaging task is seemingly simple as calculating average of numbers is trivial,

and it is easy to generalize from scalar to vectors in multivariate data analysis. However,
averaging time series is significantly more challenging as the sample points do not neces-
sarily align. It is possible to solve the averaging problem by using mean, which is defined

ISPRS Int. J. Geo-Inf. 2022, 11, 133 4 of 20

as any possible sequence in the data space that minimizes the sum of squared distances to
all the input sequences [7]:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = arg𝑐𝑐min∑ 𝐷𝐷(𝑥𝑥𝑖𝑖 ,𝐶𝐶)𝑘𝑘
𝑖𝑖=1

2 (1)

Here, X = {x1, x2, …, xk} is the sample input set and C is their mean, which is also called
centroid. However, the search space is huge and an exhaustive search by enumeration is
not feasible. Some authors consider the problem so challenging that they think it is not
self-evident that the mean would even exist [6,21]. However, their reduction theorem
showed that mean exists for a set of dynamic time warping (DTW) spaces [6] and the existing
heuristics have, therefore, theoretical justification. An exponential time algorithm for solv-
ing the exact DTW-mean was recently proposed in [22]. GPS trajectories differ from time
series in a few ways. First, the alignment of the time series is performed in the time do-
main, whereas the GPS points need to be aligned in geographical space. Second, GPS data
can be very noisy, which means that mean might not even be the best solution to the av-
eraging problem.

2.1. Heuristics for Finding Segment Mean
Due to the difficulty of finding the optimal mean, several faster but sub-optimal heu-

ristics have been developed. In [13], average segments (called centerline) were used for k-
means clustering of the GPS trajectories to detect road lanes. The averaging method was
not defined in the paper, but it was later described in [23] as piecewise linear regression. The
points are considered as an unordered set and piecewise polynomials are fit with conti-
nuity conditions at the knot points [24]. The disadvantage of the regression approach is
that the order of the points is lost, and it can make the problem even harder to solve.

The CellNet segment-averaging method [25] selects the shortest path as the initial
solution [26], which is iteratively improved by the majorize–minimize algorithm [1]. Trajec-
tory box plot is a similar iterative approach, which divides the trajectories into sub-seg-
ments by clustering and, then, at each step, performs piecewise averaging of the sub-seg-
ments [27]. Kernelized time elastic averaging (iTEKA) is another iterative algorithm for the
averaging problem [28]. It considers all possible alignment paths and integrates a forward
and backward alignment principle jointly. There are several reasonable algorithms in lit-
erature, although many of them suffer from quadratic time complexity and their imple-
mentation can be rather complicated.

The problem was addressed in a recent segment-averaging challenge
(http://cs.uef.fi/sipu/segments/, accessed on 25 November 2021) where several heuristic
methods were submitted and compared against each other. A new baseline was also con-
structed by synthesis of the best components of the methods from the competition, as
summarized in Figure 4. The first step is to re-order the trajectories to make them invariant
to the travel order. Outlier removal is applied in the second step to reduce the effect of
noisy trajectories. These steps reduce the problem to a standard sequence averaging prob-
lem and the majorize–minimize algorithm [1] is then applied. The last step (optional) is
merely to simplify the final representation by the Douglas–Peucker polygonal algorithm
[29].

2.2. Medoid
Median is often used instead of mean because it is less sensitive to noise. In the case

of scalar values, median can be easily obtained by first sorting the n data values and then
selecting the middle value from the sorted list. However, multivariate data lack natural
ordering, which makes it difficult to find the “middle” value. Spatial median [30] constructs
the median for each scalar value separately and the result is the concatenation of the in-
dependent scalar medians. However, GPS trajectories can have variable lengths and the
individual points cannot be trivially aligned to match the points from which the median
should be calculated.

http://cs.uef.fi/sipu/segments/

ISPRS Int. J. Geo-Inf. 2022, 11, 133 5 of 20

Figure 4. General structure of the methods from the segment-averaging competition [7]. A new
baseline (shown by blue) was constructed by synthesis of these methods.

It is possible to define median also as a minimization problem so that median is the
input point which has minimum average distance to all the other points in the set. A gen-
eralization of this to multivariate data is known as medoid. It is defined as the input data
object whose total distance to all other observations is minimal. Its main advantage is that
the problem then reduces the linear search problem: find the input object that satisfies this
minimization objective. Formally, we define medoid as [7]:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = arg𝑗𝑗 min�𝐷𝐷�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
𝑘𝑘

𝑖𝑖=1

 (2)

where D is a distance or similarity function between two GPS trajectories xi and xj. In other
words, medoid is defined as an optimization problem, similar to how we defined mean
in Equation (1). The difference is that, instead of allowing any possible trajectory in the
space, medoid is restricted to be one of the input trajectories. This reduces the search space
significantly, and theoretical time complexity of finding medoid can be as low as O(nk2),
where k is the number of trajectories, and n is the number of points in the longest trajec-
tory.

The definition also requires that we have a meaningful distance function between the
data objects. This increases the time complexity as calculating distances between trajecto-
ries is not trivial. Given k trajectories of n points each, most distance functions take O(n2)
time, which makes the time complexity of medoid O(k2n2). However, some of the
measures have faster variants such as Fast-DTW [31], which can reduce this to O(k2n).

2.3. Hybrid of Heuristics and Medoid
In [32], a hybrid method was proposed by combining a simple averaging heuristic

for linear segments and another method for more complex curves. The linear model uses
three descriptors: source (S), median (M), and destination (D). The method first analyzes the
complexity of the segment based on the three descriptors to estimate whether the simple
linear model can be used, or the more complex alternative should be used. Medoid was
used as the alternative method in the variant called RapSeg-B. Figure 5 (left) shows the
general structure of the hybrid method.

ISPRS Int. J. Geo-Inf. 2022, 11, 133 6 of 20

The method creates three separate sets. Endpoints of each trajectory are first collected
and clustered by k-means to form two sets: source set and destination set. The travel direc-
tion is ignored but the idea itself generalizes even if the directions were preserved. The
third set, called median set, is created from the middle points of the trajectories. The cen-
troids are then calculated for each of the three sets to create the three descriptors (S, M,
D), as in Figure 5 (right). To decide whether the linear model can be used, a straight-line
SD is compared against the three-point polygon SMD which makes a detour via the mid-
dle point M. The more the detour deviates from the direct connection, the less likely a
simple linear model is suitable to describe this segment. This is measured by cosine of the
angle ∠SDM and ∠DSM; if it is smaller than a threshold, then medoid is used.

Figure 5. Overall structure of the RapSeg algorithm [32] and the creation of the three descriptors.

3. Similarity Measures
Medoid is defined as the trajectory in the set that minimizes the total distance (or

maximizes the total similarity) to all other trajectories in the set. For this, we need to
choose a distance or similarity measure. Dynamic time warping is probably the most com-
mon, but it is sensitive to sub-sampling, noise, and point shifting. It also does not correlate
well with human judgement, according to [5]. We will next briefly describe the measures
and then perform extensive comparison of the segment averaging using all these
measures. The measures and their properties are summarized in Table 1.

Table 1. Summary of the considered distance measures. The properties are taken from [5], except
IRD and HC-SIM, which we added here using our subjective understanding. Human score is the
correlation of the measure with human evaluation made in [7]. Most of the measures are also found
in the web tool: http://cs.uef.fi/mopsi/routes/similarityApi/demo.php (accessed on 25 November
2021).

Measure
Sampling Rate

Noise
Point Shifting

Reference
Human
Score Increase Decrease Random Sync.

HC-SIM Robust Robust Fair Fair Fair [7] 0.84
C-SIM Robust Robust Fair Fair Fair [5] 0.72

IRD Robust Robust Fair Fair Fair [33] 0.52
LCSS Sensitive Fair Sensitive Fair Fair [34] 0.45
EDR Sensitive Fair Sensitive Fair Fair [35] 0.37

Hausdorff Sensitive Sensitive Sensitive Sensitive Fair [36] 0.32

http://cs.uef.fi/mopsi/routes/similarityApi/demo.php

ISPRS Int. J. Geo-Inf. 2022, 11, 133 7 of 20

ERP Sensitive Fair Sensitive Fair Fair [37] 0.21
DTW Robust Sensitive Sensitive Sensitive Sensitive [38] 0.11

Euclidean Sensitive Sensitive Sensitive Robust Robust [39] 0.09
Discrete Fré-

chet
Sensitive Sensitive Sensitive Sensitive Fair [40] 0.05

3.1. Cell Similarity (C-SIM)
Cell similarity (C-SIM) uses a grid to calculate the similarity. It first creates the cell

representation of the trajectories and then counts how many common cells the two trajec-
tories share relative to the total number of unique cells they occupy [5]. An advantage of
the method is that it is much less affected by change in sampling rate, point shifting, and
noise. A drawback is that the method ignores the travel order, but a recent extension to
make it direction-sensitive is proposed in [41].

3.2. Hierarchical Cell Similarity (HC-SIM)
Hierarchical cell similarity (HC-SIM) extends C-SIM to multiple zoom levels. The idea

is that small differences can be tolerated if the curves have good match at the higher levels;
see Figure 6. C-SIM uses a grid of 25 × 25 m and counts how many cells the segment shares
relative to the total number of cells they occupy. HC-SIM uses six zoom levels, with the
grid sizes of 25 × 25 m, 50 × 50 m, 100 × 100 m, 200 × 200 m, 400 × 400 m, and 800 × 800 m.
In the case of data normalized to the (0,1) scale, the following sizes are used: 0.5%, 1%, 2%,
4%, 8%, 16%. The individual counts are then summed up. Given two trajectories A and B,
their hierarchical cell similarity (with L zoom levels) is calculated as follows [7]:

HC-SIM(A, B) =
1
𝐿𝐿
�C-SIM(A, B, 0.005 ∙ 2𝑖𝑖−1)
𝐿𝐿

i=1

 (3)

Figure 6. Hierarchical cell-similarity measure (HC-SIM) is constructed by summing up CSIM-values
using different zoom levels. In the example, the two trajectories have only one short detour and
minor differences showing only at the densest zoom level. At the highest zoom level, the curves are
considered identical.

3.3. Euclidean Distance
Euclidean distance [39] is one of the simplest possible methods. It calculates the dis-

tance between the points having the same index. Its main advantages are the simplicity
and invariance to the travel order. The only challenge is that the GPS points (latitude and
longitude) must be converted into Cartesian coordinates first. The measure is likely to fail
when the sampling rates of the two trajectories are very different, or when the two trajec-
tories are otherwise similar but one of them is much longer. The problem is the lack of any
alignment of the points, which is addressed in all of the other measures in one way or
another.

ISPRS Int. J. Geo-Inf. 2022, 11, 133 8 of 20

3.4. Longest Common Subsequence (LCSS)
Longest common subsequence (LCSS) was originally designed for string similarity. The

longest common subsequence for strings GETEG, GEGTG, GEGET is GET. The main ben-
efit of LCSS distance between two trajectories is that it allows leaving of far-away (noisy)
GPS points as unmatched, with only a minor penalty in the score [42]. Such noise points
can have major impact on distance measures that require pair-matching of every point.

3.5. Edit Distance on Real Sequence (EDR)
Edit distance on real sequence (EDR) [35] is derived from the Levenshtein edit distance

[43]. It counts how many insert, delete, and replace operations are needed to convert one
string to another. For example, when converting bitter to sitting, we first replace “b” to “s”
(sitter), then “e” with “i” (sittir), “r” with “n” (sittin), and finally insert “g” and at the end
(sitting). The Levenshtein distance is therefore 4. EDR applies edit distance to trajectories
by declaring two points identical if they are within the distance ε from each other. In this
paper, the value of ε is 0.05. Compared to Euclidean distance, it reduces the effect of noise
but both LCSS and EDR are very sensitive to sub-sampling.

3.6. Dynamic Time Warping (DTW)
Dynamic time warping (DTW) [44] is similar to edit distance but instead of exact

matching, it calculates the distance between the matched points. It is commonly used to
calculate the distance of time series with various lengths and applies straightforwardly to
GPS trajectories as well. The drawback of DTW is that it is sensitive to the sampling rate.

3.7. Edit Distance with Real Penalty (ERP)
Edit distance with Real Penalty [37] is a metric variant of EDR that resembles DTW. It

calculates the distance between the matched points. However, in the case of a non-match
situation, it uses constant 1 rather than using binary value (0/1) as EDR or calculating
distance to the neighboring points as DTW. This modification makes the measure metric
and allows utilization of triangular inequality property in searches and making efficient
indexing structures such as B+ trees.

3.8. Fréchet and Hausdorff Distances
Hausdorff distance [45] is the maximum distance of all nearest points in the two trajec-

tories. It only cares about the longest distance and is therefore sensitive to noise, differ-
ences in sampling rate, and point shifting. A single noise point can make the distance very
large even if the trajectories would be otherwise a perfect match. Fréchet distance [40] is the
same as Hausdorff but the points cannot be matched to those in the past. Fréchet therefore
enforces the order of the travel whereas Hausdorff is invariant to it.

3.9. Interpolated Route Distance (IRD)
Interpolation route distance (IRD) [33] is similar to DTW, with two main differences.

First, it pairs points from the two trajectories A and B by using interpolation when the
other trajectory has fewer samples along some part of the route. This can provide a signif-
icantly more accurate distance estimate when the two trajectories have different sampling
rates. Second, it has linear time implementation, which makes it significantly faster than
the straightforward implementation of DTW taking quadratic time.

4. Experimental Setup
We experiment the averaging with medoid using the data available from the seg-

ment-averaging competition [7]; see Table 2. The data consist of segments extracted from
four trajectory datasets: Joensuu 2015 [5], Chicago [3], Berlin, and Athens [4]. Joensuu 2015
contains mostly walking, running, and bicycle trajectories collected by Mopsi users. It has
high point frequency, 3 s on average, and the data are noisy because of slow movement

ISPRS Int. J. Geo-Inf. 2022, 11, 133 9 of 20

and low-end smartphones used for the data collection. Chicago contains longer and sim-
pler segments collected by a university shuttle bus. Some segments are noisy due to the
tall buildings alongside the route which cause the GPS signal to bounce. The data in Ath-
ens and Berlin sets were collected by car with much lower point frequency, 42 s (Berlin)
and 61 s (Athens). These segments are simpler, containing only a few points.

All experiments were run using Dell R920 machine with 4 × E7-4860 (total 48 cores),
1 TB, 4 TB SAS HD. The processing time of medoid with all the similarity measures took
more than one hour (>1 h) in all cases, while the comparative method (baseline) took only
seconds. For this reason, we did not record the exact times, as medoid is clearly slower.

Table 2. Summary of the data used in the experiments. The data were divided into two parts: 100
sets for training (10%) and 901 sets for testing (90%). In total, there are k = 10,480 trajectories with N
= 90,231 points. The training data were publicly available in the segment-averaging competition [7],
while the testing data were published only afterwards. They are both available here:
http://cs.uef.fi/sipu/segments (accessed on 25 November 2021).

Set
Number
of Sets

Segments
per Set (av.)

Points per
Segment (av.)

Segment Length
(av.)

Joensuu 2015 227 4.16 22.84 1.01 km
Chicago 227 84.63 4.61 0.76 km
Berlin 625 6.97 2.08 0.98 km

Athens 614 3.30 2.46 0.88 km

We test the performance of medoid with eleven similarity measures as follows. First,
we generate segment averages for each set using medoid with the selected distance meas-
ure. The result is compared against ground truth using HC-SIM, which was found to cor-
relate best to human judgment in [7]. The higher the similarity, the better is the result. We
also test the effects of two pre-processing techniques: re-ordering of the points and outlier
removal. The re-ordering is expected to remove the effect of the travel order and improve
measures affected by it. Outlier removal is expected to help when averaging noisy sets.

We use Mopsi web tools (see Figure 7) and the related API in the experimentation:
http://cs.uef.fi/sipu/mopsi/ (accessed on 25 November 2021). These include various web
pages to demonstrate the operation of a method. Some allow uploading of own data and
others provide APIs to be used by those with sufficient programming skills. The following
tools, at least, are available:
1. Segment averaging [7]

http://cs.uef.fi/sipu/segments/training.html (accessed on 25 November 2021)
2. Road-network extraction [25]

http://cs.uef.fi/mopsi/routes/network (accessed on 25 November 2021)
3. Similarity of trajectories [5]

http://cs.uef.fi/mopsi/routes/similarityApi/demo.php (accessed on 25 November
2021)
4. Transport-mode detection [46]

http://cs.uef.fi/mopsi/routes/transportationModeApi (accessed on 25 November
2021)
5. Trajectory reduction [47]

http://cs.uef.fi/mopsi/routes/reductionApi (accessed on 25 November 2021)
6. Tools integrated in Mopsi

http://cs.uef.fi/mopsi/ (accessed on 25 November 2021)
The segment-averaging web page is the most relevant as it allows users to test their

own algorithm with the training data by uploading segmentation results in text format.
The tool visualizes the uploaded average segments and calculates their HC-SIM scores,
but it is limited to 100 training data only. The test data are available, but not via this inter-
active tool. The road-network extraction tool demonstrates the resulting intersections and

http://cs.uef.fi/sipu/segments
http://cs.uef.fi/sipu/mopsi/
http://cs.uef.fi/sipu/segments/training.html
http://cs.uef.fi/mopsi/routes/network
http://cs.uef.fi/mopsi/routes/similarityApi/demo.php
http://cs.uef.fi/mopsi/routes/transportationModeApi
http://cs.uef.fi/mopsi/routes/reductionApi
http://cs.uef.fi/mopsi/

ISPRS Int. J. Geo-Inf. 2022, 11, 133 10 of 20

segments in between five algorithms. It demonstrates an application where the segment
averaging is needed. The trajectory-similarity tool demonstrates the performance of 8 dis-
tance measures (lacking only the most recent measures, IRD and HC-SIM) with seven pre-
selected datasets. Unfortunately, it does not currently allow testing with users’ own data.

The transport-mode-detection tool allows users to upload their own trajectories and
it outputs the detected segments and their predicted stop points and movement types (car,
bicycle, run, walk). The trajectory-reduction tool performs polygonal approximation for
user-input trajectory with five different quality levels. There are several other tools inte-
grated directly in the Mopsi system without specific interfaces, including C-SIM-based
similarity search [5] and gesture-based search where user inputs approximate route by
free-hand drawing [48]. In summary, while most results in this paper have been obtained
by inhouse implementations, there are APIs and useful web tools available for the reader
to perform their own experiments directly related to GPS trajectory processing.

Figure 7. Summary of the Mopsi web tools available for others to test the segment averaging and
related methods.

5. Results
The overall results of the training data and test data without pre-processing are sum-

marized in Table 3, sorted from best to worst (training data). Results from the baseline
segment averaging are also included from [7]. The three main observations from the re-
sults are:
1. HC-SIM performs best with the training data.
2. The choice of distance function has only a minor effect.
3. The results of medoid are significantly worse than the baseline averaging [7].

The first observation is not surprising. It is expected that optimizing for the same
measure that is used in the evaluation will perform best, and it is, therefore, logical to use
HC-SIM as the similarity measure with medoid. The second observation, however, is
more important. The difference between the best (HC-SIM = 59.9%) and the worst (Euclid-
ean = 56.7%) is only 3.2%-unit for the training data without pre-processing. The difference
(55.7% vs. 54.1%) becomes even smaller with the test data (1.7%-unit). Their score distri-
butions are also similar; medoid with LCSS, DTW, EDR, C-SIM, and Euclidean has more
poor segments (<30%) than HC-SIM but most segments are still within the 40–70% interval
(varying from 434 to 474); see Table 4 and Figure 8. The third observation is the most
important: all these results are significantly worse than the baseline averaging result,

Segment averaging Road−network extraction Trajectory similarity

Integrated tools in MopsiTrajectory reductionTransport mode

ISPRS Int. J. Geo-Inf. 2022, 11, 133 11 of 20

which is 66.9% for training data and 62.1% for testing data [7]. This demonstrates that the
root cause for the performance is medoid itself, not the similarity measure.

We also analyze the effect of re-ordering and outlier removal. For these, we use the
techniques from the baseline in [7]: k-means for re-ordering, and distance and length cri-
terion for outlier removal. Note that medoid does not necessarily need re-ordering if the
distance measure is invariant to the travel order. This is the case with Hausdorff, C-SIM,
and HC-SIM. However, the other distance functions are sensitive to the point order: DTW,
ERD, ERP, LCSS, Fréchet, and Euclidean. If these are employed, re-ordering might become
necessary. However, the results in Table 3 show that, while pre-processing improves the
results in most cases, the overall effect remains moderate. Re-ordering slightly improves
Fréchet, and Euclidean, especially on a data set whose segment-averaging score falls be-
tween 40% and 90% (Table 4). Outlier detections improve the results of EDR, DTW,
FastDTW, and LCSS for averaging scores between 70% and 90%. On average, the average
performance of medoid improves from 54.8% to 54.9%, but the results are still signifi-
cantly worse than the baseline segment-averaging method in [7] (62.1%), which shows
that these two techniques are not enough to compensate for the weaknesses of medoid.

The IRD result shows that outlier removal does not have a significant effect on many
of the GPS data sets. On a few occasions, outlier removal has some positive effects, but
not significantly. Re-ordered average scores for C-SIM, HC-SIM and Hausdorff remain
the same.

Table 3. Evaluation of medoid accuracy with various similarity measures on trajectories data with
and without pre-processing. Results are given separately for the training and testing data. The cor-
responding results for the baseline segment averaging [7] are 66.9% (training) and 62.1% (testing).

Measure
Training Testing Testing Testing

No Pre-Processing +Re-Ordering
+Outlier
Removal

HC-SIM 59.9% 55.7% 55.7% (0.0) 55.9% (+0.2)
IRD 59.1% 55.3% 55.6% (+0.3) 55.9% (+0.3)

Hausdorff 59.0% 55.3% 55.3% (0.0) 55.0% (−0.3)
Fréchet 58.6% 54.7% 55.3% (+0.6) 54.9% (−0.4)

EDR 58.4% 54.6% 54.6% (0.0) 55.7% (+1.1)
DTW 57.2% 54.2% 54.1% (−0.1) 55.3% (+1.2)

FastDTW 57.1% 54.4% 54.1% (−0.3) 54.8% (+0.7)
C-SIM 57.1% 55.3% 55.3% (0.0) 56.0% (+0.7)
ERP 57.0% 54.4% 54.5% (+0.1) 54.6% (+0.1)
LCSS 56.9% 54.4% 54.6% (+0.2) 55.7% (+1.1)

Euclidean 56.7% 54.1% 54.9% (+0.8) 55.1% (+0.2)
Average 57.9% 54.8% 54.9% (+0.1) 55.4% (+0.5)

Table 4. Frequency distribution of the scores (901 test datasets) without pre-processing.

 No Pre-Processing

Measure
Number of Sets with Scores

<30% 30–40% 40–70% 70–90% >90%
HC-SIM 102 120 434 211 34

IRD 93 120 474 169 45
Hausdorff 98 125 447 179 52

Fréchet 100 129 456 170 46
EDR 112 122 446 172 49
DTW 108 130 450 174 39

FastDTW 101 131 457 166 46

ISPRS Int. J. Geo-Inf. 2022, 11, 133 12 of 20

C-SIM 114 111 437 199 40
ERP 100 130 459 169 43
LCSS 113 131 438 171 48

Euclidean 107 126 459 173 36
 Re-ordered

Measure
Number of Sets with Scores

<30% 30–40% 40–70% 70–90% >90%
HC-SIM 102 119 436 211 33

IRD 90 117 471 182 41
Hausdorff 98 125 447 179 52

Fréchet 101 124 447 178 51
EDR 114 125 439 169 54
DTW 115 113 466 165 42

FastDTW 110 119 465 171 36
C-SIM 115 110 435 200 41
ERP 101 120 472 166 42
LCSS 113 126 438 172 52

Euclidean 103 118 457 184 39
 Re-ordered and outlier removal

Measure
Number of Sets with Scores

<30% 30–40% 40–70% 70–90% >90%
HC-SIM 95 117 441 210 38

IRD 96 112 460 181 52
Hausdorff 102 116 463 176 44

Fréchet 101 117 462 179 42
EDR 101 119 437 196 48
DTW 103 109 469 171 49

FastDTW 111 125 436 186 43
C-SIM 96 115 437 214 39
ERP 106 116 460 175 44
LCSS 100 120 437 198 46

Euclidean 98 121 459 182 41

ISPRS Int. J. Geo-Inf. 2022, 11, 133 13 of 20

Figure 8. Frequency histograms of the scores when using HC-SIM (red) and Euclidean (blue).

6. Detailed Analysis
We next analyze the effect of various parameters such as noise and set size, and pre-

processing techniques including re-ordering, outlier removal, and normalization by
resampling.

6.1. Noise
Figure 9 shows a few examples where the chosen medoid has unusual properties that

do not describe the data very well. As a reference, the first example (left) is a case where
medoid works very well. The distance to ground truth reaches 100% and there is no visible
difference between them. This set has plenty of samples and medoid manages to select
the trajectory that is also visually pleasing. The other cases, however, demonstrate differ-
ent problems.

The second example (Artefact) in Figure 9 might be a reasonable choice as it is in the
middle of the samples, even if slightly offset from the ground truth. However, the chosen
trajectory has an unwanted artefact at the top by having a small peak towards the right.
The third example (Noise) shows the effect of noise. While medoid is expected to be more
robust to noise than mean, this is not the case in practice. The one far-away sample is
enough to pull the medoid from the centre line, decreasing the score to 43%. The fourth
example (Over-sampled) has a reasonably good score and is visually close to the ground
truth. The problem is that it has an overwhelming number of sample points even if it
might have good averaging properties otherwise. The last example (Short) shows the phe-
nomenon where the shortest segment is chosen as the medoid despite it being outermost
among all choices.

6.2. Re-Ordering and Outlier Removal
Selected sets are shown in Figure 10 to demonstrate some of the effects of re-ordering

and outlier removal. Re-ordering and outlier removal can help occasionally especially
when LCSS is used but the effect with HC-SIM seems almost random. The outlier removal
failed to detect many obvious outliers. The main reason is that it only analyzes the points

ISPRS Int. J. Geo-Inf. 2022, 11, 133 14 of 20

but not the entire trajectories. This is a potential future improvement for segment averag-
ing in general, not only with medoid.

Figure 9. Examples of sets of k trajectories (gray lines) averaged by medoid with DTW distance (blue
line). Black line is the ground truth.

HC-SIM LCSS

Figure 10. Selected examples of medoid with HC-SIM and LCSS similarity measures. Blue line is
the average result, and black line is the ground truth.

6.3. Normalizing
We next study the effect of normalizing the trajectories by re-sampling before select-

ing medoid. Figure 11 shows four examples when the input data are first processed so
that each trajectory consists of the same number of points (10). We can see that, in all these
cases, the result is better both visually and according to the numerical score. The result
still copies the artefacts of the selected trajectory but, due to the post-processing, most
severe artefacts such as oversampling and zig–zag effect have been eliminated.

6.4. Size of Sets
The main deficiency of medoid originates from the lack of data to choose a good me-

doid. HC-SIM, IRD, and Hausdorff are the three similarity measures that perform best
with training data, while HC-SIM, C-SIM, and IRD perform best with test data, in terms
of being closest to the ground truth. However, they also have the fewest segments with a
score lower than 40%. Figure 12 shows a few cases when the score is below 30%. We can
see that all cases have only a few samples. However, the first case (Set 27) has only three
trajectory samples, which are too few to capture the real road segment (black line), which
is offset from the samples. The second case (Set 87) has similar offset, but the third example
(Set 35) shows tendency of medoid to select the shortest segment despite the fact that the
longer segment in the middle would be more sensible. An important observation is that

ISPRS Int. J. Geo-Inf. 2022, 11, 133 15 of 20

all three methods make the same choices, so the behavior can be attributed mainly to the
medoid itself, not to the choice of the distance measure.

Figure 11. Pre-processing the trajectories by re-sampling can overcome some issues of medoid. LCSS
measure was used in these examples. The re-sampling (to 10 points) is shown only for the segment
average (blue line).

Figure 12. Examples where medoid provides low score with the three best-performing distance
measures. The number of trajectories is very small in all cases: k = 3.

6.5. Number of Points
Results for selected sets with HC-SIM and DTW are plotted in Figures 13 and 14 to

demonstrate the effect of the set size and outlier removal. Here, the number with the circle
shows the number of trajectories, and x-axis is the logarithmic value of the number of
points in the set. The results show that the performance of medoid increases with the data
size. The sets with a large number of points have significantly higher scores, and most of
the low-scoring sets are those with only few trajectories and points. We observe that the
number of trajectories in the set, and the number of points in each trajectory, affect the
performance of medoid. The more = points and trajectories there are, the better the score.

ISPRS Int. J. Geo-Inf. 2022, 11, 133 16 of 20

Outlier removal improves the performance of some of those sets that have few trajectories
and points.

Figure 13. Result of 100 datasets plotted as a function of the number of points (log scale) in the set.
Results are for HC-SIM before outlier removal (above) and HC-SIM after outlier removal (below).
Each dot represents one set and the number shows how many trajectories are in the set.

ISPRS Int. J. Geo-Inf. 2022, 11, 133 17 of 20

Figure 14. Result of 100 datasets plotted as a function of the points (log scale) in the set. Results are
for DTW before outlier removal (above) and DTW after outlier removal (below). Each dot repre-
sents one set and the number shows how many trajectories are in the set.

7. Conclusions
It would be tempting to use medoid for averaging GPS segments because of its

simplicity and presumed resistance for outliers. In reality, however, it suffers from several
problems that restrict its usefulness in practice. We list here the following weaknesses
observed in our experiments:
1. Accuracy of medoid is clearly inferior to the best averaging heuristics (baseline).
2. Contrary to expectations, medoid is vulnerable to noise.
3. Medoid tends to select short segments.
4. Medoid copies the (sometimes unwanted) properties of the original trajectory.
5. It is slow (averaging of all sets takes >1 h).

Medoid provides quality scores of 59.9% (training) and 54.7% (test) when using the
HC-SIM similarity measure without pre-processing of dataset. This is much lower than

ISPRS Int. J. Geo-Inf. 2022, 11, 133 18 of 20

that of the baseline segment averaging with 66.9% (training) and 62.1% (test). Medoid
works poorly especially when there are only few samples to choose from. If the size of the
set is large, there are better chances of finding a more accurate representative. Medoid
also tends to select short segments. It averages only the overall shape but ignores other
features such as segment length and number of sample points. These will be arbitrarily
chosen from the original data and the quality of medoid therefore depends a lot on the
quality of data.

For these reasons, we do not recommend using medoid, and the existing averaging
heuristics seems more promising. Medoid should be avoided especially when the number
of samples is low. Some of its deficiencies can be overcome by noise removal and normal-
izing the input trajectories by re-sampling. These steps are also included in the other av-
eraging heuristics. The other main design question would be the choice between fast se-
quence averaging, such as the majorize–minimize algorithm, or the time-consuming
brute-force algorithm required by medoid. From the efficiency point of view, there is no
reason to use medoid; it is fast only when the number of samples is low, but this is also
the case when its quality is low.

The effect of similarity measure was of secondary importance. HC-SIM performed
best, but the results became very close to each other when the pre-processing techniques
were applied. The average scores of the five best-performing measures (C-SIM, HC-SIM,
IRD, EDR, LCSS) are only within 0.3%-unit from each other (56.0%, 55.9%, 55.9%, 55.7%,
55.7%). To sum up, the problem of medoid is not the choice of the similarity measure but
the general limitation of the medoid itself, as it is restricted to selecting one of the input
trajectories as the average. This limitation is likely to appear in other applications where
medoid is used.

Author Contributions: Conceptualization, Radu Mariescu-Istodor and Pasi Fränti; methodology,
Radu Mariescu-Istodor and Pasi Fränti; software, Radu Mariescu-Istodor; validation, Biliaminu
Jimoh; investigation, Biliaminu Jimoh and Pasi Fränti; writing—original draft preparation,
Biliaminu Jimoh; writing—review and editing, Pasi Fränti; visualization, Biliaminu Jimoh and Pasi
Fränti; supervision, Pasi Fränti All authors have read and agreed to the published version of the
manuscript.

Funding: No funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://cs.uef.fi/sipu/segments/ (accessed on 25 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hautamäki, V.; Nykanen, P.; Fränti, P. Time-series clustering by approximate prototypes. In Proceedings of the International

Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4.
2. Buchin, K.; Driemel, A.; van de L’Isle, N.; Nusser, A. Klcluster: Center-based Clustering of Trajectories. In Proceedings of the

27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19), Chi-
cago, IL, USA, 5–8 November 2019; pp. 496–499.

3. Biagioni, J.; Eriksson, J. Inferring road maps from global positioning system traces: Survey and comparative evaluation. Transp.
Res. Rec. 2012, 2291, 61–71.

4. Ahmed, M.; Karagiorgou, S.; Pfoser, D.; Wenk, C. A comparison and evaluation of map construction algorithms using vehicle
tracking data. GeoInformatica 2015, 19, 601–632.

5. Mariescu-Istodor, R.; Fränti, P. Grid-based method for GPS route analysis for retrieval. ACM Trans. Spat. Algorithms Syst. (TSAS)
2017, 3, 8.

6. Jain, B.J.; Schultz, D. Sufficient conditions for the existence of a sample mean of time series under dynamic time warping. Ann.
Math. Artif. Intell. 2020, 88, 313–346.

7. Fränti, P.; Mariescu-Istodor, R. Averaging GPS segments competition 2019. Pattern Recognit. 2021, 112, 107730.

ISPRS Int. J. Geo-Inf. 2022, 11, 133 19 of 20

8. Estivill-Castrol, V.; Murray, A.T. Discovering associations in spatial data—An efficient medoid based approach. In Research and
Development in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; Springer: Berlin/Heidelberg, Ger-
many, 1998; Volume 1394.

9. Mukherjee, A.; Basu, T. A medoid-based weighting scheme for nearest-neighbor decision rule toward effective text categoriza-
tion. SN Appl. Sci. 2020, 2, 1–9.

10. Fränti, P.; Yang, J. Medoid-Shift for Noise Removal to Improve Clustering. In Proceedings of the International Conference on
Artificial Intelligence and Soft Computing, Zakopane, Poland, 3–7 June 2018; Springer: Cham, Switzerland, 2018; pp. 604–614.

11. Park, H.-S.; Jun, C.-H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2019, 36, 3336–3341.
12. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA,

2009; Volume 344.
13. Wagstaff, K.; Cardie, C.; Rogers, S.; Schroedl, S. Constrained k-means clustering with background knowledge. In Proceedings

of the International Conference on Machine Learning (ICML), Williamstown, MA, USA, 28 June–1 July 2001; Volume 1, pp.
577–584.

14. Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1999, 29, 433–439.
15. Van der Laan, M.; Pollard, K.; Bryan, J. A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 2003, 73, 575–584.
16. Fränti, P.; Sieranoja, S. How much can k-means be improved by using better initialization and repeats? Pattern Recognit. 2019,

93, 95–112.
17. Fränti, P. Efficiency of random swap clustering. J. Big Data 2018, 5, 13.
18. Rezaei, M.; Fränti, P. Can the Number of Clusters Be Determined by External Indices? IEEE Access 2020, 8, 89239–89257.
19. Yang, J.; Rahardja, S.; Fränti, P. Mean-shift outlier detection and filtering. Pattern Recognit. 2021, 115, 107874.
20. Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018, 48, 4743–4759.
21. Schultz, D.; Jain, B. Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces. Pattern Recog-

nit. 2018, 74, 340–358.
22. Brill, M.; Fluschnik, T.; Froese, V.; Jain, B.; Niedermeier, R.; Schultz, D. Exact mean computation in dynamic time warping

spaces. Data Min. Knowl. Discov. 2019, 33, 252–291.
23. Schroedl, S.; Wagstaff, K.; Rogers, S.; Langley, P.; Wilson, C. Mining GPS traces for map refinement. Data Min. Knowl. Discov.

2004, 9, 59–87.
24. Piegl, L.; Tiller, W. The NURBS Book, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997.
25. Mariescu-Istodor, R.; Fränti, P. Cellnet: Inferring road networks from GPS trajectories. ACM Trans. Spat. Algorithms Syst. (TSAS)

2018, 4, 1–22.
26. Fathi, A.; Krumm, J. Detecting road intersections from GPS traces. In Proceedings of the International Conference on Geographic

Information Science, Zurich, Switzerland, 14–17 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 56–69.
27. Etienne, L.; Devogele, T.; Buchin, M.; McArdle, G. Trajectory Box Plot: A new pattern to summarize movements. Int. J. Geogr.

Inf. Sci. 2016, 30, 835–853.
28. Marteau, P.F. Times Series Averaging and Denoising from a Probabilistic Perspective on Time–Elastic Kernels. Int. J. Appl. Math.

Comput. Sci. 2019, 29, 375–392.
29. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its

caricature. Cartographica 1973, 10, 112–122.
30. Drezner, Z.; Klamroth, K.; Schöbel, A.; Wesolowsky, G.O. The weber problem. In Facility Location: Applications and Theory;

Springer: Berlin/Heidelberg, Germany, 2002.
31. Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580.
32. Yang, J.; Mariescu-Istodor, R.; Fränti, P. Three rapid methods for averaging GPS segments. Appl. Sci. 2019, 9, 4899.
33. Trasarti, R.; Guidotti, R.; Monreale, A.; Giannotti, F. Myway: Location prediction via mobility profiling. Inf. Syst. 2017, 64, 350–

367.
34. Vlachos, M.; Gunopulos, D.; Kollios, G. Robust similarity measures for mobile object trajectories. In Proceedings of the 13th

IEEE International Workshop on Database and Expert Systems Applications (DEXA’02), Aix-en-Provence, France, 2–6 Septem-
ber 2002; pp. 721–726.

35. Chen, L.; Özsu, M.T.; Oria, V. Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, Baltimore, MD, USA, 14–16 June 2005; pp. 491–502.

36. Rockafellar, T.R.; Wets, R.J.-B. Variational Analysis; Springer: Berlin/Heidelberg, Germany, 2009; Volume 317.
37. Chen, L.; Ng, R. On the marriage of lp-norms and edit distance. In Proceedings of the Thirtieth International Conference on

Very Large Data Bases, Toronto, ON, Canada, 31 August–3 September 2004; Volume 30, pp. 792–803.
38. Zheng, Y.; Zhou, X. Computing with Spatial Trajectories; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
39. Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 6th ed.; Academic Press: San Diego, CA, USA, 2000; pp.

1114–1125.
40. Eiter, T.; Mannila, H. Computing Discrete Fréchet Distance. In Technical Report CD-TR 94/64; Christian Doppler Laboratory for

Expert Systems, TU Vienna: Vienna, Austria, 1994; pp. 636–637
41. Nie, P.; Chen, Z.; Xia, N.; Huang, Q.; Li, F. Trajectory similarity analysis with the weight of direction and k-neighborhood for

AIS data. ISPRS Int. J. Geo-Inf. 2021, 10, 757.

ISPRS Int. J. Geo-Inf. 2022, 11, 133 20 of 20

42. Wang, H.; Su, H.; Zheng, K.; Sadiq, S.; Zhou, X. An effectiveness study on trajectory similarity measures. In Proceedings of the
Twenty-Fourth Australasian Database Conference, Adelaide, Australia, 29 January–1 February 2013; Volume 137, pp. 13–22.

43. Yujian, L.; Bo, L. A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1091–1095.
44. Müller, M. Dynamic time warping. In Information Retrieval for Music and Motion; Springer: Berlin/Heidelberg, Germany, 2007;

pp. 69–84.
45. Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern

Anal. Mach. Intell. 1993, 15, 850–863.
46. Waga, K.; Tabarcea, A.; Chen, M.; Fränti, P. Detecting movement type by route segmentation and classification. In Proceedings

of the 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaborate-
Com), Pittsburgh, PA, USA, 14–17 October 2012.

47. Chen, M.; Xu, M.; Fränti, P. A fast O(N) multi-resolution polygonal approximation algorithm for GPS trajectory simplification.
IEEE Trans. Image Process. 2012, 21, 2770–2785.

48. Mariescu-Istodor, R.; Fränti, P. Gesture input for GPS route search. In Proceedings of the Joint International Workshop on
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2016), Merida, Mexico, 29 November–2 December 2016; pp.
439–449.

	1. Introduction
	2. Segment Averaging
	2.1. Heuristics for Finding Segment Mean
	2.2. Medoid
	2.3. Hybrid of Heuristics and Medoid

	3. Similarity Measures
	3.1. Cell Similarity (C-SIM)
	3.2. Hierarchical Cell Similarity (HC-SIM)
	3.3. Euclidean Distance
	3.4. Longest Common Subsequence (LCSS)
	3.5. Edit Distance on Real Sequence (EDR)
	3.6. Dynamic Time Warping (DTW)
	3.7. Edit Distance with Real Penalty (ERP)
	3.8. Fréchet and Hausdorff Distances
	3.9. Interpolated Route Distance (IRD)

	HumanScore
	Point Shifting
	Sampling Rate
	Reference
	Noise
	Measure
	Sync.
	Random
	Decrease
	Increase
	0.84
	[7]
	Fair
	Fair
	Fair
	Robust
	Robust
	HC-SIM
	0.72
	[5]
	Fair
	Fair
	Fair
	Robust
	Robust
	C-SIM
	0.52
	[33]
	Fair
	Fair
	Fair
	Robust
	Robust
	IRD
	0.45
	[34]
	Fair
	Fair
	Sensitive
	Fair
	Sensitive
	LCSS
	0.37
	[35]
	Fair
	Fair
	Sensitive
	Fair
	Sensitive
	EDR
	0.32
	[36]
	Fair
	Sensitive
	Sensitive
	Sensitive
	Sensitive
	Hausdorff
	0.21
	[37]
	Fair
	Fair
	Sensitive
	Fair
	Sensitive
	ERP
	0.11
	[38]
	Sensitive
	Sensitive
	Sensitive
	Sensitive
	Robust
	DTW
	0.09
	[39]
	Robust
	Robust
	Sensitive
	Sensitive
	Sensitive
	Euclidean
	Discrete Fréchet
	0.05
	[40]
	Fair
	Sensitive
	Sensitive
	Sensitive
	Sensitive
	4. Experimental Setup
	Segment Length (av.)
	Points perSegment (av.)
	Segments per Set (av.)
	Number of Sets
	Set
	1.01 km
	22.84
	4.16
	227
	Joensuu 2015
	0.76 km
	4.61
	84.63
	227
	Chicago
	0.98 km
	2.08
	6.97
	625
	Berlin
	0.88 km
	2.46
	3.30
	614
	Athens
	5. Results
	Testing
	Testing
	Testing
	Training
	Measure
	+Outlier Removal
	+Re-Ordering
	No Pre-Processing
	55.9% (+0.2)
	55.7% (0.0)
	55.7%
	59.9%
	HC-SIM
	55.9% (+0.3)
	55.6% (+0.3)
	55.3%
	59.1%
	IRD
	55.0% (−0.3)
	55.3% (0.0)
	55.3%
	59.0%
	Hausdorff
	54.9% (−0.4)
	55.3% (+0.6)
	54.7%
	58.6%
	Fréchet
	55.7% (+1.1)
	54.6% (0.0)
	54.6%
	58.4%
	EDR
	55.3% (+1.2)
	54.1% (−0.1)
	54.2%
	57.2%
	DTW
	54.8% (+0.7)
	54.1% (−0.3)
	54.4%
	57.1%
	FastDTW
	56.0% (+0.7)
	55.3% (0.0)
	55.3%
	57.1%
	C-SIM
	54.6% (+0.1)
	54.5% (+0.1)
	54.4%
	57.0%
	ERP
	55.7% (+1.1)
	54.6% (+0.2)
	54.4%
	56.9%
	LCSS
	55.1% (+0.2)
	54.9% (+0.8)
	54.1%
	56.7%
	Euclidean
	55.4% (+0.5)
	54.9% (+0.1)
	54.8%
	57.9%
	Average
	No Pre-Processing
	Number of Sets with Scores
	Measure
	>90%
	70–90%
	40–70%
	30–40%
	<30%
	34
	211
	434
	120
	102
	HC-SIM
	45
	169
	474
	120
	93
	IRD
	52
	179
	447
	125
	98
	Hausdorff
	46
	170
	456
	129
	100
	Fréchet
	49
	172
	446
	122
	112
	EDR
	39
	174
	450
	130
	108
	DTW
	46
	166
	457
	131
	101
	FastDTW
	40
	199
	437
	111
	114
	C-SIM
	43
	169
	459
	130
	100
	ERP
	48
	171
	438
	131
	113
	LCSS
	36
	173
	459
	126
	107
	Euclidean
	Re-ordered
	Number of Sets with Scores
	Measure
	>90%
	70–90%
	40–70%
	30–40%
	<30%
	33
	211
	436
	119
	102
	HC-SIM
	41
	182
	471
	117
	90
	IRD
	52
	179
	447
	125
	98
	Hausdorff
	51
	178
	447
	124
	101
	Fréchet
	54
	169
	439
	125
	114
	EDR
	42
	165
	466
	113
	115
	DTW
	36
	171
	465
	119
	110
	FastDTW
	41
	200
	435
	110
	115
	C-SIM
	42
	166
	472
	120
	101
	ERP
	52
	172
	438
	126
	113
	LCSS
	39
	184
	457
	118
	103
	Euclidean
	Re-ordered and outlier removal
	Number of Sets with Scores
	Measure
	>90%
	70–90%
	40–70%
	30–40%
	<30%
	38
	210
	441
	117
	95
	HC-SIM
	52
	181
	460
	112
	96
	IRD
	44
	176
	463
	116
	102
	Hausdorff
	42
	179
	462
	117
	101
	Fréchet
	48
	196
	437
	119
	101
	EDR
	49
	171
	469
	109
	103
	DTW
	43
	186
	436
	125
	111
	FastDTW
	39
	214
	437
	115
	96
	C-SIM
	44
	175
	460
	116
	106
	ERP
	46
	198
	437
	120
	100
	LCSS
	41
	182
	459
	121
	98
	Euclidean
	6. Detailed Analysis
	6.1. Noise
	6.2. Re-Ordering and Outlier Removal
	6.3. Normalizing
	6.4. Size of Sets
	6.5. Number of Points

	7. Conclusions
	References

