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Abstract: Averaging GPS trajectories is needed in applications such as clustering and automatic 
extraction of road segments. Calculating mean for trajectories and other time series data is non-
trivial and shown to be an NP-hard problem. medoid has therefore been widely used as a practical 
alternative and because of its (assumed) better noise tolerance. In this paper, we study the useful-
ness of the medoid to solve the averaging problem with ten different trajectory-similarity/-distance 
measures. Our results show that the accuracy of medoid depends mainly on the sample size. Com-
pared to other averaging methods, the performance deteriorates especially when there are only few 
samples from which the medoid must be selected. Another weakness is that medoid inherits prop-
erties such as the sample frequency of the arbitrarily selected sample. The choice of the trajectory 
distance function becomes less significant. For practical applications, other averaging methods than 
medoid seem a better alternative for higher accuracy. 
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1. Introduction 
Averaging time series signals is an open problem for which solutions are needed in 

many practical applications such as trajectory clustering [1,2] and extraction of road seg-
ments from Global Positioning System (GPS) recordings [3–5]; see Figures 1 and 2. Average 
can be defined as the point in the data space that minimizes the squared distance from all 
data points. However, to find the optimal average for sequences is time consuming be-
cause there is an exponential number of candidates for the average. It has been shown to 
be a computationally difficult (NP-hard) problem in the case of DTW space [6], which 
would require exponential time to solve optimally. 

GPS sequences differ from time series in that the pointwise alignment is performed 
in 2-d geographical space (latitude, longitude) instead of 1-d time space. Spatial locations 
of the points form the data and their time stamps are here excluded. If included, the prob-
lem would become averaging of sequences in 3-d space. The GPS trajectories can also be 
very noisy due to GPS errors [7]. Thus, the two main challenges of the averaging problem 
are that (1) the individual points do not align, and (2) the number of points can vary sig-
nificantly between the different sequences. Even the simplified 1-d version with fixed-
length signal is a computationally difficult, NP-hard problem. 

Medoid is a practical alternative for averaging. It has been widely used in many ap-
plications in spatial data mining, text categorization, vehicle routing, and clustering just 
to name few [8–11]. It is defined as the object in the set for which the average distance to 
all the objects of the cluster is minimal [12]. It is a similar concept to mean with the differ-
ence that mean can be any point in the data space while medoid is restricted to be one of 
the objects in the set. Medoid is used when mean cannot be easily defined, or when simple 
averaging can create artificial combinations that do not appear in real life. Medoid has 
two main benefits compared to mean. First, there are only k candidates to choose from, 
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which makes it computationally solvable. Second, it is expected to be less biased by outli-
ers in the data. 

In clustering, medoid has been used to replace the well-known k-means algorithm 
[13,14] by its more robust variant called k-medoids [15], motivated by the assumption that 
it is more robust to noise. Similarly to k-means, it first selects clusters representatives at 
random. Second, the nearest representatives are searched, and each point is partitioned to 
the cluster with closest representative. A new set of representatives are then calculated as 
the medoids for each cluster. The process is iterated similarly as in k-means. 

K-means itself is only a local fine-tuner and it performs poorly if the number of clus-
ters is high. Using a cleverer initialization method or re-starting the algorithm multiple 
times can improve the result, but only if the clusters are not completely separated [16]. 
This can be overcome by a simple wrapper around the k-means, called random swap [17], 
which swaps the centroids in a trial-and-error manner but manages to find the correct 
centroid location whenever the data have clusters [18]. A similar extension to k-medoid 
has also been applied by a method called partitioning around the medoid (PAM) [15]. 

 
Figure 1. Extracting road network from GPS trajectories needs segment averaging to convert a set 
of trajectories between two intersections to a road segment. 

 
Figure 2. Averaging is needed to find representatives for trajectory clusters. This can be challenging 
as the trajectories may have complex shapes. 

Another interesting result was found in [19] when comparing performance of k-
means and random swap with noisy data. Random swap worked significantly better with 
the clean data but when the amount of noise increases it removed the superiority of ran-
dom swap and both algorithms performed equally poorly. In fact, k-means benefitted 
from the noise because it creates more overlap between the clusters, which helps k-means 
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to move the centroids between the clusters [20]. These findings indicate that noise robust-
ness of any method is all but self-evident and the effect can be something other than what 
one might expect by common sense. 

The difference between mean and medoid is illustrated in Figure 3 with a set of four 
trajectories. Medoid is one of the input trajectories, which can restrict its usefulness in the 
case of small sets. In this case, the optimal location of the mean is somewhere in between, 
but there is no suitable candidate trajectory to choose from; medoid is just the best among 
the available choices. Medoid is expected to work well if there are sufficient trajectories in 
the set to choose from. Medoid also has other problems. Since it is one sample from the 
input set, it will carry all the properties of the selected sample (both good and bad). It does 
minimize the distance to the other trajectories, but it does not average the other properties 
such as sample frequency, length, or shape of the trajectories. These might deteriorate its 
performance in practice. 

 
Figure 3. Examples of using mean (left) and medoid (right) for segment averaging. 

Despite the potential benefits of medoid, practical results in [7] were quite discour-
aging. All studied averaging heuristics performed significantly better than medoid re-
gardless of the distance function. However, medoid was used merely as a reference 
method and not really considered seriously, while all the heuristics were carefully tuned 
submissions to the segment-averaging challenge. It is therefore an open question whether 
medoid is really so poor or whether it could also be tuned for better performance by ap-
plying the same pre-processing and outlier-removal tricks that were used within the other 
methods. To find answers to these questions, we conducted a systematic study of the use-
fulness of medoid for the averaging problem. Our goal was to answer the following ques-
tions: 
1. What is the accuracy of the medoid? 
2. When does it work and when not? 
3. Does it work better than existing averaging techniques in the case of noisy data? 
4. Which similarity function works best, and how much does the choice matter? 

The rest of the paper is organized as follows. The problem is defined in Section 2, 
describing several alternatives. Medoid is defined in Section 3 and a brief review is given 
on existing works using medoid. Data sets and the tools used for the experiments are de-
scribed in Section 4. Main results are then reported in Section 5, followed by more detailed 
analysis in Section 6. Conclusions drawn in Section 7. 

2. Segment Averaging 
The averaging task is seemingly simple as calculating average of numbers is trivial, 

and it is easy to generalize from scalar to vectors in multivariate data analysis. However, 
averaging time series is significantly more challenging as the sample points do not neces-
sarily align. It is possible to solve the averaging problem by using mean, which is defined 
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as any possible sequence in the data space that minimizes the sum of squared distances to 
all the input sequences [7]: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = arg𝑐𝑐min∑ 𝐷𝐷(𝑥𝑥𝑖𝑖  ,𝐶𝐶)𝑘𝑘
𝑖𝑖=1

2 (1) 

Here, X = {x1, x2, …, xk} is the sample input set and C is their mean, which is also called 
centroid. However, the search space is huge and an exhaustive search by enumeration is 
not feasible. Some authors consider the problem so challenging that they think it is not 
self-evident that the mean would even exist [6,21]. However, their reduction theorem 
showed that mean exists for a set of dynamic time warping (DTW) spaces [6] and the existing 
heuristics have, therefore, theoretical justification. An exponential time algorithm for solv-
ing the exact DTW-mean was recently proposed in [22]. GPS trajectories differ from time 
series in a few ways. First, the alignment of the time series is performed in the time do-
main, whereas the GPS points need to be aligned in geographical space. Second, GPS data 
can be very noisy, which means that mean might not even be the best solution to the av-
eraging problem. 

2.1. Heuristics for Finding Segment Mean 
Due to the difficulty of finding the optimal mean, several faster but sub-optimal heu-

ristics have been developed. In [13], average segments (called centerline) were used for k-
means clustering of the GPS trajectories to detect road lanes. The averaging method was 
not defined in the paper, but it was later described in [23] as piecewise linear regression. The 
points are considered as an unordered set and piecewise polynomials are fit with conti-
nuity conditions at the knot points [24]. The disadvantage of the regression approach is 
that the order of the points is lost, and it can make the problem even harder to solve. 

The CellNet segment-averaging method [25] selects the shortest path as the initial 
solution [26], which is iteratively improved by the majorize–minimize algorithm [1]. Trajec-
tory box plot is a similar iterative approach, which divides the trajectories into sub-seg-
ments by clustering and, then, at each step, performs piecewise averaging of the sub-seg-
ments [27]. Kernelized time elastic averaging (iTEKA) is another iterative algorithm for the 
averaging problem [28]. It considers all possible alignment paths and integrates a forward 
and backward alignment principle jointly. There are several reasonable algorithms in lit-
erature, although many of them suffer from quadratic time complexity and their imple-
mentation can be rather complicated. 

The problem was addressed in a recent segment-averaging challenge 
(http://cs.uef.fi/sipu/segments/, accessed on 25 November 2021) where several heuristic 
methods were submitted and compared against each other. A new baseline was also con-
structed by synthesis of the best components of the methods from the competition, as 
summarized in Figure 4. The first step is to re-order the trajectories to make them invariant 
to the travel order. Outlier removal is applied in the second step to reduce the effect of 
noisy trajectories. These steps reduce the problem to a standard sequence averaging prob-
lem and the majorize–minimize algorithm [1] is then applied. The last step (optional) is 
merely to simplify the final representation by the Douglas–Peucker polygonal algorithm 
[29]. 

2.2. Medoid 
Median is often used instead of mean because it is less sensitive to noise. In the case 

of scalar values, median can be easily obtained by first sorting the n data values and then 
selecting the middle value from the sorted list. However, multivariate data lack natural 
ordering, which makes it difficult to find the “middle” value. Spatial median [30] constructs 
the median for each scalar value separately and the result is the concatenation of the in-
dependent scalar medians. However, GPS trajectories can have variable lengths and the 
individual points cannot be trivially aligned to match the points from which the median 
should be calculated. 

http://cs.uef.fi/sipu/segments/
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Figure 4. General structure of the methods from the segment-averaging competition [7]. A new 
baseline (shown by blue) was constructed by synthesis of these methods. 

It is possible to define median also as a minimization problem so that median is the 
input point which has minimum average distance to all the other points in the set. A gen-
eralization of this to multivariate data is known as medoid. It is defined as the input data 
object whose total distance to all other observations is minimal. Its main advantage is that 
the problem then reduces the linear search problem: find the input object that satisfies this 
minimization objective. Formally, we define medoid as [7]: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = arg𝑗𝑗  min�𝐷𝐷�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
𝑘𝑘

𝑖𝑖=1

 (2) 

where D is a distance or similarity function between two GPS trajectories xi and xj. In other 
words, medoid is defined as an optimization problem, similar to how we defined mean 
in Equation (1). The difference is that, instead of allowing any possible trajectory in the 
space, medoid is restricted to be one of the input trajectories. This reduces the search space 
significantly, and theoretical time complexity of finding medoid can be as low as O(nk2), 
where k is the number of trajectories, and n is the number of points in the longest trajec-
tory. 

The definition also requires that we have a meaningful distance function between the 
data objects. This increases the time complexity as calculating distances between trajecto-
ries is not trivial. Given k trajectories of n points each, most distance functions take O(n2) 
time, which makes the time complexity of medoid O(k2n2). However, some of the 
measures have faster variants such as Fast-DTW [31], which can reduce this to O(k2n). 

2.3. Hybrid of Heuristics and Medoid 
In [32], a hybrid method was proposed by combining a simple averaging heuristic 

for linear segments and another method for more complex curves. The linear model uses 
three descriptors: source (S), median (M), and destination (D). The method first analyzes the 
complexity of the segment based on the three descriptors to estimate whether the simple 
linear model can be used, or the more complex alternative should be used. Medoid was 
used as the alternative method in the variant called RapSeg-B. Figure 5 (left) shows the 
general structure of the hybrid method. 
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The method creates three separate sets. Endpoints of each trajectory are first collected 
and clustered by k-means to form two sets: source set and destination set. The travel direc-
tion is ignored but the idea itself generalizes even if the directions were preserved. The 
third set, called median set, is created from the middle points of the trajectories. The cen-
troids are then calculated for each of the three sets to create the three descriptors (S, M, 
D), as in Figure 5 (right). To decide whether the linear model can be used, a straight-line 
SD is compared against the three-point polygon SMD which makes a detour via the mid-
dle point M. The more the detour deviates from the direct connection, the less likely a 
simple linear model is suitable to describe this segment. This is measured by cosine of the 
angle ∠SDM and ∠DSM; if it is smaller than a threshold, then medoid is used. 

  

Figure 5. Overall structure of the RapSeg algorithm [32] and the creation of the three descriptors. 

3. Similarity Measures 
Medoid is defined as the trajectory in the set that minimizes the total distance (or 

maximizes the total similarity) to all other trajectories in the set. For this, we need to 
choose a distance or similarity measure. Dynamic time warping is probably the most com-
mon, but it is sensitive to sub-sampling, noise, and point shifting. It also does not correlate 
well with human judgement, according to [5]. We will next briefly describe the measures 
and then perform extensive comparison of the segment averaging using all these 
measures. The measures and their properties are summarized in Table 1. 

Table 1. Summary of the considered distance measures. The properties are taken from [5], except 
IRD and HC-SIM, which we added here using our subjective understanding. Human score is the 
correlation of the measure with human evaluation made in [7]. Most of the measures are also found 
in the web tool: http://cs.uef.fi/mopsi/routes/similarityApi/demo.php (accessed on 25 November 
2021). 

Measure 
Sampling Rate 

Noise 
Point Shifting 

Reference 
Human 
Score Increase Decrease Random Sync. 

HC-SIM Robust Robust Fair Fair Fair [7] 0.84 
C-SIM Robust Robust Fair Fair Fair [5] 0.72 

IRD Robust Robust Fair Fair Fair [33] 0.52 
LCSS Sensitive Fair Sensitive Fair Fair [34] 0.45 
EDR Sensitive Fair Sensitive Fair Fair [35] 0.37 

Hausdorff Sensitive Sensitive Sensitive Sensitive Fair [36] 0.32 

http://cs.uef.fi/mopsi/routes/similarityApi/demo.php
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ERP Sensitive Fair Sensitive Fair Fair [37] 0.21 
DTW Robust Sensitive Sensitive Sensitive Sensitive [38] 0.11 

Euclidean Sensitive Sensitive Sensitive Robust Robust [39] 0.09 
Discrete Fré-

chet 
Sensitive Sensitive Sensitive Sensitive Fair [40] 0.05 

3.1. Cell Similarity (C-SIM) 
Cell similarity (C-SIM) uses a grid to calculate the similarity. It first creates the cell 

representation of the trajectories and then counts how many common cells the two trajec-
tories share relative to the total number of unique cells they occupy [5]. An advantage of 
the method is that it is much less affected by change in sampling rate, point shifting, and 
noise. A drawback is that the method ignores the travel order, but a recent extension to 
make it direction-sensitive is proposed in [41]. 

3.2. Hierarchical Cell Similarity (HC-SIM) 
Hierarchical cell similarity (HC-SIM) extends C-SIM to multiple zoom levels. The idea 

is that small differences can be tolerated if the curves have good match at the higher levels; 
see Figure 6. C-SIM uses a grid of 25 × 25 m and counts how many cells the segment shares 
relative to the total number of cells they occupy. HC-SIM uses six zoom levels, with the 
grid sizes of 25 × 25 m, 50 × 50 m, 100 × 100 m, 200 × 200 m, 400 × 400 m, and 800 × 800 m. 
In the case of data normalized to the (0,1) scale, the following sizes are used: 0.5%, 1%, 2%, 
4%, 8%, 16%. The individual counts are then summed up. Given two trajectories A and B, 
their hierarchical cell similarity (with L zoom levels) is calculated as follows [7]: 

HC-SIM(A, B) =
1
𝐿𝐿
�C-SIM(A, B, 0.005 ∙ 2𝑖𝑖−1)
𝐿𝐿

i=1

 (3) 

 
Figure 6. Hierarchical cell-similarity measure (HC-SIM) is constructed by summing up CSIM-values 
using different zoom levels. In the example, the two trajectories have only one short detour and 
minor differences showing only at the densest zoom level. At the highest zoom level, the curves are 
considered identical. 

3.3. Euclidean Distance 
Euclidean distance [39] is one of the simplest possible methods. It calculates the dis-

tance between the points having the same index. Its main advantages are the simplicity 
and invariance to the travel order. The only challenge is that the GPS points (latitude and 
longitude) must be converted into Cartesian coordinates first. The measure is likely to fail 
when the sampling rates of the two trajectories are very different, or when the two trajec-
tories are otherwise similar but one of them is much longer. The problem is the lack of any 
alignment of the points, which is addressed in all of the other measures in one way or 
another. 
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3.4. Longest Common Subsequence (LCSS) 
Longest common subsequence (LCSS) was originally designed for string similarity. The 

longest common subsequence for strings GETEG, GEGTG, GEGET is GET. The main ben-
efit of LCSS distance between two trajectories is that it allows leaving of far-away (noisy) 
GPS points as unmatched, with only a minor penalty in the score [42]. Such noise points 
can have major impact on distance measures that require pair-matching of every point. 

3.5. Edit Distance on Real Sequence (EDR) 
Edit distance on real sequence (EDR) [35] is derived from the Levenshtein edit distance 

[43]. It counts how many insert, delete, and replace operations are needed to convert one 
string to another. For example, when converting bitter to sitting, we first replace “b” to “s” 
(sitter), then “e” with “i” (sittir), “r” with “n” (sittin), and finally insert “g” and at the end 
(sitting). The Levenshtein distance is therefore 4. EDR applies edit distance to trajectories 
by declaring two points identical if they are within the distance ε from each other. In this 
paper, the value of ε is 0.05. Compared to Euclidean distance, it reduces the effect of noise 
but both LCSS and EDR are very sensitive to sub-sampling. 

3.6. Dynamic Time Warping (DTW) 
Dynamic time warping (DTW) [44] is similar to edit distance but instead of exact 

matching, it calculates the distance between the matched points. It is commonly used to 
calculate the distance of time series with various lengths and applies straightforwardly to 
GPS trajectories as well. The drawback of DTW is that it is sensitive to the sampling rate. 

3.7. Edit Distance with Real Penalty (ERP) 
Edit distance with Real Penalty [37] is a metric variant of EDR that resembles DTW. It 

calculates the distance between the matched points. However, in the case of a non-match 
situation, it uses constant 1 rather than using binary value (0/1) as EDR or calculating 
distance to the neighboring points as DTW. This modification makes the measure metric 
and allows utilization of triangular inequality property in searches and making efficient 
indexing structures such as B+ trees. 

3.8. Fréchet and Hausdorff Distances 
Hausdorff distance [45] is the maximum distance of all nearest points in the two trajec-

tories. It only cares about the longest distance and is therefore sensitive to noise, differ-
ences in sampling rate, and point shifting. A single noise point can make the distance very 
large even if the trajectories would be otherwise a perfect match. Fréchet distance [40] is the 
same as Hausdorff but the points cannot be matched to those in the past. Fréchet therefore 
enforces the order of the travel whereas Hausdorff is invariant to it. 

3.9. Interpolated Route Distance (IRD) 
Interpolation route distance (IRD) [33] is similar to DTW, with two main differences. 

First, it pairs points from the two trajectories A and B by using interpolation when the 
other trajectory has fewer samples along some part of the route. This can provide a signif-
icantly more accurate distance estimate when the two trajectories have different sampling 
rates. Second, it has linear time implementation, which makes it significantly faster than 
the straightforward implementation of DTW taking quadratic time. 

4. Experimental Setup 
We experiment the averaging with medoid using the data available from the seg-

ment-averaging competition [7]; see Table 2. The data consist of segments extracted from 
four trajectory datasets: Joensuu 2015 [5], Chicago [3], Berlin, and Athens [4]. Joensuu 2015 
contains mostly walking, running, and bicycle trajectories collected by Mopsi users. It has 
high point frequency, 3 s on average, and the data are noisy because of slow movement 
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and low-end smartphones used for the data collection. Chicago contains longer and sim-
pler segments collected by a university shuttle bus. Some segments are noisy due to the 
tall buildings alongside the route which cause the GPS signal to bounce. The data in Ath-
ens and Berlin sets were collected by car with much lower point frequency, 42 s (Berlin) 
and 61 s (Athens). These segments are simpler, containing only a few points. 

All experiments were run using Dell R920 machine with 4 × E7-4860 (total 48 cores), 
1 TB, 4 TB SAS HD. The processing time of medoid with all the similarity measures took 
more than one hour (>1 h) in all cases, while the comparative method (baseline) took only 
seconds. For this reason, we did not record the exact times, as medoid is clearly slower. 

Table 2. Summary of the data used in the experiments. The data were divided into two parts: 100 
sets for training (10%) and 901 sets for testing (90%). In total, there are k = 10,480 trajectories with N 
= 90,231 points. The training data were publicly available in the segment-averaging competition [7], 
while the testing data were published only afterwards. They are both available here: 
http://cs.uef.fi/sipu/segments (accessed on 25 November 2021). 

Set 
Number  
of Sets 

Segments  
per Set (av.) 

Points per 
Segment (av.) 

Segment Length 
(av.) 

Joensuu 2015 227 4.16 22.84 1.01 km 
Chicago 227 84.63 4.61 0.76 km 
Berlin 625 6.97 2.08 0.98 km 

Athens 614 3.30 2.46 0.88 km 

We test the performance of medoid with eleven similarity measures as follows. First, 
we generate segment averages for each set using medoid with the selected distance meas-
ure. The result is compared against ground truth using HC-SIM, which was found to cor-
relate best to human judgment in [7]. The higher the similarity, the better is the result. We 
also test the effects of two pre-processing techniques: re-ordering of the points and outlier 
removal. The re-ordering is expected to remove the effect of the travel order and improve 
measures affected by it. Outlier removal is expected to help when averaging noisy sets. 

We use Mopsi web tools (see Figure 7) and the related API in the experimentation: 
http://cs.uef.fi/sipu/mopsi/ (accessed on 25 November 2021). These include various web 
pages to demonstrate the operation of a method. Some allow uploading of own data and 
others provide APIs to be used by those with sufficient programming skills. The following 
tools, at least, are available: 
1. Segment averaging [7] 

http://cs.uef.fi/sipu/segments/training.html (accessed on 25 November 2021) 
2. Road-network extraction [25] 

http://cs.uef.fi/mopsi/routes/network (accessed on 25 November 2021) 
3. Similarity of trajectories [5] 

http://cs.uef.fi/mopsi/routes/similarityApi/demo.php (accessed on 25 November 
2021) 
4. Transport-mode detection [46] 

http://cs.uef.fi/mopsi/routes/transportationModeApi (accessed on 25 November 
2021) 
5. Trajectory reduction [47] 

http://cs.uef.fi/mopsi/routes/reductionApi (accessed on 25 November 2021) 
6. Tools integrated in Mopsi 

http://cs.uef.fi/mopsi/ (accessed on 25 November 2021) 
The segment-averaging web page is the most relevant as it allows users to test their 

own algorithm with the training data by uploading segmentation results in text format. 
The tool visualizes the uploaded average segments and calculates their HC-SIM scores, 
but it is limited to 100 training data only. The test data are available, but not via this inter-
active tool. The road-network extraction tool demonstrates the resulting intersections and 

http://cs.uef.fi/sipu/segments
http://cs.uef.fi/sipu/mopsi/
http://cs.uef.fi/sipu/segments/training.html
http://cs.uef.fi/mopsi/routes/network
http://cs.uef.fi/mopsi/routes/similarityApi/demo.php
http://cs.uef.fi/mopsi/routes/transportationModeApi
http://cs.uef.fi/mopsi/routes/reductionApi
http://cs.uef.fi/mopsi/
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segments in between five algorithms. It demonstrates an application where the segment 
averaging is needed. The trajectory-similarity tool demonstrates the performance of 8 dis-
tance measures (lacking only the most recent measures, IRD and HC-SIM) with seven pre-
selected datasets. Unfortunately, it does not currently allow testing with users’ own data. 

The transport-mode-detection tool allows users to upload their own trajectories and 
it outputs the detected segments and their predicted stop points and movement types (car, 
bicycle, run, walk). The trajectory-reduction tool performs polygonal approximation for 
user-input trajectory with five different quality levels. There are several other tools inte-
grated directly in the Mopsi system without specific interfaces, including C-SIM-based 
similarity search [5] and gesture-based search where user inputs approximate route by 
free-hand drawing [48]. In summary, while most results in this paper have been obtained 
by inhouse implementations, there are APIs and useful web tools available for the reader 
to perform their own experiments directly related to GPS trajectory processing. 

  
Figure 7. Summary of the Mopsi web tools available for others to test the segment averaging and 
related methods. 

5. Results 
The overall results of the training data and test data without pre-processing are sum-

marized in Table 3, sorted from best to worst (training data). Results from the baseline 
segment averaging are also included from [7]. The three main observations from the re-
sults are: 
1. HC-SIM performs best with the training data. 
2. The choice of distance function has only a minor effect. 
3. The results of medoid are significantly worse than the baseline averaging [7]. 

The first observation is not surprising. It is expected that optimizing for the same 
measure that is used in the evaluation will perform best, and it is, therefore, logical to use 
HC-SIM as the similarity measure with medoid. The second observation, however, is 
more important. The difference between the best (HC-SIM = 59.9%) and the worst (Euclid-
ean = 56.7%) is only 3.2%-unit for the training data without pre-processing. The difference 
(55.7% vs. 54.1%) becomes even smaller with the test data (1.7%-unit). Their score distri-
butions are also similar; medoid with LCSS, DTW, EDR, C-SIM, and Euclidean has more 
poor segments (<30%) than HC-SIM but most segments are still within the 40–70% interval 
(varying from 434 to 474); see Table 4 and Figure 8. The third observation is the most 
important: all these results are significantly worse than the baseline averaging result, 

Segment averaging Road−network extraction Trajectory similarity

Integrated tools in MopsiTrajectory reductionTransport mode
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which is 66.9% for training data and 62.1% for testing data [7]. This demonstrates that the 
root cause for the performance is medoid itself, not the similarity measure. 

We also analyze the effect of re-ordering and outlier removal. For these, we use the 
techniques from the baseline in [7]: k-means for re-ordering, and distance and length cri-
terion for outlier removal. Note that medoid does not necessarily need re-ordering if the 
distance measure is invariant to the travel order. This is the case with Hausdorff, C-SIM, 
and HC-SIM. However, the other distance functions are sensitive to the point order: DTW, 
ERD, ERP, LCSS, Fréchet, and Euclidean. If these are employed, re-ordering might become 
necessary. However, the results in Table 3 show that, while pre-processing improves the 
results in most cases, the overall effect remains moderate. Re-ordering slightly improves 
Fréchet, and Euclidean, especially on a data set whose segment-averaging score falls be-
tween 40% and 90% (Table 4). Outlier detections improve the results of EDR, DTW, 
FastDTW, and LCSS for averaging scores between 70% and 90%. On average, the average 
performance of medoid improves from 54.8% to 54.9%, but the results are still signifi-
cantly worse than the baseline segment-averaging method in [7] (62.1%), which shows 
that these two techniques are not enough to compensate for the weaknesses of medoid. 

The IRD result shows that outlier removal does not have a significant effect on many 
of the GPS data sets. On a few occasions, outlier removal has some positive effects, but 
not significantly. Re-ordered average scores for C-SIM, HC-SIM and Hausdorff remain 
the same. 

Table 3. Evaluation of medoid accuracy with various similarity measures on trajectories data with 
and without pre-processing. Results are given separately for the training and testing data. The cor-
responding results for the baseline segment averaging [7] are 66.9% (training) and 62.1% (testing). 

Measure 
Training Testing Testing Testing 

No Pre-Processing +Re-Ordering 
+Outlier  
Removal 

HC-SIM 59.9% 55.7% 55.7% (0.0) 55.9% (+0.2) 
IRD 59.1% 55.3% 55.6% (+0.3) 55.9% (+0.3) 

Hausdorff 59.0% 55.3% 55.3% (0.0) 55.0% (−0.3) 
Fréchet 58.6% 54.7% 55.3% (+0.6) 54.9% (−0.4) 

EDR 58.4% 54.6% 54.6% (0.0) 55.7% (+1.1) 
DTW 57.2% 54.2% 54.1% (−0.1) 55.3% (+1.2) 

FastDTW 57.1% 54.4% 54.1% (−0.3) 54.8% (+0.7) 
C-SIM 57.1% 55.3% 55.3% (0.0) 56.0% (+0.7) 
ERP 57.0% 54.4% 54.5% (+0.1) 54.6% (+0.1) 
LCSS 56.9% 54.4% 54.6% (+0.2) 55.7% (+1.1) 

Euclidean 56.7% 54.1% 54.9% (+0.8) 55.1% (+0.2) 
Average 57.9% 54.8% 54.9% (+0.1) 55.4% (+0.5) 

Table 4. Frequency distribution of the scores (901 test datasets) without pre-processing. 

 No Pre-Processing 

Measure 
Number of Sets with Scores 

<30% 30–40% 40–70% 70–90% >90% 
HC-SIM 102 120 434 211 34 

IRD 93 120 474 169 45 
Hausdorff 98 125 447 179 52 

Fréchet 100 129 456 170 46 
EDR 112 122 446 172 49 
DTW 108 130 450 174 39 

FastDTW 101 131 457 166 46 
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C-SIM 114 111 437 199 40 
ERP 100 130 459 169 43 
LCSS 113 131 438 171 48 

Euclidean 107 126 459 173 36 
 Re-ordered 

Measure 
Number of Sets with Scores 

<30% 30–40% 40–70% 70–90% >90% 
HC-SIM 102 119 436 211 33 

IRD 90 117 471 182 41 
Hausdorff 98 125 447 179 52 

Fréchet 101 124 447 178 51 
EDR 114 125 439 169 54 
DTW 115 113 466 165 42 

FastDTW 110 119 465 171 36 
C-SIM 115 110 435 200 41 
ERP 101 120 472 166 42 
LCSS 113 126 438 172 52 

Euclidean 103 118 457 184 39 
 Re-ordered and outlier removal 

Measure 
Number of Sets with Scores 

<30% 30–40% 40–70% 70–90% >90% 
HC-SIM 95 117 441 210 38 

IRD 96 112 460 181 52 
Hausdorff 102 116 463 176 44 

Fréchet 101 117 462 179 42 
EDR 101 119 437 196 48 
DTW 103 109 469 171 49 

FastDTW 111 125 436 186 43 
C-SIM 96 115 437 214 39 
ERP 106 116 460 175 44 
LCSS 100 120 437 198 46 

Euclidean 98 121 459 182 41 
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Figure 8. Frequency histograms of the scores when using HC-SIM (red) and Euclidean (blue). 

6. Detailed Analysis 
We next analyze the effect of various parameters such as noise and set size, and pre-

processing techniques including re-ordering, outlier removal, and normalization by 
resampling. 

6.1. Noise 
Figure 9 shows a few examples where the chosen medoid has unusual properties that 

do not describe the data very well. As a reference, the first example (left) is a case where 
medoid works very well. The distance to ground truth reaches 100% and there is no visible 
difference between them. This set has plenty of samples and medoid manages to select 
the trajectory that is also visually pleasing. The other cases, however, demonstrate differ-
ent problems. 

The second example (Artefact) in Figure 9 might be a reasonable choice as it is in the 
middle of the samples, even if slightly offset from the ground truth. However, the chosen 
trajectory has an unwanted artefact at the top by having a small peak towards the right. 
The third example (Noise) shows the effect of noise. While medoid is expected to be more 
robust to noise than mean, this is not the case in practice. The one far-away sample is 
enough to pull the medoid from the centre line, decreasing the score to 43%. The fourth 
example (Over-sampled) has a reasonably good score and is visually close to the ground 
truth. The problem is that it has an overwhelming number of sample points even if it 
might have good averaging properties otherwise. The last example (Short) shows the phe-
nomenon where the shortest segment is chosen as the medoid despite it being outermost 
among all choices. 

6.2. Re-Ordering and Outlier Removal 
Selected sets are shown in Figure 10 to demonstrate some of the effects of re-ordering 

and outlier removal. Re-ordering and outlier removal can help occasionally especially 
when LCSS is used but the effect with HC-SIM seems almost random. The outlier removal 
failed to detect many obvious outliers. The main reason is that it only analyzes the points 
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but not the entire trajectories. This is a potential future improvement for segment averag-
ing in general, not only with medoid. 

 
Figure 9. Examples of sets of k trajectories (gray lines) averaged by medoid with DTW distance (blue 
line). Black line is the ground truth. 

HC-SIM LCSS 

  

Figure 10. Selected examples of medoid with HC-SIM and LCSS similarity measures. Blue line is 
the average result, and black line is the ground truth. 

6.3. Normalizing 
We next study the effect of normalizing the trajectories by re-sampling before select-

ing medoid. Figure 11 shows four examples when the input data are first processed so 
that each trajectory consists of the same number of points (10). We can see that, in all these 
cases, the result is better both visually and according to the numerical score. The result 
still copies the artefacts of the selected trajectory but, due to the post-processing, most 
severe artefacts such as oversampling and zig–zag effect have been eliminated. 

6.4. Size of Sets 
The main deficiency of medoid originates from the lack of data to choose a good me-

doid. HC-SIM, IRD, and Hausdorff are the three similarity measures that perform best 
with training data, while HC-SIM, C-SIM, and IRD perform best with test data, in terms 
of being closest to the ground truth. However, they also have the fewest segments with a 
score lower than 40%. Figure 12 shows a few cases when the score is below 30%. We can 
see that all cases have only a few samples. However, the first case (Set 27) has only three 
trajectory samples, which are too few to capture the real road segment (black line), which 
is offset from the samples. The second case (Set 87) has similar offset, but the third example 
(Set 35) shows tendency of medoid to select the shortest segment despite the fact that the 
longer segment in the middle would be more sensible. An important observation is that 
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all three methods make the same choices, so the behavior can be attributed mainly to the 
medoid itself, not to the choice of the distance measure. 

 
Figure 11. Pre-processing the trajectories by re-sampling can overcome some issues of medoid. LCSS 
measure was used in these examples. The re-sampling (to 10 points) is shown only for the segment 
average (blue line). 

 
Figure 12. Examples where medoid provides low score with the three best-performing distance 
measures. The number of trajectories is very small in all cases: k = 3. 

6.5. Number of Points 
Results for selected sets with HC-SIM and DTW are plotted in Figures 13 and 14 to 

demonstrate the effect of the set size and outlier removal. Here, the number with the circle 
shows the number of trajectories, and x-axis is the logarithmic value of the number of 
points in the set. The results show that the performance of medoid increases with the data 
size. The sets with a large number of points have significantly higher scores, and most of 
the low-scoring sets are those with only few trajectories and points. We observe that the 
number of trajectories in the set, and the number of points in each trajectory, affect the 
performance of medoid. The more = points and trajectories there are, the better the score. 
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Outlier removal improves the performance of some of those sets that have few trajectories 
and points. 

 

 
Figure 13. Result of 100 datasets plotted as a function of the number of points (log scale) in the set. 
Results are for HC-SIM before outlier removal (above) and HC-SIM after outlier removal (below). 
Each dot represents one set and the number shows how many trajectories are in the set. 
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Figure 14. Result of 100 datasets plotted as a function of the points (log scale) in the set. Results are 
for DTW before outlier removal (above) and DTW after outlier removal (below). Each dot repre-
sents one set and the number shows how many trajectories are in the set. 

7. Conclusions 
It would be tempting to use medoid for averaging GPS segments because of its 

simplicity and presumed resistance for outliers. In reality, however, it suffers from several 
problems that restrict its usefulness in practice. We list here the following weaknesses 
observed in our experiments: 
1. Accuracy of medoid is clearly inferior to the best averaging heuristics (baseline). 
2. Contrary to expectations, medoid is vulnerable to noise. 
3. Medoid tends to select short segments. 
4. Medoid copies the (sometimes unwanted) properties of the original trajectory. 
5. It is slow (averaging of all sets takes >1 h). 

Medoid provides quality scores of 59.9% (training) and 54.7% (test) when using the 
HC-SIM similarity measure without pre-processing of dataset. This is much lower than 
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that of the baseline segment averaging with 66.9% (training) and 62.1% (test). Medoid 
works poorly especially when there are only few samples to choose from. If the size of the 
set is large, there are better chances of finding a more accurate representative. Medoid 
also tends to select short segments. It averages only the overall shape but ignores other 
features such as segment length and number of sample points. These will be arbitrarily 
chosen from the original data and the quality of medoid therefore depends a lot on the 
quality of data. 

For these reasons, we do not recommend using medoid, and the existing averaging 
heuristics seems more promising. Medoid should be avoided especially when the number 
of samples is low. Some of its deficiencies can be overcome by noise removal and normal-
izing the input trajectories by re-sampling. These steps are also included in the other av-
eraging heuristics. The other main design question would be the choice between fast se-
quence averaging, such as the majorize–minimize algorithm, or the time-consuming 
brute-force algorithm required by medoid. From the efficiency point of view, there is no 
reason to use medoid; it is fast only when the number of samples is low, but this is also 
the case when its quality is low. 

The effect of similarity measure was of secondary importance. HC-SIM performed 
best, but the results became very close to each other when the pre-processing techniques 
were applied. The average scores of the five best-performing measures (C-SIM, HC-SIM, 
IRD, EDR, LCSS) are only within 0.3%-unit from each other (56.0%, 55.9%, 55.9%, 55.7%, 
55.7%). To sum up, the problem of medoid is not the choice of the similarity measure but 
the general limitation of the medoid itself, as it is restricted to selecting one of the input 
trajectories as the average. This limitation is likely to appear in other applications where 
medoid is used. 
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