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Abstract— Simple objects are defined as objects invariably 

correctly classified by all outlier detectors. Its presence impairs 

performance of binary classifiers such as ROC or F1 score. A large 

number of simple objects falsely improve performance of binary 

classifiers when evaluated by ROC or F1 score. This impairs 

reliability of classifier evaluation. This manuscript proposes 

evaluation without simple objects (NoSimple). NoSimple 

preprocesses data to factor in simple objects by removing the 

simple objects for the evaluation phase. Experiments with 30 real-

world datasets demonstrate that NoSimple significantly reduced 

the average ROC of all classifiers by 0.04 ~ 0.06. NoSimple is most 

effective when the percentage of simple objects exceeds 30%. By 

introducing a new method to reliably evaluate outlier classifiers, 

NoSimple has the potential to revolutionize evaluation metrics and 

has a multitude of applications in data science research. 

 
Index Terms— evaluation metric, ROC, F1 score, NoSimple, 

evaluation without simple objects, outlier detection, CTR. 

I. INTRODUCTION 

Evaluation metrics play an important role in model comparison 
and model selection. Evaluation metrics analyze predicted and 
ground truth labels to provide a tangible outcome in terms of a 
real number. Evaluation metrics rely on thresholds to assign 
predicted labels for data objects when measuring score-based 
binary classifiers.  

Typical evaluation metrics for score-based binary classifiers 
can be categorized into three groups based on applying single, 
multiple, or all thresholds [15] to the prediction results of binary 
classifiers as shown in Fig. 1. Single-threshold-dependent 
evaluation metrics include the balanced accuracy (BA) [1], the 
geometric mean (GM) [1, 2], F1 score [1, 3], and Matthews’ 
Correlation Coefficient (MCC) [4]. Multiple-thresholds-
dependent evaluation metrics include the partial area under 
curve (pAUC) [5, 6], the standardized partial area (sPA) [7] and 
the concordant partial area under curve (pAUCc) [8]. All-
thresholds-dependent evaluation metrics include average 
precision (AP) [9], area under curve plotted with receiver 
operating characteristic (ROC) [10], predictive ROC curve [11], 
the positive tradeoff curve (PTC) [12], H measure [13], and area 
under the cost curve (AUCC) [14].  

The evaluation metrics each have their limitations. Single-
threshold-dependent evaluation metrics are too specific [15]. 
Hence, these metrics lack information when nearby threshold leads 
to rapid performance change [7, 16]. In contrast, all-threshold-
dependent evaluation metrics are too general [15]. They include 
performance from thresholds that would not be used in practice [17, 
18] and do not provide any information about the distribution of 
performance along various thresholds [17]. Multiple-threshold-
dependent evaluation metrics rely on threshold values chosen. 
They achieve a middle ground in terms of specificity.  

All the above-mentioned evaluation metrics measure the 
performance of classifiers using all the prediction results 
without considering the distribution of data objects. We 
categorize the objects in data into two groups. Objects which 
can never be misclassified by any classifiers are called simple 

objects, other objects are called non-simple objects. The 
distribution of simple objects and non-simple objects will affect 
the result of the evaluation metrics. As shown in Fig. 1, two 
classifiers measured by ROC [10] have 0.78 and 0.34 ROC 
originally. Upon increasing the number of the simple objects in 
data, the difference in performance approaches zero and the 
ROC approaches 1.00, approaching perfection. This 
phenomenon should not be disregarded especially in large data 
applications, which have a relatively higher probability to 
contain more simple objects. Hence, it is clear that evaluation 
metrics should consider simple objects. 

 

 

Fig. 1. Prediction results of Classifier 1 = {1, 2, 110, 6, 120}, Prediction results 
of Classifier 2 = {100, 150, 2, 130, 3}, label = {0, 0, 0, 1, 1}. Different numbers 
of zeroes serving as simple objects are added to the prediction results of both 
classifiers. The ROCs with and without NoSimple are plotted. Upon increasing 
the number simple objects, NoSimple preserves the distinction between 
classifiers. 

To reduce the effect of simple objects on evaluation metrics, 
we propose a framework called evaluation without simple objects 
(NoSimple). NoSimple works in two steps. Firstly, it removes the 
prediction results of common simple objects of classifiers pending 
evaluation. Secondly, it employs existing evaluation metrics 
with remaining prediction results. The results of the evaluation 
metrics will be used as the performance indicator for classifiers. 
As shown in Fig. 2, NoSimple can be applied to all existing 
evaluation metrics simply by changing the input data from all 
prediction results to partial results. We hypothesize that the 
proposed new versatile framework will improve all existing 

evaluation metric. 
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Fig. 2. Methods of evaluating the prediction results of binary classifiers based on all results and the proposed partial results. NoSimple may influence all the existing 
evaluation metrics, hence affecting various application domains. 

II. SIMPLE OBJECTS AND THEIR EFFECTS 

A. Simple objects 

Given a data set of objects X for a binary classification task, the 
objects that will always be correctly classified by any classifiers 
are defined as simple objects, while the remainder are non-

simple objects. Within the simple objects, they are further 
divided into 2 subsets, namely simple positive objects which are 
classified as positive and simple negative objects which are 
classified as negative.  

Logically, to identify all simple objects, one must test all 
classifiers. Realistically, this is operationally impossible. To 
tackle this dilemma, we focus on one classifier and define its 
simple objects as local simple objects. When repeated with 
multiple classifiers, there will be multiple groups of local 
simple objects, providing an approximation of all simple 
objects. We define local simple objects by relying exclusively 
on one classifier. Given a classifier d, it has a prediction score 

�� for each object in X. An object is classified as a local simple 
object if its prediction score is smaller than the score of any 

positive objects in ��, or larger than the score of any negative 

objects in ��. A set of local simple objects �� can be expressed 
as follows: 

 

φ� = {x	|s	� < s� OR s	� > s��; s	�, s��, s� ∈ S�; x	 ∈
X; ∀ x ∈ P; ∀ x� ∈ N}               (1) 

 

where X = P ∪ N, P is a set of positive objects and N is a set 

of negative objects;  s	� is the classifier d’s prediction score of 

the object x	.  A set of standard simple objects φ can be defined 
as: 

 

φ = {x	|x	 ∈ φ�; ∀ d ∈ D}             (2) 
 

where D represents either the set of all existing classifiers or a 
set of classifiers given.   

Hence, the set of standard simple objects is simply the 

expression of all sets of local simple objects.  Similarly, the 

more classifiers in D, the closer the local simple object φ� 

approaches the standard simple objects. 

B. Simple objects’ effect on F1 score 

The F1 score measures the accuracy of classifiers. Given a set 
of prediction scores from a classifier and a pre-defined 
threshold value, we can obtain the number of correctly 
predicted positive objects, falsely predicted positive objects, 
and falsely predicted negative objects, denoted as true positive 
(TP), false positive (FP), and false negative (FN), respectively. 
Then, the F1 score can be expressed as follows: 

 

F1 score =1/(1 + 0.5(FP + FN&/TP&.       (3) 

When the number of simple positive objects increases, this 
increases the TP rate and thus the F1 score increases 
proportionally. In contrast, the number of simple negative 
objects has no effect on the F1 score. Therefore, when the F1 
score increases, it could be attributed to a larger proportion of 
simple positive objects in the dataset rather than a more robust 
classifier. 

C. Simple objects’ effect on ROC 

ROC is defined as the area under curve plotted with receiver 
operating characteristic [10]. ROC is equivalent to the 
Wilcoxon test of ranks [19], hence can be expressed by the 
following Wilcoxon-Mann-Whitney equation: 

 

ROC = ∑ )*+,-,+.-/,,.
01 ,                        (4) 

 

I3s��, s�4 = 51, IF s�� > s� 
0 ,                    (5) 

 
where p and q denote the number of the positive objects and the 
number of negative objects respectively.  

When the dataset contains w simple positive objects and m 
simple negative objects, the ROC is calculated as follows after 
simplification: 
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ROC = 1 − 018∑ )*+,-,+.-/,,.
(09:&(19;& .              (6) 

 
From the above equation, we deduce that when w or m increases, 
the ROC increases proportionally. Hence both simple positive 
and negative objects have similar effect on ROC. Akin to the 
prior deduction from the F1 score, higher ROC values do not 
indicate better classifiers. The higher ROC value could be 
merely due to the presence of a larger number of simple objects. 
An example illustrating this phenomenon is shown in Fig. 1. 
With increasing quantities of simple objects, the ROC of both 
the robust Classifier 1 and subpar Classifier 2 can be improved 
to 1.00.  
 

III. EVALUATION WITHOUT SIMPLE OBJECTS (NOSIMPLE) 

AND DISCUSSION 

This section introduces NoSimple and discusses its potential for 
industry applications.  

A. NoSimple 

Regardless of the evaluation metric used, simple objects 
invariably impair the evaluation metric’s ability to identify an 
accurate classifier. With ROC as an accepted method of 
evaluating classifiers, the crux of the issue lies with the positive 
influence of simple objects on ROC value. Similarly, by 
utilizing the F1 score, simple objects can increase TP rate and 
thus the F1 score. However, this falsely elevated value does not 
truly reflect the performance of the classifier. This problem is 
confounded by other covariates such as the number of relevant 
objects or more advanced classifier models. 

NoSimple aims to resolve this issue by reducing the effect of 
simple objects on evaluation of classifiers, by simply excluding 
these objects from the evaluation phase. However, the simple 
objects should not be permanently removed from its native 
dataset as its removal will bias other further evaluation such as 
model training. NoSimple is summarized in Algorithm 1. It 
essentially a three-step process: Firstly, the model attempts to 
identify the simple objects with Eq. (1) and (2). Next, the model 
removes the simple objects from the prediction scores of 
classifiers. Lastly, the model performs evaluation metric 
analysis on the remaining prediction scores of classifiers.  

Examples with and without using NoSimple are shown in 
Fig. 1. Given label = {0, 0, 0, 1, 1}, prediction results of 
Classifier 1 = {1, 2, 110, 6, 120}, and prediction results of 
Classifier 2 = {100, 150, 2, 130, 3}, equal zeroes were added to 
serve as the prediction results of simple objects into the 
prediction results of both classifiers. We plotted their ROC with 
and without NoSimple varying the numbers of simple objects. 
Without NoSimple, the evaluation results in an illusion that the 
performance of the two classifiers are similar. With NoSimple, 
the true disparity of the performance between the two classifiers 
is reflected regardless of the number of simple objects.  

 

Algorithm 1: NoSimple 

Input: A set of classifiers: D, A set of prediction scores from D: S; 

            A set of data objects: X; An evolution metric E(*)  
Output: A set of measurements for each classifier in D: M 

1. φ Find simple objects φ using Eq. (1) and (2); 

2. FOR EACH CLASSIFER d ∈  D: 

3.      t�  {s	�|x	 ∉ φ, s	� ∉ S }, remove simple objects  

4.      m	 ∈ M  E(t�), calculate measurement  
5 END FOR 

 

B. Discussion: potential for cut-edge problems 

Industry applications such as click through rate (CTR) 
prediction often suffer substantial discrepancy between the 
offline and online performance of the predictive models. 
Essentially, there is variation of real-time performance of 
models as compared to retrospective analyses or offline 
analyses. Studies on this disparity [21] reported that classifiers 
with higher ROC value in offline testing stage may perform 
worse in online performance. This phenomenon is related to the 
evaluation metric of ROC. As described previously that both 
negative and positive simple objects influence the evaluation of 
classifiers, simple objects should be considered in training, 
testing and evaluation. Apart from this, ROC values are highly 
dependent on the underlying distribution of data [20]. For this 
reason, higher ROC score for a model trained with higher rate 
of negative samples do not necessarily imply the model has 
better predictive performance. In a binary classification task, 
samples are labelled as negative samples and positive samples. 
In terms of outlier detection, the normalities are negative 
samples. Our studies about simple objects' effect on evaluation 
metrics support the claim by Yi et al. regarding the significance 
of the distribution of data [20].  

IV. EXPERIMENTS WITH CASE STUDIES 

Experimental results with case studies in the outlier detection 
domain are reported in Table I. Outlier classifiers (or detectors) 
normally calculate a score for each object to determine if an 
object is an outlier or a normality. We used 30 real-world 
datasets which can be found via UCI data repository or in the 
article by Campos et al. [23]. The information of the datasets is 
summarized in first four columns of Table I. We employed 
MOD [24], LOF [25], IF [26], and COP [27] as classifiers.  
ROC is utilized as the evaluation metric. The results with and 
without NoSimple are shown in Table I. The datasets are listed 
in order of increasing percentages of simple objects in data. 

From the row labeled AVG (Average), with 18.87% simple 
objects on average, the average ROC of all classifiers are 
significantly reduced with -0.04, -0.05, -0.06, and -0.05 to ROC 
values respectively. When the percentage of simple objects is 
less than 2%, there is no significant difference between the 
results with and without NoSimple. When the percentage of 
simple objects is between 2% and 30%, the difference between 
the results with and without NoSimple is approximately -0.02 
to -0.10 ROC. When the percentage of simple objects is more 
than 34%, the difference between the results with and without 
NoSimple approaches -0.40 ROC. This illustrates that simple 
objects improve ROC proportionally.  
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In addition, the application of NoSimple preserves the 
relative performance of classifiers but essentially cleans the 
dataset involved. Hence, addition of NoSimple will improve 
accuracy of evaluation metrics of classifiers, without impairing 
comparison between different classifiers.  

For the wbc dataset, originally the LOF classifier performs 
relatively well with 0.96 ROC and the difference of ROC 
between LOF and other classifiers is no more than 0.02 ROC. 
However, after removing simple objects, the performance is 
reduced to 0.56 ROC, which is only marginally better than the 
random guessing. Surprisingly, the gap between LOF and other 
classifier increased to up to 0.34 ROC, because most of the local 
simple objects for LOF are standard simple objects. Similar 
observations were made for stamps (sta.) and shuttle (shu.) 
datasets. This indicates that the presence of simple objects may 
mislead users into selecting unsuitable classifiers.  
 

TABLE I DATASET INFORMATION AND EXPERIMENT RESULTS 

Set N D O Simple 

objects 
(%) 

Original NoSimple 

MOD 
[24] 

LOF 
[25] 

IF 
[26] 

COP 
[27] 

MOD 
[24] 

LOF 
[25] 

IF 
[26] 

COP 
[27] 

let. 1600 32 100 0.01< 0.62 0.83 0.62 0.56 0.62 0.83 0.62 0.56 

bre. 683 9 239 0.01< 0.99 0.49 0.99 0.99 0.99 0.49 0.99 0.99 

spa. 4207 57 1679 0.01< 0.58 0.43 0.61 0.69 0.58 0.43 0.61 0.69 

sate. 6435 36 2036 0.11 0.73 0.57 0.70 0.63 0.73 0.57 0.70 0.63 

pim. 768 8 268 0.13 0.75 0.66 0.68 0.65 0.75 0.66 0.68 0.65 

car. 2114 21 466 0.14 0.49 0.55 0.70 0.66 0.49 0.55 0.70 0.66 

wil. 4819 5 257 0.64 0.45 0.55 0.44 0.34 0.44 0.55 0.43 0.34 

ann. 7129 21 534 0.83 0.62 0.69 0.63 0.69 0.61 0.69 0.63 0.68 

wpb. 198 33 47 1.01 0.58 0.51 0.51 0.52 0.57 0.50 0.50 0.52 

wav. 3443 21 100 1.05 0.64 0.73 0.73 0.73 0.63 0.73 0.73 0.73 

pag. 5393 10 510 1.08 0.90 0.87 0.90 0.88 0.90 0.86 0.90 0.87 

hea. 270 13 120 1.11 0.72 0.61 0.61 0.69 0.71 0.60 0.60 0.69 

ver. 240 6 30 2.08 0.31 0.36 0.35 0.33 0.30 0.34 0.34 0.32 

arr. 450 259 206 2.89 0.70 0.73 0.74 0.76 0.68 0.71 0.73 0.74 

vow. 1456 12 50 2.95 0.91 0.94 0.79 0.50 0.91 0.94 0.78 0.48 

opt. 5216 64 150 4.39 0.31 0.38 0.74 0.68 0.27 0.36 0.72 0.67 

mni. 7603 100 700 4.95 0.85 0.79 0.78 0.77 0.84 0.78 0.77 0.76 

par. 195 22 147 5.13 0.51 0.46 0.49 0.54 0.47 0.43 0.46 0.51 

mus. 3062 166 97 7.94 0.99 0.39 1.00 0.95 0.99 0.33 1.00 0.94 

ion. 351 32 126 11.97 0.62 0.89 0.85 0.79 0.53 0.86 0.81 0.74 

sati. 5803 36 71 30.64 1.00 0.87 0.99 0.97 1.00 0.81 0.99 0.96 

win. 129 13 10 32.56 0.93 0.93 0.81 0.87 0.89 0.89 0.70 0.79 

lym. 148 3 6 34.46 0.81 0.89 0.85 0.83 0.71 0.83 0.78 0.74 

pen. 9868 16 20 38.71 0.97 0.93 0.87 0.58 0.94 0.89 0.79 0.31 

glas. 214 7 9 46.73 0.76 0.78 0.77 0.76 0.54 0.57 0.55 0.52 

sta. 340 9 31 58.24 0.93 0.82 0.90 0.93 0.82 0.50 0.73 0.81 

wdb. 367 30 10 58.86 0.90 0.93 0.93 0.97 0.74 0.81 0.83 0.93 

shu. 1013 9 13 63.97 0.99 0.99 0.87 0.82 0.96 0.96 0.64 0.48 

thy. 3772 6 93 65.35 0.97 0.95 0.98 0.94 0.92 0.84 0.93 0.82 

wbc 454 9 10 88.11 0.98 0.96 0.99 0.99 0.81 0.56 0.90 0.89 

AVG - - - 18.87 0.75 0.71 0.76 0.73 0.71 0.66 0.72 0.68 

Where N refers to objects, D refers to Dim, O refers to Outliers.  

 

Thus, it is prudent to evaluate the classifiers by checking the 
percentage of simple objects. When the percentage is more than 
30%, the application of NoSimple is key to distinguish whether 
the difference in perceived performance is simply due to dataset 
factors. NoSimple preserves the relative performance between 
classifiers and instead alters the absolute performance of 
classifiers based on the selected evaluation metric. If the 
application of NoSimple does not bring about significant 
differences in ROC, it is inferred that either classifier can be 
used and the performance evaluation is unbiased. 

V. CONCLUSION 

By introducing the concept of simple objects and their effect on 
existing evaluation metrics for binary classifiers, the NoSimple 
framework was proposed to reduce simple objects’ bias for any 
evaluation metrics for binary classifiers. We discovered that 
with increasing numbers of simple objects, ROC and F1 score 
tend to approach 1 and falsely reflect good performance. 
Additionally, simple objects bring different impact to different 
classifiers and applications, but the relative performances of 
different classifiers are preserved. NoSimple provides a 
systemic method of evaluating binary classifiers and provides 
important clues for solving existing problems in the industry.  
Needless to say, NoSimple brings about a multitude of potential 
applications.  
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