
979-8-3503-3101-1/24/$31.00 ©2024 IEEE

Abstract— Simple objects are defined as objects invariably

correctly classified by all outlier detectors. Its presence impairs

performance of binary classifiers such as ROC or F1 score. A large

number of simple objects falsely improve performance of binary

classifiers when evaluated by ROC or F1 score. This impairs

reliability of classifier evaluation. This manuscript proposes

evaluation without simple objects (NoSimple). NoSimple

preprocesses data to factor in simple objects by removing the

simple objects for the evaluation phase. Experiments with 30 real-

world datasets demonstrate that NoSimple significantly reduced

the average ROC of all classifiers by 0.04 ~ 0.06. NoSimple is most

effective when the percentage of simple objects exceeds 30%. By

introducing a new method to reliably evaluate outlier classifiers,

NoSimple has the potential to revolutionize evaluation metrics and

has a multitude of applications in data science research.

Index Terms— evaluation metric, ROC, F1 score, NoSimple,

evaluation without simple objects, outlier detection, CTR.

I. INTRODUCTION

Evaluation metrics play an important role in model comparison
and model selection. Evaluation metrics analyze predicted and
ground truth labels to provide a tangible outcome in terms of a
real number. Evaluation metrics rely on thresholds to assign
predicted labels for data objects when measuring score-based
binary classifiers.

Typical evaluation metrics for score-based binary classifiers
can be categorized into three groups based on applying single,
multiple, or all thresholds [15] to the prediction results of binary
classifiers as shown in Fig. 1. Single-threshold-dependent
evaluation metrics include the balanced accuracy (BA) [1], the
geometric mean (GM) [1, 2], F1 score [1, 3], and Matthews’
Correlation Coefficient (MCC) [4]. Multiple-thresholds-
dependent evaluation metrics include the partial area under
curve (pAUC) [5, 6], the standardized partial area (sPA) [7] and
the concordant partial area under curve (pAUCc) [8]. All-
thresholds-dependent evaluation metrics include average
precision (AP) [9], area under curve plotted with receiver
operating characteristic (ROC) [10], predictive ROC curve [11],
the positive tradeoff curve (PTC) [12], H measure [13], and area
under the cost curve (AUCC) [14].

The evaluation metrics each have their limitations. Single-
threshold-dependent evaluation metrics are too specific [15].
Hence, these metrics lack information when nearby threshold leads
to rapid performance change [7, 16]. In contrast, all-threshold-
dependent evaluation metrics are too general [15]. They include
performance from thresholds that would not be used in practice [17,
18] and do not provide any information about the distribution of
performance along various thresholds [17]. Multiple-threshold-
dependent evaluation metrics rely on threshold values chosen.
They achieve a middle ground in terms of specificity.

All the above-mentioned evaluation metrics measure the
performance of classifiers using all the prediction results
without considering the distribution of data objects. We
categorize the objects in data into two groups. Objects which
can never be misclassified by any classifiers are called simple

objects, other objects are called non-simple objects. The
distribution of simple objects and non-simple objects will affect
the result of the evaluation metrics. As shown in Fig. 1, two
classifiers measured by ROC [10] have 0.78 and 0.34 ROC
originally. Upon increasing the number of the simple objects in
data, the difference in performance approaches zero and the
ROC approaches 1.00, approaching perfection. This
phenomenon should not be disregarded especially in large data
applications, which have a relatively higher probability to
contain more simple objects. Hence, it is clear that evaluation
metrics should consider simple objects.

Fig. 1. Prediction results of Classifier 1 = {1, 2, 110, 6, 120}, Prediction results
of Classifier 2 = {100, 150, 2, 130, 3}, label = {0, 0, 0, 1, 1}. Different numbers
of zeroes serving as simple objects are added to the prediction results of both
classifiers. The ROCs with and without NoSimple are plotted. Upon increasing
the number simple objects, NoSimple preserves the distinction between
classifiers.

To reduce the effect of simple objects on evaluation metrics,
we propose a framework called evaluation without simple objects
(NoSimple). NoSimple works in two steps. Firstly, it removes the
prediction results of common simple objects of classifiers pending
evaluation. Secondly, it employs existing evaluation metrics
with remaining prediction results. The results of the evaluation
metrics will be used as the performance indicator for classifiers.
As shown in Fig. 2, NoSimple can be applied to all existing
evaluation metrics simply by changing the input data from all
prediction results to partial results. We hypothesize that the
proposed new versatile framework will improve all existing

evaluation metric.

R
O

C

The number of simple objects

Classifier 1 without NoSimple
Classifier 2 without NoSimple
Classifier 1 with NoSimple
Classifier 2 with NoSimple

NoSimple: Data Bias Evaluation Metrics
Sylwan Rahardja and Pasi Fränti

University of Eastern Finland, Joensuu, Finland

sylwanrahardja@ieee.org, franti@cs.uef.fi

20
24

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 U
bi

qu
ito

us
 In

fo
rm

at
io

n
M

an
ag

em
en

t a
nd

 C
om

m
un

ic
at

io
n

(IM
CO

M
) |

 9
79

-8
-3

50
3-

31
01

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IM

CO
M

60
61

8.
20

24
.1

04
18

41
9

Authorized licensed use limited to: University of Eastern Finland. Downloaded on February 20,2024 at 14:34:12 UTC from IEEE Xplore. Restrictions apply.

2

Fig. 2. Methods of evaluating the prediction results of binary classifiers based on all results and the proposed partial results. NoSimple may influence all the existing
evaluation metrics, hence affecting various application domains.

II. SIMPLE OBJECTS AND THEIR EFFECTS

A. Simple objects

Given a data set of objects X for a binary classification task, the
objects that will always be correctly classified by any classifiers
are defined as simple objects, while the remainder are non-

simple objects. Within the simple objects, they are further
divided into 2 subsets, namely simple positive objects which are
classified as positive and simple negative objects which are
classified as negative.

Logically, to identify all simple objects, one must test all
classifiers. Realistically, this is operationally impossible. To
tackle this dilemma, we focus on one classifier and define its
simple objects as local simple objects. When repeated with
multiple classifiers, there will be multiple groups of local
simple objects, providing an approximation of all simple
objects. We define local simple objects by relying exclusively
on one classifier. Given a classifier d, it has a prediction score

�� for each object in X. An object is classified as a local simple
object if its prediction score is smaller than the score of any

positive objects in ��, or larger than the score of any negative

objects in ��. A set of local simple objects �� can be expressed
as follows:

φ� = {x	|s	� < s
� OR s	� > s��; s	�, s��, s
� ∈ S�; x	 ∈
X; ∀ x
 ∈ P; ∀ x� ∈ N} (1)

where X = P ∪ N, P is a set of positive objects and N is a set

of negative objects; s	� is the classifier d’s prediction score of

the object x	. A set of standard simple objects φ can be defined
as:

φ = {x	|x	 ∈ φ�; ∀ d ∈ D} (2)

where D represents either the set of all existing classifiers or a
set of classifiers given.

Hence, the set of standard simple objects is simply the

expression of all sets of local simple objects. Similarly, the

more classifiers in D, the closer the local simple object φ�

approaches the standard simple objects.

B. Simple objects’ effect on F1 score

The F1 score measures the accuracy of classifiers. Given a set
of prediction scores from a classifier and a pre-defined
threshold value, we can obtain the number of correctly
predicted positive objects, falsely predicted positive objects,
and falsely predicted negative objects, denoted as true positive
(TP), false positive (FP), and false negative (FN), respectively.
Then, the F1 score can be expressed as follows:

F1 score =1/(1 + 0.5(FP + FN&/TP&. (3)

When the number of simple positive objects increases, this
increases the TP rate and thus the F1 score increases
proportionally. In contrast, the number of simple negative
objects has no effect on the F1 score. Therefore, when the F1
score increases, it could be attributed to a larger proportion of
simple positive objects in the dataset rather than a more robust
classifier.

C. Simple objects’ effect on ROC

ROC is defined as the area under curve plotted with receiver
operating characteristic [10]. ROC is equivalent to the
Wilcoxon test of ranks [19], hence can be expressed by the
following Wilcoxon-Mann-Whitney equation:

ROC = ∑)*+,-,+.-/,,.
01 , (4)

I3s��, s
�4 = 51, IF s�� > s
�
0 , (5)

where p and q denote the number of the positive objects and the
number of negative objects respectively.

When the dataset contains w simple positive objects and m
simple negative objects, the ROC is calculated as follows after
simplification:

Evaluation based

on all prediction results
NoSimple: Evaluation based on partial

prediction results (without simple objects)

Single

threshold
All

thresholds

Multiple

thresholds

Medicine, Radiology, Forecasting of natural hazards, Model performance assessment, Meteorology ,

Biometrics, Machine learning, Data mining, Artificial intelligence.

BA [1]

GM [1] [2]

F1 score [3]

MCC [4]

pAUC [5, 6]

sPA [7]

pAUCc [8]

Deep ROC [15]

AP [9], ROC [10]

predictive ROC [11]

H measure [13]

PTC [12], AUCC [14]

Prediction results of binary classifiers (models)

Application

Domains:

Evaluation

metrics

Threshold

dependency

Prediction

result

dependency

Models

Single

threshold
All

thresholds

Multiple

thresholds

BA [1]

GM [1] [2]

F1 score [3]

MCC [4]

pAUC [5, 6]

sPA [7]

pAUCc [8]

Deep ROC [15]

AP [9], ROC [10]

predictive ROC [11]

H measure [13]

PTC [12], AUCC [14]

Authorized licensed use limited to: University of Eastern Finland. Downloaded on February 20,2024 at 14:34:12 UTC from IEEE Xplore. Restrictions apply.

3

ROC = 1 − 018∑)*+,-,+.-/,,.
(09:&(19;& . (6)

From the above equation, we deduce that when w or m increases,
the ROC increases proportionally. Hence both simple positive
and negative objects have similar effect on ROC. Akin to the
prior deduction from the F1 score, higher ROC values do not
indicate better classifiers. The higher ROC value could be
merely due to the presence of a larger number of simple objects.
An example illustrating this phenomenon is shown in Fig. 1.
With increasing quantities of simple objects, the ROC of both
the robust Classifier 1 and subpar Classifier 2 can be improved
to 1.00.

III. EVALUATION WITHOUT SIMPLE OBJECTS (NOSIMPLE)

AND DISCUSSION

This section introduces NoSimple and discusses its potential for
industry applications.

A. NoSimple

Regardless of the evaluation metric used, simple objects
invariably impair the evaluation metric’s ability to identify an
accurate classifier. With ROC as an accepted method of
evaluating classifiers, the crux of the issue lies with the positive
influence of simple objects on ROC value. Similarly, by
utilizing the F1 score, simple objects can increase TP rate and
thus the F1 score. However, this falsely elevated value does not
truly reflect the performance of the classifier. This problem is
confounded by other covariates such as the number of relevant
objects or more advanced classifier models.

NoSimple aims to resolve this issue by reducing the effect of
simple objects on evaluation of classifiers, by simply excluding
these objects from the evaluation phase. However, the simple
objects should not be permanently removed from its native
dataset as its removal will bias other further evaluation such as
model training. NoSimple is summarized in Algorithm 1. It
essentially a three-step process: Firstly, the model attempts to
identify the simple objects with Eq. (1) and (2). Next, the model
removes the simple objects from the prediction scores of
classifiers. Lastly, the model performs evaluation metric
analysis on the remaining prediction scores of classifiers.

Examples with and without using NoSimple are shown in
Fig. 1. Given label = {0, 0, 0, 1, 1}, prediction results of
Classifier 1 = {1, 2, 110, 6, 120}, and prediction results of
Classifier 2 = {100, 150, 2, 130, 3}, equal zeroes were added to
serve as the prediction results of simple objects into the
prediction results of both classifiers. We plotted their ROC with
and without NoSimple varying the numbers of simple objects.
Without NoSimple, the evaluation results in an illusion that the
performance of the two classifiers are similar. With NoSimple,
the true disparity of the performance between the two classifiers
is reflected regardless of the number of simple objects.

Algorithm 1: NoSimple

Input: A set of classifiers: D, A set of prediction scores from D: S;

 A set of data objects: X; An evolution metric E(*)
Output: A set of measurements for each classifier in D: M

1. φ Find simple objects φ using Eq. (1) and (2);

2. FOR EACH CLASSIFER d ∈ D:

3. t�  {s	�|x	 ∉ φ, s	� ∉ S }, remove simple objects

4. m	 ∈ M  E(t�), calculate measurement
5 END FOR

B. Discussion: potential for cut-edge problems

Industry applications such as click through rate (CTR)
prediction often suffer substantial discrepancy between the
offline and online performance of the predictive models.
Essentially, there is variation of real-time performance of
models as compared to retrospective analyses or offline
analyses. Studies on this disparity [21] reported that classifiers
with higher ROC value in offline testing stage may perform
worse in online performance. This phenomenon is related to the
evaluation metric of ROC. As described previously that both
negative and positive simple objects influence the evaluation of
classifiers, simple objects should be considered in training,
testing and evaluation. Apart from this, ROC values are highly
dependent on the underlying distribution of data [20]. For this
reason, higher ROC score for a model trained with higher rate
of negative samples do not necessarily imply the model has
better predictive performance. In a binary classification task,
samples are labelled as negative samples and positive samples.
In terms of outlier detection, the normalities are negative
samples. Our studies about simple objects' effect on evaluation
metrics support the claim by Yi et al. regarding the significance
of the distribution of data [20].

IV. EXPERIMENTS WITH CASE STUDIES

Experimental results with case studies in the outlier detection
domain are reported in Table I. Outlier classifiers (or detectors)
normally calculate a score for each object to determine if an
object is an outlier or a normality. We used 30 real-world
datasets which can be found via UCI data repository or in the
article by Campos et al. [23]. The information of the datasets is
summarized in first four columns of Table I. We employed
MOD [24], LOF [25], IF [26], and COP [27] as classifiers.
ROC is utilized as the evaluation metric. The results with and
without NoSimple are shown in Table I. The datasets are listed
in order of increasing percentages of simple objects in data.

From the row labeled AVG (Average), with 18.87% simple
objects on average, the average ROC of all classifiers are
significantly reduced with -0.04, -0.05, -0.06, and -0.05 to ROC
values respectively. When the percentage of simple objects is
less than 2%, there is no significant difference between the
results with and without NoSimple. When the percentage of
simple objects is between 2% and 30%, the difference between
the results with and without NoSimple is approximately -0.02
to -0.10 ROC. When the percentage of simple objects is more
than 34%, the difference between the results with and without
NoSimple approaches -0.40 ROC. This illustrates that simple
objects improve ROC proportionally.

Authorized licensed use limited to: University of Eastern Finland. Downloaded on February 20,2024 at 14:34:12 UTC from IEEE Xplore. Restrictions apply.

4

In addition, the application of NoSimple preserves the
relative performance of classifiers but essentially cleans the
dataset involved. Hence, addition of NoSimple will improve
accuracy of evaluation metrics of classifiers, without impairing
comparison between different classifiers.

For the wbc dataset, originally the LOF classifier performs
relatively well with 0.96 ROC and the difference of ROC
between LOF and other classifiers is no more than 0.02 ROC.
However, after removing simple objects, the performance is
reduced to 0.56 ROC, which is only marginally better than the
random guessing. Surprisingly, the gap between LOF and other
classifier increased to up to 0.34 ROC, because most of the local
simple objects for LOF are standard simple objects. Similar
observations were made for stamps (sta.) and shuttle (shu.)
datasets. This indicates that the presence of simple objects may
mislead users into selecting unsuitable classifiers.

TABLE I DATASET INFORMATION AND EXPERIMENT RESULTS

Set N D O Simple

objects
(%)

Original NoSimple

MOD
[24]

LOF
[25]

IF
[26]

COP
[27]

MOD
[24]

LOF
[25]

IF
[26]

COP
[27]

let. 1600 32 100 0.01< 0.62 0.83 0.62 0.56 0.62 0.83 0.62 0.56

bre. 683 9 239 0.01< 0.99 0.49 0.99 0.99 0.99 0.49 0.99 0.99

spa. 4207 57 1679 0.01< 0.58 0.43 0.61 0.69 0.58 0.43 0.61 0.69

sate. 6435 36 2036 0.11 0.73 0.57 0.70 0.63 0.73 0.57 0.70 0.63

pim. 768 8 268 0.13 0.75 0.66 0.68 0.65 0.75 0.66 0.68 0.65

car. 2114 21 466 0.14 0.49 0.55 0.70 0.66 0.49 0.55 0.70 0.66

wil. 4819 5 257 0.64 0.45 0.55 0.44 0.34 0.44 0.55 0.43 0.34

ann. 7129 21 534 0.83 0.62 0.69 0.63 0.69 0.61 0.69 0.63 0.68

wpb. 198 33 47 1.01 0.58 0.51 0.51 0.52 0.57 0.50 0.50 0.52

wav. 3443 21 100 1.05 0.64 0.73 0.73 0.73 0.63 0.73 0.73 0.73

pag. 5393 10 510 1.08 0.90 0.87 0.90 0.88 0.90 0.86 0.90 0.87

hea. 270 13 120 1.11 0.72 0.61 0.61 0.69 0.71 0.60 0.60 0.69

ver. 240 6 30 2.08 0.31 0.36 0.35 0.33 0.30 0.34 0.34 0.32

arr. 450 259 206 2.89 0.70 0.73 0.74 0.76 0.68 0.71 0.73 0.74

vow. 1456 12 50 2.95 0.91 0.94 0.79 0.50 0.91 0.94 0.78 0.48

opt. 5216 64 150 4.39 0.31 0.38 0.74 0.68 0.27 0.36 0.72 0.67

mni. 7603 100 700 4.95 0.85 0.79 0.78 0.77 0.84 0.78 0.77 0.76

par. 195 22 147 5.13 0.51 0.46 0.49 0.54 0.47 0.43 0.46 0.51

mus. 3062 166 97 7.94 0.99 0.39 1.00 0.95 0.99 0.33 1.00 0.94

ion. 351 32 126 11.97 0.62 0.89 0.85 0.79 0.53 0.86 0.81 0.74

sati. 5803 36 71 30.64 1.00 0.87 0.99 0.97 1.00 0.81 0.99 0.96

win. 129 13 10 32.56 0.93 0.93 0.81 0.87 0.89 0.89 0.70 0.79

lym. 148 3 6 34.46 0.81 0.89 0.85 0.83 0.71 0.83 0.78 0.74

pen. 9868 16 20 38.71 0.97 0.93 0.87 0.58 0.94 0.89 0.79 0.31

glas. 214 7 9 46.73 0.76 0.78 0.77 0.76 0.54 0.57 0.55 0.52

sta. 340 9 31 58.24 0.93 0.82 0.90 0.93 0.82 0.50 0.73 0.81

wdb. 367 30 10 58.86 0.90 0.93 0.93 0.97 0.74 0.81 0.83 0.93

shu. 1013 9 13 63.97 0.99 0.99 0.87 0.82 0.96 0.96 0.64 0.48

thy. 3772 6 93 65.35 0.97 0.95 0.98 0.94 0.92 0.84 0.93 0.82

wbc 454 9 10 88.11 0.98 0.96 0.99 0.99 0.81 0.56 0.90 0.89

AVG - - - 18.87 0.75 0.71 0.76 0.73 0.71 0.66 0.72 0.68

Where N refers to objects, D refers to Dim, O refers to Outliers.

Thus, it is prudent to evaluate the classifiers by checking the
percentage of simple objects. When the percentage is more than
30%, the application of NoSimple is key to distinguish whether
the difference in perceived performance is simply due to dataset
factors. NoSimple preserves the relative performance between
classifiers and instead alters the absolute performance of
classifiers based on the selected evaluation metric. If the
application of NoSimple does not bring about significant
differences in ROC, it is inferred that either classifier can be
used and the performance evaluation is unbiased.

V. CONCLUSION

By introducing the concept of simple objects and their effect on
existing evaluation metrics for binary classifiers, the NoSimple
framework was proposed to reduce simple objects’ bias for any
evaluation metrics for binary classifiers. We discovered that
with increasing numbers of simple objects, ROC and F1 score
tend to approach 1 and falsely reflect good performance.
Additionally, simple objects bring different impact to different
classifiers and applications, but the relative performances of
different classifiers are preserved. NoSimple provides a
systemic method of evaluating binary classifiers and provides
important clues for solving existing problems in the industry.
Needless to say, NoSimple brings about a multitude of potential
applications.

REFERENCES

[1] G. Santafe, I. Inza, and J. A. Lozano, “Dealing with the evaluation of
supervised classification algorithms,” Artificial Intelligence Review, vol.
44, no. 4, pp. 467–508, 2015.

[2] M. Wu and J. Ye, “A small sphere and large margin approach for
novelty detection using training data with outliers,” IEEE transactions
on pattern analysis and machine intelligence, vol. 31, no. 11, pp. 2088–
2092, 2009.

[3] P. Flach, “Performance Evaluation in Machine Learning: The Good, the
Bad, the Ugly, and the Way Forward,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, pp. 9808–9814, 2019.
[4] Q. Zhu, “On the performance of Matthews correlation coefficient

(MCC) for imbalanced dataset,” Pattern Recognition Letters, vol. 136,
pp. 71–80, 2020.

[5] D. K. McClish, “Analyzing a Portion of the ROC Curve,” Medical

decision making, pp. 190–195, 1989.
[6] M. Thomson and W. Zucchini, “On the statistical analysis of ROC

curves,” Statistics in Medicine, vol. 8, pp. 1277–1290, 1989.
[7] D. K. McClish, “Evaluation of the Accuracy of Medical Tests in a

Region around the Optimal Point,” Academic Radiology, vol. 19, no. 12,
pp. 1484–1490, 2012.

[8] A. M. Carrington, P. W. Fieguth, H. Qazi, A. Holzinger, H. H. Chen, F.
Mayr, and D. G. Manuel, “A new concordant partial auc and partial c
statistic for imbalanced data in the evaluation of machine learning
algorithms,” Springer/Nature BMC Medical Informatics and Decision

Making, vol. 20, no. 1, pp. 1–12, 2020.
[9] T. Saito and M. Rehmsmeier, “The precision-recall plot is more

informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets,” PLoS ONE, vol. 10, no. 3, pp. 1–21, 2015.

[10] Fawcett, Tom. "An Introduction to ROC Analysis". Pattern Recognition

Letters. 27 (8): 861–874, 2006.
[11] S.-Y. Shiu and C. Gatsonis, “The predictive receiver operating

characteristic curve for the joint assessment of the positive and negative
predictive values,” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, vol. 366, no. 1874,
pp. 2313–2333, 2008.

[12] C. O’Reilly and T. Nielsen, “Revisiting the ROC curve for diag- nostic
applications with an unbalanced class distribution,” 2013 8th
International Workshop on Systems, Signal Processing and Their

Applications, WoSSPA 2013, pp. 413–420, 2013.

Authorized licensed use limited to: University of Eastern Finland. Downloaded on February 20,2024 at 14:34:12 UTC from IEEE Xplore. Restrictions apply.

5

[13] D. J. Hand, “Measuring classifier performance: A coherent alterna- tive
to the area under the ROC curve,” Machine Learning, vol. 77, no. 1, pp.
103–123, 2009.

[14] P. A. Flach, J. Hernández-Orallo, and C. F. Ramirez, “A coherent
interpretation of auc as a measure of aggregated classification
performance,” in ICML, 2011.

[15] A. M. Carrington et al., "Deep ROC Analysis and AUC as Balanced
Average Accuracy, for Improved Classifier Selection, Audit and
Explanation," in IEEE Transactions on Pattern Analysis and Machine

Intelligence,
[16] A. P. Bradley, “The use of the area under the {ROC} curve in the

evaluation of machine learning algorithms,” Pattern Recognition, vol.
30, pp. 1145–1159, 1997.

[17] J. M. Lobo, A. Jiménez-valverde, and R. Real, “AUC: a misleading
measure of the performance of predictive distribution models,” Global

Ecology and Biogeography, no. 17, pp. 145–151, 2008.
[18] S. Mallett, S. Halligan, M. Thompson, G. S. Collins, and D. G. Altman,

“Interpreting diagnostic accuracy studies for patient care,” Bmj, vol. 345,
2012.

[19] Mason, Simon J.; Graham, Nicholas E. "Areas beneath the relative
operating characteristics (ROC) and relative operating levels (ROL)
curves: Statistical significance and interpretation". Quarterly Journal of

the Royal Meteorological Society. 128 (584): 2145–2166. 2022.
[20] Jeonghee Yi, Ye Chen, Jie Li, Swaraj Sett, and Tak W. Yan. 2013.

Predictive model performance: offline and online evaluations. In

Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining. Association for Computing
Machinery, New York, NY, USA, 1294–1302, 2013.

[21] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. Wide & deep learning for recommender systems. In

Proceedings of the 1st Workshop on Deep Learning for Recommender

Systems. ACM, 7–10, 2016.
[22] H. Zhu, J. Jin, C. Tan, F. Pan, Y. Zeng, H. Li, et al., "Optimized cost per

click in taobao display advertising", Proc. 23rd ACM SIGKDD Int.

Conf. Knowl. Discovery and Data Mining, pp. 2191-2200, 2017.
[23] G.O. Campos, A. Zimek, J. Sander, R.J.G.B. Campello, B. Micenkova, E. Schubert,

I. Assent, and M.E. Houle, "On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study, " Data Mining and Knowledge
Discovery, 30 (4), 891–927, 2016.

[24] J. Yang, S. Rahardja, P. Fränti, "Mean-shift outlier detection and filtering," Pattern

Recognition, 115, 107874, 2021
[25] M.M. Breunig, H. Kriegel, R.T. Ng, and J. Sander, "LOF: Identifying density-based

local outliers," ACM SIGMOD Int. Conf. on Management of Data, 29 (2), 93-104,
2000.

[26] F. Liu, T. Ting, K. Ming, and ZH. Zhou, "Isolation-based anomaly detection," ACM

Transactions on Knowledge Discovery from Data (TKDD), 6 (1), 3:1-3:39, 2012.
[27] Z. Li, et al. "COPOD: Copula-Based Outlier Detection," IEEE International

Conference on Data Mining (ICDM), 2020

Authorized licensed use limited to: University of Eastern Finland. Downloaded on February 20,2024 at 14:34:12 UTC from IEEE Xplore. Restrictions apply.

