
Improving K-Means by Outlier Removal

Ville Hautamäki, Svetlana Cherednichenko, Ismo Kärkkäinen,
Tomi Kinnunen, and Pasi Fränti

Speech and Image Processing Unit,
Department of Computer Science, University of Joensuu,

P.O. Box 111, FI-80101, Joensuu, Finland
{villeh, schered, iak, tkinnu, franti}@cs.joensuu.fi

Abstract. We present an Outlier Removal Clustering (ORC) algorithm
that provides outlier detection and data clustering simultaneously. The
method employs both clustering and outlier discovery to improve esti-
mation of the centroids of the generative distribution. The proposed al-
gorithm consists of two stages. The first stage consist of purely K-means
process, while the second stage iteratively removes the vectors which are
far from their cluster centroids. We provide experimental results on three
different synthetic datasets and three map images which were corrupted
by lossy compression. The results indicate that the proposed method has
a lower error on datasets with overlapping clusters than the competing
methods.

1 Introduction

K-means [1] is an iterative clustering algorithm widely used in pattern recogni-
tion and data mining for finding statistical structures in data. K-means takes a
training set X = {x1, . . . ,xN} and a desired number of clusters M as its input
and produces a codebook C = {c1, . . . , cM}. The elements ci are called code vec-
tors, and they define partition of the input space into disjoint sets {P1, . . . , PM}
so that Pi = {x ∈ IRd; ‖x − ci‖ ≤ ‖x − cj‖ ∀j �= i}. These sets are called clus-
ters. As the clusters are disjoint, each input vector xi ∈ X belongs to exactly
one cluster, the one whose code vector is nearest to xi. Cluster index is denoted
here as pi ∈ {1, 2, . . . ,M}. The size of a cluster is defined as the number of input
vectors assigned to the cluster and will be denoted here as ni.

K-means starts with an initial codebook C and partition P it and improves
them iteratively. If K-means has been initialized well, the resulting code vectors
tend to be located at locally dense regions of the input space. In this way, K-
means can be considered as a nonparametric density estimator which attempts
to fit a model C into the input data. Text-independent speaker recognition is an
example in which K-means is used in the role of a density estimator [2]. There
each cluster can be thought as roughly representing a single phonetic class, and
each codebook representing the distribution of the speaker’s characteristic vocal
space.

Given the density estimation property of K-means, it is desirable that the
code vectors would be located at the correct locations, or in other words, at

H. Kalviainen et al. (Eds.): SCIA 2005, LNCS 3540, pp. 978–987, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improving K-Means by Outlier Removal 979

the centres of the actual clusters that generated X. However, even if the initial
code vectors would be located exactly at the true locations, there is no guaran-
tee that these would be the final estimated centroids. This happens more easily
for overlapping clusters, see Fig. 1 for an illustration. In this figure, two Gaus-
sian clusters having same variance have been generated by drawing N = 200
independent random samples from each class, and the distance between the
mean vectors is varied in the three panels. The triangles denote the true cen-
troids of the clusters and the open circles denote the estimated centroids using
K-means. The true mean vectors have been used as the initial codebook to K-
means. The dotted line shows the Voronoi partitioning based on the empirical
centroids.

−5 0 5 10
−5

0

5
Empirical centroids
True centroids

−5 0 5 10
−5

0

5
Empirical centroids
True centroids

−5 0 5 10
−5

0

5
Empirical centroids
True centroids

Fig. 1. Problem of K-means as a density estimator

In this trivial case, we can observe that for an increased cluster overlap,
the estimated cluster centroids deviate more from the true ones. The reason
for this is a fundamental problem of K-means: the clusters are disjoint, and
the training vectors assigned to a wrong cluster deviate the estimated centroids
away from the true ones. Figure 2 shows the error between the estimated code-
book and the true codebook as a function of the distance between the clus-
ter centers ‖c1 − c2‖ and the ratio of their standard deviations σ1/σ2. Based
on these observations, the usefulness of K-means as a density estimator is
questionable.

0

1

2

3

0

50

100

150

200
0

10

20

30

40

|| c
1
 − c

2
 ||σ

1
 / σ

2

D
(C

em
pi

ric
al

,C
tr

ue
)

Fig. 2. Error between the true and estimated models

980 V. Hautamäki et al.

Parametric and fuzzy clustering models such as Gaussian Mixture Models
(GMM) algorithm [3] and Fuzzy C-means (FCM) [4] can be used to attack
the problem of nonoverlapping clusters. However, K-means remains probably
the most widely used clustering method, because it is simple to implement and
provides reasonably good results in most cases. In this paper, we improve the
K-means based density estimation by embedding a simple outlier removal pro-
cedure in the algorithm. The proposed method iteratively removes vectors far
from the currently estimated codevectors. By modifying the training set X in
this way, we compensate for the nonoverlapping cluster assumption. However,
the algorithm should remove also points that are in the overlapping regions of
clusters.

2 Outlier Removal Followed by Clustering

Outlier is defined as a noisy observation, which does not fit to the assumed model
that generated the data. In clustering, outliers are considered as observations
that should be removed in order to make clustering more reliable [5].

In outlier detection methods based on clustering, outlier is defined to be an
observation that does not fit to the overall clustering pattern [6]. The ability
to detect outliers can be improved using a combined perspective of outlier de-
tection and clustering. Some clustering algorithms, for example DBSCAN [7]
and ROCK [8], handle outliers as special observations, but their main concern
is clustering the dataset, not detecting outliers.

Outlier Detection using Indegree Number (ODIN) [9] is a local density-based
outlier detection algorithm. Local density based scheme can be used in cluster
thinning. Outlier removal algorithm can remove vectors from the overlapping re-
gions between clusters, if the assumption holds that the regions are of relatively
low density. Higher density is found near the cluster centroid. An obvious ap-
proach to use outlier rejection in the cluster thinning is as follows: (i) eliminate
outliers (ii) cluster the data using any method.

Algorithm 1. ODIN+K-means(k, T)
{ind(xi)|i = 1, . . . , N} ← Calculate kNN graph
for i ← 1, . . . , N do

oi ← 1
/
(ind(xi) + 1)

if oi > T then
X ← X \ {xi}

end if
end for
(C, P) ← K-means(X)

In this paper, we compare the proposed method against aforementioned
scheme, in which the outlier removal method is ODIN and the clustering al-
gorithm K-means. In ODIN, the outliers are defined using a k-nearest neighbour

Improving K-Means by Outlier Removal 981

(kNN) graph, in which every vertex represents a data vector, and the edges are
pointers to neighbouring k vectors. The weight of an edge eij is ‖xi − xj‖.

In ODIN, the outlyingess of xi is defined as:

oi =
1

ind(xi) + 1
, (1)

where ind(xi) is the indegree of the vertex xi, i.e. the number of edges pointing
to xi. In the first step of ODIN, a kNN graph is created for the dataset X.
Then, each vertex is visited to check if its outlyingness is above threshold T .
Fig. 3 shows an example of kNN graph and the outlyingness values calculated
for three vectors.

oi=1xi

xj ol=1/4

xl
oj=1/3

Fig. 3. Example of outlyingness factors in ODIN

3 Proposed Method

The objective of the proposed algorithm that we call outlier removal clustering
(ORC), is to produce a codebook as close as possible to the mean vector parame-
ters that generated the original data. It consists of two consecutive stages, which
are repeated several times. In the first stage, we perform K-means algorithm un-
til convergence, and in the second stage, we assign an outlyingness factor for
each vector. Factor depends on its distance from the cluster centroid. Then al-
gorithm iterations start, with first finding the vector with maximum distance to
the partition centroid dmax:

dmax = max
i

{‖xi − cpi
‖}, i = 1, . . . , N . (2)

Outlyingness factors for each vector are then calculated. We define the outlying-
ness of a vector xi as follows:

oi =
‖xi − cpi

‖
dmax

. (3)

We see that all outlyingness factors of the dataset are normalized to the scale
[0, 1]. The greater the value, the more likely the vector is an outlier. An example
of dataset clustered in three clusters and calculated outlyingness factors is shown
in Fig. 4.

982 V. Hautamäki et al.

*
*

* *
*

*

*

* **

*
*

*
*

*

*
*

** *

*

* *
*

*
* *

*

*

**
*

*

* *
**

*

* *
*

*

*

*
**

*

*

*

*

xl

3.0==
max

l
l d

do

imax dd =

xj
8.0==

max

j
d

d
jo

xi

1=io *

Fig. 4. Example of outlyingness factors in ORC

Algorithm 2. ORC(I, T)
C ← Run K-means with multiple initial solutions, pick best C
for j ← 1, . . . , I do

dmax ← maxi{‖xi − cpi‖}
for i ← 1, . . . , N do

oi = ‖xi − cpi‖
/
dmax

if oi > T then
X ← X \ {xi}

end if
end for
(C, P) ← K-means(X, C)

end for

The vectors for which oi > T , are defined as outliers and removed from
the dataset. At the end of each iteration, K-means is run with previous the
C as the initial codebook, so new solution will be a fine-tuned solution for
the reduced dataset. By setting the threshold to T < 1, at least one vec-
tor is removed. Thus, increasing the number of iterations and decreasing the
threshold will in effect remove more vectors from the dataset, possibly all
vectors.

Fig. 5 shows an example of running the proposed method on a dataset with
strongly overlapping cluster so that even the cluster boundaries are not easily
observable. The black dots are the original centroids. We see that with 40 iter-
ations clusters are little bit separated and with 70 iterations clusters are totally
separated.

4 Experiments

We run experiments on three synthetic datasets denoted as A1, S3 and S4 [10],
which are shown in Fig. 6 and summarized in Table 1. The original cluster

Improving K-Means by Outlier Removal 983

Fig. 5. Example of ORC. Original dataset (left), after 40 iterations (center), and after
70 iterations (right). The removal threshold is set to T = 0.95 in all cases

centroids are also shown in the same figure. Vectors in datasets are drawn from
multinormal distributions. In dataset A1, the clusters are fairly well separated.
In dataset S3, the clusters are slightly overlapping, and in dataset S4, the clusters
are highly overlapping.

Fig. 6. Datasets, A1 (left), S3 (center) and S4 (right)

We run experiments also on three map image datasets (M1, M2 and M3),
which are shown in Fig. 7. Map images are distorted by compressing them with
a JPEG lossy compression method. The objective is to use color quantization
for finding as close approximation of the original colors as possible. JPEG com-
pression of map images creates so-called ringing around the edges due to the
quantization of the cosine function coefficients. In [11], color quantization meth-
ods were used to find the original colors. We apply the proposed algorithm to
this problem, and we assume that the number of colors is known in advance.

We calculate mean absolute error (MAE) to measure the difference between
the empirical codebook and the generative codebook. For ODIN with K-means,
we vary both the neighbourhood size k and the number of vectors removed. For
ORC, we vary the number of iterations I and the threshold T .

Table 1. Summary of the datasets

Dataset N M Dataset N M

A1 3000 20 M1 73714 5
S3 5000 15 M2 126246 6
S4 5000 15 M3 69115 5

984 V. Hautamäki et al.

Fig. 7. Sample 256x256 pixel fragment from the test images M1 (left), M2 (center)
and M3 (right)

0.9
0.92

0.94
0.96

0.98
1 0

20
40

60
80

100
0

500

1000

IterationThreshold

M
A

E

40

60

80

100 0

50

100
50

100

150

200

kRemaining, %

M
A

E

Fig. 8. Results for the dataset A1 for ORC (left) and for ODIN with K-means (right)

4.1 Results

Fig. 8 shows the results for the dataset A1. We observe that increasing the
parameters in the algorithms increases the error. Fig. 9 shows the results for the
dataset S3. Situation without ORC iterations and threshold is shown in the back
corner (in contrast to the previous figure, due to the shape of the error surface).
ODIN has two “valleys”, where distortion values are lower, but the error is
consistently decreasing as iterations proceed or the threshold is decreased.

Fig. 10 shows the results for the dataset S4. Again, ODIN with K-means
has two “valleys” where the error is lower. Regarding the number of remaining
vectors, we see that the more vectors we remove with the ORC algorithm, the

0.9
0.92

0.94
0.96

0.98
1 0

20
40

60
80

100

3000

4000

5000

6000

7000

IterationThreshold

M
A

E

40

60

80

100 0

50

100
4000

5000

6000

7000

8000

9000

kRemaining, %

M
A

E

Fig. 9. Results for the dataset S3 for ORC (left) and for ODIN with K-means (right)

Improving K-Means by Outlier Removal 985

better the accuracy will be. This is because the ORC algorithm works as designed
for S4 dataset by removing vectors that reside between clusters. On the other
hand, when increasing parameters in ODIN algorithm first, we get lower error
and then the error starts to increase.

Results for the M1 - M3 datasets running the ORC algorithm are presented
in Figs. 11 and 12. We note that for all the test cases, ORC reaches lower error
when the number of iterations is increased enough or the threshold is decreased.
Error surface of the dataset M1 has an interesting behaviour, where error first
increases and then it starts to decrease. Error surfaces for ODIN are omitted as
with all parameter combinations the error increases in relation to the standard
K-means.

0.9
0.92

0.94
0.96

0.98
1 0

20
40

60
80

100

2000

4000

6000

8000

10000

IterationThreshold

M
A

E

40

60

80

100 0

50

100
4000

5000

6000

7000

8000

9000

10000

kRemaining, %

M
A

E

Fig. 10. Results for the dataset S4 for ORC (left) and for ODIN K-means (right)

0.9

0.92

0.94

0.96

0.98

1

0
20

40
60

80
100

40

45

50

55

Iteration

Threshold

M
A

E

0.9

0.92

0.94

0.96

0.98

1

0
20

40
60

80
100

10

20

30

40

Iteration

Threshold

M
A

E

Fig. 11. Results for the datasets M1 (left) and M2 (right) for ORC

0.9

0.92

0.94

0.96

0.98

1

0
20

40
60

80
100

22

24

26

28

Iteration

Threshold

M
A

E

Fig. 12. Results for the dataset M3 for ORC

986 V. Hautamäki et al.

Table 2. Best MAEs obtained

Algorithm A1 S3 S4 M1 M2 M3

Plain K-means 60 5719 7100 47 32 26
ODIN + K-means 58 4439 4754 61 48 45
ORC 56 3329 2813 45 13 23

In Table 2, we show the smallest MAE between original codebook and those
obtained by using K-means, ODIN with K-means and ORC. The results indi-
cate potential of the proposed method. The ORC algorithm outperforms the
traditional K-means and K-means preceded by outlier removal for all three data
sets. For the non-overlapping data set (A1), the results are close to each other.
However, when cluster overlap is increased, the proposed algorithm shows sub-
stantially improved performance over the baseline methods. For the most difficult
data set (S4), the proposed method gives 1.5 - 2 times smaller error. Although
parameter setting might be a difficult depending on the dataset. For the map
image datasets, ORC performs systematically better than K-means in all cases.
With datasets M1 and M3, ORC and K-means are close to each other in perfor-
mance, but for M2 ORC more than halves the error in relation to K-means.

5 Conclusions

In this paper, we have proposed to integrate outlier removal into K-means clus-
tering (ORC) for nonparametric model estimation. The proposed method was
also compared with the standard K-means without outlier removal, and a simple
approach in which outlier removal precedes the actual clustering. The proposed
method was evaluated on three synthetic data sets with known parameters of
the generative distribution and three map image datasets with known cluster
centroids.

The test results show that the method outperforms the two baseline methods,
particularly in the case of heavily overlapping clusters. A drawback is that correct
parameter setting seems to depend on the dataset. Thus, the parameter setting
should be automatized in future.

References

1. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer desing. IEEE
Transactions on Communications 28 (1980) 84–95

2. Kinnunen, T., Karpov, E., Fränti, P.: Real-time speaker identification and verifi-
cation. IEEE Transactions on Speech and Audio Processing (2005) Accepted for
publication.

3. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society B 39 (1977) 1–38

Improving K-Means by Outlier Removal 987

4. Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters. Journal of Cybernetics 3 (1974) 32–57

5. Guha, S., Rastogi, R., Shim, K.: CURE an efficient clustering algorithm for large
databases. In: Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, Seattle, Washington (1998) 73–84

6. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: A new data clustering algorithm
and its applications. Data Mining and Knowledge Discovery 1 (1997) 141–182

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In: 2nd International Conference
on Knowledge Discovery and Data Mining. (1996) 226–231

8. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for cate-
gorical attributes. In: 15th International Conference on Data Engineering. (1999)
512–521

9. Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neigh-
bour graph. In: 17th International Conference on Pattern Recognition (ICPR
2004), Cambridge, United Kingdom (2004) 430–433

10. Virmajoki, O.: Pairwise Nearest Neighbor Method Revisited. PhD thesis, Univer-
sity of Joensuu, Joensuu, Finland (2004)

11. Kopylov, P., Fränti, P.: Color quantization of map images. In: IASTED Conference
on Visualization, Imaging, and Image Processing (VIIP’04), Marbella, Spain (2004)
837–842

	Introduction
	Outlier Removal Followed by Clustering
	ProposedMethod
	Experiments
	Results

	Conclusions
	References

